2010-05-17 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 return value_from_pointer (valptrtype,
98 value_as_address (arg1) + sz * arg2);
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("\
121 First argument of `-' is a pointer and second argument is neither\n\
122 an integer nor a pointer of the same type."));
123
124 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
140
141 See comments in value_coerce_array() for rationale for reason for
142 doing lower bounds adjustment here rather than there.
143 FIXME: Perhaps we should validate that the index is valid and if
144 verbosity is set, warn about invalid indices (but still use them). */
145
146 struct value *
147 value_subscript (struct value *array, LONGEST index)
148 {
149 int c_style = current_language->c_style_arrays;
150 struct type *tarray;
151
152 array = coerce_ref (array);
153 tarray = check_typedef (value_type (array));
154
155 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
156 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
157 {
158 struct type *range_type = TYPE_INDEX_TYPE (tarray);
159 LONGEST lowerbound, upperbound;
160
161 get_discrete_bounds (range_type, &lowerbound, &upperbound);
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, lowerbound);
164
165 if (c_style == 0)
166 {
167 if (index >= lowerbound && index <= upperbound)
168 return value_subscripted_rvalue (array, index, lowerbound);
169 /* Emit warning unless we have an array of unknown size.
170 An array of unknown size has lowerbound 0 and upperbound -1. */
171 if (upperbound > -1)
172 warning (_("array or string index out of range"));
173 /* fall doing C stuff */
174 c_style = 1;
175 }
176
177 index -= lowerbound;
178 array = value_coerce_array (array);
179 }
180
181 if (c_style)
182 return value_ind (value_ptradd (array, index));
183 else
184 error (_("not an array or string"));
185 }
186
187 /* Return the value of EXPR[IDX], expr an aggregate rvalue
188 (eg, a vector register). This routine used to promote floats
189 to doubles, but no longer does. */
190
191 struct value *
192 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
193 {
194 struct type *array_type = check_typedef (value_type (array));
195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
196 unsigned int elt_size = TYPE_LENGTH (elt_type);
197 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
198 struct value *v;
199
200 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
201 && elt_offs >= TYPE_LENGTH (array_type)))
202 error (_("no such vector element"));
203
204 v = allocate_value (elt_type);
205 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
206 set_value_lazy (v, 1);
207 else
208 memcpy (value_contents_writeable (v),
209 value_contents (array) + elt_offs, elt_size);
210
211 set_value_component_location (v, array);
212 VALUE_REGNUM (v) = VALUE_REGNUM (array);
213 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
214 set_value_offset (v, value_offset (array) + elt_offs);
215 return v;
216 }
217
218 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
219
220 struct value *
221 value_bitstring_subscript (struct type *type,
222 struct value *bitstring, LONGEST index)
223 {
224
225 struct type *bitstring_type, *range_type;
226 struct value *v;
227 int offset, byte, bit_index;
228 LONGEST lowerbound, upperbound;
229
230 bitstring_type = check_typedef (value_type (bitstring));
231 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
232
233 range_type = TYPE_INDEX_TYPE (bitstring_type);
234 get_discrete_bounds (range_type, &lowerbound, &upperbound);
235 if (index < lowerbound || index > upperbound)
236 error (_("bitstring index out of range"));
237
238 index -= lowerbound;
239 offset = index / TARGET_CHAR_BIT;
240 byte = *((char *) value_contents (bitstring) + offset);
241
242 bit_index = index % TARGET_CHAR_BIT;
243 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
244 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
245
246 v = value_from_longest (type, byte & 1);
247
248 set_value_bitpos (v, bit_index);
249 set_value_bitsize (v, 1);
250 set_value_component_location (v, bitstring);
251 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
252
253 set_value_offset (v, offset + value_offset (bitstring));
254
255 return v;
256 }
257
258 \f
259 /* Check to see if either argument is a structure, or a reference to
260 one. This is called so we know whether to go ahead with the normal
261 binop or look for a user defined function instead.
262
263 For now, we do not overload the `=' operator. */
264
265 int
266 binop_types_user_defined_p (enum exp_opcode op,
267 struct type *type1, struct type *type2)
268 {
269 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
270 return 0;
271
272 type1 = check_typedef (type1);
273 if (TYPE_CODE (type1) == TYPE_CODE_REF)
274 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
275
276 type2 = check_typedef (type1);
277 if (TYPE_CODE (type2) == TYPE_CODE_REF)
278 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
279
280 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
281 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
282 }
283
284 /* Check to see if either argument is a structure, or a reference to
285 one. This is called so we know whether to go ahead with the normal
286 binop or look for a user defined function instead.
287
288 For now, we do not overload the `=' operator. */
289
290 int
291 binop_user_defined_p (enum exp_opcode op,
292 struct value *arg1, struct value *arg2)
293 {
294 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
295 }
296
297 /* Check to see if argument is a structure. This is called so
298 we know whether to go ahead with the normal unop or look for a
299 user defined function instead.
300
301 For now, we do not overload the `&' operator. */
302
303 int
304 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
305 {
306 struct type *type1;
307
308 if (op == UNOP_ADDR)
309 return 0;
310 type1 = check_typedef (value_type (arg1));
311 for (;;)
312 {
313 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
314 return 1;
315 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
316 type1 = TYPE_TARGET_TYPE (type1);
317 else
318 return 0;
319 }
320 }
321
322 /* We know either arg1 or arg2 is a structure, so try to find the right
323 user defined function. Create an argument vector that calls
324 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
325 binary operator which is legal for GNU C++).
