run copyright.sh for 2011.
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34 #include "exceptions.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 void _initialize_valarith (void);
44 \f
45
46 /* Given a pointer, return the size of its target.
47 If the pointer type is void *, then return 1.
48 If the target type is incomplete, then error out.
49 This isn't a general purpose function, but just a
50 helper for value_ptradd.
51 */
52
53 static LONGEST
54 find_size_for_pointer_math (struct type *ptr_type)
55 {
56 LONGEST sz = -1;
57 struct type *ptr_target;
58
59 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
60 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
61
62 sz = TYPE_LENGTH (ptr_target);
63 if (sz == 0)
64 {
65 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
66 sz = 1;
67 else
68 {
69 char *name;
70
71 name = TYPE_NAME (ptr_target);
72 if (name == NULL)
73 name = TYPE_TAG_NAME (ptr_target);
74 if (name == NULL)
75 error (_("Cannot perform pointer math on incomplete types, "
76 "try casting to a known type, or void *."));
77 else
78 error (_("Cannot perform pointer math on incomplete type \"%s\", "
79 "try casting to a known type, or void *."), name);
80 }
81 }
82 return sz;
83 }
84
85 /* Given a pointer ARG1 and an integral value ARG2, return the
86 result of C-style pointer arithmetic ARG1 + ARG2. */
87
88 struct value *
89 value_ptradd (struct value *arg1, LONGEST arg2)
90 {
91 struct type *valptrtype;
92 LONGEST sz;
93 struct value *result;
94
95 arg1 = coerce_array (arg1);
96 valptrtype = check_typedef (value_type (arg1));
97 sz = find_size_for_pointer_math (valptrtype);
98
99 result = value_from_pointer (valptrtype,
100 value_as_address (arg1) + sz * arg2);
101 if (VALUE_LVAL (result) != lval_internalvar)
102 set_value_component_location (result, arg1);
103 return result;
104 }
105
106 /* Given two compatible pointer values ARG1 and ARG2, return the
107 result of C-style pointer arithmetic ARG1 - ARG2. */
108
109 LONGEST
110 value_ptrdiff (struct value *arg1, struct value *arg2)
111 {
112 struct type *type1, *type2;
113 LONGEST sz;
114
115 arg1 = coerce_array (arg1);
116 arg2 = coerce_array (arg2);
117 type1 = check_typedef (value_type (arg1));
118 type2 = check_typedef (value_type (arg2));
119
120 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
121 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
122
123 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
124 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
125 error (_("\
126 First argument of `-' is a pointer and second argument is neither\n\
127 an integer nor a pointer of the same type."));
128
129 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
130 if (sz == 0)
131 {
132 warning (_("Type size unknown, assuming 1. "
133 "Try casting to a known type, or void *."));
134 sz = 1;
135 }
136
137 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
138 }
139
140 /* Return the value of ARRAY[IDX].
141
142 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
143 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
144 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
145
146 See comments in value_coerce_array() for rationale for reason for
147 doing lower bounds adjustment here rather than there.
148 FIXME: Perhaps we should validate that the index is valid and if
149 verbosity is set, warn about invalid indices (but still use them). */
150
151 struct value *
152 value_subscript (struct value *array, LONGEST index)
153 {
154 int c_style = current_language->c_style_arrays;
155 struct type *tarray;
156
157 array = coerce_ref (array);
158 tarray = check_typedef (value_type (array));
159
160 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
161 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
162 {
163 struct type *range_type = TYPE_INDEX_TYPE (tarray);
164 LONGEST lowerbound, upperbound;
165
166 get_discrete_bounds (range_type, &lowerbound, &upperbound);
167 if (VALUE_LVAL (array) != lval_memory)
168 return value_subscripted_rvalue (array, index, lowerbound);
169
170 if (c_style == 0)
171 {
172 if (index >= lowerbound && index <= upperbound)
173 return value_subscripted_rvalue (array, index, lowerbound);
174 /* Emit warning unless we have an array of unknown size.
175 An array of unknown size has lowerbound 0 and upperbound -1. */
176 if (upperbound > -1)
177 warning (_("array or string index out of range"));
178 /* fall doing C stuff */
179 c_style = 1;
180 }
181
182 index -= lowerbound;
183 array = value_coerce_array (array);
184 }
185
186 if (c_style)
187 return value_ind (value_ptradd (array, index));
188 else
189 error (_("not an array or string"));
190 }
191
192 /* Return the value of EXPR[IDX], expr an aggregate rvalue
193 (eg, a vector register). This routine used to promote floats
194 to doubles, but no longer does. */
195
196 struct value *
197 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
198 {
199 struct type *array_type = check_typedef (value_type (array));
200 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
201 unsigned int elt_size = TYPE_LENGTH (elt_type);
202 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
203 struct value *v;
204
205 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
206 && elt_offs >= TYPE_LENGTH (array_type)))
207 error (_("no such vector element"));
208
209 v = allocate_value (elt_type);
210 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
211 set_value_lazy (v, 1);
212 else
213 memcpy (value_contents_writeable (v),
214 value_contents (array) + elt_offs, elt_size);
215
216 set_value_component_location (v, array);
217 VALUE_REGNUM (v) = VALUE_REGNUM (array);
218 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
219 set_value_offset (v, value_offset (array) + elt_offs);
220 return v;
221 }
222
223 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
224
225 struct value *
226 value_bitstring_subscript (struct type *type,
227 struct value *bitstring, LONGEST index)
228 {
229
230 struct type *bitstring_type, *range_type;
231 struct value *v;
232 int offset, byte, bit_index;
233 LONGEST lowerbound, upperbound;
234
235 bitstring_type = check_typedef (value_type (bitstring));
236 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
237
238 range_type = TYPE_INDEX_TYPE (bitstring_type);
239 get_discrete_bounds (range_type, &lowerbound, &upperbound);
240 if (index < lowerbound || index > upperbound)
241 error (_("bitstring index out of range"));
242
243 index -= lowerbound;
244 offset = index / TARGET_CHAR_BIT;
245 byte = *((char *) value_contents (bitstring) + offset);
246
247 bit_index = index % TARGET_CHAR_BIT;
248 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
249 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
250
251 v = value_from_longest (type, byte & 1);
252
253 set_value_bitpos (v, bit_index);
254 set_value_bitsize (v, 1);
255 set_value_component_location (v, bitstring);
256 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
257
258 set_value_offset (v, offset + value_offset (bitstring));
259
260 return v;
261 }
262
263 \f
264 /* Check to see if either argument is a structure, or a reference to
265 one. This is called so we know whether to go ahead with the normal
266 binop or look for a user defined function instead.
