2010-05-06 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 return value_from_pointer (valptrtype,
98 value_as_address (arg1) + sz * arg2);
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("\
121 First argument of `-' is a pointer and second argument is neither\n\
122 an integer nor a pointer of the same type."));
123
124 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
140
141 See comments in value_coerce_array() for rationale for reason for
142 doing lower bounds adjustment here rather than there.
143 FIXME: Perhaps we should validate that the index is valid and if
144 verbosity is set, warn about invalid indices (but still use them). */
145
146 struct value *
147 value_subscript (struct value *array, LONGEST index)
148 {
149 int c_style = current_language->c_style_arrays;
150 struct type *tarray;
151
152 array = coerce_ref (array);
153 tarray = check_typedef (value_type (array));
154
155 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
156 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
157 {
158 struct type *range_type = TYPE_INDEX_TYPE (tarray);
159 LONGEST lowerbound, upperbound;
160 get_discrete_bounds (range_type, &lowerbound, &upperbound);
161
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, lowerbound);
164
165 if (c_style == 0)
166 {
167 if (index >= lowerbound && index <= upperbound)
168 return value_subscripted_rvalue (array, index, lowerbound);
169 /* Emit warning unless we have an array of unknown size.
170 An array of unknown size has lowerbound 0 and upperbound -1. */
171 if (upperbound > -1)
172 warning (_("array or string index out of range"));
173 /* fall doing C stuff */
174 c_style = 1;
175 }
176
177 index -= lowerbound;
178 array = value_coerce_array (array);
179 }
180
181 if (c_style)
182 return value_ind (value_ptradd (array, index));
183 else
184 error (_("not an array or string"));
185 }
186
187 /* Return the value of EXPR[IDX], expr an aggregate rvalue
188 (eg, a vector register). This routine used to promote floats
189 to doubles, but no longer does. */
190
191 struct value *
192 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
193 {
194 struct type *array_type = check_typedef (value_type (array));
195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
196 unsigned int elt_size = TYPE_LENGTH (elt_type);
197 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
198 struct value *v;
199
200 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
201 && elt_offs >= TYPE_LENGTH (array_type)))
202 error (_("no such vector element"));
203
204 v = allocate_value (elt_type);
205 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
206 set_value_lazy (v, 1);
207 else
208 memcpy (value_contents_writeable (v),
209 value_contents (array) + elt_offs, elt_size);
210
211 set_value_component_location (v, array);
212 VALUE_REGNUM (v) = VALUE_REGNUM (array);
213 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
214 set_value_offset (v, value_offset (array) + elt_offs);
215 return v;
216 }
217
218 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
219
220 struct value *
221 value_bitstring_subscript (struct type *type,
222 struct value *bitstring, LONGEST index)
223 {
224
225 struct type *bitstring_type, *range_type;
226 struct value *v;
227 int offset, byte, bit_index;
228 LONGEST lowerbound, upperbound;
229
230 bitstring_type = check_typedef (value_type (bitstring));
231 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
232
233 range_type = TYPE_INDEX_TYPE (bitstring_type);
234 get_discrete_bounds (range_type, &lowerbound, &upperbound);
235 if (index < lowerbound || index > upperbound)
236 error (_("bitstring index out of range"));
237
238 index -= lowerbound;
239 offset = index / TARGET_CHAR_BIT;
240 byte = *((char *) value_contents (bitstring) + offset);
241
242 bit_index = index % TARGET_CHAR_BIT;
243 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
244 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
245
246 v = value_from_longest (type, byte & 1);
247
248 set_value_bitpos (v, bit_index);
249 set_value_bitsize (v, 1);
250 set_value_component_location (v, bitstring);
251 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
252
253 set_value_offset (v, offset + value_offset (bitstring));
254
255 return v;
256 }
257
258 \f
259 /* Check to see if either argument is a structure, or a reference to
260 one. This is called so we know whether to go ahead with the normal
261 binop or look for a user defined function instead.
262
263 For now, we do not overload the `=' operator. */
264
265 int
266 binop_types_user_defined_p (enum exp_opcode op,
267 struct type *type1, struct type *type2)
268 {
269 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
270 return 0;
271
272 type1 = check_typedef (type1);
273 if (TYPE_CODE (type1) == TYPE_CODE_REF)
274 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
275
276 type2 = check_typedef (type1);
277 if (TYPE_CODE (type2) == TYPE_CODE_REF)
278 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
279
280 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
281 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
282 }
283
284 /* Check to see if either argument is a structure, or a reference to
285 one. This is called so we know whether to go ahead with the normal
286 binop or look for a user defined function instead.
287
288 For now, we do not overload the `=' operator. */
289
290 int
291 binop_user_defined_p (enum exp_opcode op,
292 struct value *arg1, struct value *arg2)
293 {
294 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
295 }
296
297 /* Check to see if argument is a structure. This is called so
298 we know whether to go ahead with the normal unop or look for a
299 user defined function instead.
300
301 For now, we do not overload the `&' operator. */
302
303 int
304 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
305 {
306 struct type *type1;
307 if (op == UNOP_ADDR)
308 return 0;
309 type1 = check_typedef (value_type (arg1));
310 for (;;)
311 {
312 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
313 return 1;
314 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
315 type1 = TYPE_TARGET_TYPE (type1);
316 else
317 return 0;
318 }
319 }
320
321 /* We know either arg1 or arg2 is a structure, so try to find the right
322 user defined function. Create an argument vector that calls
323 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
324 binary operator which is legal for GNU C++).
