gdb:
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34 #include "exceptions.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 void _initialize_valarith (void);
44 \f
45
46 /* Given a pointer, return the size of its target.
47 If the pointer type is void *, then return 1.
48 If the target type is incomplete, then error out.
49 This isn't a general purpose function, but just a
50 helper for value_ptradd.
51 */
52
53 static LONGEST
54 find_size_for_pointer_math (struct type *ptr_type)
55 {
56 LONGEST sz = -1;
57 struct type *ptr_target;
58
59 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
60 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
61
62 sz = TYPE_LENGTH (ptr_target);
63 if (sz == 0)
64 {
65 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
66 sz = 1;
67 else
68 {
69 char *name;
70
71 name = TYPE_NAME (ptr_target);
72 if (name == NULL)
73 name = TYPE_TAG_NAME (ptr_target);
74 if (name == NULL)
75 error (_("Cannot perform pointer math on incomplete types, "
76 "try casting to a known type, or void *."));
77 else
78 error (_("Cannot perform pointer math on incomplete type \"%s\", "
79 "try casting to a known type, or void *."), name);
80 }
81 }
82 return sz;
83 }
84
85 /* Given a pointer ARG1 and an integral value ARG2, return the
86 result of C-style pointer arithmetic ARG1 + ARG2. */
87
88 struct value *
89 value_ptradd (struct value *arg1, LONGEST arg2)
90 {
91 struct type *valptrtype;
92 LONGEST sz;
93
94 arg1 = coerce_array (arg1);
95 valptrtype = check_typedef (value_type (arg1));
96 sz = find_size_for_pointer_math (valptrtype);
97
98 return value_from_pointer (valptrtype,
99 value_as_address (arg1) + sz * arg2);
100 }
101
102 /* Given two compatible pointer values ARG1 and ARG2, return the
103 result of C-style pointer arithmetic ARG1 - ARG2. */
104
105 LONGEST
106 value_ptrdiff (struct value *arg1, struct value *arg2)
107 {
108 struct type *type1, *type2;
109 LONGEST sz;
110
111 arg1 = coerce_array (arg1);
112 arg2 = coerce_array (arg2);
113 type1 = check_typedef (value_type (arg1));
114 type2 = check_typedef (value_type (arg2));
115
116 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
117 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
118
119 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
120 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
121 error (_("\
122 First argument of `-' is a pointer and second argument is neither\n\
123 an integer nor a pointer of the same type."));
124
125 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
126 if (sz == 0)
127 {
128 warning (_("Type size unknown, assuming 1. "
129 "Try casting to a known type, or void *."));
130 sz = 1;
131 }
132
133 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
134 }
135
136 /* Return the value of ARRAY[IDX].
137
138 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
139 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
140 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
141
142 See comments in value_coerce_array() for rationale for reason for
143 doing lower bounds adjustment here rather than there.
144 FIXME: Perhaps we should validate that the index is valid and if
145 verbosity is set, warn about invalid indices (but still use them). */
146
147 struct value *
148 value_subscript (struct value *array, LONGEST index)
149 {
150 int c_style = current_language->c_style_arrays;
151 struct type *tarray;
152
153 array = coerce_ref (array);
154 tarray = check_typedef (value_type (array));
155
156 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
157 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
158 {
159 struct type *range_type = TYPE_INDEX_TYPE (tarray);
160 LONGEST lowerbound, upperbound;
161
162 get_discrete_bounds (range_type, &lowerbound, &upperbound);
163 if (VALUE_LVAL (array) != lval_memory)
164 return value_subscripted_rvalue (array, index, lowerbound);
165
166 if (c_style == 0)
167 {
168 if (index >= lowerbound && index <= upperbound)
169 return value_subscripted_rvalue (array, index, lowerbound);
170 /* Emit warning unless we have an array of unknown size.
171 An array of unknown size has lowerbound 0 and upperbound -1. */
172 if (upperbound > -1)
173 warning (_("array or string index out of range"));
174 /* fall doing C stuff */
175 c_style = 1;
176 }
177
178 index -= lowerbound;
179 array = value_coerce_array (array);
180 }
181
182 if (c_style)
183 return value_ind (value_ptradd (array, index));
184 else
185 error (_("not an array or string"));
186 }
187
188 /* Return the value of EXPR[IDX], expr an aggregate rvalue
189 (eg, a vector register). This routine used to promote floats
190 to doubles, but no longer does. */
191
192 struct value *
193 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
194 {
195 struct type *array_type = check_typedef (value_type (array));
196 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
197 unsigned int elt_size = TYPE_LENGTH (elt_type);
198 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
199 struct value *v;
200
201 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
202 && elt_offs >= TYPE_LENGTH (array_type)))
203 error (_("no such vector element"));
204
205 v = allocate_value (elt_type);
206 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
207 set_value_lazy (v, 1);
208 else
209 memcpy (value_contents_writeable (v),
210 value_contents (array) + elt_offs, elt_size);
211
212 set_value_component_location (v, array);
213 VALUE_REGNUM (v) = VALUE_REGNUM (array);
214 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
215 set_value_offset (v, value_offset (array) + elt_offs);
216 return v;
217 }
218
219 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
220
221 struct value *
222 value_bitstring_subscript (struct type *type,
223 struct value *bitstring, LONGEST index)
224 {
225
226 struct type *bitstring_type, *range_type;
227 struct value *v;
228 int offset, byte, bit_index;
229 LONGEST lowerbound, upperbound;
230
231 bitstring_type = check_typedef (value_type (bitstring));
232 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
233
234 range_type = TYPE_INDEX_TYPE (bitstring_type);
235 get_discrete_bounds (range_type, &lowerbound, &upperbound);
236 if (index < lowerbound || index > upperbound)
237 error (_("bitstring index out of range"));
238
239 index -= lowerbound;
240 offset = index / TARGET_CHAR_BIT;
241 byte = *((char *) value_contents (bitstring) + offset);
242
243 bit_index = index % TARGET_CHAR_BIT;
244 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
245 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
246
247 v = value_from_longest (type, byte & 1);
248
249 set_value_bitpos (v, bit_index);
250 set_value_bitsize (v, 1);
251 set_value_component_location (v, bitstring);
252 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
253
254 set_value_offset (v, offset + value_offset (bitstring));
255
256 return v;
257 }
258
259 \f
260 /* Check to see if either argument is a structure, or a reference to
261 one. This is called so we know whether to go ahead with the normal
262 binop or look for a user defined function instead.
