* eval.c (evaluate_subexp_standard): Fix type of result of mixed
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
43 static struct type *unop_result_type (enum exp_opcode op, struct type *type1);
44 static struct type *binop_result_type (enum exp_opcode op, struct type *type1,
45 struct type *type2);
46
47 void _initialize_valarith (void);
48 \f
49
50 /* Given a pointer, return the size of its target.
51 If the pointer type is void *, then return 1.
52 If the target type is incomplete, then error out.
53 This isn't a general purpose function, but just a
54 helper for value_sub & value_add.
55 */
56
57 static LONGEST
58 find_size_for_pointer_math (struct type *ptr_type)
59 {
60 LONGEST sz = -1;
61 struct type *ptr_target;
62
63 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
64
65 sz = TYPE_LENGTH (ptr_target);
66 if (sz == 0)
67 {
68 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
69 sz = 1;
70 else
71 {
72 char *name;
73
74 name = TYPE_NAME (ptr_target);
75 if (name == NULL)
76 name = TYPE_TAG_NAME (ptr_target);
77 if (name == NULL)
78 error (_("Cannot perform pointer math on incomplete types, "
79 "try casting to a known type, or void *."));
80 else
81 error (_("Cannot perform pointer math on incomplete type \"%s\", "
82 "try casting to a known type, or void *."), name);
83 }
84 }
85 return sz;
86 }
87
88 struct value *
89 value_add (struct value *arg1, struct value *arg2)
90 {
91 struct value *valint;
92 struct value *valptr;
93 LONGEST sz;
94 struct type *type1, *type2, *valptrtype;
95
96 arg1 = coerce_array (arg1);
97 arg2 = coerce_array (arg2);
98 type1 = check_typedef (value_type (arg1));
99 type2 = check_typedef (value_type (arg2));
100
101 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
102 || TYPE_CODE (type2) == TYPE_CODE_PTR)
103 &&
104 (is_integral_type (type1) || is_integral_type (type2)))
105 /* Exactly one argument is a pointer, and one is an integer. */
106 {
107 struct value *retval;
108
109 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
110 {
111 valptr = arg1;
112 valint = arg2;
113 valptrtype = type1;
114 }
115 else
116 {
117 valptr = arg2;
118 valint = arg1;
119 valptrtype = type2;
120 }
121
122 sz = find_size_for_pointer_math (valptrtype);
123
124 retval = value_from_pointer (valptrtype,
125 value_as_address (valptr)
126 + (sz * value_as_long (valint)));
127 return retval;
128 }
129
130 return value_binop (arg1, arg2, BINOP_ADD);
131 }
132
133 struct value *
134 value_sub (struct value *arg1, struct value *arg2)
135 {
136 struct type *type1, *type2;
137 arg1 = coerce_array (arg1);
138 arg2 = coerce_array (arg2);
139 type1 = check_typedef (value_type (arg1));
140 type2 = check_typedef (value_type (arg2));
141
142 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
143 {
144 if (is_integral_type (type2))
145 {
146 /* pointer - integer. */
147 LONGEST sz = find_size_for_pointer_math (type1);
148
149 return value_from_pointer (type1,
150 (value_as_address (arg1)
151 - (sz * value_as_long (arg2))));
152 }
153 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
154 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
155 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
156 {
157 /* pointer to <type x> - pointer to <type x>. */
158 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
159 return value_from_longest
160 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
161 (value_as_long (arg1) - value_as_long (arg2)) / sz);
162 }
163 else
164 {
165 error (_("\
166 First argument of `-' is a pointer and second argument is neither\n\
167 an integer nor a pointer of the same type."));
168 }
169 }
170
171 return value_binop (arg1, arg2, BINOP_SUB);
172 }
173
174 /* Return the value of ARRAY[IDX].
175 See comments in value_coerce_array() for rationale for reason for
176 doing lower bounds adjustment here rather than there.
177 FIXME: Perhaps we should validate that the index is valid and if
178 verbosity is set, warn about invalid indices (but still use them). */
179
180 struct value *
181 value_subscript (struct value *array, struct value *idx)
182 {
183 struct value *bound;
184 int c_style = current_language->c_style_arrays;
185 struct type *tarray;
186
187 array = coerce_ref (array);
188 tarray = check_typedef (value_type (array));
189
190 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
191 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
192 {
193 struct type *range_type = TYPE_INDEX_TYPE (tarray);
194 LONGEST lowerbound, upperbound;
195 get_discrete_bounds (range_type, &lowerbound, &upperbound);
196
197 if (VALUE_LVAL (array) != lval_memory)
198 return value_subscripted_rvalue (array, idx, lowerbound);
199
200 if (c_style == 0)
201 {
202 LONGEST index = value_as_long (idx);
203 if (index >= lowerbound && index <= upperbound)
204 return value_subscripted_rvalue (array, idx, lowerbound);
205 /* Emit warning unless we have an array of unknown size.
206 An array of unknown size has lowerbound 0 and upperbound -1. */
207 if (upperbound > -1)
208 warning (_("array or string index out of range"));
209 /* fall doing C stuff */
210 c_style = 1;
211 }
212
213 if (lowerbound != 0)
214 {
215 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
216 idx = value_sub (idx, bound);
217 }
218
219 array = value_coerce_array (array);
220 }
221
222 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
223 {
224 struct type *range_type = TYPE_INDEX_TYPE (tarray);
225 LONGEST index = value_as_long (idx);
226 struct value *v;
227 int offset, byte, bit_index;
228 LONGEST lowerbound, upperbound;
229 get_discrete_bounds (range_type, &lowerbound, &upperbound);
230 if (index < lowerbound || index > upperbound)
231 error (_("bitstring index out of range"));
232 index -= lowerbound;
233 offset = index / TARGET_CHAR_BIT;
234 byte = *((char *) value_contents (array) + offset);
235 bit_index = index % TARGET_CHAR_BIT;
236 byte >>= (gdbarch_bits_big_endian (current_gdbarch) ?