325
326 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
327 is the opcode saying how to modify it. Otherwise, OTHEROP is
328 unused. */
329
330 struct value *
331 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
332 enum exp_opcode otherop, enum noside noside)
333 {
334 struct value **argvec;
335 char *ptr;
336 char tstr[13];
337 int static_memfuncp;
338
339 arg1 = coerce_ref (arg1);
340 arg2 = coerce_ref (arg2);
341
342 /* now we know that what we have to do is construct our
343 arg vector and find the right function to call it with. */
344
345 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
346 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
347
348 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
349 argvec[1] = value_addr (arg1);
350 argvec[2] = arg2;
351 argvec[3] = 0;
352
353 /* make the right function name up */
354 strcpy (tstr, "operator__");
355 ptr = tstr + 8;
356 switch (op)
357 {
358 case BINOP_ADD:
359 strcpy (ptr, "+");
360 break;
361 case BINOP_SUB:
362 strcpy (ptr, "-");
363 break;
364 case BINOP_MUL:
365 strcpy (ptr, "*");
366 break;
367 case BINOP_DIV:
368 strcpy (ptr, "/");
369 break;
370 case BINOP_REM:
371 strcpy (ptr, "%");
372 break;
373 case BINOP_LSH:
374 strcpy (ptr, "<<");
375 break;
376 case BINOP_RSH:
377 strcpy (ptr, ">>");
378 break;
379 case BINOP_BITWISE_AND:
380 strcpy (ptr, "&");
381 break;
382 case BINOP_BITWISE_IOR:
383 strcpy (ptr, "|");
384 break;
385 case BINOP_BITWISE_XOR:
386 strcpy (ptr, "^");
387 break;
388 case BINOP_LOGICAL_AND:
389 strcpy (ptr, "&&");
390 break;
391 case BINOP_LOGICAL_OR:
392 strcpy (ptr, "||");
393 break;
394 case BINOP_MIN:
395 strcpy (ptr, "<?");
396 break;
397 case BINOP_MAX:
398 strcpy (ptr, ">?");
399 break;
400 case BINOP_ASSIGN:
401 strcpy (ptr, "=");
402 break;
403 case BINOP_ASSIGN_MODIFY:
404 switch (otherop)
405 {
406 case BINOP_ADD:
407 strcpy (ptr, "+=");
408 break;
409 case BINOP_SUB:
410 strcpy (ptr, "-=");
411 break;
412 case BINOP_MUL:
413 strcpy (ptr, "*=");
414 break;
415 case BINOP_DIV:
416 strcpy (ptr, "/=");
417 break;
418 case BINOP_REM:
419 strcpy (ptr, "%=");
420 break;
421 case BINOP_BITWISE_AND:
422 strcpy (ptr, "&=");
423 break;
424 case BINOP_BITWISE_IOR:
425 strcpy (ptr, "|=");
426 break;
427 case BINOP_BITWISE_XOR:
428 strcpy (ptr, "^=");
429 break;
430 case BINOP_MOD: /* invalid */
431 default:
432 error (_("Invalid binary operation specified."));
433 }
434 break;
435 case BINOP_SUBSCRIPT:
436 strcpy (ptr, "[]");
437 break;
438 case BINOP_EQUAL:
439 strcpy (ptr, "==");
440 break;
441 case BINOP_NOTEQUAL:
442 strcpy (ptr, "!=");
443 break;
444 case BINOP_LESS:
445 strcpy (ptr, "<");
446 break;
447 case BINOP_GTR:
448 strcpy (ptr, ">");
449 break;
450 case BINOP_GEQ:
451 strcpy (ptr, ">=");
452 break;
453 case BINOP_LEQ:
454 strcpy (ptr, "<=");
455 break;
456 case BINOP_MOD: /* invalid */
457 default:
458 error (_("Invalid binary operation specified."));
459 }
460
461 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
462
463 if (argvec[0])
464 {
465 if (static_memfuncp)
466 {
467 argvec[1] = argvec[0];
468 argvec++;
469 }
470 if (noside == EVAL_AVOID_SIDE_EFFECTS)
471 {
472 struct type *return_type;
473 return_type
474 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
475 return value_zero (return_type, VALUE_LVAL (arg1));
476 }
477 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
478 }
479 error (_("member function %s not found"), tstr);
480 #ifdef lint
481 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
482 #endif
483 }
484
485 /* We know that arg1 is a structure, so try to find a unary user
486 defined operator that matches the operator in question.
