GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "doublest.h"
28 #include "dfp.h"
29 #include <math.h>
30 #include "infcall.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 void _initialize_valarith (void);
40 \f
41
42 /* Given a pointer, return the size of its target.
43 If the pointer type is void *, then return 1.
44 If the target type is incomplete, then error out.
45 This isn't a general purpose function, but just a
46 helper for value_ptradd. */
47
48 static LONGEST
49 find_size_for_pointer_math (struct type *ptr_type)
50 {
51 LONGEST sz = -1;
52 struct type *ptr_target;
53
54 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
55 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
56
57 sz = type_length_units (ptr_target);
58 if (sz == 0)
59 {
60 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
61 sz = 1;
62 else
63 {
64 const char *name;
65
66 name = TYPE_NAME (ptr_target);
67 if (name == NULL)
68 name = TYPE_TAG_NAME (ptr_target);
69 if (name == NULL)
70 error (_("Cannot perform pointer math on incomplete types, "
71 "try casting to a known type, or void *."));
72 else
73 error (_("Cannot perform pointer math on incomplete type \"%s\", "
74 "try casting to a known type, or void *."), name);
75 }
76 }
77 return sz;
78 }
79
80 /* Given a pointer ARG1 and an integral value ARG2, return the
81 result of C-style pointer arithmetic ARG1 + ARG2. */
82
83 struct value *
84 value_ptradd (struct value *arg1, LONGEST arg2)
85 {
86 struct type *valptrtype;
87 LONGEST sz;
88 struct value *result;
89
90 arg1 = coerce_array (arg1);
91 valptrtype = check_typedef (value_type (arg1));
92 sz = find_size_for_pointer_math (valptrtype);
93
94 result = value_from_pointer (valptrtype,
95 value_as_address (arg1) + sz * arg2);
96 if (VALUE_LVAL (result) != lval_internalvar)
97 set_value_component_location (result, arg1);
98 return result;
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("First argument of `-' is a pointer and "
121 "second argument is neither\n"
122 "an integer nor a pointer of the same type."));
123
124 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139
140 See comments in value_coerce_array() for rationale for reason for
141 doing lower bounds adjustment here rather than there.
142 FIXME: Perhaps we should validate that the index is valid and if
143 verbosity is set, warn about invalid indices (but still use them). */
144
145 struct value *
146 value_subscript (struct value *array, LONGEST index)
147 {
148 int c_style = current_language->c_style_arrays;
149 struct type *tarray;
150
151 array = coerce_ref (array);
152 tarray = check_typedef (value_type (array));
153
154 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
155 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
156 {
157 struct type *range_type = TYPE_INDEX_TYPE (tarray);
158 LONGEST lowerbound, upperbound;
159
160 get_discrete_bounds (range_type, &lowerbound, &upperbound);
161 if (VALUE_LVAL (array) != lval_memory)
162 return value_subscripted_rvalue (array, index, lowerbound);
163
164 if (c_style == 0)
165 {
166 if (index >= lowerbound && index <= upperbound)
167 return value_subscripted_rvalue (array, index, lowerbound);
168 /* Emit warning unless we have an array of unknown size.
169 An array of unknown size has lowerbound 0 and upperbound -1. */
170 if (upperbound > -1)
171 warning (_("array or string index out of range"));
172 /* fall doing C stuff */
173 c_style = 1;
174 }
175
176 index -= lowerbound;
177 array = value_coerce_array (array);
178 }
179
180 if (c_style)
181 return value_ind (value_ptradd (array, index));
182 else
183 error (_("not an array or string"));
184 }
185
186 /* Return the value of EXPR[IDX], expr an aggregate rvalue
187 (eg, a vector register). This routine used to promote floats
188 to doubles, but no longer does. */
189
190 struct value *
191 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
192 {
193 struct type *array_type = check_typedef (value_type (array));
194 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
195 unsigned int elt_size = type_length_units (elt_type);
196 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
197 struct value *v;
198
199 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
200 && elt_offs >= type_length_units (array_type)))
201 {
202 if (type_not_associated (array_type))
203 error (_("no such vector element (vector not associated)"));
204 else if (type_not_allocated (array_type))
205 error (_("no such vector element (vector not allocated)"));
206 else
207 error (_("no such vector element"));
208 }
209
210 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
211 v = allocate_value_lazy (elt_type);
212 else
213 {
214 v = allocate_value (elt_type);
215 value_contents_copy (v, value_embedded_offset (v),
216 array, value_embedded_offset (array) + elt_offs,
217 elt_size);
218 }
219
220 set_value_component_location (v, array);
221 VALUE_REGNUM (v) = VALUE_REGNUM (array);
222 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
223 set_value_offset (v, value_offset (array) + elt_offs);
224 return v;
225 }
226
227 \f
228 /* Check to see if either argument is a structure, or a reference to
229 one. This is called so we know whether to go ahead with the normal
230 binop or look for a user defined function instead.
231
232 For now, we do not overload the `=' operator. */
233
234 int
235 binop_types_user_defined_p (enum exp_opcode op,
236 struct type *type1, struct type *type2)
237 {
238 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
239 return 0;
240
241 type1 = check_typedef (type1);
242 if (TYPE_CODE (type1) == TYPE_CODE_REF)
243 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
244
245 type2 = check_typedef (type2);
246 if (TYPE_CODE (type2) == TYPE_CODE_REF)
247 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
248
249 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
250 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
251 }
252
253 /* Check to see if either argument is a structure, or a reference to
254 one. This is called so we know whether to go ahead with the normal
255 binop or look for a user defined function instead.
256
257 For now, we do not overload the `=' operator. */
258
259 int
260 binop_user_defined_p (enum exp_opcode op,
261 struct value *arg1, struct value *arg2)
262 {
263 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
264 }
265
266 /* Check to see if argument is a structure. This is called so
267 we know whether to go ahead with the normal unop or look for a
268 user defined function instead.