237 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
238 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
239 set_value_bitpos (v, bit_index);
240 set_value_bitsize (v, 1);
241 VALUE_LVAL (v) = VALUE_LVAL (array);
242 if (VALUE_LVAL (array) == lval_internalvar)
243 VALUE_LVAL (v) = lval_internalvar_component;
244 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
245 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
246 set_value_offset (v, offset + value_offset (array));
247 return v;
248 }
249
250 if (c_style)
251 return value_ind (value_add (array, idx));
252 else
253 error (_("not an array or string"));
254 }
255
256 /* Return the value of EXPR[IDX], expr an aggregate rvalue
257 (eg, a vector register). This routine used to promote floats
258 to doubles, but no longer does. */
259
260 static struct value *
261 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
262 {
263 struct type *array_type = check_typedef (value_type (array));
264 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
265 unsigned int elt_size = TYPE_LENGTH (elt_type);
266 LONGEST index = value_as_long (idx);
267 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
268 struct value *v;
269
270 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
271 error (_("no such vector element"));
272
273 v = allocate_value (elt_type);
274 if (value_lazy (array))
275 set_value_lazy (v, 1);
276 else
277 memcpy (value_contents_writeable (v),
278 value_contents (array) + elt_offs, elt_size);
279
280 if (VALUE_LVAL (array) == lval_internalvar)
281 VALUE_LVAL (v) = lval_internalvar_component;
282 else
283 VALUE_LVAL (v) = VALUE_LVAL (array);
284 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
285 VALUE_REGNUM (v) = VALUE_REGNUM (array);
286 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
287 set_value_offset (v, value_offset (array) + elt_offs);
288 return v;
289 }
290 \f
291 /* Check to see if either argument is a structure, or a reference to
292 one. This is called so we know whether to go ahead with the normal
293 binop or look for a user defined function instead.
294
295 For now, we do not overload the `=' operator. */
296
297 int
298 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
299 {
300 struct type *type1, *type2;
301 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
302 return 0;
303
304 type1 = check_typedef (value_type (arg1));
305 if (TYPE_CODE (type1) == TYPE_CODE_REF)
306 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
307
308 type2 = check_typedef (value_type (arg2));
309 if (TYPE_CODE (type2) == TYPE_CODE_REF)
310 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
311
312 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
313 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
314 }
315
316 /* Check to see if argument is a structure. This is called so
317 we know whether to go ahead with the normal unop or look for a
318 user defined function instead.
319
320 For now, we do not overload the `&' operator. */
321
322 int
323 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
324 {
325 struct type *type1;
326 if (op == UNOP_ADDR)
327 return 0;
328 type1 = check_typedef (value_type (arg1));
329 for (;;)
330 {
331 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
332 return 1;
333 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
334 type1 = TYPE_TARGET_TYPE (type1);
335 else
336 return 0;
337 }
338 }
339
340 /* We know either arg1 or arg2 is a structure, so try to find the right
341 user defined function. Create an argument vector that calls
342 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
343 binary operator which is legal for GNU C++).
344
345 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
346 is the opcode saying how to modify it. Otherwise, OTHEROP is
347 unused. */
348
349 struct value *
350 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
351 enum exp_opcode otherop, enum noside noside)
352 {
353 struct value **argvec;
354 char *ptr;
355 char tstr[13];
356 int static_memfuncp;
357
358 arg1 = coerce_ref (arg1);
359 arg2 = coerce_ref (arg2);
360 arg1 = coerce_enum (arg1);
361 arg2 = coerce_enum (arg2);
362
363 /* now we know that what we have to do is construct our
364 arg vector and find the right function to call it with. */
365
366 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
367 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
368
369 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
370 argvec[1] = value_addr (arg1);
371 argvec[2] = arg2;
372 argvec[3] = 0;
373
374 /* make the right function name up */
375 strcpy (tstr, "operator__");
376 ptr = tstr + 8;
377 switch (op)
378 {
379 case BINOP_ADD:
380 strcpy (ptr, "+");
381 break;
382 case BINOP_SUB:
383 strcpy (ptr, "-");
384 break;
385 case BINOP_MUL:
386 strcpy (ptr, "*");
387 break;
388 case BINOP_DIV:
389 strcpy (ptr, "/");
390 break;
391 case BINOP_REM:
392 strcpy (ptr, "%");
393 break;
394 case BINOP_LSH:
395 strcpy (ptr, "<<");
396 break;
397 case BINOP_RSH:
398 strcpy (ptr, ">>");
399 break;
400 case BINOP_BITWISE_AND:
401 strcpy (ptr, "&");
402 break;
403 case BINOP_BITWISE_IOR:
404 strcpy (ptr, "|");
405 break;
406 case BINOP_BITWISE_XOR:
407 strcpy (ptr, "^");
408 break;
409 case BINOP_LOGICAL_AND:
410 strcpy (ptr, "&&");
411 break;
412 case BINOP_LOGICAL_OR:
413 strcpy (ptr, "||");
414 break;
415 case BINOP_MIN:
416 strcpy (ptr, "<?");
417 break;
418 case BINOP_MAX:
419 strcpy (ptr, ">?");
420 break;
421 case BINOP_ASSIGN:
422 strcpy (ptr, "=");
423 break;
424 case BINOP_ASSIGN_MODIFY:
425 switch (otherop)
426 {
427 case BINOP_ADD:
428 strcpy (ptr, "+=");
429 break;
430 case BINOP_SUB:
431 strcpy (ptr, "-=");
432 break;
433 case BINOP_MUL:
434 strcpy (ptr, "*=");
435 break;
436 case BINOP_DIV:
437 strcpy (ptr, "/=");
438 break;
439 case BINOP_REM:
440 strcpy (ptr, "%=");
441 break;
442 case BINOP_BITWISE_AND:
443 strcpy (ptr, "&=");
444 break;
445 case BINOP_BITWISE_IOR:
446 strcpy (ptr, "|=");
447 break;
448 case BINOP_BITWISE_XOR:
449 strcpy (ptr, "^=");
450 break;
451 case BINOP_MOD: /* invalid */
452 default:
453 error (_("Invalid binary operation specified."));
454 }
455 break;
456 case BINOP_SUBSCRIPT:
457 strcpy (ptr, "[]");
458 break;
459 case BINOP_EQUAL:
460 strcpy (ptr, "==");
461 break;
462 case BINOP_NOTEQUAL:
463 strcpy (ptr, "!=");
464 break;
465 case BINOP_LESS:
466 strcpy (ptr, "<");
467 break;
468 case BINOP_GTR:
469 strcpy (ptr, ">");
470 break;
471 case BINOP_GEQ:
472 strcpy (ptr, ">=");
473 break;
474 case BINOP_LEQ:
475 strcpy (ptr, "<=");
476 break;
477 case BINOP_MOD: /* invalid */
478 default:
479 error (_("Invalid binary operation specified."));
480 }
481
482 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
483
484 if (argvec[0])
485 {
486 if (static_memfuncp)
487 {
488 argvec[1] = argvec[0];
489 argvec++;
490 }
491 if (noside == EVAL_AVOID_SIDE_EFFECTS)
492 {
493 struct type *return_type;
494 return_type
495 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
496 return value_zero (return_type, VALUE_LVAL (arg1));
497 }
498 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
499 }
500 error (_("member function %s not found"), tstr);
501 #ifdef lint
502 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
503 #endif
504 }
505
506 /* We know that arg1 is a structure, so try to find a unary user
507 defined operator that matches the operator in question.
