Remove TYPE_TAG_NAME
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "common/byte-vector.h"
30
31 /* Define whether or not the C operator '/' truncates towards zero for
32 differently signed operands (truncation direction is undefined in C). */
33
34 #ifndef TRUNCATION_TOWARDS_ZERO
35 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
36 #endif
37
38 /* Given a pointer, return the size of its target.
39 If the pointer type is void *, then return 1.
40 If the target type is incomplete, then error out.
41 This isn't a general purpose function, but just a
42 helper for value_ptradd. */
43
44 static LONGEST
45 find_size_for_pointer_math (struct type *ptr_type)
46 {
47 LONGEST sz = -1;
48 struct type *ptr_target;
49
50 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
51 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
52
53 sz = type_length_units (ptr_target);
54 if (sz == 0)
55 {
56 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
57 sz = 1;
58 else
59 {
60 const char *name;
61
62 name = TYPE_NAME (ptr_target);
63 if (name == NULL)
64 error (_("Cannot perform pointer math on incomplete types, "
65 "try casting to a known type, or void *."));
66 else
67 error (_("Cannot perform pointer math on incomplete type \"%s\", "
68 "try casting to a known type, or void *."), name);
69 }
70 }
71 return sz;
72 }
73
74 /* Given a pointer ARG1 and an integral value ARG2, return the
75 result of C-style pointer arithmetic ARG1 + ARG2. */
76
77 struct value *
78 value_ptradd (struct value *arg1, LONGEST arg2)
79 {
80 struct type *valptrtype;
81 LONGEST sz;
82 struct value *result;
83
84 arg1 = coerce_array (arg1);
85 valptrtype = check_typedef (value_type (arg1));
86 sz = find_size_for_pointer_math (valptrtype);
87
88 result = value_from_pointer (valptrtype,
89 value_as_address (arg1) + sz * arg2);
90 if (VALUE_LVAL (result) != lval_internalvar)
91 set_value_component_location (result, arg1);
92 return result;
93 }
94
95 /* Given two compatible pointer values ARG1 and ARG2, return the
96 result of C-style pointer arithmetic ARG1 - ARG2. */
97
98 LONGEST
99 value_ptrdiff (struct value *arg1, struct value *arg2)
100 {
101 struct type *type1, *type2;
102 LONGEST sz;
103
104 arg1 = coerce_array (arg1);
105 arg2 = coerce_array (arg2);
106 type1 = check_typedef (value_type (arg1));
107 type2 = check_typedef (value_type (arg2));
108
109 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
110 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
111
112 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
113 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
114 error (_("First argument of `-' is a pointer and "
115 "second argument is neither\n"
116 "an integer nor a pointer of the same type."));
117
118 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
119 if (sz == 0)
120 {
121 warning (_("Type size unknown, assuming 1. "
122 "Try casting to a known type, or void *."));
123 sz = 1;
124 }
125
126 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
127 }
128
129 /* Return the value of ARRAY[IDX].
130
131 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
132 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
133
134 See comments in value_coerce_array() for rationale for reason for
135 doing lower bounds adjustment here rather than there.
136 FIXME: Perhaps we should validate that the index is valid and if
137 verbosity is set, warn about invalid indices (but still use them). */
138
139 struct value *
140 value_subscript (struct value *array, LONGEST index)
141 {
142 int c_style = current_language->c_style_arrays;
143 struct type *tarray;
144
145 array = coerce_ref (array);
146 tarray = check_typedef (value_type (array));
147
148 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
149 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
150 {
151 struct type *range_type = TYPE_INDEX_TYPE (tarray);
152 LONGEST lowerbound, upperbound;
153
154 get_discrete_bounds (range_type, &lowerbound, &upperbound);
155 if (VALUE_LVAL (array) != lval_memory)
156 return value_subscripted_rvalue (array, index, lowerbound);
157
158 if (c_style == 0)
159 {
160 if (index >= lowerbound && index <= upperbound)
161 return value_subscripted_rvalue (array, index, lowerbound);
162 /* Emit warning unless we have an array of unknown size.
163 An array of unknown size has lowerbound 0 and upperbound -1. */
164 if (upperbound > -1)
165 warning (_("array or string index out of range"));
166 /* fall doing C stuff */
167 c_style = 1;
168 }
169
170 index -= lowerbound;
171 array = value_coerce_array (array);
172 }
173
174 if (c_style)
175 return value_ind (value_ptradd (array, index));
176 else
177 error (_("not an array or string"));
178 }
179
180 /* Return the value of EXPR[IDX], expr an aggregate rvalue
181 (eg, a vector register). This routine used to promote floats
182 to doubles, but no longer does. */
183
184 struct value *
185 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
186 {
187 struct type *array_type = check_typedef (value_type (array));
188 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
189 ULONGEST elt_size = type_length_units (elt_type);
190 ULONGEST elt_offs = elt_size * (index - lowerbound);
191
192 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
193 && elt_offs >= type_length_units (array_type)))
194 {
195 if (type_not_associated (array_type))
196 error (_("no such vector element (vector not associated)"));
197 else if (type_not_allocated (array_type))
198 error (_("no such vector element (vector not allocated)"));
199 else
200 error (_("no such vector element"));
201 }
202
203 if (is_dynamic_type (elt_type))
204 {
205 CORE_ADDR address;
206
207 address = value_address (array) + elt_offs;
208 elt_type = resolve_dynamic_type (elt_type, NULL, address);
209 }
210
211 return value_from_component (array, elt_type, elt_offs);
212 }
213
214 \f
215 /* Check to see if either argument is a structure, or a reference to
216 one. This is called so we know whether to go ahead with the normal
217 binop or look for a user defined function instead.
218
219 For now, we do not overload the `=' operator. */
220
221 int
222 binop_types_user_defined_p (enum exp_opcode op,
223 struct type *type1, struct type *type2)
224 {
225 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
226 return 0;
227
228 type1 = check_typedef (type1);
229 if (TYPE_IS_REFERENCE (type1))
230 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
231
232 type2 = check_typedef (type2);
233 if (TYPE_IS_REFERENCE (type2))
234 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
235
236 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
237 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
238 }
239
240 /* Check to see if either argument is a structure, or a reference to
241 one. This is called so we know whether to go ahead with the normal
242 binop or look for a user defined function instead.