326
327 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
328 is the opcode saying how to modify it. Otherwise, OTHEROP is
329 unused. */
330
331 struct value *
332 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
333 enum exp_opcode otherop, enum noside noside)
334 {
335 struct value **argvec;
336 char *ptr;
337 char tstr[13];
338 int static_memfuncp;
339
340 arg1 = coerce_ref (arg1);
341 arg2 = coerce_ref (arg2);
342
343 /* now we know that what we have to do is construct our
344 arg vector and find the right function to call it with. */
345
346 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
347 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
348
349 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
350 argvec[1] = value_addr (arg1);
351 argvec[2] = arg2;
352 argvec[3] = 0;
353
354 /* make the right function name up */
355 strcpy (tstr, "operator__");
356 ptr = tstr + 8;
357 switch (op)
358 {
359 case BINOP_ADD:
360 strcpy (ptr, "+");
361 break;
362 case BINOP_SUB:
363 strcpy (ptr, "-");
364 break;
365 case BINOP_MUL:
366 strcpy (ptr, "*");
367 break;
368 case BINOP_DIV:
369 strcpy (ptr, "/");
370 break;
371 case BINOP_REM:
372 strcpy (ptr, "%");
373 break;
374 case BINOP_LSH:
375 strcpy (ptr, "<<");
376 break;
377 case BINOP_RSH:
378 strcpy (ptr, ">>");
379 break;
380 case BINOP_BITWISE_AND:
381 strcpy (ptr, "&");
382 break;
383 case BINOP_BITWISE_IOR:
384 strcpy (ptr, "|");
385 break;
386 case BINOP_BITWISE_XOR:
387 strcpy (ptr, "^");
388 break;
389 case BINOP_LOGICAL_AND:
390 strcpy (ptr, "&&");
391 break;
392 case BINOP_LOGICAL_OR:
393 strcpy (ptr, "||");
394 break;
395 case BINOP_MIN:
396 strcpy (ptr, "<?");
397 break;
398 case BINOP_MAX:
399 strcpy (ptr, ">?");
400 break;
401 case BINOP_ASSIGN:
402 strcpy (ptr, "=");
403 break;
404 case BINOP_ASSIGN_MODIFY:
405 switch (otherop)
406 {
407 case BINOP_ADD:
408 strcpy (ptr, "+=");
409 break;
410 case BINOP_SUB:
411 strcpy (ptr, "-=");
412 break;
413 case BINOP_MUL:
414 strcpy (ptr, "*=");
415 break;
416 case BINOP_DIV:
417 strcpy (ptr, "/=");
418 break;
419 case BINOP_REM:
420 strcpy (ptr, "%=");
421 break;
422 case BINOP_BITWISE_AND:
423 strcpy (ptr, "&=");
424 break;
425 case BINOP_BITWISE_IOR:
426 strcpy (ptr, "|=");
427 break;
428 case BINOP_BITWISE_XOR:
429 strcpy (ptr, "^=");
430 break;
431 case BINOP_MOD: /* invalid */
432 default:
433 error (_("Invalid binary operation specified."));
434 }
435 break;
436 case BINOP_SUBSCRIPT:
437 strcpy (ptr, "[]");
438 break;
439 case BINOP_EQUAL:
440 strcpy (ptr, "==");
441 break;
442 case BINOP_NOTEQUAL:
443 strcpy (ptr, "!=");
444 break;
445 case BINOP_LESS:
446 strcpy (ptr, "<");
447 break;
448 case BINOP_GTR:
449 strcpy (ptr, ">");
450 break;
451 case BINOP_GEQ:
452 strcpy (ptr, ">=");
453 break;
454 case BINOP_LEQ:
455 strcpy (ptr, "<=");
456 break;
457 case BINOP_MOD: /* invalid */
458 default:
459 error (_("Invalid binary operation specified."));
460 }
461
462 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
463
464 if (argvec[0])
465 {
466 if (static_memfuncp)
467 {
468 argvec[1] = argvec[0];
469 argvec++;
470 }
471 if (noside == EVAL_AVOID_SIDE_EFFECTS)
472 {
473 struct type *return_type;
474
475 return_type
476 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
477 return value_zero (return_type, VALUE_LVAL (arg1));
478 }
479 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
480 }
481 error (_("member function %s not found"), tstr);
482 #ifdef lint
483 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
484 #endif
485 }
486
487 /* We know that arg1 is a structure, so try to find a unary user
488 defined operator that matches the operator in question.