267
268 For now, we do not overload the `=' operator. */
269
270 int
271 binop_types_user_defined_p (enum exp_opcode op,
272 struct type *type1, struct type *type2)
273 {
274 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
275 return 0;
276
277 type1 = check_typedef (type1);
278 if (TYPE_CODE (type1) == TYPE_CODE_REF)
279 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
280
281 type2 = check_typedef (type1);
282 if (TYPE_CODE (type2) == TYPE_CODE_REF)
283 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
284
285 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
286 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
287 }
288
289 /* Check to see if either argument is a structure, or a reference to
290 one. This is called so we know whether to go ahead with the normal
291 binop or look for a user defined function instead.
292
293 For now, we do not overload the `=' operator. */
294
295 int
296 binop_user_defined_p (enum exp_opcode op,
297 struct value *arg1, struct value *arg2)
298 {
299 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
300 }
301
302 /* Check to see if argument is a structure. This is called so
303 we know whether to go ahead with the normal unop or look for a
304 user defined function instead.
305
306 For now, we do not overload the `&' operator. */
307
308 int
309 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
310 {
311 struct type *type1;
312
313 if (op == UNOP_ADDR)
314 return 0;
315 type1 = check_typedef (value_type (arg1));
316 for (;;)
317 {
318 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
319 return 1;
320 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
321 type1 = TYPE_TARGET_TYPE (type1);
322 else
323 return 0;
324 }
325 }
326
327 /* Try to find an operator named OPERATOR which takes NARGS arguments
328 specified in ARGS. If the operator found is a static member operator
329 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
330 The search if performed through find_overload_match which will handle
331 member operators, non member operators, operators imported implicitly or
332 explicitly, and perform correct overload resolution in all of the above
333 situations or combinations thereof. */
334
335 static struct value *
336 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
337 int *static_memfuncp)
338 {
339
340 struct symbol *symp = NULL;
341 struct value *valp = NULL;
342 struct type **arg_types;
343 int i;
344
345 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
346 /* Prepare list of argument types for overload resolution */
347 for (i = 0; i < nargs; i++)
348 arg_types[i] = value_type (args[i]);
349
350 find_overload_match (arg_types, nargs, operator, BOTH /* could be method */,
351 0 /* strict match */, &args[0], /* objp */
352 NULL /* pass NULL symbol since symbol is unknown */,
353 &valp, &symp, static_memfuncp, 0);
354
355 if (valp)
356 return valp;
357
358 if (symp)
359 {
360 /* This is a non member function and does not
361 expect a reference as its first argument
362 rather the explicit structure. */
363 args[0] = value_ind (args[0]);
364 return value_of_variable (symp, 0);
365 }
366
367 error (_("Could not find %s."), operator);
368 }
369
370 /* Lookup user defined operator NAME. Return a value representing the
371 function, otherwise return NULL. */
372
373 static struct value *
374 value_user_defined_op (struct value **argp, struct value **args, char *name,
375 int *static_memfuncp, int nargs)
376 {
377 struct value *result = NULL;
378
379 if (current_language->la_language == language_cplus)
380 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
381 else
382 result = value_struct_elt (argp, args, name, static_memfuncp,
383 "structure");
384
385 return result;
386 }
387
388 /* We know either arg1 or arg2 is a structure, so try to find the right
389 user defined function. Create an argument vector that calls
390 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
391 binary operator which is legal for GNU C++).
392
393 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
394 is the opcode saying how to modify it. Otherwise, OTHEROP is
395 unused. */
396
397 struct value *
398 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
399 enum exp_opcode otherop, enum noside noside)
400 {
401 struct value **argvec;
402 char *ptr;
403 char tstr[13];
404 int static_memfuncp;
405
406 arg1 = coerce_ref (arg1);
407 arg2 = coerce_ref (arg2);
408
409 /* now we know that what we have to do is construct our
410 arg vector and find the right function to call it with. */
411
412 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
413 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
414
415 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
416 argvec[1] = value_addr (arg1);
417 argvec[2] = arg2;
418 argvec[3] = 0;
419
420 /* make the right function name up */
421 strcpy (tstr, "operator__");
422 ptr = tstr + 8;
423 switch (op)
424 {
425 case BINOP_ADD:
426 strcpy (ptr, "+");
427 break;
428 case BINOP_SUB:
429 strcpy (ptr, "-");
430 break;
431 case BINOP_MUL:
432 strcpy (ptr, "*");
433 break;
434 case BINOP_DIV:
435 strcpy (ptr, "/");
436 break;
437 case BINOP_REM:
438 strcpy (ptr, "%");
439 break;
440 case BINOP_LSH:
441 strcpy (ptr, "<<");
442 break;
443 case BINOP_RSH:
444 strcpy (ptr, ">>");
445 break;
446 case BINOP_BITWISE_AND:
447 strcpy (ptr, "&");
448 break;
449 case BINOP_BITWISE_IOR:
450 strcpy (ptr, "|");
451 break;
452 case BINOP_BITWISE_XOR:
453 strcpy (ptr, "^");
454 break;
455 case BINOP_LOGICAL_AND:
456 strcpy (ptr, "&&");
457 break;
458 case BINOP_LOGICAL_OR:
459 strcpy (ptr, "||");
460 break;
461 case BINOP_MIN:
462 strcpy (ptr, "<?");
463 break;
464 case BINOP_MAX:
465 strcpy (ptr, ">?");
466 break;
467 case BINOP_ASSIGN:
468 strcpy (ptr, "=");
469 break;
470 case BINOP_ASSIGN_MODIFY:
471 switch (otherop)
472 {
473 case BINOP_ADD:
474 strcpy (ptr, "+=");
475 break;
476 case BINOP_SUB:
477 strcpy (ptr, "-=");
478 break;
479 case BINOP_MUL:
480 strcpy (ptr, "*=");
481 break;
482 case BINOP_DIV:
483 strcpy (ptr, "/=");
484 break;
485 case BINOP_REM:
486 strcpy (ptr, "%=");
487 break;
488 case BINOP_BITWISE_AND:
489 strcpy (ptr, "&=");
490 break;
491 case BINOP_BITWISE_IOR:
492 strcpy (ptr, "|=");
493 break;
494 case BINOP_BITWISE_XOR:
495 strcpy (ptr, "^=");
496 break;
497 case BINOP_MOD: /* invalid */
498 default:
499 error (_("Invalid binary operation specified."));
500 }
501 break;
502 case BINOP_SUBSCRIPT:
503 strcpy (ptr, "[]");
504 break;
505 case BINOP_EQUAL:
506 strcpy (ptr, "==");
507 break;
508 case BINOP_NOTEQUAL:
509 strcpy (ptr, "!=");
510 break;
511 case BINOP_LESS:
512 strcpy (ptr, "<");
513 break;
514 case BINOP_GTR:
515 strcpy (ptr, ">");
516 break;
517 case BINOP_GEQ:
518 strcpy (ptr, ">=");
519 break;
520 case BINOP_LEQ:
521 strcpy (ptr, "<=");
522 break;
523 case BINOP_MOD: /* invalid */
524 default:
525 error (_("Invalid binary operation specified."));
526 }
527
528 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
529 &static_memfuncp, 2);
530
531 if (argvec[0])
532 {
533 if (static_memfuncp)
534 {
535 argvec[1] = argvec[0];
536 argvec++;
537 }
538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
539 {
540 struct type *return_type;
541
542 return_type
543 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
544 return value_zero (return_type, VALUE_LVAL (arg1));
545 }
546 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
547 }
548 throw_error (NOT_FOUND_ERROR,
549 _("member function %s not found"), tstr);
550 #ifdef lint
551 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
552 #endif
553 }
554
555 /* We know that arg1 is a structure, so try to find a unary user
556 defined operator that matches the operator in question.