243
244 For now, we do not overload the `=' operator. */
245
246 int
247 binop_user_defined_p (enum exp_opcode op,
248 struct value *arg1, struct value *arg2)
249 {
250 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
251 }
252
253 /* Check to see if argument is a structure. This is called so
254 we know whether to go ahead with the normal unop or look for a
255 user defined function instead.
256
257 For now, we do not overload the `&' operator. */
258
259 int
260 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
261 {
262 struct type *type1;
263
264 if (op == UNOP_ADDR)
265 return 0;
266 type1 = check_typedef (value_type (arg1));
267 if (TYPE_IS_REFERENCE (type1))
268 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
269 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
270 }
271
272 /* Try to find an operator named OPERATOR which takes NARGS arguments
273 specified in ARGS. If the operator found is a static member operator
274 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
275 The search if performed through find_overload_match which will handle
276 member operators, non member operators, operators imported implicitly or
277 explicitly, and perform correct overload resolution in all of the above
278 situations or combinations thereof. */
279
280 static struct value *
281 value_user_defined_cpp_op (struct value **args, int nargs, char *oper,
282 int *static_memfuncp, enum noside noside)
283 {
284
285 struct symbol *symp = NULL;
286 struct value *valp = NULL;
287
288 find_overload_match (args, nargs, oper, BOTH /* could be method */,
289 &args[0] /* objp */,
290 NULL /* pass NULL symbol since symbol is unknown */,
291 &valp, &symp, static_memfuncp, 0, noside);
292
293 if (valp)
294 return valp;
295
296 if (symp)
297 {
298 /* This is a non member function and does not
299 expect a reference as its first argument
300 rather the explicit structure. */
301 args[0] = value_ind (args[0]);
302 return value_of_variable (symp, 0);
303 }
304
305 error (_("Could not find %s."), oper);
306 }
307
308 /* Lookup user defined operator NAME. Return a value representing the
309 function, otherwise return NULL. */
310
311 static struct value *
312 value_user_defined_op (struct value **argp, struct value **args, char *name,
313 int *static_memfuncp, int nargs, enum noside noside)
314 {
315 struct value *result = NULL;
316
317 if (current_language->la_language == language_cplus)
318 {
319 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp,
320 noside);
321 }
322 else
323 result = value_struct_elt (argp, args, name, static_memfuncp,
324 "structure");
325
326 return result;
327 }
328
329 /* We know either arg1 or arg2 is a structure, so try to find the right
330 user defined function. Create an argument vector that calls
331 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
332 binary operator which is legal for GNU C++).
333
334 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
335 is the opcode saying how to modify it. Otherwise, OTHEROP is
336 unused. */
337
338 struct value *
339 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
340 enum exp_opcode otherop, enum noside noside)
341 {
342 struct value **argvec;
343 char *ptr;
344 char tstr[13];
345 int static_memfuncp;
346
347 arg1 = coerce_ref (arg1);
348 arg2 = coerce_ref (arg2);
349
350 /* now we know that what we have to do is construct our
351 arg vector and find the right function to call it with. */
352
353 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
354 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
355
356 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
357 argvec[1] = value_addr (arg1);
358 argvec[2] = arg2;
359 argvec[3] = 0;
360
361 /* Make the right function name up. */
362 strcpy (tstr, "operator__");
363 ptr = tstr + 8;
364 switch (op)
365 {
366 case BINOP_ADD:
367 strcpy (ptr, "+");
368 break;
369 case BINOP_SUB:
370 strcpy (ptr, "-");
371 break;
372 case BINOP_MUL:
373 strcpy (ptr, "*");
374 break;
375 case BINOP_DIV:
376 strcpy (ptr, "/");
377 break;
378 case BINOP_REM:
379 strcpy (ptr, "%");
380 break;
381 case BINOP_LSH:
382 strcpy (ptr, "<<");
383 break;
384 case BINOP_RSH:
385 strcpy (ptr, ">>");
386 break;
387 case BINOP_BITWISE_AND:
388 strcpy (ptr, "&");
389 break;
390 case BINOP_BITWISE_IOR:
391 strcpy (ptr, "|");
392 break;
393 case BINOP_BITWISE_XOR:
394 strcpy (ptr, "^");
395 break;
396 case BINOP_LOGICAL_AND:
397 strcpy (ptr, "&&");
398 break;
399 case BINOP_LOGICAL_OR:
400 strcpy (ptr, "||");
401 break;
402 case BINOP_MIN:
403 strcpy (ptr, "<?");
404 break;
405 case BINOP_MAX:
406 strcpy (ptr, ">?");
407 break;
408 case BINOP_ASSIGN:
409 strcpy (ptr, "=");
410 break;
411 case BINOP_ASSIGN_MODIFY:
412 switch (otherop)
413 {
414 case BINOP_ADD:
415 strcpy (ptr, "+=");
416 break;
417 case BINOP_SUB:
418 strcpy (ptr, "-=");
419 break;
420 case BINOP_MUL:
421 strcpy (ptr, "*=");
422 break;
423 case BINOP_DIV:
424 strcpy (ptr, "/=");
425 break;
426 case BINOP_REM:
427 strcpy (ptr, "%=");
428 break;
429 case BINOP_BITWISE_AND:
430 strcpy (ptr, "&=");
431 break;
432 case BINOP_BITWISE_IOR:
433 strcpy (ptr, "|=");
434 break;
435 case BINOP_BITWISE_XOR:
436 strcpy (ptr, "^=");
437 break;
438 case BINOP_MOD: /* invalid */
439 default:
440 error (_("Invalid binary operation specified."));
441 }
442 break;
443 case BINOP_SUBSCRIPT:
444 strcpy (ptr, "[]");
445 break;
446 case BINOP_EQUAL:
447 strcpy (ptr, "==");
448 break;
449 case BINOP_NOTEQUAL:
450 strcpy (ptr, "!=");
451 break;
452 case BINOP_LESS:
453 strcpy (ptr, "<");
454 break;
455 case BINOP_GTR:
456 strcpy (ptr, ">");
457 break;
458 case BINOP_GEQ:
459 strcpy (ptr, ">=");
460 break;
461 case BINOP_LEQ:
462 strcpy (ptr, "<=");
463 break;
464 case BINOP_MOD: /* invalid */
465 default:
466 error (_("Invalid binary operation specified."));
467 }
468
469 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
470 &static_memfuncp, 2, noside);
471
472 if (argvec[0])
473 {
474 if (static_memfuncp)
475 {
476 argvec[1] = argvec[0];
477 argvec++;
478 }
479 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
480 {
481 /* Static xmethods are not supported yet. */
482 gdb_assert (static_memfuncp == 0);
483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
484 {
485 struct type *return_type
486 = result_type_of_xmethod (argvec[0], 2, argvec + 1);
487
488 if (return_type == NULL)
489 error (_("Xmethod is missing return type."));
490 return value_zero (return_type, VALUE_LVAL (arg1));
491 }
492 return call_xmethod (argvec[0], 2, argvec + 1);
493 }
494 if (noside == EVAL_AVOID_SIDE_EFFECTS)
495 {
496 struct type *return_type;
497
498 return_type
499 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
500 return value_zero (return_type, VALUE_LVAL (arg1));
501 }
502 return call_function_by_hand (argvec[0], NULL, 2 - static_memfuncp,
503 argvec + 1);
504 }
505 throw_error (NOT_FOUND_ERROR,
506 _("member function %s not found"), tstr);
507 #ifdef lint
508 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
509 #endif
510 }
511
512 /* We know that arg1 is a structure, so try to find a unary user
513 defined operator that matches the operator in question.