263
264 For now, we do not overload the `=' operator. */
265
266 int
267 binop_types_user_defined_p (enum exp_opcode op,
268 struct type *type1, struct type *type2)
269 {
270 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
271 return 0;
272
273 type1 = check_typedef (type1);
274 if (TYPE_CODE (type1) == TYPE_CODE_REF)
275 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
276
277 type2 = check_typedef (type1);
278 if (TYPE_CODE (type2) == TYPE_CODE_REF)
279 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
280
281 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
282 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
283 }
284
285 /* Check to see if either argument is a structure, or a reference to
286 one. This is called so we know whether to go ahead with the normal
287 binop or look for a user defined function instead.
288
289 For now, we do not overload the `=' operator. */
290
291 int
292 binop_user_defined_p (enum exp_opcode op,
293 struct value *arg1, struct value *arg2)
294 {
295 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
296 }
297
298 /* Check to see if argument is a structure. This is called so
299 we know whether to go ahead with the normal unop or look for a
300 user defined function instead.
301
302 For now, we do not overload the `&' operator. */
303
304 int
305 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
306 {
307 struct type *type1;
308
309 if (op == UNOP_ADDR)
310 return 0;
311 type1 = check_typedef (value_type (arg1));
312 for (;;)
313 {
314 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
315 return 1;
316 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
317 type1 = TYPE_TARGET_TYPE (type1);
318 else
319 return 0;
320 }
321 }
322
323 /* Try to find an operator named OPERATOR which takes NARGS arguments
324 specified in ARGS. If the operator found is a static member operator
325 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
326 The search if performed through find_overload_match which will handle
327 member operators, non member operators, operators imported implicitly or
328 explicitly, and perform correct overload resolution in all of the above
329 situations or combinations thereof. */
330
331 static struct value *
332 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
333 int *static_memfuncp)
334 {
335
336 struct symbol *symp = NULL;
337 struct value *valp = NULL;
338 struct type **arg_types;
339 int i;
340
341 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
342 /* Prepare list of argument types for overload resolution */
343 for (i = 0; i < nargs; i++)
344 arg_types[i] = value_type (args[i]);
345
346 find_overload_match (arg_types, nargs, operator, BOTH /* could be method */,
347 0 /* strict match */, &args[0], /* objp */
348 NULL /* pass NULL symbol since symbol is unknown */,
349 &valp, &symp, static_memfuncp, 0);
350
351 if (valp)
352 return valp;
353
354 if (symp)
355 {
356 /* This is a non member function and does not
357 expect a reference as its first argument
358 rather the explicit structure. */
359 args[0] = value_ind (args[0]);
360 return value_of_variable (symp, 0);
361 }
362
363 error (_("Could not find %s."), operator);
364 }
365
366 /* Lookup user defined operator NAME. Return a value representing the
367 function, otherwise return NULL. */
368
369 static struct value *
370 value_user_defined_op (struct value **argp, struct value **args, char *name,
371 int *static_memfuncp, int nargs)
372 {
373 struct value *result = NULL;
374
375 if (current_language->la_language == language_cplus)
376 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
377 else
378 result = value_struct_elt (argp, args, name, static_memfuncp,
379 "structure");
380
381 return result;
382 }
383
384 /* We know either arg1 or arg2 is a structure, so try to find the right
385 user defined function. Create an argument vector that calls
386 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
387 binary operator which is legal for GNU C++).
388
389 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
390 is the opcode saying how to modify it. Otherwise, OTHEROP is
391 unused. */
392
393 struct value *
394 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
395 enum exp_opcode otherop, enum noside noside)
396 {
397 struct value **argvec;
398 char *ptr;
399 char tstr[13];
400 int static_memfuncp;
401
402 arg1 = coerce_ref (arg1);
403 arg2 = coerce_ref (arg2);
404
405 /* now we know that what we have to do is construct our
406 arg vector and find the right function to call it with. */
407
408 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
409 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
410
411 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
412 argvec[1] = value_addr (arg1);
413 argvec[2] = arg2;
414 argvec[3] = 0;
415
416 /* make the right function name up */
417 strcpy (tstr, "operator__");
418 ptr = tstr + 8;
419 switch (op)
420 {
421 case BINOP_ADD:
422 strcpy (ptr, "+");
423 break;
424 case BINOP_SUB:
425 strcpy (ptr, "-");
426 break;
427 case BINOP_MUL:
428 strcpy (ptr, "*");
429 break;
430 case BINOP_DIV:
431 strcpy (ptr, "/");
432 break;
433 case BINOP_REM:
434 strcpy (ptr, "%");
435 break;
436 case BINOP_LSH:
437 strcpy (ptr, "<<");
438 break;
439 case BINOP_RSH:
440 strcpy (ptr, ">>");
441 break;
442 case BINOP_BITWISE_AND:
443 strcpy (ptr, "&");
444 break;
445 case BINOP_BITWISE_IOR:
446 strcpy (ptr, "|");
447 break;
448 case BINOP_BITWISE_XOR:
449 strcpy (ptr, "^");
450 break;
451 case BINOP_LOGICAL_AND:
452 strcpy (ptr, "&&");
453 break;
454 case BINOP_LOGICAL_OR:
455 strcpy (ptr, "||");
456 break;
457 case BINOP_MIN:
458 strcpy (ptr, "<?");
459 break;
460 case BINOP_MAX:
461 strcpy (ptr, ">?");
462 break;
463 case BINOP_ASSIGN:
464 strcpy (ptr, "=");
465 break;
466 case BINOP_ASSIGN_MODIFY:
467 switch (otherop)
468 {
469 case BINOP_ADD:
470 strcpy (ptr, "+=");
471 break;
472 case BINOP_SUB:
473 strcpy (ptr, "-=");
474 break;
475 case BINOP_MUL:
476 strcpy (ptr, "*=");
477 break;
478 case BINOP_DIV:
479 strcpy (ptr, "/=");
480 break;
481 case BINOP_REM:
482 strcpy (ptr, "%=");
483 break;
484 case BINOP_BITWISE_AND:
485 strcpy (ptr, "&=");
486 break;
487 case BINOP_BITWISE_IOR:
488 strcpy (ptr, "|=");
489 break;
490 case BINOP_BITWISE_XOR:
491 strcpy (ptr, "^=");
492 break;
493 case BINOP_MOD: /* invalid */
494 default:
495 error (_("Invalid binary operation specified."));
496 }
497 break;
498 case BINOP_SUBSCRIPT:
499 strcpy (ptr, "[]");
500 break;
501 case BINOP_EQUAL:
502 strcpy (ptr, "==");
503 break;
504 case BINOP_NOTEQUAL:
505 strcpy (ptr, "!=");
506 break;
507 case BINOP_LESS:
508 strcpy (ptr, "<");
509 break;
510 case BINOP_GTR:
511 strcpy (ptr, ">");
512 break;
513 case BINOP_GEQ:
514 strcpy (ptr, ">=");
515 break;
516 case BINOP_LEQ:
517 strcpy (ptr, "<=");
518 break;
519 case BINOP_MOD: /* invalid */
520 default:
521 error (_("Invalid binary operation specified."));
522 }
523
524 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
525 &static_memfuncp, 2);
526
527 if (argvec[0])
528 {
529 if (static_memfuncp)
530 {
531 argvec[1] = argvec[0];
532 argvec++;
533 }
534 if (noside == EVAL_AVOID_SIDE_EFFECTS)
535 {
536 struct type *return_type;
537
538 return_type
539 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
540 return value_zero (return_type, VALUE_LVAL (arg1));
541 }
542 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
543 }
544 error (_("member function %s not found"), tstr);
545 #ifdef lint
546 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
547 #endif
548 }
549
550 /* We know that arg1 is a structure, so try to find a unary user
551 defined operator that matches the operator in question.
552 Create an argument vector that calls arg1.operator @ (arg1)
553 and return that value (where '@' is (almost) any unary operator which
554 is legal for GNU C++). */
555
556 struct value *
557 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
558 {
559 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
560 struct value **argvec;
561 char *ptr, *mangle_ptr;
562 char tstr[13], mangle_tstr[13];
563 int static_memfuncp, nargs;
564
565 arg1 = coerce_ref (arg1);
566
567 /* now we know that what we have to do is construct our
568 arg vector and find the right function to call it with. */
569
570 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
571 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
572
573 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
574 argvec[1] = value_addr (arg1);
575 argvec[2] = 0;
576
577 nargs = 1;
578
579 /* make the right function name up */
580 strcpy (tstr, "operator__");
581 ptr = tstr + 8;
582 strcpy (mangle_tstr, "__");
583 mangle_ptr = mangle_tstr + 2;
584 switch (op)
585 {
586 case UNOP_PREINCREMENT:
587 strcpy (ptr, "++");
588 break;
589 case UNOP_PREDECREMENT:
590 strcpy (ptr, "--");
591 break;
592 case UNOP_POSTINCREMENT:
593 strcpy (ptr, "++");
594 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
595 argvec[3] = 0;
596 nargs ++;
597 break;
598 case UNOP_POSTDECREMENT:
599 strcpy (ptr, "--");
600 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
601 argvec[3] = 0;
602 nargs ++;
603 break;
604 case UNOP_LOGICAL_NOT:
605 strcpy (ptr, "!");
606 break;
607 case UNOP_COMPLEMENT:
608 strcpy (ptr, "~");
609 break;
610 case UNOP_NEG:
611 strcpy (ptr, "-");
612 break;
613 case UNOP_PLUS:
614 strcpy (ptr, "+");
615 break;
616 case UNOP_IND:
617 strcpy (ptr, "*");
618 break;
619 default:
620 error (_("Invalid unary operation specified."));
621 }
622
623 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
624 &static_memfuncp, nargs);
625
626 if (argvec[0])
627 {
628 if (static_memfuncp)
629 {
630 argvec[1] = argvec[0];
631 nargs --;
632 argvec++;
633 }
634 if (noside == EVAL_AVOID_SIDE_EFFECTS)
635 {
636 struct type *return_type;
637
638 return_type
639 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
640 return value_zero (return_type, VALUE_LVAL (arg1));
641 }
642 return call_function_by_hand (argvec[0], nargs, argvec + 1);
643 }
644 error (_("member function %s not found"), tstr);
645 return 0; /* For lint -- never reached */
646 }
647 \f
648
649 /* Concatenate two values with the following conditions:
650
651 (1) Both values must be either bitstring values or character string
652 values and the resulting value consists of the concatenation of
653 ARG1 followed by ARG2.
654
655 or
656
657 One value must be an integer value and the other value must be
658 either a bitstring value or character string value, which is
659 to be repeated by the number of times specified by the integer
660 value.
661
662
663 (2) Boolean values are also allowed and are treated as bit string
664 values of length 1.
665
666 (3) Character values are also allowed and are treated as character
667 string values of length 1.