487 Create an argument vector that calls arg1.operator @ (arg1)
488 and return that value (where '@' is (almost) any unary operator which
489 is legal for GNU C++). */
490
491 struct value *
492 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
493 {
494 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
495 struct value **argvec;
496 char *ptr, *mangle_ptr;
497 char tstr[13], mangle_tstr[13];
498 int static_memfuncp, nargs;
499
500 arg1 = coerce_ref (arg1);
501
502 /* now we know that what we have to do is construct our
503 arg vector and find the right function to call it with. */
504
505 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
506 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
507
508 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
509 argvec[1] = value_addr (arg1);
510 argvec[2] = 0;
511
512 nargs = 1;
513
514 /* make the right function name up */
515 strcpy (tstr, "operator__");
516 ptr = tstr + 8;
517 strcpy (mangle_tstr, "__");
518 mangle_ptr = mangle_tstr + 2;
519 switch (op)
520 {
521 case UNOP_PREINCREMENT:
522 strcpy (ptr, "++");
523 break;
524 case UNOP_PREDECREMENT:
525 strcpy (ptr, "--");
526 break;
527 case UNOP_POSTINCREMENT:
528 strcpy (ptr, "++");
529 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
530 argvec[3] = 0;
531 nargs ++;
532 break;
533 case UNOP_POSTDECREMENT:
534 strcpy (ptr, "--");
535 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
536 argvec[3] = 0;
537 nargs ++;
538 break;
539 case UNOP_LOGICAL_NOT:
540 strcpy (ptr, "!");
541 break;
542 case UNOP_COMPLEMENT:
543 strcpy (ptr, "~");
544 break;
545 case UNOP_NEG:
546 strcpy (ptr, "-");
547 break;
548 case UNOP_PLUS:
549 strcpy (ptr, "+");
550 break;
551 case UNOP_IND:
552 strcpy (ptr, "*");
553 break;
554 default:
555 error (_("Invalid unary operation specified."));
556 }
557
558 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
559
560 if (argvec[0])
561 {
562 if (static_memfuncp)
563 {
564 argvec[1] = argvec[0];
565 nargs --;
566 argvec++;
567 }
568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
569 {
570 struct type *return_type;
571 return_type
572 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
573 return value_zero (return_type, VALUE_LVAL (arg1));
574 }
575 return call_function_by_hand (argvec[0], nargs, argvec + 1);
576 }
577 error (_("member function %s not found"), tstr);
578 return 0; /* For lint -- never reached */
579 }
580 \f
581
582 /* Concatenate two values with the following conditions:
583
584 (1) Both values must be either bitstring values or character string
585 values and the resulting value consists of the concatenation of
586 ARG1 followed by ARG2.
587
588 or
589
590 One value must be an integer value and the other value must be
591 either a bitstring value or character string value, which is
592 to be repeated by the number of times specified by the integer
593 value.
594
595
596 (2) Boolean values are also allowed and are treated as bit string
597 values of length 1.
598
599 (3) Character values are also allowed and are treated as character
600 string values of length 1.
601 */
602
603 struct value *
604 value_concat (struct value *arg1, struct value *arg2)
605 {
606 struct value *inval1;
607 struct value *inval2;
608 struct value *outval = NULL;
609 int inval1len, inval2len;
610 int count, idx;
611 char *ptr;
612 char inchar;
613 struct type *type1 = check_typedef (value_type (arg1));
614 struct type *type2 = check_typedef (value_type (arg2));
615 struct type *char_type;
616
617 /* First figure out if we are dealing with two values to be concatenated
618 or a repeat count and a value to be repeated. INVAL1 is set to the
619 first of two concatenated values, or the repeat count. INVAL2 is set
620 to the second of the two concatenated values or the value to be
621 repeated. */
622
623 if (TYPE_CODE (type2) == TYPE_CODE_INT)
624 {
625 struct type *tmp = type1;
626 type1 = tmp;
627 tmp = type2;
628 inval1 = arg2;
629 inval2 = arg1;
630 }
631 else
632 {
633 inval1 = arg1;
634 inval2 = arg2;
635 }
636
637 /* Now process the input values. */
638
639 if (TYPE_CODE (type1) == TYPE_CODE_INT)
640 {
641 /* We have a repeat count. Validate the second value and then
642 construct a value repeated that many times. */
643 if (TYPE_CODE (type2) == TYPE_CODE_STRING
644 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
645 {
646 count = longest_to_int (value_as_long (inval1));
647 inval2len = TYPE_LENGTH (type2);
648 ptr = (char *) alloca (count * inval2len);
649 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
650 {
651 char_type = type2;
652 inchar = (char) unpack_long (type2,
653 value_contents (inval2));
654 for (idx = 0; idx < count; idx++)
655 {
656 *(ptr + idx) = inchar;
657 }
658 }
659 else
660 {
661 char_type = TYPE_TARGET_TYPE (type2);
662 for (idx = 0; idx < count; idx++)
663 {
664 memcpy (ptr + (idx * inval2len), value_contents (inval2),
665 inval2len);
666 }
667 }
668 outval = value_string (ptr, count * inval2len, char_type);
669 }
670 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
671 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
672 {
673 error (_("unimplemented support for bitstring/boolean repeats"));
674 }
675 else
676 {
677 error (_("can't repeat values of that type"));
678 }
679 }
680 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
681 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
682 {
683 /* We have two character strings to concatenate. */
684 if (TYPE_CODE (type2) != TYPE_CODE_STRING
685 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
686 {
687 error (_("Strings can only be concatenated with other strings."));
688 }
689 inval1len = TYPE_LENGTH (type1);
690 inval2len = TYPE_LENGTH (type2);
691 ptr = (char *) alloca (inval1len + inval2len);