269
270 For now, we do not overload the `&' operator. */
271
272 int
273 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
274 {
275 struct type *type1;
276
277 if (op == UNOP_ADDR)
278 return 0;
279 type1 = check_typedef (value_type (arg1));
280 if (TYPE_CODE (type1) == TYPE_CODE_REF)
281 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
282 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
283 }
284
285 /* Try to find an operator named OPERATOR which takes NARGS arguments
286 specified in ARGS. If the operator found is a static member operator
287 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
288 The search if performed through find_overload_match which will handle
289 member operators, non member operators, operators imported implicitly or
290 explicitly, and perform correct overload resolution in all of the above
291 situations or combinations thereof. */
292
293 static struct value *
294 value_user_defined_cpp_op (struct value **args, int nargs, char *oper,
295 int *static_memfuncp, enum noside noside)
296 {
297
298 struct symbol *symp = NULL;
299 struct value *valp = NULL;
300
301 find_overload_match (args, nargs, oper, BOTH /* could be method */,
302 &args[0] /* objp */,
303 NULL /* pass NULL symbol since symbol is unknown */,
304 &valp, &symp, static_memfuncp, 0, noside);
305
306 if (valp)
307 return valp;
308
309 if (symp)
310 {
311 /* This is a non member function and does not
312 expect a reference as its first argument
313 rather the explicit structure. */
314 args[0] = value_ind (args[0]);
315 return value_of_variable (symp, 0);
316 }
317
318 error (_("Could not find %s."), oper);
319 }
320
321 /* Lookup user defined operator NAME. Return a value representing the
322 function, otherwise return NULL. */
323
324 static struct value *
325 value_user_defined_op (struct value **argp, struct value **args, char *name,
326 int *static_memfuncp, int nargs, enum noside noside)
327 {
328 struct value *result = NULL;
329
330 if (current_language->la_language == language_cplus)
331 {
332 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp,
333 noside);
334 }
335 else
336 result = value_struct_elt (argp, args, name, static_memfuncp,
337 "structure");
338
339 return result;
340 }
341
342 /* We know either arg1 or arg2 is a structure, so try to find the right
343 user defined function. Create an argument vector that calls
344 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
345 binary operator which is legal for GNU C++).
346
347 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
348 is the opcode saying how to modify it. Otherwise, OTHEROP is
349 unused. */
350
351 struct value *
352 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
353 enum exp_opcode otherop, enum noside noside)
354 {
355 struct value **argvec;
356 char *ptr;
357 char tstr[13];
358 int static_memfuncp;
359
360 arg1 = coerce_ref (arg1);
361 arg2 = coerce_ref (arg2);
362
363 /* now we know that what we have to do is construct our
364 arg vector and find the right function to call it with. */
365
366 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
367 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
368
369 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
370 argvec[1] = value_addr (arg1);
371 argvec[2] = arg2;
372 argvec[3] = 0;
373
374 /* Make the right function name up. */
375 strcpy (tstr, "operator__");
376 ptr = tstr + 8;
377 switch (op)
378 {
379 case BINOP_ADD:
380 strcpy (ptr, "+");
381 break;
382 case BINOP_SUB:
383 strcpy (ptr, "-");
384 break;
385 case BINOP_MUL:
386 strcpy (ptr, "*");
387 break;
388 case BINOP_DIV:
389 strcpy (ptr, "/");
390 break;
391 case BINOP_REM:
392 strcpy (ptr, "%");
393 break;
394 case BINOP_LSH:
395 strcpy (ptr, "<<");
396 break;
397 case BINOP_RSH:
398 strcpy (ptr, ">>");
399 break;
400 case BINOP_BITWISE_AND:
401 strcpy (ptr, "&");
402 break;
403 case BINOP_BITWISE_IOR:
404 strcpy (ptr, "|");
405 break;
406 case BINOP_BITWISE_XOR:
407 strcpy (ptr, "^");
408 break;
409 case BINOP_LOGICAL_AND:
410 strcpy (ptr, "&&");
411 break;
412 case BINOP_LOGICAL_OR:
413 strcpy (ptr, "||");
414 break;
415 case BINOP_MIN:
416 strcpy (ptr, "<?");
417 break;
418 case BINOP_MAX:
419 strcpy (ptr, ">?");
420 break;
421 case BINOP_ASSIGN:
422 strcpy (ptr, "=");
423 break;
424 case BINOP_ASSIGN_MODIFY:
425 switch (otherop)
426 {
427 case BINOP_ADD:
428 strcpy (ptr, "+=");
429 break;
430 case BINOP_SUB:
431 strcpy (ptr, "-=");
432 break;
433 case BINOP_MUL:
434 strcpy (ptr, "*=");
435 break;
436 case BINOP_DIV:
437 strcpy (ptr, "/=");
438 break;
439 case BINOP_REM:
440 strcpy (ptr, "%=");
441 break;
442 case BINOP_BITWISE_AND:
443 strcpy (ptr, "&=");
444 break;
445 case BINOP_BITWISE_IOR:
446 strcpy (ptr, "|=");
447 break;
448 case BINOP_BITWISE_XOR:
449 strcpy (ptr, "^=");
450 break;
451 case BINOP_MOD: /* invalid */
452 default:
453 error (_("Invalid binary operation specified."));
454 }
455 break;
456 case BINOP_SUBSCRIPT:
457 strcpy (ptr, "[]");
458 break;
459 case BINOP_EQUAL:
460 strcpy (ptr, "==");
461 break;
462 case BINOP_NOTEQUAL:
463 strcpy (ptr, "!=");
464 break;
465 case BINOP_LESS:
466 strcpy (ptr, "<");
467 break;
468 case BINOP_GTR:
469 strcpy (ptr, ">");
470 break;
471 case BINOP_GEQ:
472 strcpy (ptr, ">=");
473 break;
474 case BINOP_LEQ:
475 strcpy (ptr, "<=");
476 break;
477 case BINOP_MOD: /* invalid */
478 default:
479 error (_("Invalid binary operation specified."));
480 }
481
482 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
483 &static_memfuncp, 2, noside);
484
485 if (argvec[0])
486 {
487 if (static_memfuncp)
488 {
489 argvec[1] = argvec[0];
490 argvec++;
491 }
492 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
493 {
494 /* Static xmethods are not supported yet. */
495 gdb_assert (static_memfuncp == 0);
496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
497 {
498 struct type *return_type
499 = result_type_of_xmethod (argvec[0], 2, argvec + 1);
500
501 if (return_type == NULL)
502 error (_("Xmethod is missing return type."));
503 return value_zero (return_type, VALUE_LVAL (arg1));
504 }
505 return call_xmethod (argvec[0], 2, argvec + 1);
506 }
507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
508 {
509 struct type *return_type;
510
511 return_type
512 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
513 return value_zero (return_type, VALUE_LVAL (arg1));
514 }
515 return call_function_by_hand (argvec[0], 2 - static_memfuncp,
516 argvec + 1);
517 }
518 throw_error (NOT_FOUND_ERROR,
519 _("member function %s not found"), tstr);
520 #ifdef lint
521 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
522 #endif
523 }
524
525 /* We know that arg1 is a structure, so try to find a unary user
526 defined operator that matches the operator in question.
