* ax-gdb.c (gen_exp_binop_rest) [BINOP_SUBSCRIPT]: Error out on
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 return value_from_pointer (valptrtype,
98 value_as_address (arg1) + sz * arg2);
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("\
121 First argument of `-' is a pointer and second argument is neither\n\
122 an integer nor a pointer of the same type."));
123
124 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
140
141 See comments in value_coerce_array() for rationale for reason for
142 doing lower bounds adjustment here rather than there.
143 FIXME: Perhaps we should validate that the index is valid and if
144 verbosity is set, warn about invalid indices (but still use them). */
145
146 struct value *
147 value_subscript (struct value *array, LONGEST index)
148 {
149 struct value *bound;
150 int c_style = current_language->c_style_arrays;
151 struct type *tarray;
152
153 array = coerce_ref (array);
154 tarray = check_typedef (value_type (array));
155
156 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
157 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
158 {
159 struct type *range_type = TYPE_INDEX_TYPE (tarray);
160 LONGEST lowerbound, upperbound;
161 get_discrete_bounds (range_type, &lowerbound, &upperbound);
162
163 if (VALUE_LVAL (array) != lval_memory)
164 return value_subscripted_rvalue (array, index, lowerbound);
165
166 if (c_style == 0)
167 {
168 if (index >= lowerbound && index <= upperbound)
169 return value_subscripted_rvalue (array, index, lowerbound);
170 /* Emit warning unless we have an array of unknown size.
171 An array of unknown size has lowerbound 0 and upperbound -1. */
172 if (upperbound > -1)
173 warning (_("array or string index out of range"));
174 /* fall doing C stuff */
175 c_style = 1;
176 }
177
178 index -= lowerbound;
179 array = value_coerce_array (array);
180 }
181
182 if (c_style)
183 return value_ind (value_ptradd (array, index));
184 else
185 error (_("not an array or string"));
186 }
187
188 /* Return the value of EXPR[IDX], expr an aggregate rvalue
189 (eg, a vector register). This routine used to promote floats
190 to doubles, but no longer does. */
191
192 struct value *
193 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
194 {
195 struct type *array_type = check_typedef (value_type (array));
196 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
197 unsigned int elt_size = TYPE_LENGTH (elt_type);
198 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
199 struct value *v;
200
201 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
202 error (_("no such vector element"));
203
204 v = allocate_value (elt_type);
205 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
206 set_value_lazy (v, 1);
207 else
208 memcpy (value_contents_writeable (v),
209 value_contents (array) + elt_offs, elt_size);
210
211 set_value_component_location (v, array);
212 VALUE_REGNUM (v) = VALUE_REGNUM (array);
213 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
214 set_value_offset (v, value_offset (array) + elt_offs);
215 return v;
216 }
217
218 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
219
220 struct value *
221 value_bitstring_subscript (struct type *type,
222 struct value *bitstring, LONGEST index)
223 {
224
225 struct type *bitstring_type, *range_type;
226 struct value *v;
227 int offset, byte, bit_index;
228 LONGEST lowerbound, upperbound;
229
230 bitstring_type = check_typedef (value_type (bitstring));
231 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
232
233 range_type = TYPE_INDEX_TYPE (bitstring_type);
234 get_discrete_bounds (range_type, &lowerbound, &upperbound);
235 if (index < lowerbound || index > upperbound)
236 error (_("bitstring index out of range"));
237
238 index -= lowerbound;
239 offset = index / TARGET_CHAR_BIT;
240 byte = *((char *) value_contents (bitstring) + offset);
241
242 bit_index = index % TARGET_CHAR_BIT;
243 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
244 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
245
246 v = value_from_longest (type, byte & 1);
247
248 set_value_bitpos (v, bit_index);
249 set_value_bitsize (v, 1);
250 set_value_component_location (v, bitstring);
251 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
252
253 set_value_offset (v, offset + value_offset (bitstring));
254
255 return v;
256 }
257
258 \f
259 /* Check to see if either argument is a structure, or a reference to
260 one. This is called so we know whether to go ahead with the normal
261 binop or look for a user defined function instead.
262
263 For now, we do not overload the `=' operator. */
264
265 int
266 binop_types_user_defined_p (enum exp_opcode op,
267 struct type *type1, struct type *type2)
268 {
269 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
270 return 0;
271
272 type1 = check_typedef (type1);
273 if (TYPE_CODE (type1) == TYPE_CODE_REF)
274 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
275
276 type2 = check_typedef (type1);
277 if (TYPE_CODE (type2) == TYPE_CODE_REF)
278 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
279
280 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
281 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
282 }
283
284 /* Check to see if either argument is a structure, or a reference to
285 one. This is called so we know whether to go ahead with the normal
286 binop or look for a user defined function instead.