489 Create an argument vector that calls arg1.operator @ (arg1)
490 and return that value (where '@' is (almost) any unary operator which
491 is legal for GNU C++). */
492
493 struct value *
494 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
495 {
496 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
497 struct value **argvec;
498 char *ptr, *mangle_ptr;
499 char tstr[13], mangle_tstr[13];
500 int static_memfuncp, nargs;
501
502 arg1 = coerce_ref (arg1);
503
504 /* now we know that what we have to do is construct our
505 arg vector and find the right function to call it with. */
506
507 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
508 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
509
510 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
511 argvec[1] = value_addr (arg1);
512 argvec[2] = 0;
513
514 nargs = 1;
515
516 /* make the right function name up */
517 strcpy (tstr, "operator__");
518 ptr = tstr + 8;
519 strcpy (mangle_tstr, "__");
520 mangle_ptr = mangle_tstr + 2;
521 switch (op)
522 {
523 case UNOP_PREINCREMENT:
524 strcpy (ptr, "++");
525 break;
526 case UNOP_PREDECREMENT:
527 strcpy (ptr, "--");
528 break;
529 case UNOP_POSTINCREMENT:
530 strcpy (ptr, "++");
531 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
532 argvec[3] = 0;
533 nargs ++;
534 break;
535 case UNOP_POSTDECREMENT:
536 strcpy (ptr, "--");
537 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
538 argvec[3] = 0;
539 nargs ++;
540 break;
541 case UNOP_LOGICAL_NOT:
542 strcpy (ptr, "!");
543 break;
544 case UNOP_COMPLEMENT:
545 strcpy (ptr, "~");
546 break;
547 case UNOP_NEG:
548 strcpy (ptr, "-");
549 break;
550 case UNOP_PLUS:
551 strcpy (ptr, "+");
552 break;
553 case UNOP_IND:
554 strcpy (ptr, "*");
555 break;
556 default:
557 error (_("Invalid unary operation specified."));
558 }
559
560 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
561
562 if (argvec[0])
563 {
564 if (static_memfuncp)
565 {
566 argvec[1] = argvec[0];
567 nargs --;
568 argvec++;
569 }
570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
571 {
572 struct type *return_type;
573
574 return_type
575 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
576 return value_zero (return_type, VALUE_LVAL (arg1));
577 }
578 return call_function_by_hand (argvec[0], nargs, argvec + 1);
579 }
580 error (_("member function %s not found"), tstr);
581 return 0; /* For lint -- never reached */
582 }
583 \f
584
585 /* Concatenate two values with the following conditions:
586
587 (1) Both values must be either bitstring values or character string
588 values and the resulting value consists of the concatenation of
589 ARG1 followed by ARG2.
590
591 or
592
593 One value must be an integer value and the other value must be
594 either a bitstring value or character string value, which is
595 to be repeated by the number of times specified by the integer
596 value.
597
598
599 (2) Boolean values are also allowed and are treated as bit string
600 values of length 1.
601
602 (3) Character values are also allowed and are treated as character
603 string values of length 1.
604 */
605
606 struct value *
607 value_concat (struct value *arg1, struct value *arg2)
608 {
609 struct value *inval1;
610 struct value *inval2;
611 struct value *outval = NULL;
612 int inval1len, inval2len;
613 int count, idx;
614 char *ptr;
615 char inchar;
616 struct type *type1 = check_typedef (value_type (arg1));
617 struct type *type2 = check_typedef (value_type (arg2));
618 struct type *char_type;
619
620 /* First figure out if we are dealing with two values to be concatenated
621 or a repeat count and a value to be repeated. INVAL1 is set to the
622 first of two concatenated values, or the repeat count. INVAL2 is set
623 to the second of the two concatenated values or the value to be
624 repeated. */
625
626 if (TYPE_CODE (type2) == TYPE_CODE_INT)
627 {
628 struct type *tmp = type1;
629
630 type1 = tmp;
631 tmp = type2;
632 inval1 = arg2;
633 inval2 = arg1;
634 }
635 else
636 {
637 inval1 = arg1;
638 inval2 = arg2;
639 }
640
641 /* Now process the input values. */
642
643 if (TYPE_CODE (type1) == TYPE_CODE_INT)
644 {
645 /* We have a repeat count. Validate the second value and then
646 construct a value repeated that many times. */
647 if (TYPE_CODE (type2) == TYPE_CODE_STRING
648 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
649 {
650 count = longest_to_int (value_as_long (inval1));
651 inval2len = TYPE_LENGTH (type2);
652 ptr = (char *) alloca (count * inval2len);
653 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
654 {
655 char_type = type2;
656
657 inchar = (char) unpack_long (type2,
658 value_contents (inval2));
659 for (idx = 0; idx < count; idx++)
660 {
661 *(ptr + idx) = inchar;
662 }
663 }
664 else
665 {
666 char_type = TYPE_TARGET_TYPE (type2);
667
668 for (idx = 0; idx < count; idx++)
669 {
670 memcpy (ptr + (idx * inval2len), value_contents (inval2),
671 inval2len);
672 }
673 }
674 outval = value_string (ptr, count * inval2len, char_type);
675 }
676 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
677 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
678 {
679 error (_("unimplemented support for bitstring/boolean repeats"));
680 }
681 else
682 {
683 error (_("can't repeat values of that type"));
684 }
685 }
686 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
687 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
688 {
689 /* We have two character strings to concatenate. */
690 if (TYPE_CODE (type2) != TYPE_CODE_STRING
691 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
692 {
693 error (_("Strings can only be concatenated with other strings."));
694 }
695 inval1len = TYPE_LENGTH (type1);
696 inval2len = TYPE_LENGTH (type2);
697 ptr = (char *) alloca (inval1len + inval2len);
