Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "doublest.h"
28 #include "dfp.h"
29 #include <math.h>
30 #include "infcall.h"
31 #include "exceptions.h"
32
33 /* Define whether or not the C operator '/' truncates towards zero for
34 differently signed operands (truncation direction is undefined in C). */
35
36 #ifndef TRUNCATION_TOWARDS_ZERO
37 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
38 #endif
39
40 void _initialize_valarith (void);
41 \f
42
43 /* Given a pointer, return the size of its target.
44 If the pointer type is void *, then return 1.
45 If the target type is incomplete, then error out.
46 This isn't a general purpose function, but just a
47 helper for value_ptradd. */
48
49 static LONGEST
50 find_size_for_pointer_math (struct type *ptr_type)
51 {
52 LONGEST sz = -1;
53 struct type *ptr_target;
54
55 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
56 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
57
58 sz = TYPE_LENGTH (ptr_target);
59 if (sz == 0)
60 {
61 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
62 sz = 1;
63 else
64 {
65 const char *name;
66
67 name = TYPE_NAME (ptr_target);
68 if (name == NULL)
69 name = TYPE_TAG_NAME (ptr_target);
70 if (name == NULL)
71 error (_("Cannot perform pointer math on incomplete types, "
72 "try casting to a known type, or void *."));
73 else
74 error (_("Cannot perform pointer math on incomplete type \"%s\", "
75 "try casting to a known type, or void *."), name);
76 }
77 }
78 return sz;
79 }
80
81 /* Given a pointer ARG1 and an integral value ARG2, return the
82 result of C-style pointer arithmetic ARG1 + ARG2. */
83
84 struct value *
85 value_ptradd (struct value *arg1, LONGEST arg2)
86 {
87 struct type *valptrtype;
88 LONGEST sz;
89 struct value *result;
90
91 arg1 = coerce_array (arg1);
92 valptrtype = check_typedef (value_type (arg1));
93 sz = find_size_for_pointer_math (valptrtype);
94
95 result = value_from_pointer (valptrtype,
96 value_as_address (arg1) + sz * arg2);
97 if (VALUE_LVAL (result) != lval_internalvar)
98 set_value_component_location (result, arg1);
99 return result;
100 }
101
102 /* Given two compatible pointer values ARG1 and ARG2, return the
103 result of C-style pointer arithmetic ARG1 - ARG2. */
104
105 LONGEST
106 value_ptrdiff (struct value *arg1, struct value *arg2)
107 {
108 struct type *type1, *type2;
109 LONGEST sz;
110
111 arg1 = coerce_array (arg1);
112 arg2 = coerce_array (arg2);
113 type1 = check_typedef (value_type (arg1));
114 type2 = check_typedef (value_type (arg2));
115
116 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
117 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
118
119 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
120 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
121 error (_("First argument of `-' is a pointer and "
122 "second argument is neither\n"
123 "an integer nor a pointer of the same type."));
124
125 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
126 if (sz == 0)
127 {
128 warning (_("Type size unknown, assuming 1. "
129 "Try casting to a known type, or void *."));
130 sz = 1;
131 }
132
133 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
134 }
135
136 /* Return the value of ARRAY[IDX].
137
138 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
139 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
140
141 See comments in value_coerce_array() for rationale for reason for
142 doing lower bounds adjustment here rather than there.
143 FIXME: Perhaps we should validate that the index is valid and if
144 verbosity is set, warn about invalid indices (but still use them). */
145
146 struct value *
147 value_subscript (struct value *array, LONGEST index)
148 {
149 int c_style = current_language->c_style_arrays;
150 struct type *tarray;
151
152 array = coerce_ref (array);
153 tarray = check_typedef (value_type (array));
154
155 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
156 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
157 {
158 struct type *range_type = TYPE_INDEX_TYPE (tarray);
159 LONGEST lowerbound, upperbound;
160
161 get_discrete_bounds (range_type, &lowerbound, &upperbound);
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, lowerbound);
164
165 if (c_style == 0)
166 {
167 if (index >= lowerbound && index <= upperbound)
168 return value_subscripted_rvalue (array, index, lowerbound);
169 /* Emit warning unless we have an array of unknown size.
170 An array of unknown size has lowerbound 0 and upperbound -1. */
171 if (upperbound > -1)
172 warning (_("array or string index out of range"));
173 /* fall doing C stuff */
174 c_style = 1;
175 }
176
177 index -= lowerbound;
178 array = value_coerce_array (array);
179 }
180
181 if (c_style)
182 return value_ind (value_ptradd (array, index));
183 else
184 error (_("not an array or string"));
185 }
186
187 /* Return the value of EXPR[IDX], expr an aggregate rvalue
188 (eg, a vector register). This routine used to promote floats
189 to doubles, but no longer does. */
190
191 struct value *
192 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
193 {
194 struct type *array_type = check_typedef (value_type (array));
195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
196 unsigned int elt_size = TYPE_LENGTH (elt_type);
197 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
198 struct value *v;
199
200 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
201 && elt_offs >= TYPE_LENGTH (array_type)))
202 error (_("no such vector element"));
203
204 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
205 v = allocate_value_lazy (elt_type);
206 else
207 {
208 v = allocate_value (elt_type);
209 value_contents_copy (v, value_embedded_offset (v),
210 array, value_embedded_offset (array) + elt_offs,
211 elt_size);
212 }
213
214 set_value_component_location (v, array);
215 VALUE_REGNUM (v) = VALUE_REGNUM (array);
216 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
217 set_value_offset (v, value_offset (array) + elt_offs);
218 return v;
219 }
220
221 \f
222 /* Check to see if either argument is a structure, or a reference to
223 one. This is called so we know whether to go ahead with the normal
224 binop or look for a user defined function instead.
225
226 For now, we do not overload the `=' operator. */
227
228 int
229 binop_types_user_defined_p (enum exp_opcode op,
230 struct type *type1, struct type *type2)
231 {
232 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
233 return 0;
234
235 type1 = check_typedef (type1);
236 if (TYPE_CODE (type1) == TYPE_CODE_REF)
237 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
238
239 type2 = check_typedef (type2);
240 if (TYPE_CODE (type2) == TYPE_CODE_REF)
241 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
242
243 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
244 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
245 }
246
247 /* Check to see if either argument is a structure, or a reference to
248 one. This is called so we know whether to go ahead with the normal
249 binop or look for a user defined function instead.