668 */
669
670 struct value *
671 value_concat (struct value *arg1, struct value *arg2)
672 {
673 struct value *inval1;
674 struct value *inval2;
675 struct value *outval = NULL;
676 int inval1len, inval2len;
677 int count, idx;
678 char *ptr;
679 char inchar;
680 struct type *type1 = check_typedef (value_type (arg1));
681 struct type *type2 = check_typedef (value_type (arg2));
682 struct type *char_type;
683
684 /* First figure out if we are dealing with two values to be concatenated
685 or a repeat count and a value to be repeated. INVAL1 is set to the
686 first of two concatenated values, or the repeat count. INVAL2 is set
687 to the second of the two concatenated values or the value to be
688 repeated. */
689
690 if (TYPE_CODE (type2) == TYPE_CODE_INT)
691 {
692 struct type *tmp = type1;
693
694 type1 = tmp;
695 tmp = type2;
696 inval1 = arg2;
697 inval2 = arg1;
698 }
699 else
700 {
701 inval1 = arg1;
702 inval2 = arg2;
703 }
704
705 /* Now process the input values. */
706
707 if (TYPE_CODE (type1) == TYPE_CODE_INT)
708 {
709 /* We have a repeat count. Validate the second value and then
710 construct a value repeated that many times. */
711 if (TYPE_CODE (type2) == TYPE_CODE_STRING
712 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
713 {
714 count = longest_to_int (value_as_long (inval1));
715 inval2len = TYPE_LENGTH (type2);
716 ptr = (char *) alloca (count * inval2len);
717 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
718 {
719 char_type = type2;
720
721 inchar = (char) unpack_long (type2,
722 value_contents (inval2));
723 for (idx = 0; idx < count; idx++)
724 {
725 *(ptr + idx) = inchar;
726 }
727 }
728 else
729 {
730 char_type = TYPE_TARGET_TYPE (type2);
731
732 for (idx = 0; idx < count; idx++)
733 {
734 memcpy (ptr + (idx * inval2len), value_contents (inval2),
735 inval2len);
736 }
737 }
738 outval = value_string (ptr, count * inval2len, char_type);
739 }
740 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
741 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
742 {
743 error (_("unimplemented support for bitstring/boolean repeats"));
744 }
745 else
746 {
747 error (_("can't repeat values of that type"));
748 }
749 }
750 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
751 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
752 {
753 /* We have two character strings to concatenate. */
754 if (TYPE_CODE (type2) != TYPE_CODE_STRING
755 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
756 {
757 error (_("Strings can only be concatenated with other strings."));
758 }
759 inval1len = TYPE_LENGTH (type1);
760 inval2len = TYPE_LENGTH (type2);
761 ptr = (char *) alloca (inval1len + inval2len);
762 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
763 {
764 char_type = type1;
765
766 *ptr = (char) unpack_long (type1, value_contents (inval1));
767 }
768 else
769 {
770 char_type = TYPE_TARGET_TYPE (type1);
771
772 memcpy (ptr, value_contents (inval1), inval1len);
773 }
774 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
775 {
776 *(ptr + inval1len) =
777 (char) unpack_long (type2, value_contents (inval2));
778 }
779 else
780 {
781 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
782 }
783 outval = value_string (ptr, inval1len + inval2len, char_type);
784 }
785 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
786 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
787 {
788 /* We have two bitstrings to concatenate. */
789 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
790 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
791 {
792 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
793 }
794 error (_("unimplemented support for bitstring/boolean concatenation."));
795 }
796 else
797 {
798 /* We don't know how to concatenate these operands. */
799 error (_("illegal operands for concatenation."));
800 }
801 return (outval);
802 }
803 \f
804 /* Integer exponentiation: V1**V2, where both arguments are
805 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
806 static LONGEST
807 integer_pow (LONGEST v1, LONGEST v2)
808 {
809 if (v2 < 0)
810 {
811 if (v1 == 0)
812 error (_("Attempt to raise 0 to negative power."));
813 else
814 return 0;
815 }
816 else
817 {
818 /* The Russian Peasant's Algorithm */
819 LONGEST v;
820
821 v = 1;
822 for (;;)
823 {
824 if (v2 & 1L)
825 v *= v1;
826 v2 >>= 1;
827 if (v2 == 0)
828 return v;
829 v1 *= v1;
830 }
831 }
832 }
833
834 /* Integer exponentiation: V1**V2, where both arguments are
835 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
836 static ULONGEST
837 uinteger_pow (ULONGEST v1, LONGEST v2)
838 {
839 if (v2 < 0)
840 {
841 if (v1 == 0)
842 error (_("Attempt to raise 0 to negative power."));
843 else
844 return 0;
845 }
846 else
847 {
848 /* The Russian Peasant's Algorithm */
849 ULONGEST v;
850
851 v = 1;
852 for (;;)
853 {
854 if (v2 & 1L)
855 v *= v1;
856 v2 >>= 1;
857 if (v2 == 0)
858 return v;
859 v1 *= v1;
860 }
861 }
862 }
863
864 /* Obtain decimal value of arguments for binary operation, converting from
865 other types if one of them is not decimal floating point. */
866 static void
867 value_args_as_decimal (struct value *arg1, struct value *arg2,
868 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
869 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
870 {
871 struct type *type1, *type2;
872
873 type1 = check_typedef (value_type (arg1));
874 type2 = check_typedef (value_type (arg2));
875
876 /* At least one of the arguments must be of decimal float type. */
877 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
878 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
879
880 if (TYPE_CODE (type1) == TYPE_CODE_FLT
881 || TYPE_CODE (type2) == TYPE_CODE_FLT)
882 /* The DFP extension to the C language does not allow mixing of
883 * decimal float types with other float types in expressions
884 * (see WDTR 24732, page 12). */
885 error (_("Mixing decimal floating types with other floating types is not allowed."));
886
887 /* Obtain decimal value of arg1, converting from other types
888 if necessary. */
889
890 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
891 {
892 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
893 *len_x = TYPE_LENGTH (type1);
894 memcpy (x, value_contents (arg1), *len_x);
895 }
896 else if (is_integral_type (type1))
897 {
898 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
899 *len_x = TYPE_LENGTH (type2);
900 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
901 }
902 else
903 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
904 TYPE_NAME (type2));
905
906 /* Obtain decimal value of arg2, converting from other types
907 if necessary. */
908
909 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
910 {
911 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
912 *len_y = TYPE_LENGTH (type2);
913 memcpy (y, value_contents (arg2), *len_y);
914 }
915 else if (is_integral_type (type2))
916 {
917 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
918 *len_y = TYPE_LENGTH (type1);
919 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
920 }
921 else
922 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
923 TYPE_NAME (type2));
924 }
925
926 /* Perform a binary operation on two operands which have reasonable
927 representations as integers or floats. This includes booleans,
928 characters, integers, or floats.
929 Does not support addition and subtraction on pointers;
930 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
931
932 static struct value *
933 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
934 {
935 struct value *val;
936 struct type *type1, *type2, *result_type;
937
938 arg1 = coerce_ref (arg1);
939 arg2 = coerce_ref (arg2);
940
941 type1 = check_typedef (value_type (arg1));
942 type2 = check_typedef (value_type (arg2));
943
944 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
945 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
946 && !is_integral_type (type1))
947 || (TYPE_CODE (type2) != TYPE_CODE_FLT
948 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
949 && !is_integral_type (type2)))
950 error (_("Argument to arithmetic operation not a number or boolean."));
951
952 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
953 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
954 {
955 int len_v1, len_v2, len_v;
956 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
957 gdb_byte v1[16], v2[16];
958 gdb_byte v[16];
959
960 /* If only one type is decimal float, use its type.