527 Create an argument vector that calls arg1.operator @ (arg1)
528 and return that value (where '@' is (almost) any unary operator which
529 is legal for GNU C++). */
530
531 struct value *
532 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
533 {
534 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
535 struct value **argvec;
536 char *ptr;
537 char tstr[13], mangle_tstr[13];
538 int static_memfuncp, nargs;
539
540 arg1 = coerce_ref (arg1);
541
542 /* now we know that what we have to do is construct our
543 arg vector and find the right function to call it with. */
544
545 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
546 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
547
548 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
549 argvec[1] = value_addr (arg1);
550 argvec[2] = 0;
551
552 nargs = 1;
553
554 /* Make the right function name up. */
555 strcpy (tstr, "operator__");
556 ptr = tstr + 8;
557 strcpy (mangle_tstr, "__");
558 switch (op)
559 {
560 case UNOP_PREINCREMENT:
561 strcpy (ptr, "++");
562 break;
563 case UNOP_PREDECREMENT:
564 strcpy (ptr, "--");
565 break;
566 case UNOP_POSTINCREMENT:
567 strcpy (ptr, "++");
568 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
569 argvec[3] = 0;
570 nargs ++;
571 break;
572 case UNOP_POSTDECREMENT:
573 strcpy (ptr, "--");
574 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
575 argvec[3] = 0;
576 nargs ++;
577 break;
578 case UNOP_LOGICAL_NOT:
579 strcpy (ptr, "!");
580 break;
581 case UNOP_COMPLEMENT:
582 strcpy (ptr, "~");
583 break;
584 case UNOP_NEG:
585 strcpy (ptr, "-");
586 break;
587 case UNOP_PLUS:
588 strcpy (ptr, "+");
589 break;
590 case UNOP_IND:
591 strcpy (ptr, "*");
592 break;
593 case STRUCTOP_PTR:
594 strcpy (ptr, "->");
595 break;
596 default:
597 error (_("Invalid unary operation specified."));
598 }
599
600 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
601 &static_memfuncp, nargs, noside);
602
603 if (argvec[0])
604 {
605 if (static_memfuncp)
606 {
607 argvec[1] = argvec[0];
608 nargs --;
609 argvec++;
610 }
611 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
612 {
613 /* Static xmethods are not supported yet. */
614 gdb_assert (static_memfuncp == 0);
615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
616 {
617 struct type *return_type
618 = result_type_of_xmethod (argvec[0], 1, argvec + 1);
619
620 if (return_type == NULL)
621 error (_("Xmethod is missing return type."));
622 return value_zero (return_type, VALUE_LVAL (arg1));
623 }
624 return call_xmethod (argvec[0], 1, argvec + 1);
625 }
626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
627 {
628 struct type *return_type;
629
630 return_type
631 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
632 return value_zero (return_type, VALUE_LVAL (arg1));
633 }
634 return call_function_by_hand (argvec[0], nargs, argvec + 1);
635 }
636 throw_error (NOT_FOUND_ERROR,
637 _("member function %s not found"), tstr);
638
639 return 0; /* For lint -- never reached */
640 }
641 \f
642
643 /* Concatenate two values with the following conditions:
644
645 (1) Both values must be either bitstring values or character string
646 values and the resulting value consists of the concatenation of
647 ARG1 followed by ARG2.
648
649 or
650
651 One value must be an integer value and the other value must be
652 either a bitstring value or character string value, which is
653 to be repeated by the number of times specified by the integer
654 value.
655
656
657 (2) Boolean values are also allowed and are treated as bit string
658 values of length 1.
659
660 (3) Character values are also allowed and are treated as character
661 string values of length 1. */
662
663 struct value *
664 value_concat (struct value *arg1, struct value *arg2)
665 {
666 struct value *inval1;
667 struct value *inval2;
668 struct value *outval = NULL;
669 int inval1len, inval2len;
670 int count, idx;
671 char *ptr;
672 char inchar;
673 struct type *type1 = check_typedef (value_type (arg1));
674 struct type *type2 = check_typedef (value_type (arg2));
675 struct type *char_type;
676
677 /* First figure out if we are dealing with two values to be concatenated
678 or a repeat count and a value to be repeated. INVAL1 is set to the
679 first of two concatenated values, or the repeat count. INVAL2 is set
680 to the second of the two concatenated values or the value to be
681 repeated. */
682
683 if (TYPE_CODE (type2) == TYPE_CODE_INT)
684 {
685 struct type *tmp = type1;
686
687 type1 = tmp;
688 tmp = type2;
689 inval1 = arg2;
690 inval2 = arg1;
691 }
692 else
693 {
694 inval1 = arg1;
695 inval2 = arg2;
696 }
697
698 /* Now process the input values. */
699
700 if (TYPE_CODE (type1) == TYPE_CODE_INT)
701 {
702 /* We have a repeat count. Validate the second value and then
703 construct a value repeated that many times. */
704 if (TYPE_CODE (type2) == TYPE_CODE_STRING
705 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
706 {
707 struct cleanup *back_to;
708
709 count = longest_to_int (value_as_long (inval1));
710 inval2len = TYPE_LENGTH (type2);
711 ptr = (char *) xmalloc (count * inval2len);
712 back_to = make_cleanup (xfree, ptr);
713 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
714 {
715 char_type = type2;
716
717 inchar = (char) unpack_long (type2,
718 value_contents (inval2));
719 for (idx = 0; idx < count; idx++)
720 {
721 *(ptr + idx) = inchar;
722 }
723 }
724 else
725 {
726 char_type = TYPE_TARGET_TYPE (type2);
727
728 for (idx = 0; idx < count; idx++)
729 {
730 memcpy (ptr + (idx * inval2len), value_contents (inval2),
731 inval2len);
732 }
733 }
734 outval = value_string (ptr, count * inval2len, char_type);
735 do_cleanups (back_to);
736 }
737 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
738 {
739 error (_("unimplemented support for boolean repeats"));
740 }
741 else
742 {
743 error (_("can't repeat values of that type"));
744 }
745 }
746 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
747 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
748 {
749 struct cleanup *back_to;
750
751 /* We have two character strings to concatenate. */
752 if (TYPE_CODE (type2) != TYPE_CODE_STRING
753 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
754 {
755 error (_("Strings can only be concatenated with other strings."));
756 }
757 inval1len = TYPE_LENGTH (type1);
758 inval2len = TYPE_LENGTH (type2);
759 ptr = (char *) xmalloc (inval1len + inval2len);
760 back_to = make_cleanup (xfree, ptr);
761 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
762 {
763 char_type = type1;
764
765 *ptr = (char) unpack_long (type1, value_contents (inval1));
766 }
767 else
768 {
769 char_type = TYPE_TARGET_TYPE (type1);
770
771 memcpy (ptr, value_contents (inval1), inval1len);
772 }
773 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
774 {
775 *(ptr + inval1len) =
776 (char) unpack_long (type2, value_contents (inval2));
777 }
778 else
779 {
780 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
781 }
782 outval = value_string (ptr, inval1len + inval2len, char_type);
783 do_cleanups (back_to);
784 }