557 Create an argument vector that calls arg1.operator @ (arg1)
558 and return that value (where '@' is (almost) any unary operator which
559 is legal for GNU C++). */
560
561 struct value *
562 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
563 {
564 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
565 struct value **argvec;
566 char *ptr, *mangle_ptr;
567 char tstr[13], mangle_tstr[13];
568 int static_memfuncp, nargs;
569
570 arg1 = coerce_ref (arg1);
571
572 /* now we know that what we have to do is construct our
573 arg vector and find the right function to call it with. */
574
575 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
576 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
577
578 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
579 argvec[1] = value_addr (arg1);
580 argvec[2] = 0;
581
582 nargs = 1;
583
584 /* make the right function name up */
585 strcpy (tstr, "operator__");
586 ptr = tstr + 8;
587 strcpy (mangle_tstr, "__");
588 mangle_ptr = mangle_tstr + 2;
589 switch (op)
590 {
591 case UNOP_PREINCREMENT:
592 strcpy (ptr, "++");
593 break;
594 case UNOP_PREDECREMENT:
595 strcpy (ptr, "--");
596 break;
597 case UNOP_POSTINCREMENT:
598 strcpy (ptr, "++");
599 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
600 argvec[3] = 0;
601 nargs ++;
602 break;
603 case UNOP_POSTDECREMENT:
604 strcpy (ptr, "--");
605 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
606 argvec[3] = 0;
607 nargs ++;
608 break;
609 case UNOP_LOGICAL_NOT:
610 strcpy (ptr, "!");
611 break;
612 case UNOP_COMPLEMENT:
613 strcpy (ptr, "~");
614 break;
615 case UNOP_NEG:
616 strcpy (ptr, "-");
617 break;
618 case UNOP_PLUS:
619 strcpy (ptr, "+");
620 break;
621 case UNOP_IND:
622 strcpy (ptr, "*");
623 break;
624 case STRUCTOP_PTR:
625 strcpy (ptr, "->");
626 break;
627 default:
628 error (_("Invalid unary operation specified."));
629 }
630
631 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
632 &static_memfuncp, nargs);
633
634 if (argvec[0])
635 {
636 if (static_memfuncp)
637 {
638 argvec[1] = argvec[0];
639 nargs --;
640 argvec++;
641 }
642 if (noside == EVAL_AVOID_SIDE_EFFECTS)
643 {
644 struct type *return_type;
645
646 return_type
647 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
648 return value_zero (return_type, VALUE_LVAL (arg1));
649 }
650 return call_function_by_hand (argvec[0], nargs, argvec + 1);
651 }
652 throw_error (NOT_FOUND_ERROR,
653 _("member function %s not found"), tstr);
654
655 return 0; /* For lint -- never reached */
656 }
657 \f
658
659 /* Concatenate two values with the following conditions:
660
661 (1) Both values must be either bitstring values or character string
662 values and the resulting value consists of the concatenation of
663 ARG1 followed by ARG2.
664
665 or
666
667 One value must be an integer value and the other value must be
668 either a bitstring value or character string value, which is
669 to be repeated by the number of times specified by the integer
670 value.
671
672
673 (2) Boolean values are also allowed and are treated as bit string
674 values of length 1.
675
676 (3) Character values are also allowed and are treated as character
677 string values of length 1.