250
251 For now, we do not overload the `=' operator. */
252
253 int
254 binop_user_defined_p (enum exp_opcode op,
255 struct value *arg1, struct value *arg2)
256 {
257 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
258 }
259
260 /* Check to see if argument is a structure. This is called so
261 we know whether to go ahead with the normal unop or look for a
262 user defined function instead.
263
264 For now, we do not overload the `&' operator. */
265
266 int
267 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
268 {
269 struct type *type1;
270
271 if (op == UNOP_ADDR)
272 return 0;
273 type1 = check_typedef (value_type (arg1));
274 if (TYPE_CODE (type1) == TYPE_CODE_REF)
275 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
276 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
277 }
278
279 /* Try to find an operator named OPERATOR which takes NARGS arguments
280 specified in ARGS. If the operator found is a static member operator
281 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
282 The search if performed through find_overload_match which will handle
283 member operators, non member operators, operators imported implicitly or
284 explicitly, and perform correct overload resolution in all of the above
285 situations or combinations thereof. */
286
287 static struct value *
288 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
289 int *static_memfuncp)
290 {
291
292 struct symbol *symp = NULL;
293 struct value *valp = NULL;
294
295 find_overload_match (args, nargs, operator, BOTH /* could be method */,
296 &args[0] /* objp */,
297 NULL /* pass NULL symbol since symbol is unknown */,
298 &valp, &symp, static_memfuncp, 0);
299
300 if (valp)
301 return valp;
302
303 if (symp)
304 {
305 /* This is a non member function and does not
306 expect a reference as its first argument
307 rather the explicit structure. */
308 args[0] = value_ind (args[0]);
309 return value_of_variable (symp, 0);
310 }
311
312 error (_("Could not find %s."), operator);
313 }
314
315 /* Lookup user defined operator NAME. Return a value representing the
316 function, otherwise return NULL. */
317
318 static struct value *
319 value_user_defined_op (struct value **argp, struct value **args, char *name,
320 int *static_memfuncp, int nargs)
321 {
322 struct value *result = NULL;
323
324 if (current_language->la_language == language_cplus)
325 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
326 else
327 result = value_struct_elt (argp, args, name, static_memfuncp,
328 "structure");
329
330 return result;
331 }
332
333 /* We know either arg1 or arg2 is a structure, so try to find the right
334 user defined function. Create an argument vector that calls
335 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
336 binary operator which is legal for GNU C++).
337
338 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
339 is the opcode saying how to modify it. Otherwise, OTHEROP is
340 unused. */
341
342 struct value *
343 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
344 enum exp_opcode otherop, enum noside noside)
345 {
346 struct value **argvec;
347 char *ptr;
348 char tstr[13];
349 int static_memfuncp;
350
351 arg1 = coerce_ref (arg1);
352 arg2 = coerce_ref (arg2);
353
354 /* now we know that what we have to do is construct our
355 arg vector and find the right function to call it with. */
356
357 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
358 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
359
360 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
361 argvec[1] = value_addr (arg1);
362 argvec[2] = arg2;
363 argvec[3] = 0;
364
365 /* Make the right function name up. */
366 strcpy (tstr, "operator__");
367 ptr = tstr + 8;
368 switch (op)
369 {
370 case BINOP_ADD:
371 strcpy (ptr, "+");
372 break;
373 case BINOP_SUB:
374 strcpy (ptr, "-");
375 break;
376 case BINOP_MUL:
377 strcpy (ptr, "*");
378 break;
379 case BINOP_DIV:
380 strcpy (ptr, "/");
381 break;
382 case BINOP_REM:
383 strcpy (ptr, "%");
384 break;
385 case BINOP_LSH:
386 strcpy (ptr, "<<");
387 break;
388 case BINOP_RSH:
389 strcpy (ptr, ">>");
390 break;
391 case BINOP_BITWISE_AND:
392 strcpy (ptr, "&");
393 break;
394 case BINOP_BITWISE_IOR:
395 strcpy (ptr, "|");
396 break;
397 case BINOP_BITWISE_XOR:
398 strcpy (ptr, "^");
399 break;
400 case BINOP_LOGICAL_AND:
401 strcpy (ptr, "&&");
402 break;
403 case BINOP_LOGICAL_OR:
404 strcpy (ptr, "||");
405 break;
406 case BINOP_MIN:
407 strcpy (ptr, "<?");
408 break;
409 case BINOP_MAX:
410 strcpy (ptr, ">?");
411 break;
412 case BINOP_ASSIGN:
413 strcpy (ptr, "=");
414 break;
415 case BINOP_ASSIGN_MODIFY:
416 switch (otherop)
417 {
418 case BINOP_ADD:
419 strcpy (ptr, "+=");
420 break;
421 case BINOP_SUB:
422 strcpy (ptr, "-=");
423 break;
424 case BINOP_MUL:
425 strcpy (ptr, "*=");
426 break;
427 case BINOP_DIV:
428 strcpy (ptr, "/=");
429 break;
430 case BINOP_REM:
431 strcpy (ptr, "%=");
432 break;
433 case BINOP_BITWISE_AND:
434 strcpy (ptr, "&=");
435 break;
436 case BINOP_BITWISE_IOR:
437 strcpy (ptr, "|=");
438 break;
439 case BINOP_BITWISE_XOR:
440 strcpy (ptr, "^=");
441 break;
442 case BINOP_MOD: /* invalid */
443 default:
444 error (_("Invalid binary operation specified."));
445 }
446 break;
447 case BINOP_SUBSCRIPT:
448 strcpy (ptr, "[]");
449 break;
450 case BINOP_EQUAL:
451 strcpy (ptr, "==");
452 break;
453 case BINOP_NOTEQUAL:
454 strcpy (ptr, "!=");
455 break;
456 case BINOP_LESS:
457 strcpy (ptr, "<");
458 break;
459 case BINOP_GTR:
460 strcpy (ptr, ">");
461 break;
462 case BINOP_GEQ:
463 strcpy (ptr, ">=");
464 break;
465 case BINOP_LEQ:
466 strcpy (ptr, "<=");
467 break;
468 case BINOP_MOD: /* invalid */
469 default:
470 error (_("Invalid binary operation specified."));
471 }
472
473 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
474 &static_memfuncp, 2);
475
476 if (argvec[0])
477 {
478 if (static_memfuncp)
479 {
480 argvec[1] = argvec[0];
481 argvec++;
482 }
483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
484 {
485 struct type *return_type;
486
487 return_type
488 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
489 return value_zero (return_type, VALUE_LVAL (arg1));
490 }
491
492 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
493 {
494 /* Static xmethods are not supported yet. */
495 gdb_assert (static_memfuncp == 0);
496 return call_xmethod (argvec[0], 2, argvec + 1);
497 }
498 else
499 return call_function_by_hand (argvec[0], 2 - static_memfuncp,
500 argvec + 1);
501 }
502 throw_error (NOT_FOUND_ERROR,
503 _("member function %s not found"), tstr);
504 #ifdef lint
505 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
506 #endif
507 }
508
509 /* We know that arg1 is a structure, so try to find a unary user
510 defined operator that matches the operator in question.