287
288 For now, we do not overload the `=' operator. */
289
290 int
291 binop_user_defined_p (enum exp_opcode op,
292 struct value *arg1, struct value *arg2)
293 {
294 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
295 }
296
297 /* Check to see if argument is a structure. This is called so
298 we know whether to go ahead with the normal unop or look for a
299 user defined function instead.
300
301 For now, we do not overload the `&' operator. */
302
303 int
304 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
305 {
306 struct type *type1;
307 if (op == UNOP_ADDR)
308 return 0;
309 type1 = check_typedef (value_type (arg1));
310 for (;;)
311 {
312 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
313 return 1;
314 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
315 type1 = TYPE_TARGET_TYPE (type1);
316 else
317 return 0;
318 }
319 }
320
321 /* We know either arg1 or arg2 is a structure, so try to find the right
322 user defined function. Create an argument vector that calls
323 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
324 binary operator which is legal for GNU C++).
325
326 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
327 is the opcode saying how to modify it. Otherwise, OTHEROP is
328 unused. */
329
330 struct value *
331 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
332 enum exp_opcode otherop, enum noside noside)
333 {
334 struct value **argvec;
335 char *ptr;
336 char tstr[13];
337 int static_memfuncp;
338
339 arg1 = coerce_ref (arg1);
340 arg2 = coerce_ref (arg2);
341
342 /* now we know that what we have to do is construct our
343 arg vector and find the right function to call it with. */
344
345 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
346 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
347
348 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
349 argvec[1] = value_addr (arg1);
350 argvec[2] = arg2;
351 argvec[3] = 0;
352
353 /* make the right function name up */
354 strcpy (tstr, "operator__");
355 ptr = tstr + 8;
356 switch (op)
357 {
358 case BINOP_ADD:
359 strcpy (ptr, "+");
360 break;
361 case BINOP_SUB:
362 strcpy (ptr, "-");
363 break;
364 case BINOP_MUL:
365 strcpy (ptr, "*");
366 break;
367 case BINOP_DIV:
368 strcpy (ptr, "/");
369 break;
370 case BINOP_REM:
371 strcpy (ptr, "%");
372 break;
373 case BINOP_LSH:
374 strcpy (ptr, "<<");
375 break;
376 case BINOP_RSH:
377 strcpy (ptr, ">>");
378 break;
379 case BINOP_BITWISE_AND:
380 strcpy (ptr, "&");
381 break;
382 case BINOP_BITWISE_IOR:
383 strcpy (ptr, "|");
384 break;
385 case BINOP_BITWISE_XOR:
386 strcpy (ptr, "^");
387 break;
388 case BINOP_LOGICAL_AND:
389 strcpy (ptr, "&&");
390 break;
391 case BINOP_LOGICAL_OR:
392 strcpy (ptr, "||");
393 break;
394 case BINOP_MIN:
395 strcpy (ptr, "<?");
396 break;
397 case BINOP_MAX:
398 strcpy (ptr, ">?");
399 break;
400 case BINOP_ASSIGN:
401 strcpy (ptr, "=");
402 break;
403 case BINOP_ASSIGN_MODIFY:
404 switch (otherop)
405 {
406 case BINOP_ADD:
407 strcpy (ptr, "+=");
408 break;
409 case BINOP_SUB:
410 strcpy (ptr, "-=");
411 break;
412 case BINOP_MUL:
413 strcpy (ptr, "*=");
414 break;
415 case BINOP_DIV:
416 strcpy (ptr, "/=");
417 break;
418 case BINOP_REM:
419 strcpy (ptr, "%=");
420 break;
421 case BINOP_BITWISE_AND:
422 strcpy (ptr, "&=");
423 break;
424 case BINOP_BITWISE_IOR:
425 strcpy (ptr, "|=");
426 break;
427 case BINOP_BITWISE_XOR:
428 strcpy (ptr, "^=");
429 break;
430 case BINOP_MOD: /* invalid */
431 default:
432 error (_("Invalid binary operation specified."));
433 }
434 break;
435 case BINOP_SUBSCRIPT:
436 strcpy (ptr, "[]");
437 break;
438 case BINOP_EQUAL:
439 strcpy (ptr, "==");
440 break;
441 case BINOP_NOTEQUAL:
442 strcpy (ptr, "!=");
443 break;
444 case BINOP_LESS:
445 strcpy (ptr, "<");
446 break;
447 case BINOP_GTR:
448 strcpy (ptr, ">");
449 break;
450 case BINOP_GEQ:
451 strcpy (ptr, ">=");
452 break;
453 case BINOP_LEQ:
454 strcpy (ptr, "<=");
455 break;
456 case BINOP_MOD: /* invalid */
457 default:
458 error (_("Invalid binary operation specified."));
459 }
460
461 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
462
463 if (argvec[0])
464 {
465 if (static_memfuncp)
466 {
467 argvec[1] = argvec[0];
468 argvec++;
469 }
470 if (noside == EVAL_AVOID_SIDE_EFFECTS)
471 {
472 struct type *return_type;
473 return_type
474 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
475 return value_zero (return_type, VALUE_LVAL (arg1));
476 }
477 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
478 }
479 error (_("member function %s not found"), tstr);
480 #ifdef lint
481 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
482 #endif
483 }
484
485 /* We know that arg1 is a structure, so try to find a unary user
486 defined operator that matches the operator in question.