514 Create an argument vector that calls arg1.operator @ (arg1)
515 and return that value (where '@' is (almost) any unary operator which
516 is legal for GNU C++). */
517
518 struct value *
519 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
520 {
521 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
522 struct value **argvec;
523 char *ptr;
524 char tstr[13], mangle_tstr[13];
525 int static_memfuncp, nargs;
526
527 arg1 = coerce_ref (arg1);
528
529 /* now we know that what we have to do is construct our
530 arg vector and find the right function to call it with. */
531
532 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
533 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
534
535 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
536 argvec[1] = value_addr (arg1);
537 argvec[2] = 0;
538
539 nargs = 1;
540
541 /* Make the right function name up. */
542 strcpy (tstr, "operator__");
543 ptr = tstr + 8;
544 strcpy (mangle_tstr, "__");
545 switch (op)
546 {
547 case UNOP_PREINCREMENT:
548 strcpy (ptr, "++");
549 break;
550 case UNOP_PREDECREMENT:
551 strcpy (ptr, "--");
552 break;
553 case UNOP_POSTINCREMENT:
554 strcpy (ptr, "++");
555 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
556 argvec[3] = 0;
557 nargs ++;
558 break;
559 case UNOP_POSTDECREMENT:
560 strcpy (ptr, "--");
561 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
562 argvec[3] = 0;
563 nargs ++;
564 break;
565 case UNOP_LOGICAL_NOT:
566 strcpy (ptr, "!");
567 break;
568 case UNOP_COMPLEMENT:
569 strcpy (ptr, "~");
570 break;
571 case UNOP_NEG:
572 strcpy (ptr, "-");
573 break;
574 case UNOP_PLUS:
575 strcpy (ptr, "+");
576 break;
577 case UNOP_IND:
578 strcpy (ptr, "*");
579 break;
580 case STRUCTOP_PTR:
581 strcpy (ptr, "->");
582 break;
583 default:
584 error (_("Invalid unary operation specified."));
585 }
586
587 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
588 &static_memfuncp, nargs, noside);
589
590 if (argvec[0])
591 {
592 if (static_memfuncp)
593 {
594 argvec[1] = argvec[0];
595 nargs --;
596 argvec++;
597 }
598 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
599 {
600 /* Static xmethods are not supported yet. */
601 gdb_assert (static_memfuncp == 0);
602 if (noside == EVAL_AVOID_SIDE_EFFECTS)
603 {
604 struct type *return_type
605 = result_type_of_xmethod (argvec[0], 1, argvec + 1);
606
607 if (return_type == NULL)
608 error (_("Xmethod is missing return type."));
609 return value_zero (return_type, VALUE_LVAL (arg1));
610 }
611 return call_xmethod (argvec[0], 1, argvec + 1);
612 }
613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
614 {
615 struct type *return_type;
616
617 return_type
618 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
619 return value_zero (return_type, VALUE_LVAL (arg1));
620 }
621 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
622 }
623 throw_error (NOT_FOUND_ERROR,
624 _("member function %s not found"), tstr);
625
626 return 0; /* For lint -- never reached */
627 }
628 \f
629
630 /* Concatenate two values with the following conditions:
631
632 (1) Both values must be either bitstring values or character string
633 values and the resulting value consists of the concatenation of
634 ARG1 followed by ARG2.
635
636 or
637
638 One value must be an integer value and the other value must be
639 either a bitstring value or character string value, which is
640 to be repeated by the number of times specified by the integer
641 value.
642
643
644 (2) Boolean values are also allowed and are treated as bit string
645 values of length 1.