511 Create an argument vector that calls arg1.operator @ (arg1)
512 and return that value (where '@' is (almost) any unary operator which
513 is legal for GNU C++). */
514
515 struct value *
516 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
517 {
518 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
519 struct value **argvec;
520 char *ptr;
521 char tstr[13], mangle_tstr[13];
522 int static_memfuncp, nargs;
523
524 arg1 = coerce_ref (arg1);
525
526 /* now we know that what we have to do is construct our
527 arg vector and find the right function to call it with. */
528
529 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
530 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
531
532 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
533 argvec[1] = value_addr (arg1);
534 argvec[2] = 0;
535
536 nargs = 1;
537
538 /* Make the right function name up. */
539 strcpy (tstr, "operator__");
540 ptr = tstr + 8;
541 strcpy (mangle_tstr, "__");
542 switch (op)
543 {
544 case UNOP_PREINCREMENT:
545 strcpy (ptr, "++");
546 break;
547 case UNOP_PREDECREMENT:
548 strcpy (ptr, "--");
549 break;
550 case UNOP_POSTINCREMENT:
551 strcpy (ptr, "++");
552 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
553 argvec[3] = 0;
554 nargs ++;
555 break;
556 case UNOP_POSTDECREMENT:
557 strcpy (ptr, "--");
558 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
559 argvec[3] = 0;
560 nargs ++;
561 break;
562 case UNOP_LOGICAL_NOT:
563 strcpy (ptr, "!");
564 break;
565 case UNOP_COMPLEMENT:
566 strcpy (ptr, "~");
567 break;
568 case UNOP_NEG:
569 strcpy (ptr, "-");
570 break;
571 case UNOP_PLUS:
572 strcpy (ptr, "+");
573 break;
574 case UNOP_IND:
575 strcpy (ptr, "*");
576 break;
577 case STRUCTOP_PTR:
578 strcpy (ptr, "->");
579 break;
580 default:
581 error (_("Invalid unary operation specified."));
582 }
583
584 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
585 &static_memfuncp, nargs);
586
587 if (argvec[0])
588 {
589 if (static_memfuncp)
590 {
591 argvec[1] = argvec[0];
592 nargs --;
593 argvec++;
594 }
595 if (noside == EVAL_AVOID_SIDE_EFFECTS)
596 {
597 struct type *return_type;
598
599 return_type
600 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
601 return value_zero (return_type, VALUE_LVAL (arg1));
602 }
603 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
604 {
605 /* Static xmethods are not supported yet. */
606 gdb_assert (static_memfuncp == 0);
607 return call_xmethod (argvec[0], 1, argvec + 1);
608 }
609 else
610 return call_function_by_hand (argvec[0], nargs, argvec + 1);
611 }
612 throw_error (NOT_FOUND_ERROR,
613 _("member function %s not found"), tstr);
614
615 return 0; /* For lint -- never reached */
616 }
617 \f
618
619 /* Concatenate two values with the following conditions:
620
621 (1) Both values must be either bitstring values or character string
622 values and the resulting value consists of the concatenation of
623 ARG1 followed by ARG2.
624
625 or
626
627 One value must be an integer value and the other value must be
628 either a bitstring value or character string value, which is
629 to be repeated by the number of times specified by the integer
630 value.
631
632
633 (2) Boolean values are also allowed and are treated as bit string
634 values of length 1.
635
636 (3) Character values are also allowed and are treated as character
637 string values of length 1. */
638
639 struct value *
640 value_concat (struct value *arg1, struct value *arg2)
641 {
642 struct value *inval1;
643 struct value *inval2;
644 struct value *outval = NULL;
645 int inval1len, inval2len;
646 int count, idx;
647 char *ptr;
648 char inchar;
649 struct type *type1 = check_typedef (value_type (arg1));
650 struct type *type2 = check_typedef (value_type (arg2));
651 struct type *char_type;
652
653 /* First figure out if we are dealing with two values to be concatenated
654 or a repeat count and a value to be repeated. INVAL1 is set to the
655 first of two concatenated values, or the repeat count. INVAL2 is set
656 to the second of the two concatenated values or the value to be
657 repeated. */
658
659 if (TYPE_CODE (type2) == TYPE_CODE_INT)
660 {
661 struct type *tmp = type1;
662
663 type1 = tmp;
664 tmp = type2;
665 inval1 = arg2;
666 inval2 = arg1;
667 }
668 else
669 {
670 inval1 = arg1;
671 inval2 = arg2;
672 }
673
674 /* Now process the input values. */
675
676 if (TYPE_CODE (type1) == TYPE_CODE_INT)
677 {
678 /* We have a repeat count. Validate the second value and then
679 construct a value repeated that many times. */
680 if (TYPE_CODE (type2) == TYPE_CODE_STRING
681 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
682 {
683 struct cleanup *back_to;
684
685 count = longest_to_int (value_as_long (inval1));
686 inval2len = TYPE_LENGTH (type2);
687 ptr = (char *) xmalloc (count * inval2len);
688 back_to = make_cleanup (xfree, ptr);
689 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
690 {
691 char_type = type2;
692
693 inchar = (char) unpack_long (type2,
694 value_contents (inval2));
695 for (idx = 0; idx < count; idx++)
696 {
697 *(ptr + idx) = inchar;
698 }
699 }
700 else
701 {
702 char_type = TYPE_TARGET_TYPE (type2);
703
704 for (idx = 0; idx < count; idx++)
705 {
706 memcpy (ptr + (idx * inval2len), value_contents (inval2),
707 inval2len);
708 }
709 }
710 outval = value_string (ptr, count * inval2len, char_type);
711 do_cleanups (back_to);
712 }
713 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
714 {
715 error (_("unimplemented support for boolean repeats"));
716 }
717 else
718 {
719 error (_("can't repeat values of that type"));
720 }
721 }
722 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
723 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
724 {
725 struct cleanup *back_to;
726
727 /* We have two character strings to concatenate. */
728 if (TYPE_CODE (type2) != TYPE_CODE_STRING
729 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
730 {