487 Create an argument vector that calls arg1.operator @ (arg1)
488 and return that value (where '@' is (almost) any unary operator which
489 is legal for GNU C++). */
490
491 struct value *
492 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
493 {
494 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
495 struct value **argvec;
496 char *ptr, *mangle_ptr;
497 char tstr[13], mangle_tstr[13];
498 int static_memfuncp, nargs;
499
500 arg1 = coerce_ref (arg1);
501
502 /* now we know that what we have to do is construct our
503 arg vector and find the right function to call it with. */
504
505 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
506 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
507
508 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
509 argvec[1] = value_addr (arg1);
510 argvec[2] = 0;
511
512 nargs = 1;
513
514 /* make the right function name up */
515 strcpy (tstr, "operator__");
516 ptr = tstr + 8;
517 strcpy (mangle_tstr, "__");
518 mangle_ptr = mangle_tstr + 2;
519 switch (op)
520 {
521 case UNOP_PREINCREMENT:
522 strcpy (ptr, "++");
523 break;
524 case UNOP_PREDECREMENT:
525 strcpy (ptr, "--");
526 break;
527 case UNOP_POSTINCREMENT:
528 strcpy (ptr, "++");
529 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
530 argvec[3] = 0;
531 nargs ++;
532 break;
533 case UNOP_POSTDECREMENT:
534 strcpy (ptr, "--");
535 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
536 argvec[3] = 0;
537 nargs ++;
538 break;
539 case UNOP_LOGICAL_NOT:
540 strcpy (ptr, "!");
541 break;
542 case UNOP_COMPLEMENT:
543 strcpy (ptr, "~");
544 break;
545 case UNOP_NEG:
546 strcpy (ptr, "-");
547 break;
548 case UNOP_PLUS:
549 strcpy (ptr, "+");
550 break;
551 case UNOP_IND:
552 strcpy (ptr, "*");
553 break;
554 default:
555 error (_("Invalid unary operation specified."));
556 }
557
558 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
559
560 if (argvec[0])
561 {
562 if (static_memfuncp)
563 {
564 argvec[1] = argvec[0];
565 nargs --;
566 argvec++;
567 }
568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
569 {
570 struct type *return_type;
571 return_type
572 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
573 return value_zero (return_type, VALUE_LVAL (arg1));
574 }
575 return call_function_by_hand (argvec[0], nargs, argvec + 1);
576 }
577 error (_("member function %s not found"), tstr);
578 return 0; /* For lint -- never reached */
579 }
580 \f
581
582 /* Concatenate two values with the following conditions:
583
584 (1) Both values must be either bitstring values or character string
585 values and the resulting value consists of the concatenation of
586 ARG1 followed by ARG2.
587
588 or
589
590 One value must be an integer value and the other value must be
591 either a bitstring value or character string value, which is
592 to be repeated by the number of times specified by the integer
593 value.
594
595
596 (2) Boolean values are also allowed and are treated as bit string
597 values of length 1.
598
599 (3) Character values are also allowed and are treated as character
600 string values of length 1.