646
647 (3) Character values are also allowed and are treated as character
648 string values of length 1. */
649
650 struct value *
651 value_concat (struct value *arg1, struct value *arg2)
652 {
653 struct value *inval1;
654 struct value *inval2;
655 struct value *outval = NULL;
656 int inval1len, inval2len;
657 int count, idx;
658 char inchar;
659 struct type *type1 = check_typedef (value_type (arg1));
660 struct type *type2 = check_typedef (value_type (arg2));
661 struct type *char_type;
662
663 /* First figure out if we are dealing with two values to be concatenated
664 or a repeat count and a value to be repeated. INVAL1 is set to the
665 first of two concatenated values, or the repeat count. INVAL2 is set
666 to the second of the two concatenated values or the value to be
667 repeated. */
668
669 if (TYPE_CODE (type2) == TYPE_CODE_INT)
670 {
671 struct type *tmp = type1;
672
673 type1 = tmp;
674 tmp = type2;
675 inval1 = arg2;
676 inval2 = arg1;
677 }
678 else
679 {
680 inval1 = arg1;
681 inval2 = arg2;
682 }
683
684 /* Now process the input values. */
685
686 if (TYPE_CODE (type1) == TYPE_CODE_INT)
687 {
688 /* We have a repeat count. Validate the second value and then
689 construct a value repeated that many times. */
690 if (TYPE_CODE (type2) == TYPE_CODE_STRING
691 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
692 {
693 count = longest_to_int (value_as_long (inval1));
694 inval2len = TYPE_LENGTH (type2);
695 std::vector<char> ptr (count * inval2len);
696 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
697 {
698 char_type = type2;
699
700 inchar = (char) unpack_long (type2,
701 value_contents (inval2));
702 for (idx = 0; idx < count; idx++)
703 {
704 ptr[idx] = inchar;
705 }
706 }
707 else
708 {
709 char_type = TYPE_TARGET_TYPE (type2);
710
711 for (idx = 0; idx < count; idx++)
712 {
713 memcpy (&ptr[idx * inval2len], value_contents (inval2),
714 inval2len);
715 }
716 }
717 outval = value_string (ptr.data (), count * inval2len, char_type);
718 }
719 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
720 {
721 error (_("unimplemented support for boolean repeats"));
722 }
723 else
724 {
725 error (_("can't repeat values of that type"));
726 }
727 }
728 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
729 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
730 {
731 /* We have two character strings to concatenate. */
732 if (TYPE_CODE (type2) != TYPE_CODE_STRING
733 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
734 {
735 error (_("Strings can only be concatenated with other strings."));
736 }
737 inval1len = TYPE_LENGTH (type1);
738 inval2len = TYPE_LENGTH (type2);
739 std::vector<char> ptr (inval1len + inval2len);
740 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
741 {
742 char_type = type1;
743
744 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
745 }
746 else
747 {
748 char_type = TYPE_TARGET_TYPE (type1);
749
750 memcpy (ptr.data (), value_contents (inval1), inval1len);
751 }
752 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
753 {
754 ptr[inval1len] =
755 (char) unpack_long (type2, value_contents (inval2));
756 }
757 else
758 {
759 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
760 }
761 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
762 }
763 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
764 {
765 /* We have two bitstrings to concatenate. */
766 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
767 {
768 error (_("Booleans can only be concatenated "
769 "with other bitstrings or booleans."));
770 }
771 error (_("unimplemented support for boolean concatenation."));
772 }
773 else
774 {
775 /* We don't know how to concatenate these operands. */
776 error (_("illegal operands for concatenation."));
777 }
778 return (outval);
779 }
780 \f
781 /* Integer exponentiation: V1**V2, where both arguments are
782 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
783
784 static LONGEST
785 integer_pow (LONGEST v1, LONGEST v2)
786 {
787 if (v2 < 0)
788 {
789 if (v1 == 0)
790 error (_("Attempt to raise 0 to negative power."));
791 else
792 return 0;
793 }
794 else
795 {
796 /* The Russian Peasant's Algorithm. */
797 LONGEST v;
798
799 v = 1;
800 for (;;)
801 {
802 if (v2 & 1L)
803 v *= v1;
804 v2 >>= 1;
805 if (v2 == 0)
806 return v;
807 v1 *= v1;
808 }
809 }
810 }
811
812 /* Integer exponentiation: V1**V2, where both arguments are
813 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
814
815 static ULONGEST
816 uinteger_pow (ULONGEST v1, LONGEST v2)
817 {
818 if (v2 < 0)
819 {
820 if (v1 == 0)
821 error (_("Attempt to raise 0 to negative power."));
822 else
823 return 0;
824 }
825 else
826 {
827 /* The Russian Peasant's Algorithm. */
828 ULONGEST v;
829
830 v = 1;
831 for (;;)
832 {
833 if (v2 & 1L)
834 v *= v1;
835 v2 >>= 1;
836 if (v2 == 0)
837 return v;
838 v1 *= v1;
839 }
840 }
841 }
842
843 /* Obtain argument values for binary operation, converting from
844 other types if one of them is not floating point. */
845 static void
846 value_args_as_target_float (struct value *arg1, struct value *arg2,
847 gdb_byte *x, struct type **eff_type_x,
848 gdb_byte *y, struct type **eff_type_y)
849 {
850 struct type *type1, *type2;
851
852 type1 = check_typedef (value_type (arg1));
853 type2 = check_typedef (value_type (arg2));
854
855 /* At least one of the arguments must be of floating-point type. */
856 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
857
858 if (is_floating_type (type1) && is_floating_type (type2)
859 && TYPE_CODE (type1) != TYPE_CODE (type2))
860 /* The DFP extension to the C language does not allow mixing of
861 * decimal float types with other float types in expressions
862 * (see WDTR 24732, page 12). */
863 error (_("Mixing decimal floating types with "
864 "other floating types is not allowed."));
865
866 /* Obtain value of arg1, converting from other types if necessary. */
867
868 if (is_floating_type (type1))
869 {
870 *eff_type_x = type1;
871 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
872 }
873 else if (is_integral_type (type1))
874 {
875 *eff_type_x = type2;
876 if (TYPE_UNSIGNED (type1))
877 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
878 else
879 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
880 }
881 else
882 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
883 TYPE_NAME (type2));
884
885 /* Obtain value of arg2, converting from other types if necessary. */
886
887 if (is_floating_type (type2))
888 {
889 *eff_type_y = type2;
890 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
891 }
892 else if (is_integral_type (type2))
893 {
894 *eff_type_y = type1;
895 if (TYPE_UNSIGNED (type2))
896 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
897 else
898 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
899 }
900 else
901 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
902 TYPE_NAME (type2));
903 }
904
905 /* Perform a binary operation on two operands which have reasonable
906 representations as integers or floats. This includes booleans,
907 characters, integers, or floats.