961 Otherwise use the bigger type. */
962 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
963 result_type = type2;
964 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
965 result_type = type1;
966 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
967 result_type = type2;
968 else
969 result_type = type1;
970
971 len_v = TYPE_LENGTH (result_type);
972 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
973
974 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
975 v2, &len_v2, &byte_order_v2);
976
977 switch (op)
978 {
979 case BINOP_ADD:
980 case BINOP_SUB:
981 case BINOP_MUL:
982 case BINOP_DIV:
983 case BINOP_EXP:
984 decimal_binop (op, v1, len_v1, byte_order_v1,
985 v2, len_v2, byte_order_v2,
986 v, len_v, byte_order_v);
987 break;
988
989 default:
990 error (_("Operation not valid for decimal floating point number."));
991 }
992
993 val = value_from_decfloat (result_type, v);
994 }
995 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
996 || TYPE_CODE (type2) == TYPE_CODE_FLT)
997 {
998 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
999 in target format. real.c in GCC probably has the necessary
1000 code. */
1001 DOUBLEST v1, v2, v = 0;
1002
1003 v1 = value_as_double (arg1);
1004 v2 = value_as_double (arg2);
1005
1006 switch (op)
1007 {
1008 case BINOP_ADD:
1009 v = v1 + v2;
1010 break;
1011
1012 case BINOP_SUB:
1013 v = v1 - v2;
1014 break;
1015
1016 case BINOP_MUL:
1017 v = v1 * v2;
1018 break;
1019
1020 case BINOP_DIV:
1021 v = v1 / v2;
1022 break;
1023
1024 case BINOP_EXP:
1025 errno = 0;
1026 v = pow (v1, v2);
1027 if (errno)
1028 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1029 break;
1030
1031 case BINOP_MIN:
1032 v = v1 < v2 ? v1 : v2;
1033 break;
1034
1035 case BINOP_MAX:
1036 v = v1 > v2 ? v1 : v2;
1037 break;
1038
1039 default:
1040 error (_("Integer-only operation on floating point number."));
1041 }
1042
1043 /* If only one type is float, use its type.
1044 Otherwise use the bigger type. */
1045 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1046 result_type = type2;
1047 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1048 result_type = type1;
1049 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1050 result_type = type2;
1051 else
1052 result_type = type1;
1053
1054 val = allocate_value (result_type);
1055 store_typed_floating (value_contents_raw (val), value_type (val), v);
1056 }
1057 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1058 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1059 {
1060 LONGEST v1, v2, v = 0;
1061
1062 v1 = value_as_long (arg1);
1063 v2 = value_as_long (arg2);
1064
1065 switch (op)
1066 {
1067 case BINOP_BITWISE_AND:
1068 v = v1 & v2;
1069 break;
1070
1071 case BINOP_BITWISE_IOR:
1072 v = v1 | v2;
1073 break;
1074
1075 case BINOP_BITWISE_XOR:
1076 v = v1 ^ v2;
1077 break;
1078
1079 case BINOP_EQUAL:
1080 v = v1 == v2;
1081 break;
1082
1083 case BINOP_NOTEQUAL:
1084 v = v1 != v2;
1085 break;
1086
1087 default:
1088 error (_("Invalid operation on booleans."));
1089 }
1090
1091 result_type = type1;
1092
1093 val = allocate_value (result_type);
1094 store_signed_integer (value_contents_raw (val),
1095 TYPE_LENGTH (result_type),
1096 gdbarch_byte_order (get_type_arch (result_type)),
1097 v);
1098 }
1099 else
1100 /* Integral operations here. */
1101 {
1102 /* Determine type length of the result, and if the operation should
1103 be done unsigned. For exponentiation and shift operators,
1104 use the length and type of the left operand. Otherwise,
1105 use the signedness of the operand with the greater length.
1106 If both operands are of equal length, use unsigned operation
1107 if one of the operands is unsigned. */
1108 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1109 result_type = type1;
1110 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1111 result_type = type1;
1112 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1113 result_type = type2;
1114 else if (TYPE_UNSIGNED (type1))
1115 result_type = type1;
1116 else if (TYPE_UNSIGNED (type2))
1117 result_type = type2;
1118 else
1119 result_type = type1;
1120
1121 if (TYPE_UNSIGNED (result_type))
1122 {
1123 LONGEST v2_signed = value_as_long (arg2);
1124 ULONGEST v1, v2, v = 0;
1125
1126 v1 = (ULONGEST) value_as_long (arg1);
1127 v2 = (ULONGEST) v2_signed;
1128
1129 switch (op)
1130 {
1131 case BINOP_ADD:
1132 v = v1 + v2;
1133 break;
1134
1135 case BINOP_SUB:
1136 v = v1 - v2;
1137 break;
1138
1139 case BINOP_MUL:
1140 v = v1 * v2;
1141 break;
1142
1143 case BINOP_DIV:
1144 case BINOP_INTDIV:
1145 if (v2 != 0)
1146 v = v1 / v2;
1147 else
1148 error (_("Division by zero"));
1149 break;
1150
1151 case BINOP_EXP:
1152 v = uinteger_pow (v1, v2_signed);
1153 break;
1154
1155 case BINOP_REM:
1156 if (v2 != 0)
1157 v = v1 % v2;
1158 else
1159 error (_("Division by zero"));
1160 break;
1161
1162 case BINOP_MOD:
1163 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1164 v1 mod 0 has a defined value, v1. */
1165 if (v2 == 0)
1166 {
1167 v = v1;
1168 }
1169 else
1170 {
1171 v = v1 / v2;
1172 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1173 v = v1 - (v2 * v);
1174 }
1175 break;
1176
1177 case BINOP_LSH:
1178 v = v1 << v2;
1179 break;
1180
1181 case BINOP_RSH:
1182 v = v1 >> v2;
1183 break;
1184
1185 case BINOP_BITWISE_AND:
1186 v = v1 & v2;
1187 break;
1188
1189 case BINOP_BITWISE_IOR:
1190 v = v1 | v2;
1191 break;
1192
1193 case BINOP_BITWISE_XOR:
1194 v = v1 ^ v2;
1195 break;
1196
1197 case BINOP_LOGICAL_AND:
1198 v = v1 && v2;
1199 break;
1200
1201 case BINOP_LOGICAL_OR:
1202 v = v1 || v2;
1203 break;
1204
1205 case BINOP_MIN:
1206 v = v1 < v2 ? v1 : v2;
1207 break;
1208
1209 case BINOP_MAX:
1210 v = v1 > v2 ? v1 : v2;
1211 break;
1212
1213 case BINOP_EQUAL:
1214 v = v1 == v2;
1215 break;
1216
1217 case BINOP_NOTEQUAL:
1218 v = v1 != v2;
1219 break;
1220
1221 case BINOP_LESS:
1222 v = v1 < v2;
1223 break;
1224
1225 case BINOP_GTR:
1226 v = v1 > v2;
1227 break;
1228
1229 case BINOP_LEQ:
1230 v = v1 <= v2;
1231 break;
1232
1233 case BINOP_GEQ:
1234 v = v1 >= v2;
1235 break;
1236
1237 default:
1238 error (_("Invalid binary operation on numbers."));
1239 }
1240
1241 val = allocate_value (result_type);
1242 store_unsigned_integer (value_contents_raw (val),
1243 TYPE_LENGTH (value_type (val)),
1244 gdbarch_byte_order
1245 (get_type_arch (result_type)),
1246 v);
1247 }
1248 else
1249 {
1250 LONGEST v1, v2, v = 0;
1251
1252 v1 = value_as_long (arg1);
1253 v2 = value_as_long (arg2);
1254
1255 switch (op)
1256 {
1257 case BINOP_ADD:
1258 v = v1 + v2;
1259 break;
1260
1261 case BINOP_SUB:
1262 v = v1 - v2;
1263 break;
1264
1265 case BINOP_MUL:
1266 v = v1 * v2;
1267 break;
1268
1269 case BINOP_DIV:
1270 case BINOP_INTDIV:
1271 if (v2 != 0)
1272 v = v1 / v2;
1273 else
1274 error (_("Division by zero"));
1275 break;
1276
1277 case BINOP_EXP:
1278 v = integer_pow (v1, v2);
1279 break;
1280
1281 case BINOP_REM:
1282 if (v2 != 0)
1283 v = v1 % v2;
1284 else
1285 error (_("Division by zero"));
1286 break;
1287
1288 case BINOP_MOD:
1289 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1290 X mod 0 has a defined value, X. */
1291 if (v2 == 0)
1292 {
1293 v = v1;
1294 }
1295 else
1296 {
1297 v = v1 / v2;
1298 /* Compute floor. */
1299 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1300 {
1301 v--;
1302 }
1303 v = v1 - (v2 * v);
1304 }
1305 break;
1306
1307 case BINOP_LSH:
1308 v = v1 << v2;
1309 break;
1310
1311 case BINOP_RSH:
1312 v = v1 >> v2;
1313 break;
1314
1315 case BINOP_BITWISE_AND:
1316 v = v1 & v2;
1317 break;
1318
1319 case BINOP_BITWISE_IOR:
1320 v = v1 | v2;
1321 break;
1322
1323 case BINOP_BITWISE_XOR:
1324 v = v1 ^ v2;
1325 break;
1326
1327 case BINOP_LOGICAL_AND:
1328 v = v1 && v2;
1329 break;
1330
1331 case BINOP_LOGICAL_OR:
1332 v = v1 || v2;
1333 break;
1334
1335 case BINOP_MIN:
1336 v = v1 < v2 ? v1 : v2;
1337 break;
1338
1339 case BINOP_MAX:
1340 v = v1 > v2 ? v1 : v2;
1341 break;
1342
1343 case BINOP_EQUAL:
1344 v = v1 == v2;
1345 break;
1346
1347 case BINOP_NOTEQUAL:
1348 v = v1 != v2;
1349 break;
1350
1351 case BINOP_LESS:
1352 v = v1 < v2;
1353 break;
1354
1355 case BINOP_GTR:
1356 v = v1 > v2;
1357 break;
1358
1359 case BINOP_LEQ:
1360 v = v1 <= v2;
1361 break;
1362
1363 case BINOP_GEQ:
1364 v = v1 >= v2;
1365 break;
1366
1367 default:
1368 error (_("Invalid binary operation on numbers."));
1369 }
1370
1371 val = allocate_value (result_type);
1372 store_signed_integer (value_contents_raw (val),
1373 TYPE_LENGTH (value_type (val)),
1374 gdbarch_byte_order
1375 (get_type_arch (result_type)),
1376 v);
1377 }
1378 }
1379
1380 return val;
1381 }
1382
1383 /* Performs a binary operation on two vector operands by calling scalar_binop
1384 for each pair of vector components. */
1385
1386 static struct value *
1387 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1388 {
1389 struct value *val, *tmp, *mark;
1390 struct type *type1, *type2, *eltype1, *eltype2, *result_type;
1391 int t1_is_vec, t2_is_vec, elsize, n, i;
1392
1393 type1 = check_typedef (value_type (val1));
1394 type2 = check_typedef (value_type (val2));
1395
1396 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1397 && TYPE_VECTOR (type1)) ? 1 : 0;
1398 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1399 && TYPE_VECTOR (type2)) ? 1 : 0;
1400
1401 if (!t1_is_vec || !t2_is_vec)
1402 error (_("Vector operations are only supported among vectors"));
1403
1404 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1405 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1406
1407 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1408 || TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
1409 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2))
1410 error (_("Cannot perform operation on vectors with different types"));
1411
1412 elsize = TYPE_LENGTH (eltype1);
1413 n = TYPE_LENGTH (type1) / elsize;
1414
1415 if (n != TYPE_LENGTH (type2) / TYPE_LENGTH (eltype2))
1416 error (_("Cannot perform operation on vectors with different sizes"));
1417
1418 val = allocate_value (type1);
1419 mark = value_mark ();
1420 for (i = 0; i < n; i++)
1421 {
1422 tmp = value_binop (value_subscript (val1, i),
1423 value_subscript (val2, i), op);
1424 memcpy (value_contents_writeable (val) + i * elsize,
1425 value_contents_all (tmp),
1426 elsize);
1427 }
1428 value_free_to_mark (mark);
1429
1430 return val;
1431 }
1432
1433 /* Perform a binary operation on two operands. */
1434
1435 struct value *
1436 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1437 {
1438 struct value *val;
1439 struct type *type1 = check_typedef (value_type (arg1));
1440 struct type *type2 = check_typedef (value_type (arg2));
1441 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1442 && TYPE_VECTOR (type1));
1443 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1444 && TYPE_VECTOR (type2));
1445
1446 if (!t1_is_vec && !t2_is_vec)
1447 val = scalar_binop (arg1, arg2, op);
1448 else if (t1_is_vec && t2_is_vec)
1449 val = vector_binop (arg1, arg2, op);
1450 else
1451 {
1452 /* Widen the scalar operand to a vector. */
1453 struct value **v = t1_is_vec ? &arg2 : &arg1;