731 error (_("Strings can only be concatenated with other strings."));
732 }
733 inval1len = TYPE_LENGTH (type1);
734 inval2len = TYPE_LENGTH (type2);
735 ptr = (char *) xmalloc (inval1len + inval2len);
736 back_to = make_cleanup (xfree, ptr);
737 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
738 {
739 char_type = type1;
740
741 *ptr = (char) unpack_long (type1, value_contents (inval1));
742 }
743 else
744 {
745 char_type = TYPE_TARGET_TYPE (type1);
746
747 memcpy (ptr, value_contents (inval1), inval1len);
748 }
749 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
750 {
751 *(ptr + inval1len) =
752 (char) unpack_long (type2, value_contents (inval2));
753 }
754 else
755 {
756 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
757 }
758 outval = value_string (ptr, inval1len + inval2len, char_type);
759 do_cleanups (back_to);
760 }
761 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
762 {
763 /* We have two bitstrings to concatenate. */
764 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
765 {
766 error (_("Booleans can only be concatenated "
767 "with other bitstrings or booleans."));
768 }
769 error (_("unimplemented support for boolean concatenation."));
770 }
771 else
772 {
773 /* We don't know how to concatenate these operands. */
774 error (_("illegal operands for concatenation."));
775 }
776 return (outval);
777 }
778 \f
779 /* Integer exponentiation: V1**V2, where both arguments are
780 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
781
782 static LONGEST
783 integer_pow (LONGEST v1, LONGEST v2)
784 {
785 if (v2 < 0)
786 {
787 if (v1 == 0)
788 error (_("Attempt to raise 0 to negative power."));
789 else
790 return 0;
791 }
792 else
793 {
794 /* The Russian Peasant's Algorithm. */
795 LONGEST v;
796
797 v = 1;
798 for (;;)
799 {
800 if (v2 & 1L)
801 v *= v1;
802 v2 >>= 1;
803 if (v2 == 0)
804 return v;
805 v1 *= v1;
806 }
807 }
808 }
809
810 /* Integer exponentiation: V1**V2, where both arguments are
811 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
812
813 static ULONGEST
814 uinteger_pow (ULONGEST v1, LONGEST v2)
815 {
816 if (v2 < 0)
817 {
818 if (v1 == 0)
819 error (_("Attempt to raise 0 to negative power."));
820 else
821 return 0;
822 }
823 else
824 {
825 /* The Russian Peasant's Algorithm. */
826 ULONGEST v;
827
828 v = 1;
829 for (;;)
830 {
831 if (v2 & 1L)
832 v *= v1;
833 v2 >>= 1;
834 if (v2 == 0)
835 return v;
836 v1 *= v1;
837 }
838 }
839 }
840
841 /* Obtain decimal value of arguments for binary operation, converting from
842 other types if one of them is not decimal floating point. */
843 static void
844 value_args_as_decimal (struct value *arg1, struct value *arg2,
845 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
846 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
847 {
848 struct type *type1, *type2;
849
850 type1 = check_typedef (value_type (arg1));
851 type2 = check_typedef (value_type (arg2));
852
853 /* At least one of the arguments must be of decimal float type. */
854 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
855 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
856
857 if (TYPE_CODE (type1) == TYPE_CODE_FLT
858 || TYPE_CODE (type2) == TYPE_CODE_FLT)
859 /* The DFP extension to the C language does not allow mixing of
860 * decimal float types with other float types in expressions
861 * (see WDTR 24732, page 12). */
862 error (_("Mixing decimal floating types with "
863 "other floating types is not allowed."));
864
865 /* Obtain decimal value of arg1, converting from other types
866 if necessary. */
867
868 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
869 {
870 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
871 *len_x = TYPE_LENGTH (type1);
872 memcpy (x, value_contents (arg1), *len_x);
873 }
874 else if (is_integral_type (type1))
875 {
876 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
877 *len_x = TYPE_LENGTH (type2);
878 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
879 }
880 else
881 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
882 TYPE_NAME (type2));
883
884 /* Obtain decimal value of arg2, converting from other types
885 if necessary. */
886
887 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
888 {
889 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
890 *len_y = TYPE_LENGTH (type2);
891 memcpy (y, value_contents (arg2), *len_y);
892 }
893 else if (is_integral_type (type2))
894 {
895 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
896 *len_y = TYPE_LENGTH (type1);
897 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
898 }
899 else
900 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
901 TYPE_NAME (type2));
902 }
903
904 /* Perform a binary operation on two operands which have reasonable
905 representations as integers or floats. This includes booleans,
906 characters, integers, or floats.
907 Does not support addition and subtraction on pointers;
908 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
909
910 static struct value *
911 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
912 {
913 struct value *val;
914 struct type *type1, *type2, *result_type;
915
916 arg1 = coerce_ref (arg1);
917 arg2 = coerce_ref (arg2);
918
919 type1 = check_typedef (value_type (arg1));
920 type2 = check_typedef (value_type (arg2));
921
922 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
923 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
924 && !is_integral_type (type1))
925 || (TYPE_CODE (type2) != TYPE_CODE_FLT
926 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
927 && !is_integral_type (type2)))
928 error (_("Argument to arithmetic operation not a number or boolean."));
929
930 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
931 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
932 {
933 int len_v1, len_v2, len_v;
934 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
935 gdb_byte v1[16], v2[16];
936 gdb_byte v[16];
937
938 /* If only one type is decimal float, use its type.