908 Does not support addition and subtraction on pointers;
909 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
910
911 static struct value *
912 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
913 {
914 struct value *val;
915 struct type *type1, *type2, *result_type;
916
917 arg1 = coerce_ref (arg1);
918 arg2 = coerce_ref (arg2);
919
920 type1 = check_typedef (value_type (arg1));
921 type2 = check_typedef (value_type (arg2));
922
923 if ((!is_floating_value (arg1) && !is_integral_type (type1))
924 || (!is_floating_value (arg2) && !is_integral_type (type2)))
925 error (_("Argument to arithmetic operation not a number or boolean."));
926
927 if (is_floating_type (type1) || is_floating_type (type2))
928 {
929 /* If only one type is floating-point, use its type.
930 Otherwise use the bigger type. */
931 if (!is_floating_type (type1))
932 result_type = type2;
933 else if (!is_floating_type (type2))
934 result_type = type1;
935 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
936 result_type = type2;
937 else
938 result_type = type1;
939
940 val = allocate_value (result_type);
941
942 struct type *eff_type_v1, *eff_type_v2;
943 gdb::byte_vector v1, v2;
944 v1.resize (TYPE_LENGTH (result_type));
945 v2.resize (TYPE_LENGTH (result_type));
946
947 value_args_as_target_float (arg1, arg2,
948 v1.data (), &eff_type_v1,
949 v2.data (), &eff_type_v2);
950 target_float_binop (op, v1.data (), eff_type_v1,
951 v2.data (), eff_type_v2,
952 value_contents_raw (val), result_type);
953 }
954 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
955 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
956 {
957 LONGEST v1, v2, v = 0;
958
959 v1 = value_as_long (arg1);
960 v2 = value_as_long (arg2);
961
962 switch (op)
963 {
964 case BINOP_BITWISE_AND:
965 v = v1 & v2;
966 break;
967
968 case BINOP_BITWISE_IOR:
969 v = v1 | v2;
970 break;
971
972 case BINOP_BITWISE_XOR:
973 v = v1 ^ v2;
974 break;
975
976 case BINOP_EQUAL:
977 v = v1 == v2;
978 break;
979
980 case BINOP_NOTEQUAL:
981 v = v1 != v2;
982 break;
983
984 default:
985 error (_("Invalid operation on booleans."));
986 }
987
988 result_type = type1;
989
990 val = allocate_value (result_type);
991 store_signed_integer (value_contents_raw (val),
992 TYPE_LENGTH (result_type),
993 gdbarch_byte_order (get_type_arch (result_type)),
994 v);
995 }
996 else
997 /* Integral operations here. */
998 {
999 /* Determine type length of the result, and if the operation should
1000 be done unsigned. For exponentiation and shift operators,
1001 use the length and type of the left operand. Otherwise,
1002 use the signedness of the operand with the greater length.
1003 If both operands are of equal length, use unsigned operation
1004 if one of the operands is unsigned. */
1005 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1006 result_type = type1;
1007 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1008 result_type = type1;
1009 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1010 result_type = type2;
1011 else if (TYPE_UNSIGNED (type1))
1012 result_type = type1;
1013 else if (TYPE_UNSIGNED (type2))
1014 result_type = type2;
1015 else
1016 result_type = type1;
1017
1018 if (TYPE_UNSIGNED (result_type))
1019 {
1020 LONGEST v2_signed = value_as_long (arg2);
1021 ULONGEST v1, v2, v = 0;
1022
1023 v1 = (ULONGEST) value_as_long (arg1);
1024 v2 = (ULONGEST) v2_signed;
1025
1026 switch (op)
1027 {
1028 case BINOP_ADD:
1029 v = v1 + v2;
1030 break;
1031
1032 case BINOP_SUB:
1033 v = v1 - v2;
1034 break;
1035
1036 case BINOP_MUL:
1037 v = v1 * v2;
1038 break;
1039
1040 case BINOP_DIV:
1041 case BINOP_INTDIV:
1042 if (v2 != 0)
1043 v = v1 / v2;
1044 else
1045 error (_("Division by zero"));
1046 break;
1047
1048 case BINOP_EXP:
1049 v = uinteger_pow (v1, v2_signed);
1050 break;
1051
1052 case BINOP_REM:
1053 if (v2 != 0)
1054 v = v1 % v2;
1055 else
1056 error (_("Division by zero"));
1057 break;
1058
1059 case BINOP_MOD:
1060 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1061 v1 mod 0 has a defined value, v1. */
1062 if (v2 == 0)
1063 {
1064 v = v1;
1065 }
1066 else
1067 {
1068 v = v1 / v2;
1069 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1070 v = v1 - (v2 * v);
1071 }
1072 break;
1073
1074 case BINOP_LSH:
1075 v = v1 << v2;
1076 break;
1077
1078 case BINOP_RSH:
1079 v = v1 >> v2;
1080 break;
1081
1082 case BINOP_BITWISE_AND:
1083 v = v1 & v2;
1084 break;
1085
1086 case BINOP_BITWISE_IOR:
1087 v = v1 | v2;
1088 break;
1089
1090 case BINOP_BITWISE_XOR:
1091 v = v1 ^ v2;
1092 break;
1093
1094 case BINOP_LOGICAL_AND:
1095 v = v1 && v2;
1096 break;
1097
1098 case BINOP_LOGICAL_OR:
1099 v = v1 || v2;
1100 break;
1101
1102 case BINOP_MIN:
1103 v = v1 < v2 ? v1 : v2;
1104 break;
1105
1106 case BINOP_MAX:
1107 v = v1 > v2 ? v1 : v2;
1108 break;
1109
1110 case BINOP_EQUAL:
1111 v = v1 == v2;
1112 break;
1113
1114 case BINOP_NOTEQUAL:
1115 v = v1 != v2;
1116 break;
1117
1118 case BINOP_LESS:
1119 v = v1 < v2;
1120 break;
1121
1122 case BINOP_GTR:
1123 v = v1 > v2;
1124 break;
1125
1126 case BINOP_LEQ:
1127 v = v1 <= v2;
1128 break;
1129
1130 case BINOP_GEQ:
1131 v = v1 >= v2;
1132 break;
1133
1134 default:
1135 error (_("Invalid binary operation on numbers."));
1136 }
1137
1138 val = allocate_value (result_type);
1139 store_unsigned_integer (value_contents_raw (val),
1140 TYPE_LENGTH (value_type (val)),
1141 gdbarch_byte_order
1142 (get_type_arch (result_type)),
1143 v);
1144 }
1145 else
1146 {
1147 LONGEST v1, v2, v = 0;
1148
1149 v1 = value_as_long (arg1);
1150 v2 = value_as_long (arg2);
1151
1152 switch (op)
1153 {
1154 case BINOP_ADD:
1155 v = v1 + v2;
1156 break;
1157
1158 case BINOP_SUB:
1159 v = v1 - v2;
1160 break;
1161
1162 case BINOP_MUL:
1163 v = v1 * v2;