692 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
693 {
694 char_type = type1;
695 *ptr = (char) unpack_long (type1, value_contents (inval1));
696 }
697 else
698 {
699 char_type = TYPE_TARGET_TYPE (type1);
700 memcpy (ptr, value_contents (inval1), inval1len);
701 }
702 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
703 {
704 *(ptr + inval1len) =
705 (char) unpack_long (type2, value_contents (inval2));
706 }
707 else
708 {
709 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
710 }
711 outval = value_string (ptr, inval1len + inval2len, char_type);
712 }
713 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
714 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
715 {
716 /* We have two bitstrings to concatenate. */
717 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
718 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
719 {
720 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
721 }
722 error (_("unimplemented support for bitstring/boolean concatenation."));
723 }
724 else
725 {
726 /* We don't know how to concatenate these operands. */
727 error (_("illegal operands for concatenation."));
728 }
729 return (outval);
730 }
731 \f
732 /* Integer exponentiation: V1**V2, where both arguments are
733 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
734 static LONGEST
735 integer_pow (LONGEST v1, LONGEST v2)
736 {
737 if (v2 < 0)
738 {
739 if (v1 == 0)
740 error (_("Attempt to raise 0 to negative power."));
741 else
742 return 0;
743 }
744 else
745 {
746 /* The Russian Peasant's Algorithm */
747 LONGEST v;
748
749 v = 1;
750 for (;;)
751 {
752 if (v2 & 1L)
753 v *= v1;
754 v2 >>= 1;
755 if (v2 == 0)
756 return v;
757 v1 *= v1;
758 }
759 }
760 }
761
762 /* Integer exponentiation: V1**V2, where both arguments are
763 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
764 static ULONGEST
765 uinteger_pow (ULONGEST v1, LONGEST v2)
766 {
767 if (v2 < 0)
768 {
769 if (v1 == 0)
770 error (_("Attempt to raise 0 to negative power."));
771 else
772 return 0;
773 }
774 else
775 {
776 /* The Russian Peasant's Algorithm */
777 ULONGEST v;
778
779 v = 1;
780 for (;;)
781 {
782 if (v2 & 1L)
783 v *= v1;
784 v2 >>= 1;
785 if (v2 == 0)
786 return v;
787 v1 *= v1;
788 }
789 }
790 }
791
792 /* Obtain decimal value of arguments for binary operation, converting from
793 other types if one of them is not decimal floating point. */
794 static void
795 value_args_as_decimal (struct value *arg1, struct value *arg2,
796 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
797 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
798 {
799 struct type *type1, *type2;
800
801 type1 = check_typedef (value_type (arg1));
802 type2 = check_typedef (value_type (arg2));
803
804 /* At least one of the arguments must be of decimal float type. */
805 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
806 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
807
808 if (TYPE_CODE (type1) == TYPE_CODE_FLT
809 || TYPE_CODE (type2) == TYPE_CODE_FLT)
810 /* The DFP extension to the C language does not allow mixing of
811 * decimal float types with other float types in expressions
812 * (see WDTR 24732, page 12). */
813 error (_("Mixing decimal floating types with other floating types is not allowed."));
814
815 /* Obtain decimal value of arg1, converting from other types
816 if necessary. */
817
818 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
819 {
820 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
821 *len_x = TYPE_LENGTH (type1);
822 memcpy (x, value_contents (arg1), *len_x);
823 }
824 else if (is_integral_type (type1))
825 {
826 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
827 *len_x = TYPE_LENGTH (type2);
828 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
829 }
830 else
831 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
832 TYPE_NAME (type2));
833
834 /* Obtain decimal value of arg2, converting from other types
835 if necessary. */
836
837 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
838 {
839 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
840 *len_y = TYPE_LENGTH (type2);
841 memcpy (y, value_contents (arg2), *len_y);
842 }
843 else if (is_integral_type (type2))
844 {
845 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
846 *len_y = TYPE_LENGTH (type1);
847 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
848 }
849 else
850 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
851 TYPE_NAME (type2));
852 }
853
854 /* Perform a binary operation on two operands which have reasonable
855 representations as integers or floats. This includes booleans,
856 characters, integers, or floats.
857 Does not support addition and subtraction on pointers;
858 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
859
860 struct value *
861 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
862 {
863 struct value *val;
864 struct type *type1, *type2, *result_type;
865
866 arg1 = coerce_ref (arg1);
867 arg2 = coerce_ref (arg2);
868
869 type1 = check_typedef (value_type (arg1));
870 type2 = check_typedef (value_type (arg2));
871
872 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
873 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
874 && !is_integral_type (type1))
875 || (TYPE_CODE (type2) != TYPE_CODE_FLT
876 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
877 && !is_integral_type (type2)))
878 error (_("Argument to arithmetic operation not a number or boolean."));
879
880 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
881 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
882 {
883 int len_v1, len_v2, len_v;
884 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
885 gdb_byte v1[16], v2[16];
886 gdb_byte v[16];
887
888 /* If only one type is decimal float, use its type.