698 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
699 {
700 char_type = type1;
701
702 *ptr = (char) unpack_long (type1, value_contents (inval1));
703 }
704 else
705 {
706 char_type = TYPE_TARGET_TYPE (type1);
707
708 memcpy (ptr, value_contents (inval1), inval1len);
709 }
710 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
711 {
712 *(ptr + inval1len) =
713 (char) unpack_long (type2, value_contents (inval2));
714 }
715 else
716 {
717 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
718 }
719 outval = value_string (ptr, inval1len + inval2len, char_type);
720 }
721 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
722 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
723 {
724 /* We have two bitstrings to concatenate. */
725 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
726 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
727 {
728 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
729 }
730 error (_("unimplemented support for bitstring/boolean concatenation."));
731 }
732 else
733 {
734 /* We don't know how to concatenate these operands. */
735 error (_("illegal operands for concatenation."));
736 }
737 return (outval);
738 }
739 \f
740 /* Integer exponentiation: V1**V2, where both arguments are
741 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
742 static LONGEST
743 integer_pow (LONGEST v1, LONGEST v2)
744 {
745 if (v2 < 0)
746 {
747 if (v1 == 0)
748 error (_("Attempt to raise 0 to negative power."));
749 else
750 return 0;
751 }
752 else
753 {
754 /* The Russian Peasant's Algorithm */
755 LONGEST v;
756
757 v = 1;
758 for (;;)
759 {
760 if (v2 & 1L)
761 v *= v1;
762 v2 >>= 1;
763 if (v2 == 0)
764 return v;
765 v1 *= v1;
766 }
767 }
768 }
769
770 /* Integer exponentiation: V1**V2, where both arguments are
771 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
772 static ULONGEST
773 uinteger_pow (ULONGEST v1, LONGEST v2)
774 {
775 if (v2 < 0)
776 {
777 if (v1 == 0)
778 error (_("Attempt to raise 0 to negative power."));
779 else
780 return 0;
781 }
782 else
783 {
784 /* The Russian Peasant's Algorithm */
785 ULONGEST v;
786
787 v = 1;
788 for (;;)
789 {
790 if (v2 & 1L)
791 v *= v1;
792 v2 >>= 1;
793 if (v2 == 0)
794 return v;
795 v1 *= v1;
796 }
797 }
798 }
799
800 /* Obtain decimal value of arguments for binary operation, converting from
801 other types if one of them is not decimal floating point. */
802 static void
803 value_args_as_decimal (struct value *arg1, struct value *arg2,
804 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
805 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
806 {
807 struct type *type1, *type2;
808
809 type1 = check_typedef (value_type (arg1));
810 type2 = check_typedef (value_type (arg2));
811
812 /* At least one of the arguments must be of decimal float type. */
813 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
814 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
815
816 if (TYPE_CODE (type1) == TYPE_CODE_FLT
817 || TYPE_CODE (type2) == TYPE_CODE_FLT)
818 /* The DFP extension to the C language does not allow mixing of
819 * decimal float types with other float types in expressions
820 * (see WDTR 24732, page 12). */
821 error (_("Mixing decimal floating types with other floating types is not allowed."));
822
823 /* Obtain decimal value of arg1, converting from other types
824 if necessary. */
825
826 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
827 {
828 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
829 *len_x = TYPE_LENGTH (type1);
830 memcpy (x, value_contents (arg1), *len_x);
831 }
832 else if (is_integral_type (type1))
833 {
834 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
835 *len_x = TYPE_LENGTH (type2);
836 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
837 }
838 else
839 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
840 TYPE_NAME (type2));
841
842 /* Obtain decimal value of arg2, converting from other types
843 if necessary. */
844
845 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
846 {
847 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
848 *len_y = TYPE_LENGTH (type2);
849 memcpy (y, value_contents (arg2), *len_y);
850 }
851 else if (is_integral_type (type2))
852 {
853 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
854 *len_y = TYPE_LENGTH (type1);
855 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
856 }
857 else
858 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
859 TYPE_NAME (type2));
860 }
861
862 /* Perform a binary operation on two operands which have reasonable
863 representations as integers or floats. This includes booleans,
864 characters, integers, or floats.
865 Does not support addition and subtraction on pointers;
866 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
867
868 struct value *
869 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
870 {
871 struct value *val;
872 struct type *type1, *type2, *result_type;
873
874 arg1 = coerce_ref (arg1);
875 arg2 = coerce_ref (arg2);
876
877 type1 = check_typedef (value_type (arg1));
878 type2 = check_typedef (value_type (arg2));
879
880 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
881 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
882 && !is_integral_type (type1))
883 || (TYPE_CODE (type2) != TYPE_CODE_FLT
884 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
885 && !is_integral_type (type2)))
886 error (_("Argument to arithmetic operation not a number or boolean."));
887
888 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
889 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
890 {
891 int len_v1, len_v2, len_v;
892 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
893 gdb_byte v1[16], v2[16];
894 gdb_byte v[16];
895
896 /* If only one type is decimal float, use its type.