1164 break;
1165
1166 case BINOP_DIV:
1167 case BINOP_INTDIV:
1168 if (v2 != 0)
1169 v = v1 / v2;
1170 else
1171 error (_("Division by zero"));
1172 break;
1173
1174 case BINOP_EXP:
1175 v = integer_pow (v1, v2);
1176 break;
1177
1178 case BINOP_REM:
1179 if (v2 != 0)
1180 v = v1 % v2;
1181 else
1182 error (_("Division by zero"));
1183 break;
1184
1185 case BINOP_MOD:
1186 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1187 X mod 0 has a defined value, X. */
1188 if (v2 == 0)
1189 {
1190 v = v1;
1191 }
1192 else
1193 {
1194 v = v1 / v2;
1195 /* Compute floor. */
1196 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1197 {
1198 v--;
1199 }
1200 v = v1 - (v2 * v);
1201 }
1202 break;
1203
1204 case BINOP_LSH:
1205 v = v1 << v2;
1206 break;
1207
1208 case BINOP_RSH:
1209 v = v1 >> v2;
1210 break;
1211
1212 case BINOP_BITWISE_AND:
1213 v = v1 & v2;
1214 break;
1215
1216 case BINOP_BITWISE_IOR:
1217 v = v1 | v2;
1218 break;
1219
1220 case BINOP_BITWISE_XOR:
1221 v = v1 ^ v2;
1222 break;
1223
1224 case BINOP_LOGICAL_AND:
1225 v = v1 && v2;
1226 break;
1227
1228 case BINOP_LOGICAL_OR:
1229 v = v1 || v2;
1230 break;
1231
1232 case BINOP_MIN:
1233 v = v1 < v2 ? v1 : v2;
1234 break;
1235
1236 case BINOP_MAX:
1237 v = v1 > v2 ? v1 : v2;
1238 break;
1239
1240 case BINOP_EQUAL:
1241 v = v1 == v2;
1242 break;
1243
1244 case BINOP_NOTEQUAL:
1245 v = v1 != v2;
1246 break;
1247
1248 case BINOP_LESS:
1249 v = v1 < v2;
1250 break;
1251
1252 case BINOP_GTR:
1253 v = v1 > v2;
1254 break;
1255
1256 case BINOP_LEQ:
1257 v = v1 <= v2;
1258 break;
1259
1260 case BINOP_GEQ:
1261 v = v1 >= v2;
1262 break;
1263
1264 default:
1265 error (_("Invalid binary operation on numbers."));
1266 }
1267
1268 val = allocate_value (result_type);
1269 store_signed_integer (value_contents_raw (val),
1270 TYPE_LENGTH (value_type (val)),
1271 gdbarch_byte_order
1272 (get_type_arch (result_type)),
1273 v);
1274 }
1275 }
1276
1277 return val;
1278 }
1279
1280 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1281 replicating SCALAR_VALUE for each element of the vector. Only scalar
1282 types that can be cast to the type of one element of the vector are
1283 acceptable. The newly created vector value is returned upon success,
1284 otherwise an error is thrown. */
1285
1286 struct value *
1287 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1288 {
1289 /* Widen the scalar to a vector. */
1290 struct type *eltype, *scalar_type;
1291 struct value *val, *elval;
1292 LONGEST low_bound, high_bound;
1293 int i;
1294
1295 vector_type = check_typedef (vector_type);
1296
1297 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1298 && TYPE_VECTOR (vector_type));
1299
1300 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1301 error (_("Could not determine the vector bounds"));
1302
1303 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1304 elval = value_cast (eltype, scalar_value);
1305
1306 scalar_type = check_typedef (value_type (scalar_value));
1307
1308 /* If we reduced the length of the scalar then check we didn't loose any
1309 important bits. */
1310 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1311 && !value_equal (elval, scalar_value))
1312 error (_("conversion of scalar to vector involves truncation"));
1313
1314 val = allocate_value (vector_type);
1315 for (i = 0; i < high_bound - low_bound + 1; i++)
1316 /* Duplicate the contents of elval into the destination vector. */
1317 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1318 value_contents_all (elval), TYPE_LENGTH (eltype));
1319
1320 return val;
1321 }
1322
1323 /* Performs a binary operation on two vector operands by calling scalar_binop
1324 for each pair of vector components. */
1325
1326 static struct value *
1327 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1328 {
1329 struct value *val, *tmp, *mark;
1330 struct type *type1, *type2, *eltype1, *eltype2;
1331 int t1_is_vec, t2_is_vec, elsize, i;
1332 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1333
1334 type1 = check_typedef (value_type (val1));
1335 type2 = check_typedef (value_type (val2));
1336
1337 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1338 && TYPE_VECTOR (type1)) ? 1 : 0;
1339 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1340 && TYPE_VECTOR (type2)) ? 1 : 0;
1341
1342 if (!t1_is_vec || !t2_is_vec)
1343 error (_("Vector operations are only supported among vectors"));
1344
1345 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1346 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1347 error (_("Could not determine the vector bounds"));
1348
1349 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1350 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1351 elsize = TYPE_LENGTH (eltype1);
1352
1353 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1354 || elsize != TYPE_LENGTH (eltype2)
1355 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1356 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1357 error (_("Cannot perform operation on vectors with different types"));
1358
1359 val = allocate_value (type1);
1360 mark = value_mark ();
1361 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1362 {
1363 tmp = value_binop (value_subscript (val1, i),
1364 value_subscript (val2, i), op);
1365 memcpy (value_contents_writeable (val) + i * elsize,
1366 value_contents_all (tmp),
1367 elsize);
1368 }
1369 value_free_to_mark (mark);
1370
1371 return val;
1372 }
1373
1374 /* Perform a binary operation on two operands. */
1375
1376 struct value *
1377 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1378 {
1379 struct value *val;
1380 struct type *type1 = check_typedef (value_type (arg1));
1381 struct type *type2 = check_typedef (value_type (arg2));