889 Otherwise use the bigger type. */
890 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
891 result_type = type2;
892 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
893 result_type = type1;
894 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
895 result_type = type2;
896 else
897 result_type = type1;
898
899 len_v = TYPE_LENGTH (result_type);
900 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
901
902 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
903 v2, &len_v2, &byte_order_v2);
904
905 switch (op)
906 {
907 case BINOP_ADD:
908 case BINOP_SUB:
909 case BINOP_MUL:
910 case BINOP_DIV:
911 case BINOP_EXP:
912 decimal_binop (op, v1, len_v1, byte_order_v1,
913 v2, len_v2, byte_order_v2,
914 v, len_v, byte_order_v);
915 break;
916
917 default:
918 error (_("Operation not valid for decimal floating point number."));
919 }
920
921 val = value_from_decfloat (result_type, v);
922 }
923 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
924 || TYPE_CODE (type2) == TYPE_CODE_FLT)
925 {
926 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
927 in target format. real.c in GCC probably has the necessary
928 code. */
929 DOUBLEST v1, v2, v = 0;
930 v1 = value_as_double (arg1);
931 v2 = value_as_double (arg2);
932
933 switch (op)
934 {
935 case BINOP_ADD:
936 v = v1 + v2;
937 break;
938
939 case BINOP_SUB:
940 v = v1 - v2;
941 break;
942
943 case BINOP_MUL:
944 v = v1 * v2;
945 break;
946
947 case BINOP_DIV:
948 v = v1 / v2;
949 break;
950
951 case BINOP_EXP:
952 errno = 0;
953 v = pow (v1, v2);
954 if (errno)
955 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
956 break;
957
958 case BINOP_MIN:
959 v = v1 < v2 ? v1 : v2;
960 break;
961
962 case BINOP_MAX:
963 v = v1 > v2 ? v1 : v2;
964 break;
965
966 default:
967 error (_("Integer-only operation on floating point number."));
968 }
969
970 /* If only one type is float, use its type.
971 Otherwise use the bigger type. */
972 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
973 result_type = type2;
974 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
975 result_type = type1;
976 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
977 result_type = type2;
978 else
979 result_type = type1;
980
981 val = allocate_value (result_type);
982 store_typed_floating (value_contents_raw (val), value_type (val), v);
983 }
984 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
985 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
986 {
987 LONGEST v1, v2, v = 0;
988 v1 = value_as_long (arg1);
989 v2 = value_as_long (arg2);
990
991 switch (op)
992 {
993 case BINOP_BITWISE_AND:
994 v = v1 & v2;
995 break;
996
997 case BINOP_BITWISE_IOR:
998 v = v1 | v2;
999 break;
1000
1001 case BINOP_BITWISE_XOR:
1002 v = v1 ^ v2;
1003 break;
1004
1005 case BINOP_EQUAL:
1006 v = v1 == v2;
1007 break;
1008
1009 case BINOP_NOTEQUAL:
1010 v = v1 != v2;
1011 break;
1012
1013 default:
1014 error (_("Invalid operation on booleans."));
1015 }
1016
1017 result_type = type1;
1018
1019 val = allocate_value (result_type);
1020 store_signed_integer (value_contents_raw (val),
1021 TYPE_LENGTH (result_type),
1022 gdbarch_byte_order (get_type_arch (result_type)),
1023 v);
1024 }
1025 else
1026 /* Integral operations here. */
1027 {
1028 /* Determine type length of the result, and if the operation should
1029 be done unsigned. For exponentiation and shift operators,
1030 use the length and type of the left operand. Otherwise,
1031 use the signedness of the operand with the greater length.
1032 If both operands are of equal length, use unsigned operation
1033 if one of the operands is unsigned. */
1034 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1035 result_type = type1;
1036 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1037 result_type = type1;
1038 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1039 result_type = type2;
1040 else if (TYPE_UNSIGNED (type1))
1041 result_type = type1;
1042 else if (TYPE_UNSIGNED (type2))
1043 result_type = type2;
1044 else
1045 result_type = type1;
1046
1047 if (TYPE_UNSIGNED (result_type))
1048 {
1049 LONGEST v2_signed = value_as_long (arg2);
1050 ULONGEST v1, v2, v = 0;
1051 v1 = (ULONGEST) value_as_long (arg1);
1052 v2 = (ULONGEST) v2_signed;
1053
1054 switch (op)
1055 {
1056 case BINOP_ADD:
1057 v = v1 + v2;
1058 break;
1059
1060 case BINOP_SUB:
1061 v = v1 - v2;
1062 break;
1063
1064 case BINOP_MUL:
1065 v = v1 * v2;
1066 break;
1067
1068 case BINOP_DIV:
1069 case BINOP_INTDIV:
1070 if (v2 != 0)
1071 v = v1 / v2;
1072 else
1073 error (_("Division by zero"));
1074 break;
1075
1076 case BINOP_EXP:
1077 v = uinteger_pow (v1, v2_signed);
1078 break;
1079
1080 case BINOP_REM:
1081 if (v2 != 0)
1082 v = v1 % v2;
1083 else
1084 error (_("Division by zero"));
1085 break;
1086
1087 case BINOP_MOD:
1088 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1089 v1 mod 0 has a defined value, v1. */
1090 if (v2 == 0)
1091 {
1092 v = v1;
1093 }
1094 else
1095 {
1096 v = v1 / v2;
1097 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1098 v = v1 - (v2 * v);
1099 }
1100 break;
1101
1102 case BINOP_LSH:
1103 v = v1 << v2;
1104 break;
1105
1106 case BINOP_RSH:
1107 v = v1 >> v2;
1108 break;
1109
1110 case BINOP_BITWISE_AND:
1111 v = v1 & v2;
1112 break;
1113
1114 case BINOP_BITWISE_IOR:
1115 v = v1 | v2;
1116 break;
1117
1118 case BINOP_BITWISE_XOR:
1119 v = v1 ^ v2;
1120 break;
1121
1122 case BINOP_LOGICAL_AND:
1123 v = v1 && v2;
1124 break;
1125
1126 case BINOP_LOGICAL_OR:
1127 v = v1 || v2;
1128 break;
1129
1130 case BINOP_MIN:
1131 v = v1 < v2 ? v1 : v2;
1132 break;
1133
1134 case BINOP_MAX:
1135 v = v1 > v2 ? v1 : v2;
1136 break;
1137
1138 case BINOP_EQUAL:
1139 v = v1 == v2;
1140 break;
1141
1142 case BINOP_NOTEQUAL:
1143 v = v1 != v2;
1144 break;
1145
1146 case BINOP_LESS:
1147 v = v1 < v2;
1148 break;
1149
1150 case BINOP_GTR:
1151 v = v1 > v2;
1152 break;
1153
1154 case BINOP_LEQ:
1155 v = v1 <= v2;
1156 break;
1157
1158 case BINOP_GEQ:
1159 v = v1 >= v2;
1160 break;
1161
1162 default:
1163 error (_("Invalid binary operation on numbers."));
1164 }
1165
1166 val = allocate_value (result_type);
1167 store_unsigned_integer (value_contents_raw (val),
1168 TYPE_LENGTH (value_type (val)),
1169 gdbarch_byte_order
1170 (get_type_arch (result_type)),
1171 v);
1172 }
1173 else
1174 {
1175 LONGEST v1, v2, v = 0;
1176 v1 = value_as_long (arg1);
1177 v2 = value_as_long (arg2);
1178
1179 switch (op)
1180 {
1181 case BINOP_ADD:
1182 v = v1 + v2;
1183 break;
1184
1185 case BINOP_SUB:
1186 v = v1 - v2;
1187 break;
1188
1189 case BINOP_MUL:
1190 v = v1 * v2;
1191 break;
1192
1193 case BINOP_DIV:
1194 case BINOP_INTDIV:
1195 if (v2 != 0)
1196 v = v1 / v2;
1197 else
1198 error (_("Division by zero"));
1199 break;
1200
1201 case BINOP_EXP:
1202 v = integer_pow (v1, v2);
1203 break;
1204
1205 case BINOP_REM:
1206 if (v2 != 0)
1207 v = v1 % v2;
1208 else
1209 error (_("Division by zero"));
1210 break;
1211
1212 case BINOP_MOD:
1213 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1214 X mod 0 has a defined value, X. */
1215 if (v2 == 0)
1216 {
1217 v = v1;
1218 }
1219 else
1220 {
1221 v = v1 / v2;
1222 /* Compute floor. */
1223 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1224 {
1225 v--;
1226 }
1227 v = v1 - (v2 * v);
1228 }
1229 break;
1230
1231 case BINOP_LSH:
1232 v = v1 << v2;
1233 break;
1234
1235 case BINOP_RSH:
1236 v = v1 >> v2;
1237 break;
1238
1239 case BINOP_BITWISE_AND:
1240 v = v1 & v2;
1241 break;
1242
1243 case BINOP_BITWISE_IOR:
1244 v = v1 | v2;
1245 break;
1246
1247 case BINOP_BITWISE_XOR:
1248 v = v1 ^ v2;
1249 break;
1250
1251 case BINOP_LOGICAL_AND:
1252 v = v1 && v2;
1253 break;
1254
1255 case BINOP_LOGICAL_OR:
1256 v = v1 || v2;
1257 break;
1258
1259 case BINOP_MIN:
1260 v = v1 < v2 ? v1 : v2;
1261 break;
1262
1263 case BINOP_MAX:
1264 v = v1 > v2 ? v1 : v2;
1265 break;
1266
1267 case BINOP_EQUAL:
1268 v = v1 == v2;
1269 break;
1270
1271 case BINOP_NOTEQUAL:
1272 v = v1 != v2;
1273 break;
1274
1275 case BINOP_LESS:
1276 v = v1 < v2;
1277 break;
1278
1279 case BINOP_GTR:
1280 v = v1 > v2;
1281 break;
1282
1283 case BINOP_LEQ:
1284 v = v1 <= v2;
1285 break;
1286
1287 case BINOP_GEQ:
1288 v = v1 >= v2;
1289 break;
1290
1291 default:
1292 error (_("Invalid binary operation on numbers."));
1293 }
1294
1295 val = allocate_value (result_type);
1296 store_signed_integer (value_contents_raw (val),
1297 TYPE_LENGTH (value_type (val)),
1298 gdbarch_byte_order
1299 (get_type_arch (result_type)),
1300 v);
1301 }
1302 }
1303
1304 return val;
1305 }
1306 \f
1307 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1308
1309 int
1310 value_logical_not (struct value *arg1)
1311 {
1312 int len;
1313 const gdb_byte *p;
1314 struct type *type1;
1315
1316 arg1 = coerce_array (arg1);
1317 type1 = check_typedef (value_type (arg1));
1318
1319 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1320 return 0 == value_as_double (arg1);
1321 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1322 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1323 gdbarch_byte_order (get_type_arch (type1)));
1324
1325 len = TYPE_LENGTH (type1);
1326 p = value_contents (arg1);
1327
1328 while (--len >= 0)
1329 {
1330 if (*p++)
1331 break;
1332 }
1333
1334 return len < 0;
1335 }
1336
1337 /* Perform a comparison on two string values (whose content are not
1338 necessarily null terminated) based on their length */
1339
1340 static int
1341 value_strcmp (struct value *arg1, struct value *arg2)
1342 {
1343 int len1 = TYPE_LENGTH (value_type (arg1));
1344 int len2 = TYPE_LENGTH (value_type (arg2));
1345 const gdb_byte *s1 = value_contents (arg1);