1454 struct type *t = t1_is_vec ? type2 : type1;
1455
1456 if (TYPE_CODE (t) != TYPE_CODE_FLT
1457 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1458 && !is_integral_type (t))
1459 error (_("Argument to operation not a number or boolean."));
1460
1461 *v = value_cast (t1_is_vec ? type1 : type2, *v);
1462 val = vector_binop (arg1, arg2, op);
1463 }
1464
1465 return val;
1466 }
1467 \f
1468 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1469
1470 int
1471 value_logical_not (struct value *arg1)
1472 {
1473 int len;
1474 const gdb_byte *p;
1475 struct type *type1;
1476
1477 arg1 = coerce_array (arg1);
1478 type1 = check_typedef (value_type (arg1));
1479
1480 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1481 return 0 == value_as_double (arg1);
1482 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1483 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1484 gdbarch_byte_order (get_type_arch (type1)));
1485
1486 len = TYPE_LENGTH (type1);
1487 p = value_contents (arg1);
1488
1489 while (--len >= 0)
1490 {
1491 if (*p++)
1492 break;
1493 }
1494
1495 return len < 0;
1496 }
1497
1498 /* Perform a comparison on two string values (whose content are not
1499 necessarily null terminated) based on their length */
1500
1501 static int
1502 value_strcmp (struct value *arg1, struct value *arg2)
1503 {
1504 int len1 = TYPE_LENGTH (value_type (arg1));
1505 int len2 = TYPE_LENGTH (value_type (arg2));
1506 const gdb_byte *s1 = value_contents (arg1);
1507 const gdb_byte *s2 = value_contents (arg2);
1508 int i, len = len1 < len2 ? len1 : len2;
1509
1510 for (i = 0; i < len; i++)
1511 {
1512 if (s1[i] < s2[i])
1513 return -1;
1514 else if (s1[i] > s2[i])
1515 return 1;
1516 else
1517 continue;
1518 }
1519
1520 if (len1 < len2)
1521 return -1;
1522 else if (len1 > len2)
1523 return 1;
1524 else
1525 return 0;
1526 }
1527
1528 /* Simulate the C operator == by returning a 1
1529 iff ARG1 and ARG2 have equal contents. */
1530
1531 int
1532 value_equal (struct value *arg1, struct value *arg2)
1533 {
1534 int len;
1535 const gdb_byte *p1;
1536 const gdb_byte *p2;
1537 struct type *type1, *type2;
1538 enum type_code code1;
1539 enum type_code code2;
1540 int is_int1, is_int2;
1541
1542 arg1 = coerce_array (arg1);
1543 arg2 = coerce_array (arg2);
1544
1545 type1 = check_typedef (value_type (arg1));
1546 type2 = check_typedef (value_type (arg2));
1547 code1 = TYPE_CODE (type1);
1548 code2 = TYPE_CODE (type2);
1549 is_int1 = is_integral_type (type1);
1550 is_int2 = is_integral_type (type2);
1551
1552 if (is_int1 && is_int2)
1553 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1554 BINOP_EQUAL)));
1555 else if ((code1 == TYPE_CODE_FLT || is_int1)
1556 && (code2 == TYPE_CODE_FLT || is_int2))
1557 {
1558 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1559 `long double' values are returned in static storage (m68k). */
1560 DOUBLEST d = value_as_double (arg1);
1561
1562 return d == value_as_double (arg2);
1563 }
1564 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1565 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1566 {
1567 gdb_byte v1[16], v2[16];
1568 int len_v1, len_v2;
1569 enum bfd_endian byte_order_v1, byte_order_v2;
1570
1571 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1572 v2, &len_v2, &byte_order_v2);
1573
1574 return decimal_compare (v1, len_v1, byte_order_v1,
1575 v2, len_v2, byte_order_v2) == 0;
1576 }
1577
1578 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1579 is bigger. */
1580 else if (code1 == TYPE_CODE_PTR && is_int2)
1581 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1582 else if (code2 == TYPE_CODE_PTR && is_int1)
1583 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1584
1585 else if (code1 == code2
1586 && ((len = (int) TYPE_LENGTH (type1))
1587 == (int) TYPE_LENGTH (type2)))
1588 {
1589 p1 = value_contents (arg1);
1590 p2 = value_contents (arg2);
1591 while (--len >= 0)
1592 {
1593 if (*p1++ != *p2++)
1594 break;
1595 }
1596 return len < 0;
1597 }
1598 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1599 {
1600 return value_strcmp (arg1, arg2) == 0;
1601 }
1602 else
1603 {
1604 error (_("Invalid type combination in equality test."));
1605 return 0; /* For lint -- never reached */
1606 }
1607 }
1608
1609 /* Compare values based on their raw contents. Useful for arrays since
1610 value_equal coerces them to pointers, thus comparing just the address
1611 of the array instead of its contents. */
1612
1613 int
1614 value_equal_contents (struct value *arg1, struct value *arg2)
1615 {
1616 struct type *type1, *type2;
1617
1618 type1 = check_typedef (value_type (arg1));
1619 type2 = check_typedef (value_type (arg2));
1620
1621 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1622 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1623 && memcmp (value_contents (arg1), value_contents (arg2),
1624 TYPE_LENGTH (type1)) == 0);
1625 }
1626
1627 /* Simulate the C operator < by returning 1
1628 iff ARG1's contents are less than ARG2's. */
1629
1630 int
1631 value_less (struct value *arg1, struct value *arg2)
1632 {
1633 enum type_code code1;
1634 enum type_code code2;
1635 struct type *type1, *type2;
1636 int is_int1, is_int2;
1637
1638 arg1 = coerce_array (arg1);
1639 arg2 = coerce_array (arg2);
1640
1641 type1 = check_typedef (value_type (arg1));
1642 type2 = check_typedef (value_type (arg2));
1643 code1 = TYPE_CODE (type1);
1644 code2 = TYPE_CODE (type2);
1645 is_int1 = is_integral_type (type1);
1646 is_int2 = is_integral_type (type2);
1647
1648 if (is_int1 && is_int2)