1382 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1383 && TYPE_VECTOR (type1));
1384 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1385 && TYPE_VECTOR (type2));
1386
1387 if (!t1_is_vec && !t2_is_vec)
1388 val = scalar_binop (arg1, arg2, op);
1389 else if (t1_is_vec && t2_is_vec)
1390 val = vector_binop (arg1, arg2, op);
1391 else
1392 {
1393 /* Widen the scalar operand to a vector. */
1394 struct value **v = t1_is_vec ? &arg2 : &arg1;
1395 struct type *t = t1_is_vec ? type2 : type1;
1396
1397 if (TYPE_CODE (t) != TYPE_CODE_FLT
1398 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1399 && !is_integral_type (t))
1400 error (_("Argument to operation not a number or boolean."));
1401
1402 /* Replicate the scalar value to make a vector value. */
1403 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1404
1405 val = vector_binop (arg1, arg2, op);
1406 }
1407
1408 return val;
1409 }
1410 \f
1411 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1412
1413 int
1414 value_logical_not (struct value *arg1)
1415 {
1416 int len;
1417 const gdb_byte *p;
1418 struct type *type1;
1419
1420 arg1 = coerce_array (arg1);
1421 type1 = check_typedef (value_type (arg1));
1422
1423 if (is_floating_value (arg1))
1424 return target_float_is_zero (value_contents (arg1), type1);
1425
1426 len = TYPE_LENGTH (type1);
1427 p = value_contents (arg1);
1428
1429 while (--len >= 0)
1430 {
1431 if (*p++)
1432 break;
1433 }
1434
1435 return len < 0;
1436 }
1437
1438 /* Perform a comparison on two string values (whose content are not
1439 necessarily null terminated) based on their length. */
1440
1441 static int
1442 value_strcmp (struct value *arg1, struct value *arg2)
1443 {
1444 int len1 = TYPE_LENGTH (value_type (arg1));
1445 int len2 = TYPE_LENGTH (value_type (arg2));
1446 const gdb_byte *s1 = value_contents (arg1);
1447 const gdb_byte *s2 = value_contents (arg2);
1448 int i, len = len1 < len2 ? len1 : len2;
1449
1450 for (i = 0; i < len; i++)
1451 {
1452 if (s1[i] < s2[i])
1453 return -1;
1454 else if (s1[i] > s2[i])
1455 return 1;
1456 else
1457 continue;
1458 }
1459
1460 if (len1 < len2)
1461 return -1;
1462 else if (len1 > len2)
1463 return 1;
1464 else
1465 return 0;
1466 }
1467
1468 /* Simulate the C operator == by returning a 1
1469 iff ARG1 and ARG2 have equal contents. */
1470
1471 int
1472 value_equal (struct value *arg1, struct value *arg2)
1473 {
1474 int len;
1475 const gdb_byte *p1;
1476 const gdb_byte *p2;
1477 struct type *type1, *type2;
1478 enum type_code code1;
1479 enum type_code code2;
1480 int is_int1, is_int2;
1481
1482 arg1 = coerce_array (arg1);
1483 arg2 = coerce_array (arg2);
1484
1485 type1 = check_typedef (value_type (arg1));
1486 type2 = check_typedef (value_type (arg2));
1487 code1 = TYPE_CODE (type1);
1488 code2 = TYPE_CODE (type2);
1489 is_int1 = is_integral_type (type1);
1490 is_int2 = is_integral_type (type2);
1491
1492 if (is_int1 && is_int2)
1493 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1494 BINOP_EQUAL)));
1495 else if ((is_floating_value (arg1) || is_int1)
1496 && (is_floating_value (arg2) || is_int2))
1497 {
1498 struct type *eff_type_v1, *eff_type_v2;
1499 gdb::byte_vector v1, v2;
1500 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1501 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1502
1503 value_args_as_target_float (arg1, arg2,
1504 v1.data (), &eff_type_v1,
1505 v2.data (), &eff_type_v2);
1506
1507 return target_float_compare (v1.data (), eff_type_v1,
1508 v2.data (), eff_type_v2) == 0;
1509 }
1510
1511 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1512 is bigger. */
1513 else if (code1 == TYPE_CODE_PTR && is_int2)
1514 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1515 else if (code2 == TYPE_CODE_PTR && is_int1)
1516 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1517
1518 else if (code1 == code2
1519 && ((len = (int) TYPE_LENGTH (type1))
1520 == (int) TYPE_LENGTH (type2)))
1521 {
1522 p1 = value_contents (arg1);
1523 p2 = value_contents (arg2);
1524 while (--len >= 0)
1525 {
1526 if (*p1++ != *p2++)
1527 break;
1528 }
1529 return len < 0;
1530 }
1531 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1532 {
1533 return value_strcmp (arg1, arg2) == 0;
1534 }
1535 else
1536 {
1537 error (_("Invalid type combination in equality test."));
1538 return 0; /* For lint -- never reached. */
1539 }
1540 }
1541
1542 /* Compare values based on their raw contents. Useful for arrays since
1543 value_equal coerces them to pointers, thus comparing just the address
1544 of the array instead of its contents. */
1545
1546 int
1547 value_equal_contents (struct value *arg1, struct value *arg2)
1548 {
1549 struct type *type1, *type2;
1550
1551 type1 = check_typedef (value_type (arg1));
1552 type2 = check_typedef (value_type (arg2));
1553
1554 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1555 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1556 && memcmp (value_contents (arg1), value_contents (arg2),
1557 TYPE_LENGTH (type1)) == 0);
1558 }
1559
1560 /* Simulate the C operator < by returning 1
1561 iff ARG1's contents are less than ARG2's. */
1562
1563 int
1564 value_less (struct value *arg1, struct value *arg2)
1565 {
1566 enum type_code code1;
1567 enum type_code code2;
1568 struct type *type1, *type2;
1569 int is_int1, is_int2;
1570
1571 arg1 = coerce_array (arg1);
1572 arg2 = coerce_array (arg2);
1573
1574 type1 = check_typedef (value_type (arg1));
1575 type2 = check_typedef (value_type (arg2));
1576 code1 = TYPE_CODE (type1);
1577 code2 = TYPE_CODE (type2);
1578 is_int1 = is_integral_type (type1);
1579 is_int2 = is_integral_type (type2);
1580
1581 if (is_int1 && is_int2)
1582 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1583 BINOP_LESS)));