678 */
679
680 struct value *
681 value_concat (struct value *arg1, struct value *arg2)
682 {
683 struct value *inval1;
684 struct value *inval2;
685 struct value *outval = NULL;
686 int inval1len, inval2len;
687 int count, idx;
688 char *ptr;
689 char inchar;
690 struct type *type1 = check_typedef (value_type (arg1));
691 struct type *type2 = check_typedef (value_type (arg2));
692 struct type *char_type;
693
694 /* First figure out if we are dealing with two values to be concatenated
695 or a repeat count and a value to be repeated. INVAL1 is set to the
696 first of two concatenated values, or the repeat count. INVAL2 is set
697 to the second of the two concatenated values or the value to be
698 repeated. */
699
700 if (TYPE_CODE (type2) == TYPE_CODE_INT)
701 {
702 struct type *tmp = type1;
703
704 type1 = tmp;
705 tmp = type2;
706 inval1 = arg2;
707 inval2 = arg1;
708 }
709 else
710 {
711 inval1 = arg1;
712 inval2 = arg2;
713 }
714
715 /* Now process the input values. */
716
717 if (TYPE_CODE (type1) == TYPE_CODE_INT)
718 {
719 /* We have a repeat count. Validate the second value and then
720 construct a value repeated that many times. */
721 if (TYPE_CODE (type2) == TYPE_CODE_STRING
722 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
723 {
724 count = longest_to_int (value_as_long (inval1));
725 inval2len = TYPE_LENGTH (type2);
726 ptr = (char *) alloca (count * inval2len);
727 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
728 {
729 char_type = type2;
730
731 inchar = (char) unpack_long (type2,
732 value_contents (inval2));
733 for (idx = 0; idx < count; idx++)
734 {
735 *(ptr + idx) = inchar;
736 }
737 }
738 else
739 {
740 char_type = TYPE_TARGET_TYPE (type2);
741
742 for (idx = 0; idx < count; idx++)
743 {
744 memcpy (ptr + (idx * inval2len), value_contents (inval2),
745 inval2len);
746 }
747 }
748 outval = value_string (ptr, count * inval2len, char_type);
749 }
750 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
751 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
752 {
753 error (_("unimplemented support for bitstring/boolean repeats"));
754 }
755 else
756 {
757 error (_("can't repeat values of that type"));
758 }
759 }
760 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
761 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
762 {
763 /* We have two character strings to concatenate. */
764 if (TYPE_CODE (type2) != TYPE_CODE_STRING
765 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
766 {
767 error (_("Strings can only be concatenated with other strings."));
768 }
769 inval1len = TYPE_LENGTH (type1);
770 inval2len = TYPE_LENGTH (type2);
771 ptr = (char *) alloca (inval1len + inval2len);
772 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
773 {
774 char_type = type1;
775
776 *ptr = (char) unpack_long (type1, value_contents (inval1));
777 }
778 else
779 {
780 char_type = TYPE_TARGET_TYPE (type1);
781
782 memcpy (ptr, value_contents (inval1), inval1len);
783 }
784 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
785 {
786 *(ptr + inval1len) =
787 (char) unpack_long (type2, value_contents (inval2));
788 }
789 else
790 {
791 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
792 }
793 outval = value_string (ptr, inval1len + inval2len, char_type);
794 }
795 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
796 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
797 {
798 /* We have two bitstrings to concatenate. */
799 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
800 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
801 {
802 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
803 }
804 error (_("unimplemented support for bitstring/boolean concatenation."));
805 }
806 else
807 {
808 /* We don't know how to concatenate these operands. */
809 error (_("illegal operands for concatenation."));
810 }
811 return (outval);
812 }
813 \f
814 /* Integer exponentiation: V1**V2, where both arguments are
815 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
816 static LONGEST
817 integer_pow (LONGEST v1, LONGEST v2)
818 {
819 if (v2 < 0)
820 {
821 if (v1 == 0)
822 error (_("Attempt to raise 0 to negative power."));
823 else
824 return 0;
825 }
826 else
827 {
828 /* The Russian Peasant's Algorithm */
829 LONGEST v;
830
831 v = 1;
832 for (;;)
833 {
834 if (v2 & 1L)
835 v *= v1;
836 v2 >>= 1;
837 if (v2 == 0)
838 return v;
839 v1 *= v1;
840 }
841 }
842 }
843
844 /* Integer exponentiation: V1**V2, where both arguments are
845 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
846 static ULONGEST
847 uinteger_pow (ULONGEST v1, LONGEST v2)
848 {
849 if (v2 < 0)
850 {
851 if (v1 == 0)
852 error (_("Attempt to raise 0 to negative power."));
853 else
854 return 0;
855 }
856 else
857 {
858 /* The Russian Peasant's Algorithm */
859 ULONGEST v;
860
861 v = 1;
862 for (;;)
863 {
864 if (v2 & 1L)
865 v *= v1;
866 v2 >>= 1;
867 if (v2 == 0)
868 return v;
869 v1 *= v1;
870 }
871 }
872 }
873
874 /* Obtain decimal value of arguments for binary operation, converting from
875 other types if one of them is not decimal floating point. */
876 static void
877 value_args_as_decimal (struct value *arg1, struct value *arg2,
878 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
879 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
880 {
881 struct type *type1, *type2;
882
883 type1 = check_typedef (value_type (arg1));
884 type2 = check_typedef (value_type (arg2));
885
886 /* At least one of the arguments must be of decimal float type. */
887 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
888 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
889
890 if (TYPE_CODE (type1) == TYPE_CODE_FLT
891 || TYPE_CODE (type2) == TYPE_CODE_FLT)
892 /* The DFP extension to the C language does not allow mixing of
893 * decimal float types with other float types in expressions
894 * (see WDTR 24732, page 12). */
895 error (_("Mixing decimal floating types with other floating types is not allowed."));
896
897 /* Obtain decimal value of arg1, converting from other types
898 if necessary. */
899
900 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
901 {
902 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
903 *len_x = TYPE_LENGTH (type1);
904 memcpy (x, value_contents (arg1), *len_x);
905 }
906 else if (is_integral_type (type1))
907 {
908 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
909 *len_x = TYPE_LENGTH (type2);
910 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
911 }
912 else
913 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
914 TYPE_NAME (type2));
915
916 /* Obtain decimal value of arg2, converting from other types
917 if necessary. */
918
919 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
920 {
921 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
922 *len_y = TYPE_LENGTH (type2);
923 memcpy (y, value_contents (arg2), *len_y);
924 }
925 else if (is_integral_type (type2))
926 {
927 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
928 *len_y = TYPE_LENGTH (type1);
929 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
930 }
931 else
932 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
933 TYPE_NAME (type2));
934 }
935
936 /* Perform a binary operation on two operands which have reasonable
937 representations as integers or floats. This includes booleans,
938 characters, integers, or floats.
939 Does not support addition and subtraction on pointers;
940 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
941
942 static struct value *
943 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
944 {
945 struct value *val;
946 struct type *type1, *type2, *result_type;
947
948 arg1 = coerce_ref (arg1);
949 arg2 = coerce_ref (arg2);
950
951 type1 = check_typedef (value_type (arg1));
952 type2 = check_typedef (value_type (arg2));
953
954 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
955 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
956 && !is_integral_type (type1))
957 || (TYPE_CODE (type2) != TYPE_CODE_FLT
958 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
959 && !is_integral_type (type2)))
960 error (_("Argument to arithmetic operation not a number or boolean."));
961
962 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
963 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
964 {
965 int len_v1, len_v2, len_v;
966 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
967 gdb_byte v1[16], v2[16];
968 gdb_byte v[16];
969
970 /* If only one type is decimal float, use its type.