785 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
786 {
787 /* We have two bitstrings to concatenate. */
788 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
789 {
790 error (_("Booleans can only be concatenated "
791 "with other bitstrings or booleans."));
792 }
793 error (_("unimplemented support for boolean concatenation."));
794 }
795 else
796 {
797 /* We don't know how to concatenate these operands. */
798 error (_("illegal operands for concatenation."));
799 }
800 return (outval);
801 }
802 \f
803 /* Integer exponentiation: V1**V2, where both arguments are
804 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
805
806 static LONGEST
807 integer_pow (LONGEST v1, LONGEST v2)
808 {
809 if (v2 < 0)
810 {
811 if (v1 == 0)
812 error (_("Attempt to raise 0 to negative power."));
813 else
814 return 0;
815 }
816 else
817 {
818 /* The Russian Peasant's Algorithm. */
819 LONGEST v;
820
821 v = 1;
822 for (;;)
823 {
824 if (v2 & 1L)
825 v *= v1;
826 v2 >>= 1;
827 if (v2 == 0)
828 return v;
829 v1 *= v1;
830 }
831 }
832 }
833
834 /* Integer exponentiation: V1**V2, where both arguments are
835 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
836
837 static ULONGEST
838 uinteger_pow (ULONGEST v1, LONGEST v2)
839 {
840 if (v2 < 0)
841 {
842 if (v1 == 0)
843 error (_("Attempt to raise 0 to negative power."));
844 else
845 return 0;
846 }
847 else
848 {
849 /* The Russian Peasant's Algorithm. */
850 ULONGEST v;
851
852 v = 1;
853 for (;;)
854 {
855 if (v2 & 1L)
856 v *= v1;
857 v2 >>= 1;
858 if (v2 == 0)
859 return v;
860 v1 *= v1;
861 }
862 }
863 }
864
865 /* Obtain decimal value of arguments for binary operation, converting from
866 other types if one of them is not decimal floating point. */
867 static void
868 value_args_as_decimal (struct value *arg1, struct value *arg2,
869 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
870 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
871 {
872 struct type *type1, *type2;
873
874 type1 = check_typedef (value_type (arg1));
875 type2 = check_typedef (value_type (arg2));
876
877 /* At least one of the arguments must be of decimal float type. */
878 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
879 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
880
881 if (TYPE_CODE (type1) == TYPE_CODE_FLT
882 || TYPE_CODE (type2) == TYPE_CODE_FLT)
883 /* The DFP extension to the C language does not allow mixing of
884 * decimal float types with other float types in expressions
885 * (see WDTR 24732, page 12). */
886 error (_("Mixing decimal floating types with "
887 "other floating types is not allowed."));
888
889 /* Obtain decimal value of arg1, converting from other types
890 if necessary. */
891
892 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
893 {
894 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
895 *len_x = TYPE_LENGTH (type1);
896 memcpy (x, value_contents (arg1), *len_x);
897 }
898 else if (is_integral_type (type1))
899 {
900 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
901 *len_x = TYPE_LENGTH (type2);
902 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
903 }
904 else
905 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
906 TYPE_NAME (type2));
907
908 /* Obtain decimal value of arg2, converting from other types
909 if necessary. */
910
911 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
912 {
913 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
914 *len_y = TYPE_LENGTH (type2);
915 memcpy (y, value_contents (arg2), *len_y);
916 }
917 else if (is_integral_type (type2))
918 {
919 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
920 *len_y = TYPE_LENGTH (type1);
921 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
922 }
923 else
924 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
925 TYPE_NAME (type2));
926 }
927
928 /* Perform a binary operation on two operands which have reasonable
929 representations as integers or floats. This includes booleans,
930 characters, integers, or floats.
931 Does not support addition and subtraction on pointers;
932 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
933
934 static struct value *
935 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
936 {
937 struct value *val;
938 struct type *type1, *type2, *result_type;
939
940 arg1 = coerce_ref (arg1);
941 arg2 = coerce_ref (arg2);
942
943 type1 = check_typedef (value_type (arg1));
944 type2 = check_typedef (value_type (arg2));
945
946 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
947 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
948 && !is_integral_type (type1))
949 || (TYPE_CODE (type2) != TYPE_CODE_FLT
950 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
951 && !is_integral_type (type2)))
952 error (_("Argument to arithmetic operation not a number or boolean."));
953
954 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
955 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
956 {
957 int len_v1, len_v2, len_v;
958 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
959 gdb_byte v1[16], v2[16];
960 gdb_byte v[16];
961
962 /* If only one type is decimal float, use its type.
963 Otherwise use the bigger type. */
964 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
965 result_type = type2;
966 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
967 result_type = type1;
968 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
969 result_type = type2;
970 else
971 result_type = type1;
972
973 len_v = TYPE_LENGTH (result_type);
974 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
975
976 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
977 v2, &len_v2, &byte_order_v2);
978
979 switch (op)
980 {
981 case BINOP_ADD:
982 case BINOP_SUB:
983 case BINOP_MUL:
984 case BINOP_DIV:
985 case BINOP_EXP:
986 decimal_binop (op, v1, len_v1, byte_order_v1,
987 v2, len_v2, byte_order_v2,
988 v, len_v, byte_order_v);
989 break;
990
991 default:
992 error (_("Operation not valid for decimal floating point number."));
993 }
994
995 val = value_from_decfloat (result_type, v);
996 }
997 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
998 || TYPE_CODE (type2) == TYPE_CODE_FLT)
999 {
1000 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
1001 in target format. real.c in GCC probably has the necessary
1002 code. */
1003 DOUBLEST v1, v2, v = 0;
1004
1005 v1 = value_as_double (arg1);
1006 v2 = value_as_double (arg2);
1007
1008 switch (op)
1009 {
1010 case BINOP_ADD:
1011 v = v1 + v2;
1012 break;
1013
1014 case BINOP_SUB:
1015 v = v1 - v2;
1016 break;
1017
1018 case BINOP_MUL:
1019 v = v1 * v2;
1020 break;
1021
1022 case BINOP_DIV:
1023 v = v1 / v2;
1024 break;
1025
1026 case BINOP_EXP:
1027 errno = 0;
1028 v = pow (v1, v2);
1029 if (errno)
1030 error (_("Cannot perform exponentiation: %s"),
1031 safe_strerror (errno));
1032 break;
1033
1034 case BINOP_MIN:
1035 v = v1 < v2 ? v1 : v2;
1036 break;
1037
1038 case BINOP_MAX:
1039 v = v1 > v2 ? v1 : v2;
1040 break;
1041
1042 default:
1043 error (_("Integer-only operation on floating point number."));
1044 }
1045
1046 /* If only one type is float, use its type.