508 Create an argument vector that calls arg1.operator @ (arg1)
509 and return that value (where '@' is (almost) any unary operator which
510 is legal for GNU C++). */
511
512 struct value *
513 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
514 {
515 struct value **argvec;
516 char *ptr, *mangle_ptr;
517 char tstr[13], mangle_tstr[13];
518 int static_memfuncp, nargs;
519
520 arg1 = coerce_ref (arg1);
521 arg1 = coerce_enum (arg1);
522
523 /* now we know that what we have to do is construct our
524 arg vector and find the right function to call it with. */
525
526 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
527 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
528
529 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
530 argvec[1] = value_addr (arg1);
531 argvec[2] = 0;
532
533 nargs = 1;
534
535 /* make the right function name up */
536 strcpy (tstr, "operator__");
537 ptr = tstr + 8;
538 strcpy (mangle_tstr, "__");
539 mangle_ptr = mangle_tstr + 2;
540 switch (op)
541 {
542 case UNOP_PREINCREMENT:
543 strcpy (ptr, "++");
544 break;
545 case UNOP_PREDECREMENT:
546 strcpy (ptr, "--");
547 break;
548 case UNOP_POSTINCREMENT:
549 strcpy (ptr, "++");
550 argvec[2] = value_from_longest (builtin_type_int, 0);
551 argvec[3] = 0;
552 nargs ++;
553 break;
554 case UNOP_POSTDECREMENT:
555 strcpy (ptr, "--");
556 argvec[2] = value_from_longest (builtin_type_int, 0);
557 argvec[3] = 0;
558 nargs ++;
559 break;
560 case UNOP_LOGICAL_NOT:
561 strcpy (ptr, "!");
562 break;
563 case UNOP_COMPLEMENT:
564 strcpy (ptr, "~");
565 break;
566 case UNOP_NEG:
567 strcpy (ptr, "-");
568 break;
569 case UNOP_PLUS:
570 strcpy (ptr, "+");
571 break;
572 case UNOP_IND:
573 strcpy (ptr, "*");
574 break;
575 default:
576 error (_("Invalid unary operation specified."));
577 }
578
579 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
580
581 if (argvec[0])
582 {
583 if (static_memfuncp)
584 {
585 argvec[1] = argvec[0];
586 nargs --;
587 argvec++;
588 }
589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
590 {
591 struct type *return_type;
592 return_type
593 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
594 return value_zero (return_type, VALUE_LVAL (arg1));
595 }
596 return call_function_by_hand (argvec[0], nargs, argvec + 1);
597 }
598 error (_("member function %s not found"), tstr);
599 return 0; /* For lint -- never reached */
600 }
601 \f
602
603 /* Concatenate two values with the following conditions:
604
605 (1) Both values must be either bitstring values or character string
606 values and the resulting value consists of the concatenation of
607 ARG1 followed by ARG2.
608
609 or
610
611 One value must be an integer value and the other value must be
612 either a bitstring value or character string value, which is
613 to be repeated by the number of times specified by the integer
614 value.
615
616
617 (2) Boolean values are also allowed and are treated as bit string
618 values of length 1.
619
620 (3) Character values are also allowed and are treated as character
621 string values of length 1.
622 */
623
624 struct value *
625 value_concat (struct value *arg1, struct value *arg2)
626 {
627 struct value *inval1;
628 struct value *inval2;
629 struct value *outval = NULL;
630 int inval1len, inval2len;
631 int count, idx;
632 char *ptr;
633 char inchar;
634 struct type *type1 = check_typedef (value_type (arg1));
635 struct type *type2 = check_typedef (value_type (arg2));
636
637 /* First figure out if we are dealing with two values to be concatenated
638 or a repeat count and a value to be repeated. INVAL1 is set to the
639 first of two concatenated values, or the repeat count. INVAL2 is set
640 to the second of the two concatenated values or the value to be
641 repeated. */
642
643 if (TYPE_CODE (type2) == TYPE_CODE_INT)
644 {
645 struct type *tmp = type1;
646 type1 = tmp;
647 tmp = type2;
648 inval1 = arg2;
649 inval2 = arg1;
650 }
651 else
652 {
653 inval1 = arg1;
654 inval2 = arg2;
655 }
656
657 /* Now process the input values. */
658
659 if (TYPE_CODE (type1) == TYPE_CODE_INT)
660 {
661 /* We have a repeat count. Validate the second value and then
662 construct a value repeated that many times. */
663 if (TYPE_CODE (type2) == TYPE_CODE_STRING
664 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
665 {
666 count = longest_to_int (value_as_long (inval1));
667 inval2len = TYPE_LENGTH (type2);
668 ptr = (char *) alloca (count * inval2len);
669 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
670 {
671 inchar = (char) unpack_long (type2,
672 value_contents (inval2));
673 for (idx = 0; idx < count; idx++)
674 {
675 *(ptr + idx) = inchar;
676 }
677 }
678 else
679 {
680 for (idx = 0; idx < count; idx++)
681 {
682 memcpy (ptr + (idx * inval2len), value_contents (inval2),
683 inval2len);
684 }
685 }
686 outval = value_string (ptr, count * inval2len);
687 }
688 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
689 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
690 {
691 error (_("unimplemented support for bitstring/boolean repeats"));
692 }
693 else
694 {
695 error (_("can't repeat values of that type"));
696 }
697 }
698 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
699 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
700 {
701 /* We have two character strings to concatenate. */
702 if (TYPE_CODE (type2) != TYPE_CODE_STRING
703 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
704 {
705 error (_("Strings can only be concatenated with other strings."));
706 }
707 inval1len = TYPE_LENGTH (type1);
708 inval2len = TYPE_LENGTH (type2);
709 ptr = (char *) alloca (inval1len + inval2len);
710 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
711 {
712 *ptr = (char) unpack_long (type1, value_contents (inval1));
713 }
714 else
715 {
716 memcpy (ptr, value_contents (inval1), inval1len);
717 }
718 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
719 {
720 *(ptr + inval1len) =
721 (char) unpack_long (type2, value_contents (inval2));
722 }
723 else
724 {
725 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
726 }
727 outval = value_string (ptr, inval1len + inval2len);
728 }
729 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
730 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
731 {
732 /* We have two bitstrings to concatenate. */
733 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
734 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
735 {
736 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
737 }
738 error (_("unimplemented support for bitstring/boolean concatenation."));
739 }
740 else
741 {
742 /* We don't know how to concatenate these operands. */
743 error (_("illegal operands for concatenation."));
744 }
745 return (outval);
746 }
747 \f
748 /* Return result type of OP performed on TYPE1.