897 Otherwise use the bigger type. */
898 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
899 result_type = type2;
900 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
901 result_type = type1;
902 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
903 result_type = type2;
904 else
905 result_type = type1;
906
907 len_v = TYPE_LENGTH (result_type);
908 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
909
910 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
911 v2, &len_v2, &byte_order_v2);
912
913 switch (op)
914 {
915 case BINOP_ADD:
916 case BINOP_SUB:
917 case BINOP_MUL:
918 case BINOP_DIV:
919 case BINOP_EXP:
920 decimal_binop (op, v1, len_v1, byte_order_v1,
921 v2, len_v2, byte_order_v2,
922 v, len_v, byte_order_v);
923 break;
924
925 default:
926 error (_("Operation not valid for decimal floating point number."));
927 }
928
929 val = value_from_decfloat (result_type, v);
930 }
931 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
932 || TYPE_CODE (type2) == TYPE_CODE_FLT)
933 {
934 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
935 in target format. real.c in GCC probably has the necessary
936 code. */
937 DOUBLEST v1, v2, v = 0;
938
939 v1 = value_as_double (arg1);
940 v2 = value_as_double (arg2);
941
942 switch (op)
943 {
944 case BINOP_ADD:
945 v = v1 + v2;
946 break;
947
948 case BINOP_SUB:
949 v = v1 - v2;
950 break;
951
952 case BINOP_MUL:
953 v = v1 * v2;
954 break;
955
956 case BINOP_DIV:
957 v = v1 / v2;
958 break;
959
960 case BINOP_EXP:
961 errno = 0;
962 v = pow (v1, v2);
963 if (errno)
964 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
965 break;
966
967 case BINOP_MIN:
968 v = v1 < v2 ? v1 : v2;
969 break;
970
971 case BINOP_MAX:
972 v = v1 > v2 ? v1 : v2;
973 break;
974
975 default:
976 error (_("Integer-only operation on floating point number."));
977 }
978
979 /* If only one type is float, use its type.
980 Otherwise use the bigger type. */
981 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
982 result_type = type2;
983 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
984 result_type = type1;
985 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
986 result_type = type2;
987 else
988 result_type = type1;
989
990 val = allocate_value (result_type);
991 store_typed_floating (value_contents_raw (val), value_type (val), v);
992 }
993 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
994 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
995 {
996 LONGEST v1, v2, v = 0;
997
998 v1 = value_as_long (arg1);
999 v2 = value_as_long (arg2);
1000
1001 switch (op)
1002 {
1003 case BINOP_BITWISE_AND:
1004 v = v1 & v2;
1005 break;
1006
1007 case BINOP_BITWISE_IOR:
1008 v = v1 | v2;
1009 break;
1010
1011 case BINOP_BITWISE_XOR:
1012 v = v1 ^ v2;
1013 break;
1014
1015 case BINOP_EQUAL:
1016 v = v1 == v2;
1017 break;
1018
1019 case BINOP_NOTEQUAL:
1020 v = v1 != v2;
1021 break;
1022
1023 default:
1024 error (_("Invalid operation on booleans."));
1025 }
1026
1027 result_type = type1;
1028
1029 val = allocate_value (result_type);
1030 store_signed_integer (value_contents_raw (val),
1031 TYPE_LENGTH (result_type),
1032 gdbarch_byte_order (get_type_arch (result_type)),
1033 v);
1034 }
1035 else
1036 /* Integral operations here. */
1037 {
1038 /* Determine type length of the result, and if the operation should
1039 be done unsigned. For exponentiation and shift operators,
1040 use the length and type of the left operand. Otherwise,
1041 use the signedness of the operand with the greater length.
1042 If both operands are of equal length, use unsigned operation
1043 if one of the operands is unsigned. */
1044 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1045 result_type = type1;
1046 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1047 result_type = type1;
1048 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1049 result_type = type2;
1050 else if (TYPE_UNSIGNED (type1))
1051 result_type = type1;
1052 else if (TYPE_UNSIGNED (type2))
1053 result_type = type2;
1054 else
1055 result_type = type1;
1056
1057 if (TYPE_UNSIGNED (result_type))
1058 {
1059 LONGEST v2_signed = value_as_long (arg2);
1060 ULONGEST v1, v2, v = 0;
1061
1062 v1 = (ULONGEST) value_as_long (arg1);
1063 v2 = (ULONGEST) v2_signed;
1064
1065 switch (op)
1066 {
1067 case BINOP_ADD:
1068 v = v1 + v2;
1069 break;
1070
1071 case BINOP_SUB:
1072 v = v1 - v2;
1073 break;
1074
1075 case BINOP_MUL:
1076 v = v1 * v2;
1077 break;
1078
1079 case BINOP_DIV:
1080 case BINOP_INTDIV:
1081 if (v2 != 0)
1082 v = v1 / v2;
1083 else
1084 error (_("Division by zero"));
1085 break;
1086
1087 case BINOP_EXP:
1088 v = uinteger_pow (v1, v2_signed);
1089 break;
1090
1091 case BINOP_REM:
1092 if (v2 != 0)
1093 v = v1 % v2;
1094 else
1095 error (_("Division by zero"));
1096 break;
1097
1098 case BINOP_MOD:
1099 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1100 v1 mod 0 has a defined value, v1. */
1101 if (v2 == 0)
1102 {
1103 v = v1;
1104 }
1105 else
1106 {
1107 v = v1 / v2;
1108 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1109 v = v1 - (v2 * v);
1110 }
1111 break;
1112
1113 case BINOP_LSH:
1114 v = v1 << v2;
1115 break;
1116
1117 case BINOP_RSH:
1118 v = v1 >> v2;
1119 break;
1120
1121 case BINOP_BITWISE_AND:
1122 v = v1 & v2;
1123 break;
1124
1125 case BINOP_BITWISE_IOR:
1126 v = v1 | v2;
1127 break;
1128
1129 case BINOP_BITWISE_XOR:
1130 v = v1 ^ v2;
1131 break;
1132
1133 case BINOP_LOGICAL_AND:
1134 v = v1 && v2;
1135 break;
1136
1137 case BINOP_LOGICAL_OR:
1138 v = v1 || v2;
1139 break;
1140
1141 case BINOP_MIN:
1142 v = v1 < v2 ? v1 : v2;
1143 break;
1144
1145 case BINOP_MAX:
1146 v = v1 > v2 ? v1 : v2;
1147 break;
1148
1149 case BINOP_EQUAL:
1150 v = v1 == v2;
1151 break;
1152
1153 case BINOP_NOTEQUAL:
1154 v = v1 != v2;
1155 break;
1156
1157 case BINOP_LESS:
1158 v = v1 < v2;
1159 break;
1160
1161 case BINOP_GTR:
1162 v = v1 > v2;
1163 break;
1164
1165 case BINOP_LEQ:
1166 v = v1 <= v2;
1167 break;
1168
1169 case BINOP_GEQ:
1170 v = v1 >= v2;
1171 break;
1172
1173 default:
1174 error (_("Invalid binary operation on numbers."));
1175 }
1176
1177 val = allocate_value (result_type);
1178 store_unsigned_integer (value_contents_raw (val),
1179 TYPE_LENGTH (value_type (val)),
1180 gdbarch_byte_order
1181 (get_type_arch (result_type)),
1182 v);
1183 }
1184 else
1185 {
1186 LONGEST v1, v2, v = 0;
1187
1188 v1 = value_as_long (arg1);
1189 v2 = value_as_long (arg2);
1190
1191 switch (op)
1192 {
1193 case BINOP_ADD:
1194 v = v1 + v2;
1195 break;
1196
1197 case BINOP_SUB:
1198 v = v1 - v2;
1199 break;
1200
1201 case BINOP_MUL:
1202 v = v1 * v2;
1203 break;
1204
1205 case BINOP_DIV:
1206 case BINOP_INTDIV:
1207 if (v2 != 0)
1208 v = v1 / v2;
1209 else
1210 error (_("Division by zero"));
1211 break;
1212
1213 case BINOP_EXP:
1214 v = integer_pow (v1, v2);
1215 break;
1216
1217 case BINOP_REM:
1218 if (v2 != 0)
1219 v = v1 % v2;
1220 else
1221 error (_("Division by zero"));
1222 break;
1223
1224 case BINOP_MOD:
1225 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1226 X mod 0 has a defined value, X. */
1227 if (v2 == 0)
1228 {
1229 v = v1;
1230 }
1231 else
1232 {
1233 v = v1 / v2;
1234 /* Compute floor. */
1235 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1236 {
1237 v--;
1238 }
1239 v = v1 - (v2 * v);
1240 }
1241 break;
1242
1243 case BINOP_LSH:
1244 v = v1 << v2;
1245 break;
1246
1247 case BINOP_RSH:
1248 v = v1 >> v2;
1249 break;
1250
1251 case BINOP_BITWISE_AND:
1252 v = v1 & v2;
1253 break;
1254
1255 case BINOP_BITWISE_IOR:
1256 v = v1 | v2;
1257 break;
1258
1259 case BINOP_BITWISE_XOR:
1260 v = v1 ^ v2;
1261 break;
1262
1263 case BINOP_LOGICAL_AND:
1264 v = v1 && v2;
1265 break;
1266
1267 case BINOP_LOGICAL_OR:
1268 v = v1 || v2;
1269 break;
1270
1271 case BINOP_MIN:
1272 v = v1 < v2 ? v1 : v2;
1273 break;
1274
1275 case BINOP_MAX:
1276 v = v1 > v2 ? v1 : v2;
1277 break;
1278
1279 case BINOP_EQUAL:
1280 v = v1 == v2;
1281 break;
1282
1283 case BINOP_NOTEQUAL:
1284 v = v1 != v2;
1285 break;
1286
1287 case BINOP_LESS:
1288 v = v1 < v2;
1289 break;
1290
1291 case BINOP_GTR:
1292 v = v1 > v2;
1293 break;
1294
1295 case BINOP_LEQ:
1296 v = v1 <= v2;
1297 break;
1298
1299 case BINOP_GEQ:
1300 v = v1 >= v2;
1301 break;
1302
1303 default:
1304 error (_("Invalid binary operation on numbers."));
1305 }
1306
1307 val = allocate_value (result_type);
1308 store_signed_integer (value_contents_raw (val),
1309 TYPE_LENGTH (value_type (val)),
1310 gdbarch_byte_order
1311 (get_type_arch (result_type)),
1312 v);
1313 }
1314 }
1315
1316 return val;
1317 }
1318 \f
1319 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1320
1321 int
1322 value_logical_not (struct value *arg1)
1323 {
1324 int len;
1325 const gdb_byte *p;
1326 struct type *type1;
1327
1328 arg1 = coerce_array (arg1);
1329 type1 = check_typedef (value_type (arg1));
1330
1331 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1332 return 0 == value_as_double (arg1);
1333 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1334 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1335 gdbarch_byte_order (get_type_arch (type1)));
1336
1337 len = TYPE_LENGTH (type1);
1338 p = value_contents (arg1);
1339
1340 while (--len >= 0)
1341 {
1342 if (*p++)
1343 break;
1344 }
1345
1346 return len < 0;
1347 }
1348
1349 /* Perform a comparison on two string values (whose content are not
1350 necessarily null terminated) based on their length */
1351
1352 static int
1353 value_strcmp (struct value *arg1, struct value *arg2)
1354 {
1355 int len1 = TYPE_LENGTH (value_type (arg1));
1356 int len2 = TYPE_LENGTH (value_type (arg2));
1357 const gdb_byte *s1 = value_contents (arg1);