1047 Otherwise use the bigger type. */
1048 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1049 result_type = type2;
1050 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1051 result_type = type1;
1052 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1053 result_type = type2;
1054 else
1055 result_type = type1;
1056
1057 val = allocate_value (result_type);
1058 store_typed_floating (value_contents_raw (val), value_type (val), v);
1059 }
1060 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1061 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1062 {
1063 LONGEST v1, v2, v = 0;
1064
1065 v1 = value_as_long (arg1);
1066 v2 = value_as_long (arg2);
1067
1068 switch (op)
1069 {
1070 case BINOP_BITWISE_AND:
1071 v = v1 & v2;
1072 break;
1073
1074 case BINOP_BITWISE_IOR:
1075 v = v1 | v2;
1076 break;
1077
1078 case BINOP_BITWISE_XOR:
1079 v = v1 ^ v2;
1080 break;
1081
1082 case BINOP_EQUAL:
1083 v = v1 == v2;
1084 break;
1085
1086 case BINOP_NOTEQUAL:
1087 v = v1 != v2;
1088 break;
1089
1090 default:
1091 error (_("Invalid operation on booleans."));
1092 }
1093
1094 result_type = type1;
1095
1096 val = allocate_value (result_type);
1097 store_signed_integer (value_contents_raw (val),
1098 TYPE_LENGTH (result_type),
1099 gdbarch_byte_order (get_type_arch (result_type)),
1100 v);
1101 }
1102 else
1103 /* Integral operations here. */
1104 {
1105 /* Determine type length of the result, and if the operation should
1106 be done unsigned. For exponentiation and shift operators,
1107 use the length and type of the left operand. Otherwise,
1108 use the signedness of the operand with the greater length.
1109 If both operands are of equal length, use unsigned operation
1110 if one of the operands is unsigned. */
1111 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1112 result_type = type1;
1113 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1114 result_type = type1;
1115 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1116 result_type = type2;
1117 else if (TYPE_UNSIGNED (type1))
1118 result_type = type1;
1119 else if (TYPE_UNSIGNED (type2))
1120 result_type = type2;
1121 else
1122 result_type = type1;
1123
1124 if (TYPE_UNSIGNED (result_type))
1125 {
1126 LONGEST v2_signed = value_as_long (arg2);
1127 ULONGEST v1, v2, v = 0;
1128
1129 v1 = (ULONGEST) value_as_long (arg1);
1130 v2 = (ULONGEST) v2_signed;
1131
1132 switch (op)
1133 {
1134 case BINOP_ADD:
1135 v = v1 + v2;
1136 break;
1137
1138 case BINOP_SUB:
1139 v = v1 - v2;
1140 break;
1141
1142 case BINOP_MUL:
1143 v = v1 * v2;
1144 break;
1145
1146 case BINOP_DIV:
1147 case BINOP_INTDIV:
1148 if (v2 != 0)
1149 v = v1 / v2;
1150 else
1151 error (_("Division by zero"));
1152 break;
1153
1154 case BINOP_EXP:
1155 v = uinteger_pow (v1, v2_signed);
1156 break;
1157
1158 case BINOP_REM:
1159 if (v2 != 0)
1160 v = v1 % v2;
1161 else
1162 error (_("Division by zero"));
1163 break;
1164
1165 case BINOP_MOD:
1166 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1167 v1 mod 0 has a defined value, v1. */
1168 if (v2 == 0)
1169 {
1170 v = v1;
1171 }
1172 else
1173 {
1174 v = v1 / v2;
1175 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1176 v = v1 - (v2 * v);
1177 }
1178 break;
1179
1180 case BINOP_LSH:
1181 v = v1 << v2;
1182 break;
1183
1184 case BINOP_RSH:
1185 v = v1 >> v2;
1186 break;
1187
1188 case BINOP_BITWISE_AND:
1189 v = v1 & v2;
1190 break;
1191
1192 case BINOP_BITWISE_IOR:
1193 v = v1 | v2;
1194 break;
1195
1196 case BINOP_BITWISE_XOR:
1197 v = v1 ^ v2;
1198 break;
1199
1200 case BINOP_LOGICAL_AND:
1201 v = v1 && v2;
1202 break;
1203
1204 case BINOP_LOGICAL_OR:
1205 v = v1 || v2;
1206 break;
1207
1208 case BINOP_MIN:
1209 v = v1 < v2 ? v1 : v2;
1210 break;
1211
1212 case BINOP_MAX:
1213 v = v1 > v2 ? v1 : v2;
1214 break;
1215
1216 case BINOP_EQUAL:
1217 v = v1 == v2;
1218 break;
1219
1220 case BINOP_NOTEQUAL:
1221 v = v1 != v2;
1222 break;
1223
1224 case BINOP_LESS:
1225 v = v1 < v2;
1226 break;
1227
1228 case BINOP_GTR:
1229 v = v1 > v2;
1230 break;
1231
1232 case BINOP_LEQ:
1233 v = v1 <= v2;
1234 break;
1235
1236 case BINOP_GEQ:
1237 v = v1 >= v2;
1238 break;
1239
1240 default:
1241 error (_("Invalid binary operation on numbers."));
1242 }
1243
1244 val = allocate_value (result_type);
1245 store_unsigned_integer (value_contents_raw (val),
1246 TYPE_LENGTH (value_type (val)),
1247 gdbarch_byte_order
1248 (get_type_arch (result_type)),
1249 v);
1250 }
1251 else
1252 {
1253 LONGEST v1, v2, v = 0;
1254
1255 v1 = value_as_long (arg1);
1256 v2 = value_as_long (arg2);
1257
1258 switch (op)
1259 {
1260 case BINOP_ADD:
1261 v = v1 + v2;
1262 break;
1263
1264 case BINOP_SUB:
1265 v = v1 - v2;
1266 break;
1267
1268 case BINOP_MUL:
1269 v = v1 * v2;
1270 break;
1271
1272 case BINOP_DIV:
1273 case BINOP_INTDIV:
1274 if (v2 != 0)
1275 v = v1 / v2;
1276 else
1277 error (_("Division by zero"));
1278 break;
1279
1280 case BINOP_EXP:
1281 v = integer_pow (v1, v2);
1282 break;
1283
1284 case BINOP_REM:
1285 if (v2 != 0)
1286 v = v1 % v2;
1287 else
1288 error (_("Division by zero"));
1289 break;
1290
1291 case BINOP_MOD:
1292 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1293 X mod 0 has a defined value, X. */
1294 if (v2 == 0)
1295 {
1296 v = v1;
1297 }
1298 else
1299 {
1300 v = v1 / v2;
1301 /* Compute floor. */
1302 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1303 {
1304 v--;
1305 }
1306 v = v1 - (v2 * v);
1307 }
1308 break;
1309
1310 case BINOP_LSH:
1311 v = v1 << v2;
1312 break;
1313
1314 case BINOP_RSH:
1315 v = v1 >> v2;
1316 break;
1317
1318 case BINOP_BITWISE_AND:
1319 v = v1 & v2;
1320 break;
1321
1322 case BINOP_BITWISE_IOR:
1323 v = v1 | v2;
1324 break;
1325
1326 case BINOP_BITWISE_XOR:
1327 v = v1 ^ v2;
1328 break;
1329
1330 case BINOP_LOGICAL_AND:
1331 v = v1 && v2;
1332 break;
1333
1334 case BINOP_LOGICAL_OR:
1335 v = v1 || v2;
1336 break;
1337
1338 case BINOP_MIN:
1339 v = v1 < v2 ? v1 : v2;