749 The result type follows ANSI C rules.
750 If the result is not appropropriate for any particular language then it
751 needs to patch this function to return the correct type. */
752
753 static struct type *
754 unop_result_type (enum exp_opcode op, struct type *type1)
755 {
756 struct type *result_type;
757
758 type1 = check_typedef (type1);
759 result_type = type1;
760
761 switch (op)
762 {
763 case UNOP_PLUS:
764 case UNOP_NEG:
765 break;
766 case UNOP_COMPLEMENT:
767 /* Reject floats and decimal floats. */
768 if (!is_integral_type (type1))
769 error (_("Argument to complement operation not an integer or boolean."));
770 break;
771 default:
772 error (_("Invalid unary operation on numbers."));
773 }
774
775 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
776 || TYPE_CODE (type1) == TYPE_CODE_FLT)
777 {
778 return result_type;
779 }
780 else if (is_integral_type (type1))
781 {
782 /* Perform integral promotion for ANSI C/C++.
783 If not appropropriate for any particular language it needs to
784 modify this function to return the correct result for it. */
785 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_type_int))
786 result_type = builtin_type_int;
787
788 return result_type;
789 }
790 else
791 {
792 error (_("Argument to unary operation not a number."));
793 return 0; /* For lint -- never reached */
794 }
795 }
796
797 /* Return result type of OP performed on TYPE1, TYPE2.
798 If the result is not appropropriate for any particular language then it
799 needs to patch this function to return the correct type. */
800
801 static struct type *
802 binop_result_type (enum exp_opcode op, struct type *type1, struct type *type2)
803 {
804 type1 = check_typedef (type1);
805 type2 = check_typedef (type2);
806
807 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
808 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
809 && !is_integral_type (type1))
810 ||
811 (TYPE_CODE (type2) != TYPE_CODE_FLT
812 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
813 && !is_integral_type (type2)))
814 error (_("Argument to arithmetic operation not a number or boolean."));
815
816 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
817 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
818 {
819 switch (op)
820 {
821 case BINOP_ADD:
822 case BINOP_SUB:
823 case BINOP_MUL:
824 case BINOP_DIV:
825 case BINOP_EXP:
826 break;
827 default:
828 error (_("Operation not valid for decimal floating point number."));
829 }
830
831 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
832 /* If type1 is not a decimal float, the type of the result is the type
833 of the decimal float argument, type2. */
834 return type2;
835 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
836 /* Same logic, for the case where type2 is not a decimal float. */
837 return type1;
838 else
839 /* Both are decimal floats, the type of the result is the bigger
840 of the two. */
841 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) ? type1 : type2;
842 }
843 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
844 || TYPE_CODE (type2) == TYPE_CODE_FLT)
845 {
846 switch (op)
847 {
848 case BINOP_ADD:
849 case BINOP_SUB:
850 case BINOP_MUL:
851 case BINOP_DIV:
852 case BINOP_EXP:
853 case BINOP_MIN:
854 case BINOP_MAX:
855 break;
856 default:
857 error (_("Integer-only operation on floating point number."));
858 }
859
860 switch (current_language->la_language)
861 {
862 case language_c:
863 case language_cplus:
864 case language_asm:
865 case language_objc:
866 /* Perform ANSI/ISO-C promotions.
867 If only one type is float, use its type.
868 Otherwise use the bigger type. */
869 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
870 return type2;
871 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
872 return type1;
873 else
874 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) ? type1 : type2;
875
876 default:
877 /* For other languages the result type is unchanged from gdb
878 version 6.7 for backward compatibility.
879 If either arg was long double, make sure that value is also long
880 double. Otherwise use double. */
881 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (current_gdbarch)
882 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (current_gdbarch))
883 return builtin_type_long_double;
884 else
885 return builtin_type_double;
886 }
887 }
888 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
889 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
890 {
891 switch (op)
892 {
893 case BINOP_BITWISE_AND:
894 case BINOP_BITWISE_IOR:
895 case BINOP_BITWISE_XOR:
896 case BINOP_EQUAL:
897 case BINOP_NOTEQUAL:
898 break;
899 default:
900 error (_("Invalid operation on booleans."));
901 }
902
903 return type1;
904 }
905 else
906 /* Integral operations here. */
907 /* FIXME: Also mixed integral/booleans, with result an integer. */
908 {
909 unsigned int promoted_len1 = TYPE_LENGTH (type1);
910 unsigned int promoted_len2 = TYPE_LENGTH (type2);
911 int is_unsigned1 = TYPE_UNSIGNED (type1);
912 int is_unsigned2 = TYPE_UNSIGNED (type2);
913 unsigned int result_len;
914 int unsigned_operation;
915
916 /* Determine type length and signedness after promotion for
917 both operands. */
918 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
919 {
920 is_unsigned1 = 0;
921 promoted_len1 = TYPE_LENGTH (builtin_type_int);
922 }
923 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
924 {
925 is_unsigned2 = 0;
926 promoted_len2 = TYPE_LENGTH (builtin_type_int);
927 }
928
929 /* Determine type length of the result, and if the operation should
930 be done unsigned. For exponentiation and shift operators,
931 use the length and type of the left operand. Otherwise,
932 use the signedness of the operand with the greater length.