1346 const gdb_byte *s2 = value_contents (arg2);
1347 int i, len = len1 < len2 ? len1 : len2;
1348
1349 for (i = 0; i < len; i++)
1350 {
1351 if (s1[i] < s2[i])
1352 return -1;
1353 else if (s1[i] > s2[i])
1354 return 1;
1355 else
1356 continue;
1357 }
1358
1359 if (len1 < len2)
1360 return -1;
1361 else if (len1 > len2)
1362 return 1;
1363 else
1364 return 0;
1365 }
1366
1367 /* Simulate the C operator == by returning a 1
1368 iff ARG1 and ARG2 have equal contents. */
1369
1370 int
1371 value_equal (struct value *arg1, struct value *arg2)
1372 {
1373 int len;
1374 const gdb_byte *p1;
1375 const gdb_byte *p2;
1376 struct type *type1, *type2;
1377 enum type_code code1;
1378 enum type_code code2;
1379 int is_int1, is_int2;
1380
1381 arg1 = coerce_array (arg1);
1382 arg2 = coerce_array (arg2);
1383
1384 type1 = check_typedef (value_type (arg1));
1385 type2 = check_typedef (value_type (arg2));
1386 code1 = TYPE_CODE (type1);
1387 code2 = TYPE_CODE (type2);
1388 is_int1 = is_integral_type (type1);
1389 is_int2 = is_integral_type (type2);
1390
1391 if (is_int1 && is_int2)
1392 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1393 BINOP_EQUAL)));
1394 else if ((code1 == TYPE_CODE_FLT || is_int1)
1395 && (code2 == TYPE_CODE_FLT || is_int2))
1396 {
1397 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1398 `long double' values are returned in static storage (m68k). */
1399 DOUBLEST d = value_as_double (arg1);
1400 return d == value_as_double (arg2);
1401 }
1402 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1403 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1404 {
1405 gdb_byte v1[16], v2[16];
1406 int len_v1, len_v2;
1407 enum bfd_endian byte_order_v1, byte_order_v2;
1408
1409 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1410 v2, &len_v2, &byte_order_v2);
1411
1412 return decimal_compare (v1, len_v1, byte_order_v1,
1413 v2, len_v2, byte_order_v2) == 0;
1414 }
1415
1416 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1417 is bigger. */
1418 else if (code1 == TYPE_CODE_PTR && is_int2)
1419 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1420 else if (code2 == TYPE_CODE_PTR && is_int1)
1421 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1422
1423 else if (code1 == code2
1424 && ((len = (int) TYPE_LENGTH (type1))
1425 == (int) TYPE_LENGTH (type2)))
1426 {
1427 p1 = value_contents (arg1);
1428 p2 = value_contents (arg2);
1429 while (--len >= 0)
1430 {
1431 if (*p1++ != *p2++)
1432 break;
1433 }
1434 return len < 0;
1435 }
1436 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1437 {
1438 return value_strcmp (arg1, arg2) == 0;
1439 }
1440 else
1441 {
1442 error (_("Invalid type combination in equality test."));
1443 return 0; /* For lint -- never reached */
1444 }
1445 }
1446
1447 /* Compare values based on their raw contents. Useful for arrays since
1448 value_equal coerces them to pointers, thus comparing just the address
1449 of the array instead of its contents. */
1450
1451 int
1452 value_equal_contents (struct value *arg1, struct value *arg2)
1453 {
1454 struct type *type1, *type2;
1455
1456 type1 = check_typedef (value_type (arg1));
1457 type2 = check_typedef (value_type (arg2));
1458
1459 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1460 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1461 && memcmp (value_contents (arg1), value_contents (arg2),
1462 TYPE_LENGTH (type1)) == 0);
1463 }
1464
1465 /* Simulate the C operator < by returning 1
1466 iff ARG1's contents are less than ARG2's. */
1467
1468 int
1469 value_less (struct value *arg1, struct value *arg2)
1470 {
1471 enum type_code code1;
1472 enum type_code code2;
1473 struct type *type1, *type2;
1474 int is_int1, is_int2;
1475
1476 arg1 = coerce_array (arg1);
1477 arg2 = coerce_array (arg2);
1478
1479 type1 = check_typedef (value_type (arg1));
1480 type2 = check_typedef (value_type (arg2));
1481 code1 = TYPE_CODE (type1);
1482 code2 = TYPE_CODE (type2);
1483 is_int1 = is_integral_type (type1);
1484 is_int2 = is_integral_type (type2);
1485
1486 if (is_int1 && is_int2)
1487 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1488 BINOP_LESS)));
1489 else if ((code1 == TYPE_CODE_FLT || is_int1)
1490 && (code2 == TYPE_CODE_FLT || is_int2))
1491 {
1492 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1493 `long double' values are returned in static storage (m68k). */
1494 DOUBLEST d = value_as_double (arg1);
1495 return d < value_as_double (arg2);
1496 }
1497 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1498 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1499 {
1500 gdb_byte v1[16], v2[16];
1501 int len_v1, len_v2;
1502 enum bfd_endian byte_order_v1, byte_order_v2;
1503
1504 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1505 v2, &len_v2, &byte_order_v2);
1506
1507 return decimal_compare (v1, len_v1, byte_order_v1,