1340 break;
1341
1342 case BINOP_MAX:
1343 v = v1 > v2 ? v1 : v2;
1344 break;
1345
1346 case BINOP_EQUAL:
1347 v = v1 == v2;
1348 break;
1349
1350 case BINOP_NOTEQUAL:
1351 v = v1 != v2;
1352 break;
1353
1354 case BINOP_LESS:
1355 v = v1 < v2;
1356 break;
1357
1358 case BINOP_GTR:
1359 v = v1 > v2;
1360 break;
1361
1362 case BINOP_LEQ:
1363 v = v1 <= v2;
1364 break;
1365
1366 case BINOP_GEQ:
1367 v = v1 >= v2;
1368 break;
1369
1370 default:
1371 error (_("Invalid binary operation on numbers."));
1372 }
1373
1374 val = allocate_value (result_type);
1375 store_signed_integer (value_contents_raw (val),
1376 TYPE_LENGTH (value_type (val)),
1377 gdbarch_byte_order
1378 (get_type_arch (result_type)),
1379 v);
1380 }
1381 }
1382
1383 return val;
1384 }
1385
1386 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1387 replicating SCALAR_VALUE for each element of the vector. Only scalar
1388 types that can be cast to the type of one element of the vector are
1389 acceptable. The newly created vector value is returned upon success,
1390 otherwise an error is thrown. */
1391
1392 struct value *
1393 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1394 {
1395 /* Widen the scalar to a vector. */
1396 struct type *eltype, *scalar_type;
1397 struct value *val, *elval;
1398 LONGEST low_bound, high_bound;
1399 int i;
1400
1401 vector_type = check_typedef (vector_type);
1402
1403 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1404 && TYPE_VECTOR (vector_type));
1405
1406 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1407 error (_("Could not determine the vector bounds"));
1408
1409 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1410 elval = value_cast (eltype, scalar_value);
1411
1412 scalar_type = check_typedef (value_type (scalar_value));
1413
1414 /* If we reduced the length of the scalar then check we didn't loose any
1415 important bits. */
1416 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1417 && !value_equal (elval, scalar_value))
1418 error (_("conversion of scalar to vector involves truncation"));
1419
1420 val = allocate_value (vector_type);
1421 for (i = 0; i < high_bound - low_bound + 1; i++)
1422 /* Duplicate the contents of elval into the destination vector. */
1423 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1424 value_contents_all (elval), TYPE_LENGTH (eltype));
1425
1426 return val;
1427 }
1428
1429 /* Performs a binary operation on two vector operands by calling scalar_binop
1430 for each pair of vector components. */
1431
1432 static struct value *
1433 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1434 {
1435 struct value *val, *tmp, *mark;
1436 struct type *type1, *type2, *eltype1, *eltype2;
1437 int t1_is_vec, t2_is_vec, elsize, i;
1438 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1439
1440 type1 = check_typedef (value_type (val1));
1441 type2 = check_typedef (value_type (val2));
1442
1443 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1444 && TYPE_VECTOR (type1)) ? 1 : 0;
1445 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1446 && TYPE_VECTOR (type2)) ? 1 : 0;
1447
1448 if (!t1_is_vec || !t2_is_vec)
1449 error (_("Vector operations are only supported among vectors"));
1450
1451 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1452 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1453 error (_("Could not determine the vector bounds"));
1454
1455 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1456 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1457 elsize = TYPE_LENGTH (eltype1);
1458
1459 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1460 || elsize != TYPE_LENGTH (eltype2)
1461 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1462 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1463 error (_("Cannot perform operation on vectors with different types"));
1464
1465 val = allocate_value (type1);
1466 mark = value_mark ();
1467 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1468 {
1469 tmp = value_binop (value_subscript (val1, i),
1470 value_subscript (val2, i), op);
1471 memcpy (value_contents_writeable (val) + i * elsize,
1472 value_contents_all (tmp),
1473 elsize);
1474 }
1475 value_free_to_mark (mark);
1476
1477 return val;
1478 }
1479
1480 /* Perform a binary operation on two operands. */
1481
1482 struct value *
1483 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1484 {
1485 struct value *val;
1486 struct type *type1 = check_typedef (value_type (arg1));
1487 struct type *type2 = check_typedef (value_type (arg2));
1488 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1489 && TYPE_VECTOR (type1));
1490 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1491 && TYPE_VECTOR (type2));
1492
1493 if (!t1_is_vec && !t2_is_vec)
1494 val = scalar_binop (arg1, arg2, op);
1495 else if (t1_is_vec && t2_is_vec)
1496 val = vector_binop (arg1, arg2, op);
1497 else
1498 {
1499 /* Widen the scalar operand to a vector. */
1500 struct value **v = t1_is_vec ? &arg2 : &arg1;
1501 struct type *t = t1_is_vec ? type2 : type1;
1502
1503 if (TYPE_CODE (t) != TYPE_CODE_FLT
1504 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1505 && !is_integral_type (t))
1506 error (_("Argument to operation not a number or boolean."));
1507
1508 /* Replicate the scalar value to make a vector value. */
1509 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1510
1511 val = vector_binop (arg1, arg2, op);
1512 }
1513
1514 return val;
1515 }
1516 \f
1517 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1518
1519 int
1520 value_logical_not (struct value *arg1)
1521 {
1522 int len;
1523 const gdb_byte *p;
1524 struct type *type1;
1525
1526 arg1 = coerce_array (arg1);
1527 type1 = check_typedef (value_type (arg1));
1528
1529 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1530 return 0 == value_as_double (arg1);