971 Otherwise use the bigger type. */
972 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
973 result_type = type2;
974 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
975 result_type = type1;
976 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
977 result_type = type2;
978 else
979 result_type = type1;
980
981 len_v = TYPE_LENGTH (result_type);
982 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
983
984 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
985 v2, &len_v2, &byte_order_v2);
986
987 switch (op)
988 {
989 case BINOP_ADD:
990 case BINOP_SUB:
991 case BINOP_MUL:
992 case BINOP_DIV:
993 case BINOP_EXP:
994 decimal_binop (op, v1, len_v1, byte_order_v1,
995 v2, len_v2, byte_order_v2,
996 v, len_v, byte_order_v);
997 break;
998
999 default:
1000 error (_("Operation not valid for decimal floating point number."));
1001 }
1002
1003 val = value_from_decfloat (result_type, v);
1004 }
1005 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
1006 || TYPE_CODE (type2) == TYPE_CODE_FLT)
1007 {
1008 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
1009 in target format. real.c in GCC probably has the necessary
1010 code. */
1011 DOUBLEST v1, v2, v = 0;
1012
1013 v1 = value_as_double (arg1);
1014 v2 = value_as_double (arg2);
1015
1016 switch (op)
1017 {
1018 case BINOP_ADD:
1019 v = v1 + v2;
1020 break;
1021
1022 case BINOP_SUB:
1023 v = v1 - v2;
1024 break;
1025
1026 case BINOP_MUL:
1027 v = v1 * v2;
1028 break;
1029
1030 case BINOP_DIV:
1031 v = v1 / v2;
1032 break;
1033
1034 case BINOP_EXP:
1035 errno = 0;
1036 v = pow (v1, v2);
1037 if (errno)
1038 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1039 break;
1040
1041 case BINOP_MIN:
1042 v = v1 < v2 ? v1 : v2;
1043 break;
1044
1045 case BINOP_MAX:
1046 v = v1 > v2 ? v1 : v2;
1047 break;
1048
1049 default:
1050 error (_("Integer-only operation on floating point number."));
1051 }
1052
1053 /* If only one type is float, use its type.
1054 Otherwise use the bigger type. */
1055 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1056 result_type = type2;
1057 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1058 result_type = type1;
1059 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1060 result_type = type2;
1061 else
1062 result_type = type1;
1063
1064 val = allocate_value (result_type);
1065 store_typed_floating (value_contents_raw (val), value_type (val), v);
1066 }
1067 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1068 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1069 {
1070 LONGEST v1, v2, v = 0;
1071
1072 v1 = value_as_long (arg1);
1073 v2 = value_as_long (arg2);
1074
1075 switch (op)
1076 {
1077 case BINOP_BITWISE_AND:
1078 v = v1 & v2;
1079 break;
1080
1081 case BINOP_BITWISE_IOR:
1082 v = v1 | v2;
1083 break;
1084
1085 case BINOP_BITWISE_XOR:
1086 v = v1 ^ v2;
1087 break;
1088
1089 case BINOP_EQUAL:
1090 v = v1 == v2;
1091 break;
1092
1093 case BINOP_NOTEQUAL:
1094 v = v1 != v2;
1095 break;
1096
1097 default:
1098 error (_("Invalid operation on booleans."));
1099 }
1100
1101 result_type = type1;
1102
1103 val = allocate_value (result_type);
1104 store_signed_integer (value_contents_raw (val),
1105 TYPE_LENGTH (result_type),
1106 gdbarch_byte_order (get_type_arch (result_type)),
1107 v);
1108 }
1109 else
1110 /* Integral operations here. */
1111 {
1112 /* Determine type length of the result, and if the operation should
1113 be done unsigned. For exponentiation and shift operators,
1114 use the length and type of the left operand. Otherwise,
1115 use the signedness of the operand with the greater length.
1116 If both operands are of equal length, use unsigned operation
1117 if one of the operands is unsigned. */
1118 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1119 result_type = type1;
1120 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1121 result_type = type1;
1122 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1123 result_type = type2;
1124 else if (TYPE_UNSIGNED (type1))
1125 result_type = type1;
1126 else if (TYPE_UNSIGNED (type2))
1127 result_type = type2;
1128 else
1129 result_type = type1;
1130
1131 if (TYPE_UNSIGNED (result_type))
1132 {
1133 LONGEST v2_signed = value_as_long (arg2);
1134 ULONGEST v1, v2, v = 0;
1135
1136 v1 = (ULONGEST) value_as_long (arg1);
1137 v2 = (ULONGEST) v2_signed;
1138
1139 switch (op)
1140 {
1141 case BINOP_ADD:
1142 v = v1 + v2;
1143 break;
1144
1145 case BINOP_SUB:
1146 v = v1 - v2;
1147 break;
1148
1149 case BINOP_MUL:
1150 v = v1 * v2;
1151 break;
1152
1153 case BINOP_DIV:
1154 case BINOP_INTDIV:
1155 if (v2 != 0)
1156 v = v1 / v2;
1157 else
1158 error (_("Division by zero"));
1159 break;
1160
1161 case BINOP_EXP:
1162 v = uinteger_pow (v1, v2_signed);
1163 break;
1164
1165 case BINOP_REM:
1166 if (v2 != 0)
1167 v = v1 % v2;
1168 else
1169 error (_("Division by zero"));
1170 break;
1171
1172 case BINOP_MOD:
1173 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1174 v1 mod 0 has a defined value, v1. */
1175 if (v2 == 0)
1176 {
1177 v = v1;
1178 }
1179 else
1180 {
1181 v = v1 / v2;
1182 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1183 v = v1 - (v2 * v);
1184 }
1185 break;
1186
1187 case BINOP_LSH:
1188 v = v1 << v2;
1189 break;
1190
1191 case BINOP_RSH:
1192 v = v1 >> v2;
1193 break;
1194
1195 case BINOP_BITWISE_AND:
1196 v = v1 & v2;
1197 break;
1198
1199 case BINOP_BITWISE_IOR:
1200 v = v1 | v2;
1201 break;
1202
1203 case BINOP_BITWISE_XOR:
1204 v = v1 ^ v2;
1205 break;
1206
1207 case BINOP_LOGICAL_AND:
1208 v = v1 && v2;
1209 break;
1210
1211 case BINOP_LOGICAL_OR:
1212 v = v1 || v2;
1213 break;
1214
1215 case BINOP_MIN:
1216 v = v1 < v2 ? v1 : v2;
1217 break;
1218
1219 case BINOP_MAX:
1220 v = v1 > v2 ? v1 : v2;
1221 break;
1222
1223 case BINOP_EQUAL:
1224 v = v1 == v2;
1225 break;
1226
1227 case BINOP_NOTEQUAL:
1228 v = v1 != v2;
1229 break;
1230
1231 case BINOP_LESS:
1232 v = v1 < v2;
1233 break;
1234
1235 case BINOP_GTR:
1236 v = v1 > v2;
1237 break;