1584 else if ((is_floating_value (arg1) || is_int1)
1585 && (is_floating_value (arg2) || is_int2))
1586 {
1587 struct type *eff_type_v1, *eff_type_v2;
1588 gdb::byte_vector v1, v2;
1589 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1590 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1591
1592 value_args_as_target_float (arg1, arg2,
1593 v1.data (), &eff_type_v1,
1594 v2.data (), &eff_type_v2);
1595
1596 return target_float_compare (v1.data (), eff_type_v1,
1597 v2.data (), eff_type_v2) == -1;
1598 }
1599 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1600 return value_as_address (arg1) < value_as_address (arg2);
1601
1602 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1603 is bigger. */
1604 else if (code1 == TYPE_CODE_PTR && is_int2)
1605 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1606 else if (code2 == TYPE_CODE_PTR && is_int1)
1607 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1608 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1609 return value_strcmp (arg1, arg2) < 0;
1610 else
1611 {
1612 error (_("Invalid type combination in ordering comparison."));
1613 return 0;
1614 }
1615 }
1616 \f
1617 /* The unary operators +, - and ~. They free the argument ARG1. */
1618
1619 struct value *
1620 value_pos (struct value *arg1)
1621 {
1622 struct type *type;
1623
1624 arg1 = coerce_ref (arg1);
1625 type = check_typedef (value_type (arg1));
1626
1627 if (is_integral_type (type) || is_floating_value (arg1)
1628 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1629 return value_from_contents (type, value_contents (arg1));
1630 else
1631 {
1632 error (_("Argument to positive operation not a number."));
1633 return 0; /* For lint -- never reached. */
1634 }
1635 }
1636
1637 struct value *
1638 value_neg (struct value *arg1)
1639 {
1640 struct type *type;
1641
1642 arg1 = coerce_ref (arg1);
1643 type = check_typedef (value_type (arg1));
1644
1645 if (is_integral_type (type) || is_floating_type (type))
1646 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1647 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1648 {
1649 struct value *tmp, *val = allocate_value (type);
1650 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1651 int i;
1652 LONGEST low_bound, high_bound;
1653
1654 if (!get_array_bounds (type, &low_bound, &high_bound))
1655 error (_("Could not determine the vector bounds"));
1656
1657 for (i = 0; i < high_bound - low_bound + 1; i++)
1658 {
1659 tmp = value_neg (value_subscript (arg1, i));
1660 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1661 value_contents_all (tmp), TYPE_LENGTH (eltype));
1662 }
1663 return val;
1664 }
1665 else
1666 {
1667 error (_("Argument to negate operation not a number."));
1668 return 0; /* For lint -- never reached. */
1669 }
1670 }
1671
1672 struct value *
1673 value_complement (struct value *arg1)
1674 {
1675 struct type *type;
1676 struct value *val;
1677
1678 arg1 = coerce_ref (arg1);
1679 type = check_typedef (value_type (arg1));
1680
1681 if (is_integral_type (type))
1682 val = value_from_longest (type, ~value_as_long (arg1));
1683 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1684 {
1685 struct value *tmp;
1686 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1687 int i;
1688 LONGEST low_bound, high_bound;
1689
1690 if (!get_array_bounds (type, &low_bound, &high_bound))
1691 error (_("Could not determine the vector bounds"));
1692
1693 val = allocate_value (type);
1694 for (i = 0; i < high_bound - low_bound + 1; i++)
1695 {
1696 tmp = value_complement (value_subscript (arg1, i));
1697 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1698 value_contents_all (tmp), TYPE_LENGTH (eltype));
1699 }
1700 }
1701 else
1702 error (_("Argument to complement operation not an integer, boolean."));
1703
1704 return val;
1705 }
1706 \f
1707 /* The INDEX'th bit of SET value whose value_type is TYPE,
1708 and whose value_contents is valaddr.
1709 Return -1 if out of range, -2 other error. */
1710
1711 int
1712 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1713 {
1714 struct gdbarch *gdbarch = get_type_arch (type);
1715 LONGEST low_bound, high_bound;
1716 LONGEST word;
1717 unsigned rel_index;
1718 struct type *range = TYPE_INDEX_TYPE (type);
1719
1720 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1721 return -2;
1722 if (index < low_bound || index > high_bound)
1723 return -1;
1724 rel_index = index - low_bound;
1725 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1726 gdbarch_byte_order (gdbarch));
1727 rel_index %= TARGET_CHAR_BIT;
1728 if (gdbarch_bits_big_endian (gdbarch))
1729 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1730 return (word >> rel_index) & 1;
1731 }
1732
1733 int
1734 value_in (struct value *element, struct value *set)
1735 {
1736 int member;
1737 struct type *settype = check_typedef (value_type (set));
1738 struct type *eltype = check_typedef (value_type (element));
1739
1740 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1741 eltype = TYPE_TARGET_TYPE (eltype);
1742 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1743 error (_("Second argument of 'IN' has wrong type"));
1744 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1745 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1746 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1747 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1748 error (_("First argument of 'IN' has wrong type"));
1749 member = value_bit_index (settype, value_contents (set),
1750 value_as_long (element));
1751 if (member < 0)
1752 error (_("First argument of 'IN' not in range"));
1753 return member;
1754 }
1755
1756 void
1757 _initialize_valarith (void)
1758 {
1759 }
This page took 0.079146 seconds and 4 git commands to generate.