1531 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1532 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1533 gdbarch_byte_order (get_type_arch (type1)));
1534
1535 len = TYPE_LENGTH (type1);
1536 p = value_contents (arg1);
1537
1538 while (--len >= 0)
1539 {
1540 if (*p++)
1541 break;
1542 }
1543
1544 return len < 0;
1545 }
1546
1547 /* Perform a comparison on two string values (whose content are not
1548 necessarily null terminated) based on their length. */
1549
1550 static int
1551 value_strcmp (struct value *arg1, struct value *arg2)
1552 {
1553 int len1 = TYPE_LENGTH (value_type (arg1));
1554 int len2 = TYPE_LENGTH (value_type (arg2));
1555 const gdb_byte *s1 = value_contents (arg1);
1556 const gdb_byte *s2 = value_contents (arg2);
1557 int i, len = len1 < len2 ? len1 : len2;
1558
1559 for (i = 0; i < len; i++)
1560 {
1561 if (s1[i] < s2[i])
1562 return -1;
1563 else if (s1[i] > s2[i])
1564 return 1;
1565 else
1566 continue;
1567 }
1568
1569 if (len1 < len2)
1570 return -1;
1571 else if (len1 > len2)
1572 return 1;
1573 else
1574 return 0;
1575 }
1576
1577 /* Simulate the C operator == by returning a 1
1578 iff ARG1 and ARG2 have equal contents. */
1579
1580 int
1581 value_equal (struct value *arg1, struct value *arg2)
1582 {
1583 int len;
1584 const gdb_byte *p1;
1585 const gdb_byte *p2;
1586 struct type *type1, *type2;
1587 enum type_code code1;
1588 enum type_code code2;
1589 int is_int1, is_int2;
1590
1591 arg1 = coerce_array (arg1);
1592 arg2 = coerce_array (arg2);
1593
1594 type1 = check_typedef (value_type (arg1));
1595 type2 = check_typedef (value_type (arg2));
1596 code1 = TYPE_CODE (type1);
1597 code2 = TYPE_CODE (type2);
1598 is_int1 = is_integral_type (type1);
1599 is_int2 = is_integral_type (type2);
1600
1601 if (is_int1 && is_int2)
1602 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1603 BINOP_EQUAL)));
1604 else if ((code1 == TYPE_CODE_FLT || is_int1)
1605 && (code2 == TYPE_CODE_FLT || is_int2))
1606 {
1607 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1608 `long double' values are returned in static storage (m68k). */
1609 DOUBLEST d = value_as_double (arg1);
1610
1611 return d == value_as_double (arg2);
1612 }
1613 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1614 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1615 {
1616 gdb_byte v1[16], v2[16];
1617 int len_v1, len_v2;
1618 enum bfd_endian byte_order_v1, byte_order_v2;
1619
1620 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1621 v2, &len_v2, &byte_order_v2);
1622
1623 return decimal_compare (v1, len_v1, byte_order_v1,
1624 v2, len_v2, byte_order_v2) == 0;
1625 }
1626
1627 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1628 is bigger. */
1629 else if (code1 == TYPE_CODE_PTR && is_int2)
1630 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1631 else if (code2 == TYPE_CODE_PTR && is_int1)
1632 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1633
1634 else if (code1 == code2
1635 && ((len = (int) TYPE_LENGTH (type1))
1636 == (int) TYPE_LENGTH (type2)))
1637 {
1638 p1 = value_contents (arg1);
1639 p2 = value_contents (arg2);
1640 while (--len >= 0)
1641 {
1642 if (*p1++ != *p2++)
1643 break;
1644 }
1645 return len < 0;
1646 }
1647 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1648 {
1649 return value_strcmp (arg1, arg2) == 0;
1650 }
1651 else
1652 {
1653 error (_("Invalid type combination in equality test."));
1654 return 0; /* For lint -- never reached. */
1655 }
1656 }
1657
1658 /* Compare values based on their raw contents. Useful for arrays since
1659 value_equal coerces them to pointers, thus comparing just the address
1660 of the array instead of its contents. */
1661
1662 int
1663 value_equal_contents (struct value *arg1, struct value *arg2)
1664 {
1665 struct type *type1, *type2;
1666
1667 type1 = check_typedef (value_type (arg1));
1668 type2 = check_typedef (value_type (arg2));
1669
1670 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1671 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1672 && memcmp (value_contents (arg1), value_contents (arg2),
1673 TYPE_LENGTH (type1)) == 0);
1674 }
1675
1676 /* Simulate the C operator < by returning 1
1677 iff ARG1's contents are less than ARG2's. */
1678
1679 int
1680 value_less (struct value *arg1, struct value *arg2)
1681 {
1682 enum type_code code1;
1683 enum type_code code2;
1684 struct type *type1, *type2;
1685 int is_int1, is_int2;
1686
1687 arg1 = coerce_array (arg1);
1688 arg2 = coerce_array (arg2);
1689
1690 type1 = check_typedef (value_type (arg1));
1691 type2 = check_typedef (value_type (arg2));
1692 code1 = TYPE_CODE (type1);
1693 code2 = TYPE_CODE (type2);
1694 is_int1 = is_integral_type (type1);
1695 is_int2 = is_integral_type (type2);
1696
1697 if (is_int1 && is_int2)
1698 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1699 BINOP_LESS)));
1700 else if ((code1 == TYPE_CODE_FLT || is_int1)
1701 && (code2 == TYPE_CODE_FLT || is_int2))
1702 {
1703 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1704 `long double' values are returned in static storage (m68k). */
1705 DOUBLEST d = value_as_double (arg1);
1706
1707 return d < value_as_double (arg2);
1708 }
1709 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1710 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1711 {
1712 gdb_byte v1[16], v2[16];
1713 int len_v1, len_v2;
1714 enum bfd_endian byte_order_v1, byte_order_v2;
1715
1716 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1717 v2, &len_v2, &byte_order_v2);
1718
1719 return decimal_compare (v1, len_v1, byte_order_v1,
1720 v2, len_v2, byte_order_v2) == -1;
1721 }
1722 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1723 return value_as_address (arg1) < value_as_address (arg2);
1724
1725 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1726 is bigger. */
1727 else if (code1 == TYPE_CODE_PTR && is_int2)
1728 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1729 else if (code2 == TYPE_CODE_PTR && is_int1)