1238
1239 case BINOP_LEQ:
1240 v = v1 <= v2;
1241 break;
1242
1243 case BINOP_GEQ:
1244 v = v1 >= v2;
1245 break;
1246
1247 default:
1248 error (_("Invalid binary operation on numbers."));
1249 }
1250
1251 val = allocate_value (result_type);
1252 store_unsigned_integer (value_contents_raw (val),
1253 TYPE_LENGTH (value_type (val)),
1254 gdbarch_byte_order
1255 (get_type_arch (result_type)),
1256 v);
1257 }
1258 else
1259 {
1260 LONGEST v1, v2, v = 0;
1261
1262 v1 = value_as_long (arg1);
1263 v2 = value_as_long (arg2);
1264
1265 switch (op)
1266 {
1267 case BINOP_ADD:
1268 v = v1 + v2;
1269 break;
1270
1271 case BINOP_SUB:
1272 v = v1 - v2;
1273 break;
1274
1275 case BINOP_MUL:
1276 v = v1 * v2;
1277 break;
1278
1279 case BINOP_DIV:
1280 case BINOP_INTDIV:
1281 if (v2 != 0)
1282 v = v1 / v2;
1283 else
1284 error (_("Division by zero"));
1285 break;
1286
1287 case BINOP_EXP:
1288 v = integer_pow (v1, v2);
1289 break;
1290
1291 case BINOP_REM:
1292 if (v2 != 0)
1293 v = v1 % v2;
1294 else
1295 error (_("Division by zero"));
1296 break;
1297
1298 case BINOP_MOD:
1299 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1300 X mod 0 has a defined value, X. */
1301 if (v2 == 0)
1302 {
1303 v = v1;
1304 }
1305 else
1306 {
1307 v = v1 / v2;
1308 /* Compute floor. */
1309 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1310 {
1311 v--;
1312 }
1313 v = v1 - (v2 * v);
1314 }
1315 break;
1316
1317 case BINOP_LSH:
1318 v = v1 << v2;
1319 break;
1320
1321 case BINOP_RSH:
1322 v = v1 >> v2;
1323 break;
1324
1325 case BINOP_BITWISE_AND:
1326 v = v1 & v2;
1327 break;
1328
1329 case BINOP_BITWISE_IOR:
1330 v = v1 | v2;
1331 break;
1332
1333 case BINOP_BITWISE_XOR:
1334 v = v1 ^ v2;
1335 break;
1336
1337 case BINOP_LOGICAL_AND:
1338 v = v1 && v2;
1339 break;
1340
1341 case BINOP_LOGICAL_OR:
1342 v = v1 || v2;
1343 break;
1344
1345 case BINOP_MIN:
1346 v = v1 < v2 ? v1 : v2;
1347 break;
1348
1349 case BINOP_MAX:
1350 v = v1 > v2 ? v1 : v2;
1351 break;
1352
1353 case BINOP_EQUAL:
1354 v = v1 == v2;
1355 break;
1356
1357 case BINOP_NOTEQUAL:
1358 v = v1 != v2;
1359 break;
1360
1361 case BINOP_LESS:
1362 v = v1 < v2;
1363 break;
1364
1365 case BINOP_GTR:
1366 v = v1 > v2;
1367 break;
1368
1369 case BINOP_LEQ:
1370 v = v1 <= v2;
1371 break;
1372
1373 case BINOP_GEQ:
1374 v = v1 >= v2;
1375 break;
1376
1377 default:
1378 error (_("Invalid binary operation on numbers."));
1379 }
1380
1381 val = allocate_value (result_type);
1382 store_signed_integer (value_contents_raw (val),
1383 TYPE_LENGTH (value_type (val)),
1384 gdbarch_byte_order
1385 (get_type_arch (result_type)),
1386 v);
1387 }
1388 }
1389
1390 return val;
1391 }
1392
1393 /* Performs a binary operation on two vector operands by calling scalar_binop
1394 for each pair of vector components. */
1395
1396 static struct value *
1397 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1398 {
1399 struct value *val, *tmp, *mark;
1400 struct type *type1, *type2, *eltype1, *eltype2, *result_type;
1401 int t1_is_vec, t2_is_vec, elsize, i;
1402 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1403
1404 type1 = check_typedef (value_type (val1));
1405 type2 = check_typedef (value_type (val2));
1406
1407 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1408 && TYPE_VECTOR (type1)) ? 1 : 0;
1409 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1410 && TYPE_VECTOR (type2)) ? 1 : 0;
1411
1412 if (!t1_is_vec || !t2_is_vec)
1413 error (_("Vector operations are only supported among vectors"));
1414
1415 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1416 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1417 error (_("Could not determine the vector bounds"));
1418
1419 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1420 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1421 elsize = TYPE_LENGTH (eltype1);
1422
1423 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1424 || elsize != TYPE_LENGTH (eltype2)
1425 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1426 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1427 error (_("Cannot perform operation on vectors with different types"));
1428
1429 val = allocate_value (type1);
1430 mark = value_mark ();
1431 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1432 {
1433 tmp = value_binop (value_subscript (val1, i),
1434 value_subscript (val2, i), op);
1435 memcpy (value_contents_writeable (val) + i * elsize,
1436 value_contents_all (tmp),
1437 elsize);
1438 }
1439 value_free_to_mark (mark);
1440
1441 return val;
1442 }
1443
1444 /* Perform a binary operation on two operands. */
1445
1446 struct value *
1447 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1448 {
1449 struct value *val;
1450 struct type *type1 = check_typedef (value_type (arg1));
1451 struct type *type2 = check_typedef (value_type (arg2));
1452 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1453 && TYPE_VECTOR (type1));
1454 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1455 && TYPE_VECTOR (type2));
1456
1457 if (!t1_is_vec && !t2_is_vec)
1458 val = scalar_binop (arg1, arg2, op);
1459 else if (t1_is_vec && t2_is_vec)
1460 val = vector_binop (arg1, arg2, op);
1461 else
1462 {
1463 /* Widen the scalar operand to a vector. */
1464 struct value **v = t1_is_vec ? &arg2 : &arg1;
1465 struct type *t = t1_is_vec ? type2 : type1;
1466
1467 if (TYPE_CODE (t) != TYPE_CODE_FLT
1468 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1469 && !is_integral_type (t))
1470 error (_("Argument to operation not a number or boolean."));
1471
1472 *v = value_cast (t1_is_vec ? type1 : type2, *v);
1473 val = vector_binop (arg1, arg2, op);
1474 }
1475
1476 return val;
1477 }
1478 \f
1479 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1480
1481 int
1482 value_logical_not (struct value *arg1)
1483 {
1484 int len;
1485 const gdb_byte *p;
1486 struct type *type1;
1487
1488 arg1 = coerce_array (arg1);
1489 type1 = check_typedef (value_type (arg1));
1490