939 Otherwise use the bigger type. */
940 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
941 result_type = type2;
942 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
943 result_type = type1;
944 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
945 result_type = type2;
946 else
947 result_type = type1;
948
949 len_v = TYPE_LENGTH (result_type);
950 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
951
952 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
953 v2, &len_v2, &byte_order_v2);
954
955 switch (op)
956 {
957 case BINOP_ADD:
958 case BINOP_SUB:
959 case BINOP_MUL:
960 case BINOP_DIV:
961 case BINOP_EXP:
962 decimal_binop (op, v1, len_v1, byte_order_v1,
963 v2, len_v2, byte_order_v2,
964 v, len_v, byte_order_v);
965 break;
966
967 default:
968 error (_("Operation not valid for decimal floating point number."));
969 }
970
971 val = value_from_decfloat (result_type, v);
972 }
973 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
974 || TYPE_CODE (type2) == TYPE_CODE_FLT)
975 {
976 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
977 in target format. real.c in GCC probably has the necessary
978 code. */
979 DOUBLEST v1, v2, v = 0;
980
981 v1 = value_as_double (arg1);
982 v2 = value_as_double (arg2);
983
984 switch (op)
985 {
986 case BINOP_ADD:
987 v = v1 + v2;
988 break;
989
990 case BINOP_SUB:
991 v = v1 - v2;
992 break;
993
994 case BINOP_MUL:
995 v = v1 * v2;
996 break;
997
998 case BINOP_DIV:
999 v = v1 / v2;
1000 break;
1001
1002 case BINOP_EXP:
1003 errno = 0;
1004 v = pow (v1, v2);
1005 if (errno)
1006 error (_("Cannot perform exponentiation: %s"),
1007 safe_strerror (errno));
1008 break;
1009
1010 case BINOP_MIN:
1011 v = v1 < v2 ? v1 : v2;
1012 break;
1013
1014 case BINOP_MAX:
1015 v = v1 > v2 ? v1 : v2;
1016 break;
1017
1018 default:
1019 error (_("Integer-only operation on floating point number."));
1020 }
1021
1022 /* If only one type is float, use its type.
1023 Otherwise use the bigger type. */
1024 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1025 result_type = type2;
1026 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1027 result_type = type1;
1028 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1029 result_type = type2;
1030 else
1031 result_type = type1;
1032
1033 val = allocate_value (result_type);
1034 store_typed_floating (value_contents_raw (val), value_type (val), v);
1035 }
1036 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1037 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1038 {
1039 LONGEST v1, v2, v = 0;
1040
1041 v1 = value_as_long (arg1);
1042 v2 = value_as_long (arg2);
1043
1044 switch (op)
1045 {
1046 case BINOP_BITWISE_AND:
1047 v = v1 & v2;
1048 break;
1049
1050 case BINOP_BITWISE_IOR:
1051 v = v1 | v2;
1052 break;
1053
1054 case BINOP_BITWISE_XOR:
1055 v = v1 ^ v2;
1056 break;
1057
1058 case BINOP_EQUAL:
1059 v = v1 == v2;
1060 break;
1061
1062 case BINOP_NOTEQUAL:
1063 v = v1 != v2;
1064 break;
1065
1066 default:
1067 error (_("Invalid operation on booleans."));
1068 }
1069
1070 result_type = type1;
1071
1072 val = allocate_value (result_type);
1073 store_signed_integer (value_contents_raw (val),
1074 TYPE_LENGTH (result_type),
1075 gdbarch_byte_order (get_type_arch (result_type)),
1076 v);
1077 }
1078 else
1079 /* Integral operations here. */
1080 {
1081 /* Determine type length of the result, and if the operation should
1082 be done unsigned. For exponentiation and shift operators,
1083 use the length and type of the left operand. Otherwise,
1084 use the signedness of the operand with the greater length.
1085 If both operands are of equal length, use unsigned operation
1086 if one of the operands is unsigned. */
1087 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1088 result_type = type1;
1089 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1090 result_type = type1;
1091 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1092 result_type = type2;
1093 else if (TYPE_UNSIGNED (type1))
1094 result_type = type1;
1095 else if (TYPE_UNSIGNED (type2))
1096 result_type = type2;
1097 else
1098 result_type = type1;
1099
1100 if (TYPE_UNSIGNED (result_type))
1101 {
1102 LONGEST v2_signed = value_as_long (arg2);
1103 ULONGEST v1, v2, v = 0;
1104
1105 v1 = (ULONGEST) value_as_long (arg1);
1106 v2 = (ULONGEST) v2_signed;
1107
1108 switch (op)
1109 {
1110 case BINOP_ADD:
1111 v = v1 + v2;
1112 break;
1113
1114 case BINOP_SUB:
1115 v = v1 - v2;
1116 break;
1117
1118 case BINOP_MUL:
1119 v = v1 * v2;
1120 break;
1121
1122 case BINOP_DIV:
1123 case BINOP_INTDIV:
1124 if (v2 != 0)
1125 v = v1 / v2;
1126 else
1127 error (_("Division by zero"));
1128 break;
1129
1130 case BINOP_EXP:
1131 v = uinteger_pow (v1, v2_signed);
1132 break;
1133
1134 case BINOP_REM:
1135 if (v2 != 0)
1136 v = v1 % v2;
1137 else
1138 error (_("Division by zero"));
1139 break;
1140
1141 case BINOP_MOD:
1142 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1143 v1 mod 0 has a defined value, v1. */
1144 if (v2 == 0)
1145 {
1146 v = v1;
1147 }
1148 else
1149 {
1150 v = v1 / v2;
1151 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1152 v = v1 - (v2 * v);
1153 }
1154 break;
1155
1156 case BINOP_LSH:
1157 v = v1 << v2;
1158 break;
1159
1160 case BINOP_RSH:
1161 v = v1 >> v2;
1162 break;
1163
1164 case BINOP_BITWISE_AND:
1165 v = v1 & v2;
1166 break;
1167
1168 case BINOP_BITWISE_IOR:
1169 v = v1 | v2;
1170 break;
1171
1172 case BINOP_BITWISE_XOR:
1173 v = v1 ^ v2;
1174 break;
1175
1176 case BINOP_LOGICAL_AND:
1177 v = v1 && v2;
1178 break;
1179
1180 case BINOP_LOGICAL_OR:
1181 v = v1 || v2;
1182 break;
1183
1184 case BINOP_MIN:
1185 v = v1 < v2 ? v1 : v2;
1186 break;
1187
1188 case BINOP_MAX:
1189 v = v1 > v2 ? v1 : v2;
1190 break;
1191
1192 case BINOP_EQUAL:
1193 v = v1 == v2;
1194 break;
1195
1196 case BINOP_NOTEQUAL:
1197 v = v1 != v2;
1198 break;
1199
1200 case BINOP_LESS:
1201 v = v1 < v2;
1202 break;
1203
1204 case BINOP_GTR:
1205 v = v1 > v2;
1206 break;
1207
1208 case BINOP_LEQ:
1209 v = v1 <= v2;
1210 break;
1211
1212 case BINOP_GEQ:
1213 v = v1 >= v2;
1214 break;
1215
1216 default:
1217 error (_("Invalid binary operation on numbers."));
1218 }
1219
1220 val = allocate_value (result_type);
1221 store_unsigned_integer (value_contents_raw (val),
1222 TYPE_LENGTH (value_type (val)),
1223 gdbarch_byte_order
1224 (get_type_arch (result_type)),
1225 v);
1226 }
1227 else