1358 const gdb_byte *s2 = value_contents (arg2);
1359 int i, len = len1 < len2 ? len1 : len2;
1360
1361 for (i = 0; i < len; i++)
1362 {
1363 if (s1[i] < s2[i])
1364 return -1;
1365 else if (s1[i] > s2[i])
1366 return 1;
1367 else
1368 continue;
1369 }
1370
1371 if (len1 < len2)
1372 return -1;
1373 else if (len1 > len2)
1374 return 1;
1375 else
1376 return 0;
1377 }
1378
1379 /* Simulate the C operator == by returning a 1
1380 iff ARG1 and ARG2 have equal contents. */
1381
1382 int
1383 value_equal (struct value *arg1, struct value *arg2)
1384 {
1385 int len;
1386 const gdb_byte *p1;
1387 const gdb_byte *p2;
1388 struct type *type1, *type2;
1389 enum type_code code1;
1390 enum type_code code2;
1391 int is_int1, is_int2;
1392
1393 arg1 = coerce_array (arg1);
1394 arg2 = coerce_array (arg2);
1395
1396 type1 = check_typedef (value_type (arg1));
1397 type2 = check_typedef (value_type (arg2));
1398 code1 = TYPE_CODE (type1);
1399 code2 = TYPE_CODE (type2);
1400 is_int1 = is_integral_type (type1);
1401 is_int2 = is_integral_type (type2);
1402
1403 if (is_int1 && is_int2)
1404 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1405 BINOP_EQUAL)));
1406 else if ((code1 == TYPE_CODE_FLT || is_int1)
1407 && (code2 == TYPE_CODE_FLT || is_int2))
1408 {
1409 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1410 `long double' values are returned in static storage (m68k). */
1411 DOUBLEST d = value_as_double (arg1);
1412
1413 return d == value_as_double (arg2);
1414 }
1415 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1416 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1417 {
1418 gdb_byte v1[16], v2[16];
1419 int len_v1, len_v2;
1420 enum bfd_endian byte_order_v1, byte_order_v2;
1421
1422 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1423 v2, &len_v2, &byte_order_v2);
1424
1425 return decimal_compare (v1, len_v1, byte_order_v1,
1426 v2, len_v2, byte_order_v2) == 0;
1427 }
1428
1429 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1430 is bigger. */
1431 else if (code1 == TYPE_CODE_PTR && is_int2)
1432 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1433 else if (code2 == TYPE_CODE_PTR && is_int1)
1434 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1435
1436 else if (code1 == code2
1437 && ((len = (int) TYPE_LENGTH (type1))
1438 == (int) TYPE_LENGTH (type2)))
1439 {
1440 p1 = value_contents (arg1);
1441 p2 = value_contents (arg2);
1442 while (--len >= 0)
1443 {
1444 if (*p1++ != *p2++)
1445 break;
1446 }
1447 return len < 0;
1448 }
1449 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1450 {
1451 return value_strcmp (arg1, arg2) == 0;
1452 }
1453 else
1454 {
1455 error (_("Invalid type combination in equality test."));
1456 return 0; /* For lint -- never reached */
1457 }
1458 }
1459
1460 /* Compare values based on their raw contents. Useful for arrays since
1461 value_equal coerces them to pointers, thus comparing just the address
1462 of the array instead of its contents. */
1463
1464 int
1465 value_equal_contents (struct value *arg1, struct value *arg2)
1466 {
1467 struct type *type1, *type2;
1468
1469 type1 = check_typedef (value_type (arg1));
1470 type2 = check_typedef (value_type (arg2));
1471
1472 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1473 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1474 && memcmp (value_contents (arg1), value_contents (arg2),
1475 TYPE_LENGTH (type1)) == 0);
1476 }
1477
1478 /* Simulate the C operator < by returning 1
1479 iff ARG1's contents are less than ARG2's. */
1480
1481 int
1482 value_less (struct value *arg1, struct value *arg2)
1483 {
1484 enum type_code code1;
1485 enum type_code code2;
1486 struct type *type1, *type2;
1487 int is_int1, is_int2;
1488
1489 arg1 = coerce_array (arg1);
1490 arg2 = coerce_array (arg2);
1491
1492 type1 = check_typedef (value_type (arg1));
1493 type2 = check_typedef (value_type (arg2));
1494 code1 = TYPE_CODE (type1);
1495 code2 = TYPE_CODE (type2);
1496 is_int1 = is_integral_type (type1);
1497 is_int2 = is_integral_type (type2);
1498
1499 if (is_int1 && is_int2)
1500 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1501 BINOP_LESS)));
1502 else if ((code1 == TYPE_CODE_FLT || is_int1)
1503 && (code2 == TYPE_CODE_FLT || is_int2))
1504 {
1505 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1506 `long double' values are returned in static storage (m68k). */
1507 DOUBLEST d = value_as_double (arg1);
1508
1509 return d < value_as_double (arg2);
1510 }
1511 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1512 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1513 {
1514 gdb_byte v1[16], v2[16];
1515 int len_v1, len_v2;
1516 enum bfd_endian byte_order_v1, byte_order_v2;
1517
1518 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1519 v2, &len_v2, &byte_order_v2);
1520
1521 return decimal_compare (v1, len_v1, byte_order_v1,