1508 v2, len_v2, byte_order_v2) == -1;
1509 }
1510 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1511 return value_as_address (arg1) < value_as_address (arg2);
1512
1513 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1514 is bigger. */
1515 else if (code1 == TYPE_CODE_PTR && is_int2)
1516 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1517 else if (code2 == TYPE_CODE_PTR && is_int1)
1518 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1519 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1520 return value_strcmp (arg1, arg2) < 0;
1521 else
1522 {
1523 error (_("Invalid type combination in ordering comparison."));
1524 return 0;
1525 }
1526 }
1527 \f
1528 /* The unary operators +, - and ~. They free the argument ARG1. */
1529
1530 struct value *
1531 value_pos (struct value *arg1)
1532 {
1533 struct type *type;
1534
1535 arg1 = coerce_ref (arg1);
1536 type = check_typedef (value_type (arg1));
1537
1538 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1539 return value_from_double (type, value_as_double (arg1));
1540 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1541 return value_from_decfloat (type, value_contents (arg1));
1542 else if (is_integral_type (type))
1543 {
1544 return value_from_longest (type, value_as_long (arg1));
1545 }
1546 else
1547 {
1548 error ("Argument to positive operation not a number.");
1549 return 0; /* For lint -- never reached */
1550 }
1551 }
1552
1553 struct value *
1554 value_neg (struct value *arg1)
1555 {
1556 struct type *type;
1557
1558 arg1 = coerce_ref (arg1);
1559 type = check_typedef (value_type (arg1));
1560
1561 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1562 {
1563 struct value *val = allocate_value (type);
1564 int len = TYPE_LENGTH (type);
1565 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1566
1567 memcpy (decbytes, value_contents (arg1), len);
1568
1569 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1570 decbytes[len-1] = decbytes[len - 1] | 0x80;
1571 else
1572 decbytes[0] = decbytes[0] | 0x80;
1573
1574 memcpy (value_contents_raw (val), decbytes, len);
1575 return val;
1576 }
1577 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1578 return value_from_double (type, -value_as_double (arg1));
1579 else if (is_integral_type (type))
1580 {
1581 return value_from_longest (type, -value_as_long (arg1));
1582 }
1583 else
1584 {
1585 error (_("Argument to negate operation not a number."));
1586 return 0; /* For lint -- never reached */
1587 }
1588 }
1589
1590 struct value *
1591 value_complement (struct value *arg1)
1592 {
1593 struct type *type;
1594
1595 arg1 = coerce_ref (arg1);
1596 type = check_typedef (value_type (arg1));
1597
1598 if (!is_integral_type (type))
1599 error (_("Argument to complement operation not an integer or boolean."));
1600
1601 return value_from_longest (type, ~value_as_long (arg1));
1602 }
1603 \f
1604 /* The INDEX'th bit of SET value whose value_type is TYPE,
1605 and whose value_contents is valaddr.
1606 Return -1 if out of range, -2 other error. */
1607
1608 int
1609 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1610 {
1611 struct gdbarch *gdbarch = get_type_arch (type);
1612 LONGEST low_bound, high_bound;
1613 LONGEST word;
1614 unsigned rel_index;
1615 struct type *range = TYPE_INDEX_TYPE (type);
1616 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1617 return -2;
1618 if (index < low_bound || index > high_bound)
1619 return -1;
1620 rel_index = index - low_bound;
1621 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1622 gdbarch_byte_order (gdbarch));
1623 rel_index %= TARGET_CHAR_BIT;
1624 if (gdbarch_bits_big_endian (gdbarch))
1625 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1626 return (word >> rel_index) & 1;
1627 }
1628
1629 int
1630 value_in (struct value *element, struct value *set)
1631 {
1632 int member;
1633 struct type *settype = check_typedef (value_type (set));
1634 struct type *eltype = check_typedef (value_type (element));
1635 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1636 eltype = TYPE_TARGET_TYPE (eltype);
1637 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1638 error (_("Second argument of 'IN' has wrong type"));
1639 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1640 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1641 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1642 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1643 error (_("First argument of 'IN' has wrong type"));
1644 member = value_bit_index (settype, value_contents (set),
1645 value_as_long (element));
1646 if (member < 0)
1647 error (_("First argument of 'IN' not in range"));
1648 return member;
1649 }
1650
1651 void
1652 _initialize_valarith (void)
1653 {
1654 }
This page took 0.062189 seconds and 5 git commands to generate.