1649 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1650 BINOP_LESS)));
1651 else if ((code1 == TYPE_CODE_FLT || is_int1)
1652 && (code2 == TYPE_CODE_FLT || is_int2))
1653 {
1654 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1655 `long double' values are returned in static storage (m68k). */
1656 DOUBLEST d = value_as_double (arg1);
1657
1658 return d < value_as_double (arg2);
1659 }
1660 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1661 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1662 {
1663 gdb_byte v1[16], v2[16];
1664 int len_v1, len_v2;
1665 enum bfd_endian byte_order_v1, byte_order_v2;
1666
1667 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1668 v2, &len_v2, &byte_order_v2);
1669
1670 return decimal_compare (v1, len_v1, byte_order_v1,
1671 v2, len_v2, byte_order_v2) == -1;
1672 }
1673 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1674 return value_as_address (arg1) < value_as_address (arg2);
1675
1676 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1677 is bigger. */
1678 else if (code1 == TYPE_CODE_PTR && is_int2)
1679 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1680 else if (code2 == TYPE_CODE_PTR && is_int1)
1681 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1682 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1683 return value_strcmp (arg1, arg2) < 0;
1684 else
1685 {
1686 error (_("Invalid type combination in ordering comparison."));
1687 return 0;
1688 }
1689 }
1690 \f
1691 /* The unary operators +, - and ~. They free the argument ARG1. */
1692
1693 struct value *
1694 value_pos (struct value *arg1)
1695 {
1696 struct type *type;
1697
1698 arg1 = coerce_ref (arg1);
1699 type = check_typedef (value_type (arg1));
1700
1701 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1702 return value_from_double (type, value_as_double (arg1));
1703 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1704 return value_from_decfloat (type, value_contents (arg1));
1705 else if (is_integral_type (type))
1706 {
1707 return value_from_longest (type, value_as_long (arg1));
1708 }
1709 else
1710 {
1711 error ("Argument to positive operation not a number.");
1712 return 0; /* For lint -- never reached */
1713 }
1714 }
1715
1716 struct value *
1717 value_neg (struct value *arg1)
1718 {
1719 struct type *type;
1720
1721 arg1 = coerce_ref (arg1);
1722 type = check_typedef (value_type (arg1));
1723
1724 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1725 {
1726 struct value *val = allocate_value (type);
1727 int len = TYPE_LENGTH (type);
1728 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1729
1730 memcpy (decbytes, value_contents (arg1), len);
1731
1732 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1733 decbytes[len-1] = decbytes[len - 1] | 0x80;
1734 else
1735 decbytes[0] = decbytes[0] | 0x80;
1736
1737 memcpy (value_contents_raw (val), decbytes, len);
1738 return val;
1739 }
1740 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1741 return value_from_double (type, -value_as_double (arg1));
1742 else if (is_integral_type (type))
1743 {
1744 return value_from_longest (type, -value_as_long (arg1));
1745 }
1746 else
1747 {
1748 error (_("Argument to negate operation not a number."));
1749 return 0; /* For lint -- never reached */
1750 }
1751 }
1752
1753 struct value *
1754 value_complement (struct value *arg1)
1755 {
1756 struct type *type;
1757
1758 arg1 = coerce_ref (arg1);
1759 type = check_typedef (value_type (arg1));
1760
1761 if (!is_integral_type (type))
1762 error (_("Argument to complement operation not an integer or boolean."));
1763
1764 return value_from_longest (type, ~value_as_long (arg1));
1765 }
1766 \f
1767 /* The INDEX'th bit of SET value whose value_type is TYPE,
1768 and whose value_contents is valaddr.
1769 Return -1 if out of range, -2 other error. */
1770
1771 int
1772 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1773 {
1774 struct gdbarch *gdbarch = get_type_arch (type);
1775 LONGEST low_bound, high_bound;
1776 LONGEST word;
1777 unsigned rel_index;
1778 struct type *range = TYPE_INDEX_TYPE (type);
1779
1780 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1781 return -2;
1782 if (index < low_bound || index > high_bound)
1783 return -1;
1784 rel_index = index - low_bound;
1785 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1786 gdbarch_byte_order (gdbarch));
1787 rel_index %= TARGET_CHAR_BIT;
1788 if (gdbarch_bits_big_endian (gdbarch))
1789 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1790 return (word >> rel_index) & 1;
1791 }
1792
1793 int
1794 value_in (struct value *element, struct value *set)
1795 {
1796 int member;
1797 struct type *settype = check_typedef (value_type (set));
1798 struct type *eltype = check_typedef (value_type (element));
1799
1800 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1801 eltype = TYPE_TARGET_TYPE (eltype);
1802 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1803 error (_("Second argument of 'IN' has wrong type"));
1804 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1805 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1806 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1807 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1808 error (_("First argument of 'IN' has wrong type"));
1809 member = value_bit_index (settype, value_contents (set),
1810 value_as_long (element));
1811 if (member < 0)
1812 error (_("First argument of 'IN' not in range"));
1813 return member;
1814 }
1815
1816 void
1817 _initialize_valarith (void)
1818 {
1819 }
This page took 0.06527 seconds and 5 git commands to generate.