1522 v2, len_v2, byte_order_v2) == -1;
1523 }
1524 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1525 return value_as_address (arg1) < value_as_address (arg2);
1526
1527 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1528 is bigger. */
1529 else if (code1 == TYPE_CODE_PTR && is_int2)
1530 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1531 else if (code2 == TYPE_CODE_PTR && is_int1)
1532 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1533 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1534 return value_strcmp (arg1, arg2) < 0;
1535 else
1536 {
1537 error (_("Invalid type combination in ordering comparison."));
1538 return 0;
1539 }
1540 }
1541 \f
1542 /* The unary operators +, - and ~. They free the argument ARG1. */
1543
1544 struct value *
1545 value_pos (struct value *arg1)
1546 {
1547 struct type *type;
1548
1549 arg1 = coerce_ref (arg1);
1550 type = check_typedef (value_type (arg1));
1551
1552 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1553 return value_from_double (type, value_as_double (arg1));
1554 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1555 return value_from_decfloat (type, value_contents (arg1));
1556 else if (is_integral_type (type))
1557 {
1558 return value_from_longest (type, value_as_long (arg1));
1559 }
1560 else
1561 {
1562 error ("Argument to positive operation not a number.");
1563 return 0; /* For lint -- never reached */
1564 }
1565 }
1566
1567 struct value *
1568 value_neg (struct value *arg1)
1569 {
1570 struct type *type;
1571
1572 arg1 = coerce_ref (arg1);
1573 type = check_typedef (value_type (arg1));
1574
1575 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1576 {
1577 struct value *val = allocate_value (type);
1578 int len = TYPE_LENGTH (type);
1579 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1580
1581 memcpy (decbytes, value_contents (arg1), len);
1582
1583 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1584 decbytes[len-1] = decbytes[len - 1] | 0x80;
1585 else
1586 decbytes[0] = decbytes[0] | 0x80;
1587
1588 memcpy (value_contents_raw (val), decbytes, len);
1589 return val;
1590 }
1591 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1592 return value_from_double (type, -value_as_double (arg1));
1593 else if (is_integral_type (type))
1594 {
1595 return value_from_longest (type, -value_as_long (arg1));
1596 }
1597 else
1598 {
1599 error (_("Argument to negate operation not a number."));
1600 return 0; /* For lint -- never reached */
1601 }
1602 }
1603
1604 struct value *
1605 value_complement (struct value *arg1)
1606 {
1607 struct type *type;
1608
1609 arg1 = coerce_ref (arg1);
1610 type = check_typedef (value_type (arg1));
1611
1612 if (!is_integral_type (type))
1613 error (_("Argument to complement operation not an integer or boolean."));
1614
1615 return value_from_longest (type, ~value_as_long (arg1));
1616 }
1617 \f
1618 /* The INDEX'th bit of SET value whose value_type is TYPE,
1619 and whose value_contents is valaddr.
1620 Return -1 if out of range, -2 other error. */
1621
1622 int
1623 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1624 {
1625 struct gdbarch *gdbarch = get_type_arch (type);
1626 LONGEST low_bound, high_bound;
1627 LONGEST word;
1628 unsigned rel_index;
1629 struct type *range = TYPE_INDEX_TYPE (type);
1630
1631 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1632 return -2;
1633 if (index < low_bound || index > high_bound)
1634 return -1;
1635 rel_index = index - low_bound;
1636 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1637 gdbarch_byte_order (gdbarch));
1638 rel_index %= TARGET_CHAR_BIT;
1639 if (gdbarch_bits_big_endian (gdbarch))
1640 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1641 return (word >> rel_index) & 1;
1642 }
1643
1644 int
1645 value_in (struct value *element, struct value *set)
1646 {
1647 int member;
1648 struct type *settype = check_typedef (value_type (set));
1649 struct type *eltype = check_typedef (value_type (element));
1650
1651 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1652 eltype = TYPE_TARGET_TYPE (eltype);
1653 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1654 error (_("Second argument of 'IN' has wrong type"));
1655 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1656 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1657 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1658 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1659 error (_("First argument of 'IN' has wrong type"));
1660 member = value_bit_index (settype, value_contents (set),
1661 value_as_long (element));
1662 if (member < 0)
1663 error (_("First argument of 'IN' not in range"));
1664 return member;
1665 }
1666
1667 void
1668 _initialize_valarith (void)
1669 {
1670 }
This page took 0.063426 seconds and 5 git commands to generate.