1228 {
1229 LONGEST v1, v2, v = 0;
1230
1231 v1 = value_as_long (arg1);
1232 v2 = value_as_long (arg2);
1233
1234 switch (op)
1235 {
1236 case BINOP_ADD:
1237 v = v1 + v2;
1238 break;
1239
1240 case BINOP_SUB:
1241 v = v1 - v2;
1242 break;
1243
1244 case BINOP_MUL:
1245 v = v1 * v2;
1246 break;
1247
1248 case BINOP_DIV:
1249 case BINOP_INTDIV:
1250 if (v2 != 0)
1251 v = v1 / v2;
1252 else
1253 error (_("Division by zero"));
1254 break;
1255
1256 case BINOP_EXP:
1257 v = integer_pow (v1, v2);
1258 break;
1259
1260 case BINOP_REM:
1261 if (v2 != 0)
1262 v = v1 % v2;
1263 else
1264 error (_("Division by zero"));
1265 break;
1266
1267 case BINOP_MOD:
1268 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1269 X mod 0 has a defined value, X. */
1270 if (v2 == 0)
1271 {
1272 v = v1;
1273 }
1274 else
1275 {
1276 v = v1 / v2;
1277 /* Compute floor. */
1278 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1279 {
1280 v--;
1281 }
1282 v = v1 - (v2 * v);
1283 }
1284 break;
1285
1286 case BINOP_LSH:
1287 v = v1 << v2;
1288 break;
1289
1290 case BINOP_RSH:
1291 v = v1 >> v2;
1292 break;
1293
1294 case BINOP_BITWISE_AND:
1295 v = v1 & v2;
1296 break;
1297
1298 case BINOP_BITWISE_IOR:
1299 v = v1 | v2;
1300 break;
1301
1302 case BINOP_BITWISE_XOR:
1303 v = v1 ^ v2;
1304 break;
1305
1306 case BINOP_LOGICAL_AND:
1307 v = v1 && v2;
1308 break;
1309
1310 case BINOP_LOGICAL_OR:
1311 v = v1 || v2;
1312 break;
1313
1314 case BINOP_MIN:
1315 v = v1 < v2 ? v1 : v2;
1316 break;
1317
1318 case BINOP_MAX:
1319 v = v1 > v2 ? v1 : v2;
1320 break;
1321
1322 case BINOP_EQUAL:
1323 v = v1 == v2;
1324 break;
1325
1326 case BINOP_NOTEQUAL:
1327 v = v1 != v2;
1328 break;
1329
1330 case BINOP_LESS:
1331 v = v1 < v2;
1332 break;
1333
1334 case BINOP_GTR:
1335 v = v1 > v2;
1336 break;
1337
1338 case BINOP_LEQ:
1339 v = v1 <= v2;
1340 break;
1341
1342 case BINOP_GEQ:
1343 v = v1 >= v2;
1344 break;
1345
1346 default:
1347 error (_("Invalid binary operation on numbers."));
1348 }
1349
1350 val = allocate_value (result_type);
1351 store_signed_integer (value_contents_raw (val),
1352 TYPE_LENGTH (value_type (val)),
1353 gdbarch_byte_order
1354 (get_type_arch (result_type)),
1355 v);
1356 }
1357 }
1358
1359 return val;
1360 }
1361
1362 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1363 replicating SCALAR_VALUE for each element of the vector. Only scalar
1364 types that can be cast to the type of one element of the vector are
1365 acceptable. The newly created vector value is returned upon success,
1366 otherwise an error is thrown. */
1367
1368 struct value *
1369 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1370 {
1371 /* Widen the scalar to a vector. */
1372 struct type *eltype, *scalar_type;
1373 struct value *val, *elval;
1374 LONGEST low_bound, high_bound;
1375 int i;
1376
1377 CHECK_TYPEDEF (vector_type);
1378
1379 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1380 && TYPE_VECTOR (vector_type));
1381
1382 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1383 error (_("Could not determine the vector bounds"));
1384
1385 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1386 elval = value_cast (eltype, scalar_value);
1387
1388 scalar_type = check_typedef (value_type (scalar_value));
1389
1390 /* If we reduced the length of the scalar then check we didn't loose any
1391 important bits. */
1392 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1393 && !value_equal (elval, scalar_value))
1394 error (_("conversion of scalar to vector involves truncation"));
1395
1396 val = allocate_value (vector_type);
1397 for (i = 0; i < high_bound - low_bound + 1; i++)
1398 /* Duplicate the contents of elval into the destination vector. */
1399 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1400 value_contents_all (elval), TYPE_LENGTH (eltype));
1401
1402 return val;
1403 }
1404
1405 /* Performs a binary operation on two vector operands by calling scalar_binop
1406 for each pair of vector components. */
1407
1408 static struct value *
1409 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1410 {
1411 struct value *val, *tmp, *mark;
1412 struct type *type1, *type2, *eltype1, *eltype2;
1413 int t1_is_vec, t2_is_vec, elsize, i;
1414 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1415
1416 type1 = check_typedef (value_type (val1));
1417 type2 = check_typedef (value_type (val2));
1418
1419 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1420 && TYPE_VECTOR (type1)) ? 1 : 0;
1421 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1422 && TYPE_VECTOR (type2)) ? 1 : 0;
1423
1424 if (!t1_is_vec || !t2_is_vec)
1425 error (_("Vector operations are only supported among vectors"));
1426
1427 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1428 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1429 error (_("Could not determine the vector bounds"));
1430
1431 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1432 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1433 elsize = TYPE_LENGTH (eltype1);
1434
1435 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1436 || elsize != TYPE_LENGTH (eltype2)
1437 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1438 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1439 error (_("Cannot perform operation on vectors with different types"));
1440
1441 val = allocate_value (type1);
1442 mark = value_mark ();
1443 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1444 {
1445 tmp = value_binop (value_subscript (val1, i),
1446 value_subscript (val2, i), op);
1447 memcpy (value_contents_writeable (val) + i * elsize,
1448 value_contents_all (tmp),
1449 elsize);
1450 }
1451 value_free_to_mark (mark);
1452
1453 return val;
1454 }
1455
1456 /* Perform a binary operation on two operands. */
1457
1458 struct value *
1459 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1460 {
1461 struct value *val;
1462 struct type *type1 = check_typedef (value_type (arg1));
1463 struct type *type2 = check_typedef (value_type (arg2));
1464 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1465 && TYPE_VECTOR (type1));
1466 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1467 && TYPE_VECTOR (type2));
1468
1469 if (!t1_is_vec && !t2_is_vec)
1470 val = scalar_binop (arg1, arg2, op);
1471 else if (t1_is_vec && t2_is_vec)
1472 val = vector_binop (arg1, arg2, op);
1473 else
1474 {
1475 /* Widen the scalar operand to a vector. */