933 If both operands are of equal length, use unsigned operation
934 if one of the operands is unsigned. */
935 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
936 {
937 /* In case of the shift operators and exponentiation the type of
938 the result only depends on the type of the left operand. */
939 unsigned_operation = is_unsigned1;
940 result_len = promoted_len1;
941 }
942 else if (promoted_len1 > promoted_len2)
943 {
944 unsigned_operation = is_unsigned1;
945 result_len = promoted_len1;
946 }
947 else if (promoted_len2 > promoted_len1)
948 {
949 unsigned_operation = is_unsigned2;
950 result_len = promoted_len2;
951 }
952 else
953 {
954 unsigned_operation = is_unsigned1 || is_unsigned2;
955 result_len = promoted_len1;
956 }
957
958 switch (op)
959 {
960 case BINOP_ADD:
961 case BINOP_SUB:
962 case BINOP_MUL:
963 case BINOP_DIV:
964 case BINOP_INTDIV:
965 case BINOP_EXP:
966 case BINOP_REM:
967 case BINOP_MOD:
968 case BINOP_LSH:
969 case BINOP_RSH:
970 case BINOP_BITWISE_AND:
971 case BINOP_BITWISE_IOR:
972 case BINOP_BITWISE_XOR:
973 case BINOP_LOGICAL_AND:
974 case BINOP_LOGICAL_OR:
975 case BINOP_MIN:
976 case BINOP_MAX:
977 case BINOP_EQUAL:
978 case BINOP_NOTEQUAL:
979 case BINOP_LESS:
980 break;
981
982 default:
983 error (_("Invalid binary operation on numbers."));
984 }
985
986 switch (current_language->la_language)
987 {
988 case language_c:
989 case language_cplus:
990 case language_asm:
991 case language_objc:
992 if (result_len <= TYPE_LENGTH (builtin_type_int))
993 {
994 return (unsigned_operation
995 ? builtin_type_unsigned_int
996 : builtin_type_int);
997 }
998 else if (result_len <= TYPE_LENGTH (builtin_type_long))
999 {
1000 return (unsigned_operation
1001 ? builtin_type_unsigned_long
1002 : builtin_type_long);
1003 }
1004 else
1005 {
1006 return (unsigned_operation
1007 ? builtin_type_unsigned_long_long
1008 : builtin_type_long_long);
1009 }
1010
1011 default:
1012 /* For other languages the result type is unchanged from gdb
1013 version 6.7 for backward compatibility.
1014 If either arg was long long, make sure that value is also long
1015 long. Otherwise use long. */
1016 if (unsigned_operation)
1017 {
1018 if (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT)
1019 return builtin_type_unsigned_long_long;
1020 else
1021 return builtin_type_unsigned_long;
1022 }
1023 else
1024 {
1025 if (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT)
1026 return builtin_type_long_long;
1027 else
1028 return builtin_type_long;
1029 }
1030 }
1031 }
1032
1033 return NULL; /* avoid -Wall warning */
1034 }
1035
1036 /* Integer exponentiation: V1**V2, where both arguments are
1037 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
1038 static LONGEST
1039 integer_pow (LONGEST v1, LONGEST v2)
1040 {
1041 if (v2 < 0)
1042 {
1043 if (v1 == 0)
1044 error (_("Attempt to raise 0 to negative power."));
1045 else
1046 return 0;
1047 }
1048 else
1049 {
1050 /* The Russian Peasant's Algorithm */
1051 LONGEST v;
1052
1053 v = 1;
1054 for (;;)
1055 {
1056 if (v2 & 1L)
1057 v *= v1;
1058 v2 >>= 1;
1059 if (v2 == 0)
1060 return v;
1061 v1 *= v1;
1062 }
1063 }
1064 }
1065
1066 /* Integer exponentiation: V1**V2, where both arguments are
1067 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
1068 static ULONGEST
1069 uinteger_pow (ULONGEST v1, LONGEST v2)
1070 {
1071 if (v2 < 0)
1072 {
1073 if (v1 == 0)
1074 error (_("Attempt to raise 0 to negative power."));
1075 else
1076 return 0;
1077 }
1078 else
1079 {
1080 /* The Russian Peasant's Algorithm */
1081 ULONGEST v;
1082
1083 v = 1;
1084 for (;;)
1085 {
1086 if (v2 & 1L)
1087 v *= v1;
1088 v2 >>= 1;
1089 if (v2 == 0)
1090 return v;
1091 v1 *= v1;
1092 }
1093 }
1094 }
1095
1096 /* Obtain decimal value of arguments for binary operation, converting from
1097 other types if one of them is not decimal floating point. */
1098 static void
1099 value_args_as_decimal (struct value *arg1, struct value *arg2,
1100 gdb_byte *x, int *len_x, gdb_byte *y, int *len_y)
1101 {
1102 struct type *type1, *type2;
1103
1104 type1 = check_typedef (value_type (arg1));
1105 type2 = check_typedef (value_type (arg2));
1106
1107 /* At least one of the arguments must be of decimal float type. */
1108 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
1109 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
1110
1111 if (TYPE_CODE (type1) == TYPE_CODE_FLT
1112 || TYPE_CODE (type2) == TYPE_CODE_FLT)
1113 /* The DFP extension to the C language does not allow mixing of
1114 * decimal float types with other float types in expressions
1115 * (see WDTR 24732, page 12). */
1116 error (_("Mixing decimal floating types with other floating types is not allowed."));
1117
1118 /* Obtain decimal value of arg1, converting from other types
1119 if necessary. */
1120
1121 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1122 {
1123 *len_x = TYPE_LENGTH (type1);
1124 memcpy (x, value_contents (arg1), *len_x);
1125 }
1126 else if (is_integral_type (type1))
1127 {
1128 *len_x = TYPE_LENGTH (type2);
1129 decimal_from_integral (arg1, x, *len_x);
1130 }
1131 else
1132 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
1133 TYPE_NAME (type2));
1134
1135 /* Obtain decimal value of arg2, converting from other types
1136 if necessary. */
1137
1138 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
1139 {
1140 *len_y = TYPE_LENGTH (type2);
1141 memcpy (y, value_contents (arg2), *len_y);
1142 }
1143 else if (is_integral_type (type2))
1144 {
1145 *len_y = TYPE_LENGTH (type1);
1146 decimal_from_integral (arg2, y, *len_y);
1147 }
1148 else
1149 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
1150 TYPE_NAME (type2));
1151 }
1152
1153 /* Perform a binary operation on two operands which have reasonable
1154 representations as integers or floats. This includes booleans,
1155 characters, integers, or floats.