1491 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1492 return 0 == value_as_double (arg1);
1493 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1494 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1495 gdbarch_byte_order (get_type_arch (type1)));
1496
1497 len = TYPE_LENGTH (type1);
1498 p = value_contents (arg1);
1499
1500 while (--len >= 0)
1501 {
1502 if (*p++)
1503 break;
1504 }
1505
1506 return len < 0;
1507 }
1508
1509 /* Perform a comparison on two string values (whose content are not
1510 necessarily null terminated) based on their length */
1511
1512 static int
1513 value_strcmp (struct value *arg1, struct value *arg2)
1514 {
1515 int len1 = TYPE_LENGTH (value_type (arg1));
1516 int len2 = TYPE_LENGTH (value_type (arg2));
1517 const gdb_byte *s1 = value_contents (arg1);
1518 const gdb_byte *s2 = value_contents (arg2);
1519 int i, len = len1 < len2 ? len1 : len2;
1520
1521 for (i = 0; i < len; i++)
1522 {
1523 if (s1[i] < s2[i])
1524 return -1;
1525 else if (s1[i] > s2[i])
1526 return 1;
1527 else
1528 continue;
1529 }
1530
1531 if (len1 < len2)
1532 return -1;
1533 else if (len1 > len2)
1534 return 1;
1535 else
1536 return 0;
1537 }
1538
1539 /* Simulate the C operator == by returning a 1
1540 iff ARG1 and ARG2 have equal contents. */
1541
1542 int
1543 value_equal (struct value *arg1, struct value *arg2)
1544 {
1545 int len;
1546 const gdb_byte *p1;
1547 const gdb_byte *p2;
1548 struct type *type1, *type2;
1549 enum type_code code1;
1550 enum type_code code2;
1551 int is_int1, is_int2;
1552
1553 arg1 = coerce_array (arg1);
1554 arg2 = coerce_array (arg2);
1555
1556 type1 = check_typedef (value_type (arg1));
1557 type2 = check_typedef (value_type (arg2));
1558 code1 = TYPE_CODE (type1);
1559 code2 = TYPE_CODE (type2);
1560 is_int1 = is_integral_type (type1);
1561 is_int2 = is_integral_type (type2);
1562
1563 if (is_int1 && is_int2)
1564 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1565 BINOP_EQUAL)));
1566 else if ((code1 == TYPE_CODE_FLT || is_int1)
1567 && (code2 == TYPE_CODE_FLT || is_int2))
1568 {
1569 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1570 `long double' values are returned in static storage (m68k). */
1571 DOUBLEST d = value_as_double (arg1);
1572
1573 return d == value_as_double (arg2);
1574 }
1575 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1576 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1577 {
1578 gdb_byte v1[16], v2[16];
1579 int len_v1, len_v2;
1580 enum bfd_endian byte_order_v1, byte_order_v2;
1581
1582 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1583 v2, &len_v2, &byte_order_v2);
1584
1585 return decimal_compare (v1, len_v1, byte_order_v1,
1586 v2, len_v2, byte_order_v2) == 0;
1587 }
1588
1589 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1590 is bigger. */
1591 else if (code1 == TYPE_CODE_PTR && is_int2)
1592 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1593 else if (code2 == TYPE_CODE_PTR && is_int1)
1594 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1595
1596 else if (code1 == code2
1597 && ((len = (int) TYPE_LENGTH (type1))
1598 == (int) TYPE_LENGTH (type2)))
1599 {
1600 p1 = value_contents (arg1);
1601 p2 = value_contents (arg2);
1602 while (--len >= 0)
1603 {
1604 if (*p1++ != *p2++)
1605 break;
1606 }
1607 return len < 0;
1608 }
1609 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1610 {
1611 return value_strcmp (arg1, arg2) == 0;
1612 }
1613 else
1614 {
1615 error (_("Invalid type combination in equality test."));
1616 return 0; /* For lint -- never reached */
1617 }
1618 }
1619
1620 /* Compare values based on their raw contents. Useful for arrays since
1621 value_equal coerces them to pointers, thus comparing just the address
1622 of the array instead of its contents. */
1623
1624 int
1625 value_equal_contents (struct value *arg1, struct value *arg2)
1626 {
1627 struct type *type1, *type2;
1628
1629 type1 = check_typedef (value_type (arg1));
1630 type2 = check_typedef (value_type (arg2));
1631
1632 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1633 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1634 && memcmp (value_contents (arg1), value_contents (arg2),
1635 TYPE_LENGTH (type1)) == 0);
1636 }
1637
1638 /* Simulate the C operator < by returning 1
1639 iff ARG1's contents are less than ARG2's. */
1640
1641 int
1642 value_less (struct value *arg1, struct value *arg2)
1643 {
1644 enum type_code code1;
1645 enum type_code code2;
1646 struct type *type1, *type2;
1647 int is_int1, is_int2;
1648
1649 arg1 = coerce_array (arg1);
1650 arg2 = coerce_array (arg2);
1651
1652 type1 = check_typedef (value_type (arg1));
1653 type2 = check_typedef (value_type (arg2));
1654 code1 = TYPE_CODE (type1);
1655 code2 = TYPE_CODE (type2);
1656 is_int1 = is_integral_type (type1);
1657 is_int2 = is_integral_type (type2);
1658
1659 if (is_int1 && is_int2)
1660 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1661 BINOP_LESS)));
1662 else if ((code1 == TYPE_CODE_FLT || is_int1)
1663 && (code2 == TYPE_CODE_FLT || is_int2))
1664 {
1665 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1666 `long double' values are returned in static storage (m68k). */
1667 DOUBLEST d = value_as_double (arg1);
1668
1669 return d < value_as_double (arg2);
1670 }
1671 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1672 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1673 {
1674 gdb_byte v1[16], v2[16];
1675 int len_v1, len_v2;
1676 enum bfd_endian byte_order_v1, byte_order_v2;
1677
1678 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1679 v2, &len_v2, &byte_order_v2);
1680
1681 return decimal_compare (v1, len_v1, byte_order_v1,
1682 v2, len_v2, byte_order_v2) == -1;
1683 }
1684 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1685 return value_as_address (arg1) < value_as_address (arg2);
1686
1687 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1688 is bigger. */
1689 else if (code1 == TYPE_CODE_PTR && is_int2)