1476 struct value **v = t1_is_vec ? &arg2 : &arg1;
1477 struct type *t = t1_is_vec ? type2 : type1;
1478
1479 if (TYPE_CODE (t) != TYPE_CODE_FLT
1480 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1481 && !is_integral_type (t))
1482 error (_("Argument to operation not a number or boolean."));
1483
1484 /* Replicate the scalar value to make a vector value. */
1485 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1486
1487 val = vector_binop (arg1, arg2, op);
1488 }
1489
1490 return val;
1491 }
1492 \f
1493 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1494
1495 int
1496 value_logical_not (struct value *arg1)
1497 {
1498 int len;
1499 const gdb_byte *p;
1500 struct type *type1;
1501
1502 arg1 = coerce_array (arg1);
1503 type1 = check_typedef (value_type (arg1));
1504
1505 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1506 return 0 == value_as_double (arg1);
1507 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1508 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1509 gdbarch_byte_order (get_type_arch (type1)));
1510
1511 len = TYPE_LENGTH (type1);
1512 p = value_contents (arg1);
1513
1514 while (--len >= 0)
1515 {
1516 if (*p++)
1517 break;
1518 }
1519
1520 return len < 0;
1521 }
1522
1523 /* Perform a comparison on two string values (whose content are not
1524 necessarily null terminated) based on their length. */
1525
1526 static int
1527 value_strcmp (struct value *arg1, struct value *arg2)
1528 {
1529 int len1 = TYPE_LENGTH (value_type (arg1));
1530 int len2 = TYPE_LENGTH (value_type (arg2));
1531 const gdb_byte *s1 = value_contents (arg1);
1532 const gdb_byte *s2 = value_contents (arg2);
1533 int i, len = len1 < len2 ? len1 : len2;
1534
1535 for (i = 0; i < len; i++)
1536 {
1537 if (s1[i] < s2[i])
1538 return -1;
1539 else if (s1[i] > s2[i])
1540 return 1;
1541 else
1542 continue;
1543 }
1544
1545 if (len1 < len2)
1546 return -1;
1547 else if (len1 > len2)
1548 return 1;
1549 else
1550 return 0;
1551 }
1552
1553 /* Simulate the C operator == by returning a 1
1554 iff ARG1 and ARG2 have equal contents. */
1555
1556 int
1557 value_equal (struct value *arg1, struct value *arg2)
1558 {
1559 int len;
1560 const gdb_byte *p1;
1561 const gdb_byte *p2;
1562 struct type *type1, *type2;
1563 enum type_code code1;
1564 enum type_code code2;
1565 int is_int1, is_int2;
1566
1567 arg1 = coerce_array (arg1);
1568 arg2 = coerce_array (arg2);
1569
1570 type1 = check_typedef (value_type (arg1));
1571 type2 = check_typedef (value_type (arg2));
1572 code1 = TYPE_CODE (type1);
1573 code2 = TYPE_CODE (type2);
1574 is_int1 = is_integral_type (type1);
1575 is_int2 = is_integral_type (type2);
1576
1577 if (is_int1 && is_int2)
1578 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1579 BINOP_EQUAL)));
1580 else if ((code1 == TYPE_CODE_FLT || is_int1)
1581 && (code2 == TYPE_CODE_FLT || is_int2))
1582 {
1583 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1584 `long double' values are returned in static storage (m68k). */
1585 DOUBLEST d = value_as_double (arg1);
1586
1587 return d == value_as_double (arg2);
1588 }
1589 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1590 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1591 {
1592 gdb_byte v1[16], v2[16];
1593 int len_v1, len_v2;
1594 enum bfd_endian byte_order_v1, byte_order_v2;
1595
1596 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1597 v2, &len_v2, &byte_order_v2);
1598
1599 return decimal_compare (v1, len_v1, byte_order_v1,
1600 v2, len_v2, byte_order_v2) == 0;
1601 }
1602
1603 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1604 is bigger. */
1605 else if (code1 == TYPE_CODE_PTR && is_int2)
1606 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1607 else if (code2 == TYPE_CODE_PTR && is_int1)
1608 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1609
1610 else if (code1 == code2
1611 && ((len = (int) TYPE_LENGTH (type1))
1612 == (int) TYPE_LENGTH (type2)))
1613 {
1614 p1 = value_contents (arg1);
1615 p2 = value_contents (arg2);
1616 while (--len >= 0)
1617 {
1618 if (*p1++ != *p2++)
1619 break;
1620 }
1621 return len < 0;
1622 }
1623 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1624 {
1625 return value_strcmp (arg1, arg2) == 0;
1626 }
1627 else
1628 {
1629 error (_("Invalid type combination in equality test."));
1630 return 0; /* For lint -- never reached. */
1631 }
1632 }
1633
1634 /* Compare values based on their raw contents. Useful for arrays since
1635 value_equal coerces them to pointers, thus comparing just the address
1636 of the array instead of its contents. */
1637
1638 int
1639 value_equal_contents (struct value *arg1, struct value *arg2)
1640 {
1641 struct type *type1, *type2;
1642
1643 type1 = check_typedef (value_type (arg1));
1644 type2 = check_typedef (value_type (arg2));
1645
1646 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1647 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1648 && memcmp (value_contents (arg1), value_contents (arg2),
1649 TYPE_LENGTH (type1)) == 0);
1650 }
1651
1652 /* Simulate the C operator < by returning 1
1653 iff ARG1's contents are less than ARG2's. */
1654
1655 int
1656 value_less (struct value *arg1, struct value *arg2)
1657 {
1658 enum type_code code1;
1659 enum type_code code2;
1660 struct type *type1, *type2;
1661 int is_int1, is_int2;
1662
1663 arg1 = coerce_array (arg1);
1664 arg2 = coerce_array (arg2);
1665
1666 type1 = check_typedef (value_type (arg1));
1667 type2 = check_typedef (value_type (arg2));
1668 code1 = TYPE_CODE (type1);
1669 code2 = TYPE_CODE (type2);
1670 is_int1 = is_integral_type (type1);
1671 is_int2 = is_integral_type (type2);
1672
1673 if (is_int1 && is_int2)
1674 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1675 BINOP_LESS)));
1676 else if ((code1 == TYPE_CODE_FLT || is_int1)
1677 && (code2 == TYPE_CODE_FLT || is_int2))
1678 {
1679 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1680 `long double' values are returned in static storage (m68k). */
1681 DOUBLEST d = value_as_double (arg1);
1682
1683 return d < value_as_double (arg2);
1684 }
1685 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1686 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1687 {
1688 gdb_byte v1[16], v2[16];
1689 int len_v1, len_v2;
1690 enum bfd_endian byte_order_v1, byte_order_v2;
1691
1692 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1693 v2, &len_v2, &byte_order_v2);