1156 Does not support addition and subtraction on pointers;
1157 use value_add or value_sub if you want to handle those possibilities. */
1158
1159 struct value *
1160 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1161 {
1162 struct value *val;
1163 struct type *result_type;
1164
1165 arg1 = coerce_ref (arg1);
1166 arg2 = coerce_ref (arg2);
1167
1168 result_type = binop_result_type (op, value_type (arg1), value_type (arg2));
1169
1170 if (TYPE_CODE (result_type) == TYPE_CODE_DECFLOAT)
1171 {
1172 struct type *v_type;
1173 int len_v1, len_v2, len_v;
1174 gdb_byte v1[16], v2[16];
1175 gdb_byte v[16];
1176
1177 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1178
1179 switch (op)
1180 {
1181 case BINOP_ADD:
1182 case BINOP_SUB:
1183 case BINOP_MUL:
1184 case BINOP_DIV:
1185 case BINOP_EXP:
1186 decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v);
1187 break;
1188
1189 default:
1190 error (_("Operation not valid for decimal floating point number."));
1191 }
1192
1193 val = value_from_decfloat (result_type, v);
1194 }
1195 else if (TYPE_CODE (result_type) == TYPE_CODE_FLT)
1196 {
1197 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
1198 in target format. real.c in GCC probably has the necessary
1199 code. */
1200 DOUBLEST v1, v2, v = 0;
1201 v1 = value_as_double (arg1);
1202 v2 = value_as_double (arg2);
1203
1204 switch (op)
1205 {
1206 case BINOP_ADD:
1207 v = v1 + v2;
1208 break;
1209
1210 case BINOP_SUB:
1211 v = v1 - v2;
1212 break;
1213
1214 case BINOP_MUL:
1215 v = v1 * v2;
1216 break;
1217
1218 case BINOP_DIV:
1219 v = v1 / v2;
1220 break;
1221
1222 case BINOP_EXP:
1223 errno = 0;
1224 v = pow (v1, v2);
1225 if (errno)
1226 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1227 break;
1228
1229 case BINOP_MIN:
1230 v = v1 < v2 ? v1 : v2;
1231 break;
1232
1233 case BINOP_MAX:
1234 v = v1 > v2 ? v1 : v2;
1235 break;
1236
1237 default:
1238 error (_("Integer-only operation on floating point number."));
1239 }
1240
1241 val = allocate_value (result_type);
1242 store_typed_floating (value_contents_raw (val), value_type (val), v);
1243 }
1244 else if (TYPE_CODE (result_type) == TYPE_CODE_BOOL)
1245 {
1246 LONGEST v1, v2, v = 0;
1247 v1 = value_as_long (arg1);
1248 v2 = value_as_long (arg2);
1249
1250 switch (op)
1251 {
1252 case BINOP_BITWISE_AND:
1253 v = v1 & v2;
1254 break;
1255
1256 case BINOP_BITWISE_IOR:
1257 v = v1 | v2;
1258 break;
1259
1260 case BINOP_BITWISE_XOR:
1261 v = v1 ^ v2;
1262 break;
1263
1264 case BINOP_EQUAL:
1265 v = v1 == v2;
1266 break;
1267
1268 case BINOP_NOTEQUAL:
1269 v = v1 != v2;
1270 break;
1271
1272 default:
1273 error (_("Invalid operation on booleans."));
1274 }
1275
1276 val = allocate_value (result_type);
1277 store_signed_integer (value_contents_raw (val),
1278 TYPE_LENGTH (result_type),
1279 v);
1280 }
1281 else
1282 /* Integral operations here. */
1283 {
1284 int unsigned_operation = TYPE_UNSIGNED (result_type);
1285
1286 if (unsigned_operation)
1287 {
1288 unsigned int len1, len2, result_len;
1289 LONGEST v2_signed = value_as_long (arg2);
1290 ULONGEST v1, v2, v = 0;
1291 v1 = (ULONGEST) value_as_long (arg1);
1292 v2 = (ULONGEST) v2_signed;
1293
1294 /* Truncate values to the type length of the result.
1295 Things are mildly tricky because binop_result_type may
1296 return a long which on amd64 is 8 bytes, and that's a problem if
1297 ARG1, ARG2 are both <= 4 bytes: we need to truncate the values
1298 at 4 bytes not 8. So fetch the lengths of the original types
1299 and truncate at the larger of the two. */
1300 len1 = TYPE_LENGTH (value_type (arg1));
1301 len2 = TYPE_LENGTH (value_type (arg1));
1302 result_len = len1 > len2 ? len1 : len2;
1303 if (result_len < sizeof (ULONGEST))
1304 {
1305 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1306 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1307 }
1308
1309 switch (op)
1310 {
1311 case BINOP_ADD:
1312 v = v1 + v2;
1313 break;
1314
1315 case BINOP_SUB:
1316 v = v1 - v2;
1317 break;
1318
1319 case BINOP_MUL:
1320 v = v1 * v2;
1321 break;
1322
1323 case BINOP_DIV:
1324 case BINOP_INTDIV:
1325 if (v2 != 0)
1326 v = v1 / v2;
1327 else
1328 error (_("Division by zero"));
1329 break;
1330
1331 case BINOP_EXP:
1332 v = uinteger_pow (v1, v2_signed);
1333 break;
1334
1335 case BINOP_REM:
1336 if (v2 != 0)
1337 v = v1 % v2;
1338 else
1339 error (_("Division by zero"));
1340 break;
1341
1342 case BINOP_MOD:
1343 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1344 v1 mod 0 has a defined value, v1. */
1345 if (v2 == 0)
1346 {
1347 v = v1;
1348 }
1349 else
1350 {
1351 v = v1 / v2;
1352 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1353 v = v1 - (v2 * v);
1354 }
1355 break;
1356
1357 case BINOP_LSH:
1358 v = v1 << v2;
1359 break;
1360
1361 case BINOP_RSH:
1362 v = v1 >> v2;
1363 break;
1364
1365 case BINOP_BITWISE_AND:
1366 v = v1 & v2;
1367 break;
1368
1369 case BINOP_BITWISE_IOR:
1370 v = v1 | v2;
1371 break;
1372
1373 case BINOP_BITWISE_XOR:
1374 v = v1 ^ v2;
1375 break;
1376
1377 case BINOP_LOGICAL_AND:
1378 v = v1 && v2;
1379 break;
1380
1381 case BINOP_LOGICAL_OR:
1382 v = v1 || v2;
1383 break;
1384
1385 case BINOP_MIN:
1386 v = v1 < v2 ? v1 : v2;
1387 break;
1388
1389 case BINOP_MAX:
1390 v = v1 > v2 ? v1 : v2;
1391 break;
1392
1393 case BINOP_EQUAL:
1394 v = v1 == v2;
1395 break;
1396
1397 case BINOP_NOTEQUAL:
1398 v = v1 != v2;
1399 break;
1400
1401 case BINOP_LESS:
1402 v = v1 < v2;
1403 break;
1404
1405 default:
1406 error (_("Invalid binary operation on numbers."));
1407 }
1408
1409 val = allocate_value (result_type);
1410 store_unsigned_integer (value_contents_raw (val),
1411 TYPE_LENGTH (value_type (val)),
1412 v);
1413 }
1414 else
1415 {
1416 LONGEST v1, v2, v = 0;
1417 v1 = value_as_long (arg1);
1418 v2 = value_as_long (arg2);
1419
1420 switch (op)
1421 {
1422 case BINOP_ADD:
1423 v = v1 + v2;
1424 break;
1425
1426 case BINOP_SUB:
1427 v = v1 - v2;
1428 break;
1429