1690 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1691 else if (code2 == TYPE_CODE_PTR && is_int1)
1692 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1693 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1694 return value_strcmp (arg1, arg2) < 0;
1695 else
1696 {
1697 error (_("Invalid type combination in ordering comparison."));
1698 return 0;
1699 }
1700 }
1701 \f
1702 /* The unary operators +, - and ~. They free the argument ARG1. */
1703
1704 struct value *
1705 value_pos (struct value *arg1)
1706 {
1707 struct type *type;
1708
1709 arg1 = coerce_ref (arg1);
1710 type = check_typedef (value_type (arg1));
1711
1712 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1713 return value_from_double (type, value_as_double (arg1));
1714 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1715 return value_from_decfloat (type, value_contents (arg1));
1716 else if (is_integral_type (type))
1717 {
1718 return value_from_longest (type, value_as_long (arg1));
1719 }
1720 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1721 {
1722 struct value *val = allocate_value (type);
1723
1724 memcpy (value_contents_raw (val), value_contents (arg1),
1725 TYPE_LENGTH (type));
1726 return val;
1727 }
1728 else
1729 {
1730 error ("Argument to positive operation not a number.");
1731 return 0; /* For lint -- never reached */
1732 }
1733 }
1734
1735 struct value *
1736 value_neg (struct value *arg1)
1737 {
1738 struct type *type;
1739
1740 arg1 = coerce_ref (arg1);
1741 type = check_typedef (value_type (arg1));
1742
1743 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1744 {
1745 struct value *val = allocate_value (type);
1746 int len = TYPE_LENGTH (type);
1747 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1748
1749 memcpy (decbytes, value_contents (arg1), len);
1750
1751 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1752 decbytes[len-1] = decbytes[len - 1] | 0x80;
1753 else
1754 decbytes[0] = decbytes[0] | 0x80;
1755
1756 memcpy (value_contents_raw (val), decbytes, len);
1757 return val;
1758 }
1759 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1760 return value_from_double (type, -value_as_double (arg1));
1761 else if (is_integral_type (type))
1762 {
1763 return value_from_longest (type, -value_as_long (arg1));
1764 }
1765 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1766 {
1767 struct value *tmp, *val = allocate_value (type);
1768 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1769 int i;
1770 LONGEST low_bound, high_bound;
1771
1772 if (!get_array_bounds (type, &low_bound, &high_bound))
1773 error (_("Could not determine the vector bounds"));
1774
1775 for (i = 0; i < high_bound - low_bound + 1; i++)
1776 {
1777 tmp = value_neg (value_subscript (arg1, i));
1778 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1779 value_contents_all (tmp), TYPE_LENGTH (eltype));
1780 }
1781 return val;
1782 }
1783 else
1784 {
1785 error (_("Argument to negate operation not a number."));
1786 return 0; /* For lint -- never reached */
1787 }
1788 }
1789
1790 struct value *
1791 value_complement (struct value *arg1)
1792 {
1793 struct type *type;
1794 struct value *val;
1795
1796 arg1 = coerce_ref (arg1);
1797 type = check_typedef (value_type (arg1));
1798
1799 if (is_integral_type (type))
1800 val = value_from_longest (type, ~value_as_long (arg1));
1801 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1802 {
1803 struct value *tmp;
1804 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1805 int i;
1806 LONGEST low_bound, high_bound;
1807
1808 if (!get_array_bounds (type, &low_bound, &high_bound))
1809 error (_("Could not determine the vector bounds"));
1810
1811 val = allocate_value (type);
1812 for (i = 0; i < high_bound - low_bound + 1; i++)
1813 {
1814 tmp = value_complement (value_subscript (arg1, i));
1815 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1816 value_contents_all (tmp), TYPE_LENGTH (eltype));
1817 }
1818 }
1819 else
1820 error (_("Argument to complement operation not an integer, boolean."));
1821
1822 return val;
1823 }
1824 \f
1825 /* The INDEX'th bit of SET value whose value_type is TYPE,
1826 and whose value_contents is valaddr.
1827 Return -1 if out of range, -2 other error. */
1828
1829 int
1830 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1831 {
1832 struct gdbarch *gdbarch = get_type_arch (type);
1833 LONGEST low_bound, high_bound;
1834 LONGEST word;
1835 unsigned rel_index;
1836 struct type *range = TYPE_INDEX_TYPE (type);
1837
1838 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1839 return -2;
1840 if (index < low_bound || index > high_bound)
1841 return -1;
1842 rel_index = index - low_bound;
1843 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1844 gdbarch_byte_order (gdbarch));
1845 rel_index %= TARGET_CHAR_BIT;
1846 if (gdbarch_bits_big_endian (gdbarch))
1847 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1848 return (word >> rel_index) & 1;
1849 }
1850
1851 int
1852 value_in (struct value *element, struct value *set)
1853 {
1854 int member;
1855 struct type *settype = check_typedef (value_type (set));
1856 struct type *eltype = check_typedef (value_type (element));
1857
1858 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1859 eltype = TYPE_TARGET_TYPE (eltype);
1860 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1861 error (_("Second argument of 'IN' has wrong type"));
1862 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1863 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1864 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1865 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1866 error (_("First argument of 'IN' has wrong type"));
1867 member = value_bit_index (settype, value_contents (set),
1868 value_as_long (element));
1869 if (member < 0)
1870 error (_("First argument of 'IN' not in range"));
1871 return member;
1872 }
1873
1874 void
1875 _initialize_valarith (void)
1876 {
1877 }
This page took 0.069581 seconds and 5 git commands to generate.