1730 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1731 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1732 return value_strcmp (arg1, arg2) < 0;
1733 else
1734 {
1735 error (_("Invalid type combination in ordering comparison."));
1736 return 0;
1737 }
1738 }
1739 \f
1740 /* The unary operators +, - and ~. They free the argument ARG1. */
1741
1742 struct value *
1743 value_pos (struct value *arg1)
1744 {
1745 struct type *type;
1746
1747 arg1 = coerce_ref (arg1);
1748 type = check_typedef (value_type (arg1));
1749
1750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1751 return value_from_double (type, value_as_double (arg1));
1752 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1753 return value_from_decfloat (type, value_contents (arg1));
1754 else if (is_integral_type (type))
1755 {
1756 return value_from_longest (type, value_as_long (arg1));
1757 }
1758 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1759 {
1760 struct value *val = allocate_value (type);
1761
1762 memcpy (value_contents_raw (val), value_contents (arg1),
1763 TYPE_LENGTH (type));
1764 return val;
1765 }
1766 else
1767 {
1768 error (_("Argument to positive operation not a number."));
1769 return 0; /* For lint -- never reached. */
1770 }
1771 }
1772
1773 struct value *
1774 value_neg (struct value *arg1)
1775 {
1776 struct type *type;
1777
1778 arg1 = coerce_ref (arg1);
1779 type = check_typedef (value_type (arg1));
1780
1781 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1782 {
1783 struct value *val = allocate_value (type);
1784 int len = TYPE_LENGTH (type);
1785 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
1786
1787 memcpy (decbytes, value_contents (arg1), len);
1788
1789 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1790 decbytes[len-1] = decbytes[len - 1] | 0x80;
1791 else
1792 decbytes[0] = decbytes[0] | 0x80;
1793
1794 memcpy (value_contents_raw (val), decbytes, len);
1795 return val;
1796 }
1797 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1798 return value_from_double (type, -value_as_double (arg1));
1799 else if (is_integral_type (type))
1800 {
1801 return value_from_longest (type, -value_as_long (arg1));
1802 }
1803 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1804 {
1805 struct value *tmp, *val = allocate_value (type);
1806 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1807 int i;
1808 LONGEST low_bound, high_bound;
1809
1810 if (!get_array_bounds (type, &low_bound, &high_bound))
1811 error (_("Could not determine the vector bounds"));
1812
1813 for (i = 0; i < high_bound - low_bound + 1; i++)
1814 {
1815 tmp = value_neg (value_subscript (arg1, i));
1816 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1817 value_contents_all (tmp), TYPE_LENGTH (eltype));
1818 }
1819 return val;
1820 }
1821 else
1822 {
1823 error (_("Argument to negate operation not a number."));
1824 return 0; /* For lint -- never reached. */
1825 }
1826 }
1827
1828 struct value *
1829 value_complement (struct value *arg1)
1830 {
1831 struct type *type;
1832 struct value *val;
1833
1834 arg1 = coerce_ref (arg1);
1835 type = check_typedef (value_type (arg1));
1836
1837 if (is_integral_type (type))
1838 val = value_from_longest (type, ~value_as_long (arg1));
1839 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1840 {
1841 struct value *tmp;
1842 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1843 int i;
1844 LONGEST low_bound, high_bound;
1845
1846 if (!get_array_bounds (type, &low_bound, &high_bound))
1847 error (_("Could not determine the vector bounds"));
1848
1849 val = allocate_value (type);
1850 for (i = 0; i < high_bound - low_bound + 1; i++)
1851 {
1852 tmp = value_complement (value_subscript (arg1, i));
1853 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1854 value_contents_all (tmp), TYPE_LENGTH (eltype));
1855 }
1856 }
1857 else
1858 error (_("Argument to complement operation not an integer, boolean."));
1859
1860 return val;
1861 }
1862 \f
1863 /* The INDEX'th bit of SET value whose value_type is TYPE,
1864 and whose value_contents is valaddr.
1865 Return -1 if out of range, -2 other error. */
1866
1867 int
1868 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1869 {
1870 struct gdbarch *gdbarch = get_type_arch (type);
1871 LONGEST low_bound, high_bound;
1872 LONGEST word;
1873 unsigned rel_index;
1874 struct type *range = TYPE_INDEX_TYPE (type);
1875
1876 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1877 return -2;
1878 if (index < low_bound || index > high_bound)
1879 return -1;
1880 rel_index = index - low_bound;
1881 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1882 gdbarch_byte_order (gdbarch));
1883 rel_index %= TARGET_CHAR_BIT;
1884 if (gdbarch_bits_big_endian (gdbarch))
1885 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1886 return (word >> rel_index) & 1;
1887 }
1888
1889 int
1890 value_in (struct value *element, struct value *set)
1891 {
1892 int member;
1893 struct type *settype = check_typedef (value_type (set));
1894 struct type *eltype = check_typedef (value_type (element));
1895
1896 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1897 eltype = TYPE_TARGET_TYPE (eltype);
1898 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1899 error (_("Second argument of 'IN' has wrong type"));
1900 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1901 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1902 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1903 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1904 error (_("First argument of 'IN' has wrong type"));
1905 member = value_bit_index (settype, value_contents (set),
1906 value_as_long (element));
1907 if (member < 0)
1908 error (_("First argument of 'IN' not in range"));
1909 return member;
1910 }
1911
1912 void
1913 _initialize_valarith (void)
1914 {
1915 }
This page took 0.090848 seconds and 5 git commands to generate.