1430 case BINOP_MUL:
1431 v = v1 * v2;
1432 break;
1433
1434 case BINOP_DIV:
1435 case BINOP_INTDIV:
1436 if (v2 != 0)
1437 v = v1 / v2;
1438 else
1439 error (_("Division by zero"));
1440 break;
1441
1442 case BINOP_EXP:
1443 v = integer_pow (v1, v2);
1444 break;
1445
1446 case BINOP_REM:
1447 if (v2 != 0)
1448 v = v1 % v2;
1449 else
1450 error (_("Division by zero"));
1451 break;
1452
1453 case BINOP_MOD:
1454 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1455 X mod 0 has a defined value, X. */
1456 if (v2 == 0)
1457 {
1458 v = v1;
1459 }
1460 else
1461 {
1462 v = v1 / v2;
1463 /* Compute floor. */
1464 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1465 {
1466 v--;
1467 }
1468 v = v1 - (v2 * v);
1469 }
1470 break;
1471
1472 case BINOP_LSH:
1473 v = v1 << v2;
1474 break;
1475
1476 case BINOP_RSH:
1477 v = v1 >> v2;
1478 break;
1479
1480 case BINOP_BITWISE_AND:
1481 v = v1 & v2;
1482 break;
1483
1484 case BINOP_BITWISE_IOR:
1485 v = v1 | v2;
1486 break;
1487
1488 case BINOP_BITWISE_XOR:
1489 v = v1 ^ v2;
1490 break;
1491
1492 case BINOP_LOGICAL_AND:
1493 v = v1 && v2;
1494 break;
1495
1496 case BINOP_LOGICAL_OR:
1497 v = v1 || v2;
1498 break;
1499
1500 case BINOP_MIN:
1501 v = v1 < v2 ? v1 : v2;
1502 break;
1503
1504 case BINOP_MAX:
1505 v = v1 > v2 ? v1 : v2;
1506 break;
1507
1508 case BINOP_EQUAL:
1509 v = v1 == v2;
1510 break;
1511
1512 case BINOP_LESS:
1513 v = v1 < v2;
1514 break;
1515
1516 default:
1517 error (_("Invalid binary operation on numbers."));
1518 }
1519
1520 val = allocate_value (result_type);
1521 store_signed_integer (value_contents_raw (val),
1522 TYPE_LENGTH (value_type (val)),
1523 v);
1524 }
1525 }
1526
1527 return val;
1528 }
1529 \f
1530 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1531
1532 int
1533 value_logical_not (struct value *arg1)
1534 {
1535 int len;
1536 const gdb_byte *p;
1537 struct type *type1;
1538
1539 arg1 = coerce_number (arg1);
1540 type1 = check_typedef (value_type (arg1));
1541
1542 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1543 return 0 == value_as_double (arg1);
1544 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1545 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1));
1546
1547 len = TYPE_LENGTH (type1);
1548 p = value_contents (arg1);
1549
1550 while (--len >= 0)
1551 {
1552 if (*p++)
1553 break;
1554 }
1555
1556 return len < 0;
1557 }
1558
1559 /* Perform a comparison on two string values (whose content are not
1560 necessarily null terminated) based on their length */
1561
1562 static int
1563 value_strcmp (struct value *arg1, struct value *arg2)
1564 {
1565 int len1 = TYPE_LENGTH (value_type (arg1));
1566 int len2 = TYPE_LENGTH (value_type (arg2));
1567 const gdb_byte *s1 = value_contents (arg1);
1568 const gdb_byte *s2 = value_contents (arg2);
1569 int i, len = len1 < len2 ? len1 : len2;
1570
1571 for (i = 0; i < len; i++)
1572 {
1573 if (s1[i] < s2[i])
1574 return -1;
1575 else if (s1[i] > s2[i])
1576 return 1;
1577 else
1578 continue;
1579 }
1580
1581 if (len1 < len2)
1582 return -1;
1583 else if (len1 > len2)
1584 return 1;
1585 else
1586 return 0;
1587 }
1588
1589 /* Simulate the C operator == by returning a 1
1590 iff ARG1 and ARG2 have equal contents. */
1591
1592 int
1593 value_equal (struct value *arg1, struct value *arg2)
1594 {
1595 int len;
1596 const gdb_byte *p1;
1597 const gdb_byte *p2;
1598 struct type *type1, *type2;
1599 enum type_code code1;
1600 enum type_code code2;
1601 int is_int1, is_int2;
1602
1603 arg1 = coerce_array (arg1);
1604 arg2 = coerce_array (arg2);
1605
1606 type1 = check_typedef (value_type (arg1));
1607 type2 = check_typedef (value_type (arg2));
1608 code1 = TYPE_CODE (type1);
1609 code2 = TYPE_CODE (type2);
1610 is_int1 = is_integral_type (type1);
1611 is_int2 = is_integral_type (type2);
1612
1613 if (is_int1 && is_int2)
1614 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1615 BINOP_EQUAL)));
1616 else if ((code1 == TYPE_CODE_FLT || is_int1)
1617 && (code2 == TYPE_CODE_FLT || is_int2))
1618 {
1619 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1620 `long double' values are returned in static storage (m68k). */
1621 DOUBLEST d = value_as_double (arg1);
1622 return d == value_as_double (arg2);
1623 }
1624 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1625 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1626 {
1627 gdb_byte v1[16], v2[16];
1628 int len_v1, len_v2;
1629
1630 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1631
1632 return decimal_compare (v1, len_v1, v2, len_v2) == 0;
1633 }
1634
1635 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1636 is bigger. */
1637 else if (code1 == TYPE_CODE_PTR && is_int2)
1638 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1639 else if (code2 == TYPE_CODE_PTR && is_int1)
1640 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1641
1642 else if (code1 == code2
1643 && ((len = (int) TYPE_LENGTH (type1))
1644 == (int) TYPE_LENGTH (type2)))
1645 {
1646 p1 = value_contents (arg1);
1647 p2 = value_contents (arg2);
1648 while (--len >= 0)
1649 {
1650 if (*p1++ != *p2++)
1651 break;
1652 }
1653 return len < 0;
1654 }
1655 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1656 {
1657 return value_strcmp (arg1, arg2) == 0;
1658 }
1659 else
1660 {
1661 error (_("Invalid type combination in equality test."));
1662 return 0; /* For lint -- never reached */
1663 }
1664 }
1665
1666 /* Simulate the C operator < by returning 1
1667 iff ARG1's contents are less than ARG2's. */
1668
1669 int
1670 value_less (struct value *arg1, struct value *arg2)
1671 {
1672 enum type_code code1;
1673 enum type_code code2;
1674 struct type *type1, *type2;
1675 int is_int1, is_int2;
1676
1677 arg1 = coerce_array (arg1);
1678 arg2 = coerce_array (arg2);
1679
1680 type1 = check_typedef (value_type (arg1));
1681 type2 = check_typedef (value_type (arg2));
1682 code1 = TYPE_CODE (type1);
1683 code2 = TYPE_CODE (type2);