1694
1695 return decimal_compare (v1, len_v1, byte_order_v1,
1696 v2, len_v2, byte_order_v2) == -1;
1697 }
1698 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1699 return value_as_address (arg1) < value_as_address (arg2);
1700
1701 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1702 is bigger. */
1703 else if (code1 == TYPE_CODE_PTR && is_int2)
1704 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1705 else if (code2 == TYPE_CODE_PTR && is_int1)
1706 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1707 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1708 return value_strcmp (arg1, arg2) < 0;
1709 else
1710 {
1711 error (_("Invalid type combination in ordering comparison."));
1712 return 0;
1713 }
1714 }
1715 \f
1716 /* The unary operators +, - and ~. They free the argument ARG1. */
1717
1718 struct value *
1719 value_pos (struct value *arg1)
1720 {
1721 struct type *type;
1722
1723 arg1 = coerce_ref (arg1);
1724 type = check_typedef (value_type (arg1));
1725
1726 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1727 return value_from_double (type, value_as_double (arg1));
1728 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1729 return value_from_decfloat (type, value_contents (arg1));
1730 else if (is_integral_type (type))
1731 {
1732 return value_from_longest (type, value_as_long (arg1));
1733 }
1734 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1735 {
1736 struct value *val = allocate_value (type);
1737
1738 memcpy (value_contents_raw (val), value_contents (arg1),
1739 TYPE_LENGTH (type));
1740 return val;
1741 }
1742 else
1743 {
1744 error (_("Argument to positive operation not a number."));
1745 return 0; /* For lint -- never reached. */
1746 }
1747 }
1748
1749 struct value *
1750 value_neg (struct value *arg1)
1751 {
1752 struct type *type;
1753
1754 arg1 = coerce_ref (arg1);
1755 type = check_typedef (value_type (arg1));
1756
1757 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1758 {
1759 struct value *val = allocate_value (type);
1760 int len = TYPE_LENGTH (type);
1761 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
1762
1763 memcpy (decbytes, value_contents (arg1), len);
1764
1765 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1766 decbytes[len-1] = decbytes[len - 1] | 0x80;
1767 else
1768 decbytes[0] = decbytes[0] | 0x80;
1769
1770 memcpy (value_contents_raw (val), decbytes, len);
1771 return val;
1772 }
1773 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1774 return value_from_double (type, -value_as_double (arg1));
1775 else if (is_integral_type (type))
1776 {
1777 return value_from_longest (type, -value_as_long (arg1));
1778 }
1779 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1780 {
1781 struct value *tmp, *val = allocate_value (type);
1782 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1783 int i;
1784 LONGEST low_bound, high_bound;
1785
1786 if (!get_array_bounds (type, &low_bound, &high_bound))
1787 error (_("Could not determine the vector bounds"));
1788
1789 for (i = 0; i < high_bound - low_bound + 1; i++)
1790 {
1791 tmp = value_neg (value_subscript (arg1, i));
1792 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1793 value_contents_all (tmp), TYPE_LENGTH (eltype));
1794 }
1795 return val;
1796 }
1797 else
1798 {
1799 error (_("Argument to negate operation not a number."));
1800 return 0; /* For lint -- never reached. */
1801 }
1802 }
1803
1804 struct value *
1805 value_complement (struct value *arg1)
1806 {
1807 struct type *type;
1808 struct value *val;
1809
1810 arg1 = coerce_ref (arg1);
1811 type = check_typedef (value_type (arg1));
1812
1813 if (is_integral_type (type))
1814 val = value_from_longest (type, ~value_as_long (arg1));
1815 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1816 {
1817 struct value *tmp;
1818 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1819 int i;
1820 LONGEST low_bound, high_bound;
1821
1822 if (!get_array_bounds (type, &low_bound, &high_bound))
1823 error (_("Could not determine the vector bounds"));
1824
1825 val = allocate_value (type);
1826 for (i = 0; i < high_bound - low_bound + 1; i++)
1827 {
1828 tmp = value_complement (value_subscript (arg1, i));
1829 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1830 value_contents_all (tmp), TYPE_LENGTH (eltype));
1831 }
1832 }
1833 else
1834 error (_("Argument to complement operation not an integer, boolean."));
1835
1836 return val;
1837 }
1838 \f
1839 /* The INDEX'th bit of SET value whose value_type is TYPE,
1840 and whose value_contents is valaddr.
1841 Return -1 if out of range, -2 other error. */
1842
1843 int
1844 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1845 {
1846 struct gdbarch *gdbarch = get_type_arch (type);
1847 LONGEST low_bound, high_bound;
1848 LONGEST word;
1849 unsigned rel_index;
1850 struct type *range = TYPE_INDEX_TYPE (type);
1851
1852 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1853 return -2;
1854 if (index < low_bound || index > high_bound)
1855 return -1;
1856 rel_index = index - low_bound;
1857 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1858 gdbarch_byte_order (gdbarch));
1859 rel_index %= TARGET_CHAR_BIT;
1860 if (gdbarch_bits_big_endian (gdbarch))
1861 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1862 return (word >> rel_index) & 1;
1863 }
1864
1865 int
1866 value_in (struct value *element, struct value *set)
1867 {
1868 int member;
1869 struct type *settype = check_typedef (value_type (set));
1870 struct type *eltype = check_typedef (value_type (element));
1871
1872 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1873 eltype = TYPE_TARGET_TYPE (eltype);
1874 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1875 error (_("Second argument of 'IN' has wrong type"));
1876 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1877 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1878 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1879 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1880 error (_("First argument of 'IN' has wrong type"));
1881 member = value_bit_index (settype, value_contents (set),
1882 value_as_long (element));
1883 if (member < 0)
1884 error (_("First argument of 'IN' not in range"));
1885 return member;
1886 }
1887
1888 void
1889 _initialize_valarith (void)
1890 {
1891 }
This page took 0.066658 seconds and 5 git commands to generate.