1684 is_int1 = is_integral_type (type1);
1685 is_int2 = is_integral_type (type2);
1686
1687 if (is_int1 && is_int2)
1688 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1689 BINOP_LESS)));
1690 else if ((code1 == TYPE_CODE_FLT || is_int1)
1691 && (code2 == TYPE_CODE_FLT || is_int2))
1692 {
1693 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1694 `long double' values are returned in static storage (m68k). */
1695 DOUBLEST d = value_as_double (arg1);
1696 return d < value_as_double (arg2);
1697 }
1698 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1699 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1700 {
1701 gdb_byte v1[16], v2[16];
1702 int len_v1, len_v2;
1703
1704 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1705
1706 return decimal_compare (v1, len_v1, v2, len_v2) == -1;
1707 }
1708 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1709 return value_as_address (arg1) < value_as_address (arg2);
1710
1711 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1712 is bigger. */
1713 else if (code1 == TYPE_CODE_PTR && is_int2)
1714 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1715 else if (code2 == TYPE_CODE_PTR && is_int1)
1716 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1717 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1718 return value_strcmp (arg1, arg2) < 0;
1719 else
1720 {
1721 error (_("Invalid type combination in ordering comparison."));
1722 return 0;
1723 }
1724 }
1725 \f
1726 /* The unary operators +, - and ~. They free the argument ARG1. */
1727
1728 struct value *
1729 value_pos (struct value *arg1)
1730 {
1731 struct type *type;
1732 struct type *result_type;
1733
1734 arg1 = coerce_ref (arg1);
1735 type = check_typedef (value_type (arg1));
1736 result_type = unop_result_type (UNOP_PLUS, value_type (arg1));
1737
1738 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1739 return value_from_double (result_type, value_as_double (arg1));
1740 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1741 return value_from_decfloat (result_type, value_contents (arg1));
1742 else if (is_integral_type (type))
1743 {
1744 return value_from_longest (result_type, value_as_long (arg1));
1745 }
1746 else
1747 {
1748 error ("Argument to positive operation not a number.");
1749 return 0; /* For lint -- never reached */
1750 }
1751 }
1752
1753 struct value *
1754 value_neg (struct value *arg1)
1755 {
1756 struct type *type;
1757 struct type *result_type;
1758
1759 arg1 = coerce_ref (arg1);
1760 type = check_typedef (value_type (arg1));
1761 result_type = unop_result_type (UNOP_NEG, value_type (arg1));
1762
1763 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1764 {
1765 struct value *val = allocate_value (result_type);
1766 int len = TYPE_LENGTH (type);
1767 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1768
1769 memcpy (decbytes, value_contents (arg1), len);
1770
1771 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1772 decbytes[len-1] = decbytes[len - 1] | 0x80;
1773 else
1774 decbytes[0] = decbytes[0] | 0x80;
1775
1776 memcpy (value_contents_raw (val), decbytes, len);
1777 return val;
1778 }
1779 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1780 return value_from_double (result_type, -value_as_double (arg1));
1781 else if (is_integral_type (type))
1782 {
1783 return value_from_longest (result_type, -value_as_long (arg1));
1784 }
1785 else
1786 {
1787 error (_("Argument to negate operation not a number."));
1788 return 0; /* For lint -- never reached */
1789 }
1790 }
1791
1792 struct value *
1793 value_complement (struct value *arg1)
1794 {
1795 struct type *type;
1796 struct type *result_type;
1797
1798 arg1 = coerce_ref (arg1);
1799 type = check_typedef (value_type (arg1));
1800 result_type = unop_result_type (UNOP_COMPLEMENT, value_type (arg1));
1801
1802 if (!is_integral_type (type))
1803 error (_("Argument to complement operation not an integer or boolean."));
1804
1805 return value_from_longest (result_type, ~value_as_long (arg1));
1806 }
1807 \f
1808 /* The INDEX'th bit of SET value whose value_type is TYPE,
1809 and whose value_contents is valaddr.
1810 Return -1 if out of range, -2 other error. */
1811
1812 int
1813 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1814 {
1815 LONGEST low_bound, high_bound;
1816 LONGEST word;
1817 unsigned rel_index;
1818 struct type *range = TYPE_FIELD_TYPE (type, 0);
1819 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1820 return -2;
1821 if (index < low_bound || index > high_bound)
1822 return -1;
1823 rel_index = index - low_bound;
1824 word = unpack_long (builtin_type_unsigned_char,
1825 valaddr + (rel_index / TARGET_CHAR_BIT));
1826 rel_index %= TARGET_CHAR_BIT;
1827 if (gdbarch_bits_big_endian (current_gdbarch))
1828 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1829 return (word >> rel_index) & 1;
1830 }
1831
1832 struct value *
1833 value_in (struct value *element, struct value *set)
1834 {
1835 int member;
1836 struct type *settype = check_typedef (value_type (set));
1837 struct type *eltype = check_typedef (value_type (element));
1838 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1839 eltype = TYPE_TARGET_TYPE (eltype);
1840 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1841 error (_("Second argument of 'IN' has wrong type"));
1842 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1843 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1844 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1845 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1846 error (_("First argument of 'IN' has wrong type"));
1847 member = value_bit_index (settype, value_contents (set),
1848 value_as_long (element));
1849 if (member < 0)
1850 error (_("First argument of 'IN' not in range"));
1851 return value_from_longest (LA_BOOL_TYPE, member);
1852 }
1853
1854 void
1855 _initialize_valarith (void)
1856 {
1857 }
This page took 0.111101 seconds and 5 git commands to generate.