601 */
602
603 struct value *
604 value_concat (struct value *arg1, struct value *arg2)
605 {
606 struct value *inval1;
607 struct value *inval2;
608 struct value *outval = NULL;
609 int inval1len, inval2len;
610 int count, idx;
611 char *ptr;
612 char inchar;
613 struct type *type1 = check_typedef (value_type (arg1));
614 struct type *type2 = check_typedef (value_type (arg2));
615 struct type *char_type;
616
617 /* First figure out if we are dealing with two values to be concatenated
618 or a repeat count and a value to be repeated. INVAL1 is set to the
619 first of two concatenated values, or the repeat count. INVAL2 is set
620 to the second of the two concatenated values or the value to be
621 repeated. */
622
623 if (TYPE_CODE (type2) == TYPE_CODE_INT)
624 {
625 struct type *tmp = type1;
626 type1 = tmp;
627 tmp = type2;
628 inval1 = arg2;
629 inval2 = arg1;
630 }
631 else
632 {
633 inval1 = arg1;
634 inval2 = arg2;
635 }
636
637 /* Now process the input values. */
638
639 if (TYPE_CODE (type1) == TYPE_CODE_INT)
640 {
641 /* We have a repeat count. Validate the second value and then
642 construct a value repeated that many times. */
643 if (TYPE_CODE (type2) == TYPE_CODE_STRING
644 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
645 {
646 count = longest_to_int (value_as_long (inval1));
647 inval2len = TYPE_LENGTH (type2);
648 ptr = (char *) alloca (count * inval2len);
649 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
650 {
651 char_type = type2;
652 inchar = (char) unpack_long (type2,
653 value_contents (inval2));
654 for (idx = 0; idx < count; idx++)
655 {
656 *(ptr + idx) = inchar;
657 }
658 }
659 else
660 {
661 char_type = TYPE_TARGET_TYPE (type2);
662 for (idx = 0; idx < count; idx++)
663 {
664 memcpy (ptr + (idx * inval2len), value_contents (inval2),
665 inval2len);
666 }
667 }
668 outval = value_string (ptr, count * inval2len, char_type);
669 }
670 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
671 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
672 {
673 error (_("unimplemented support for bitstring/boolean repeats"));
674 }
675 else
676 {
677 error (_("can't repeat values of that type"));
678 }
679 }
680 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
681 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
682 {
683 /* We have two character strings to concatenate. */
684 if (TYPE_CODE (type2) != TYPE_CODE_STRING
685 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
686 {
687 error (_("Strings can only be concatenated with other strings."));
688 }
689 inval1len = TYPE_LENGTH (type1);
690 inval2len = TYPE_LENGTH (type2);
691 ptr = (char *) alloca (inval1len + inval2len);
692 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
693 {
694 char_type = type1;
695 *ptr = (char) unpack_long (type1, value_contents (inval1));
696 }
697 else
698 {
699 char_type = TYPE_TARGET_TYPE (type1);
700 memcpy (ptr, value_contents (inval1), inval1len);
701 }
702 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
703 {
704 *(ptr + inval1len) =
705 (char) unpack_long (type2, value_contents (inval2));
706 }
707 else
708 {
709 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
710 }
711 outval = value_string (ptr, inval1len + inval2len, char_type);
712 }
713 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
714 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
715 {
716 /* We have two bitstrings to concatenate. */
717 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
718 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
719 {
720 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
721 }
722 error (_("unimplemented support for bitstring/boolean concatenation."));
723 }
724 else
725 {
726 /* We don't know how to concatenate these operands. */
727 error (_("illegal operands for concatenation."));
728 }
729 return (outval);
730 }
731 \f
732 /* Integer exponentiation: V1**V2, where both arguments are
733 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
734 static LONGEST
735 integer_pow (LONGEST v1, LONGEST v2)
736 {
737 if (v2 < 0)
738 {
739 if (v1 == 0)
740 error (_("Attempt to raise 0 to negative power."));
741 else
742 return 0;
743 }
744 else
745 {
746 /* The Russian Peasant's Algorithm */
747 LONGEST v;
748
749 v = 1;
750 for (;;)
751 {
752 if (v2 & 1L)
753 v *= v1;
754 v2 >>= 1;
755 if (v2 == 0)
756 return v;
757 v1 *= v1;
758 }
759 }
760 }
761
762 /* Integer exponentiation: V1**V2, where both arguments are
763 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
764 static ULONGEST
765 uinteger_pow (ULONGEST v1, LONGEST v2)
766 {
767 if (v2 < 0)
768 {
769 if (v1 == 0)
770 error (_("Attempt to raise 0 to negative power."));
771 else
772 return 0;
773 }
774 else
775 {
776 /* The Russian Peasant's Algorithm */
777 ULONGEST v;
778
779 v = 1;
780 for (;;)
781 {
782 if (v2 & 1L)
783 v *= v1;
784 v2 >>= 1;
785 if (v2 == 0)
786 return v;
787 v1 *= v1;
788 }
789 }
790 }
791
792 /* Obtain decimal value of arguments for binary operation, converting from
793 other types if one of them is not decimal floating point. */
794 static void
795 value_args_as_decimal (struct value *arg1, struct value *arg2,
796 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
797 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
798 {
799 struct type *type1, *type2;
800
801 type1 = check_typedef (value_type (arg1));
802 type2 = check_typedef (value_type (arg2));
803
804 /* At least one of the arguments must be of decimal float type. */
805 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
806 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
807
808 if (TYPE_CODE (type1) == TYPE_CODE_FLT
809 || TYPE_CODE (type2) == TYPE_CODE_FLT)
810 /* The DFP extension to the C language does not allow mixing of
811 * decimal float types with other float types in expressions
812 * (see WDTR 24732, page 12). */
813 error (_("Mixing decimal floating types with other floating types is not allowed."));
814
815 /* Obtain decimal value of arg1, converting from other types
816 if necessary. */
817
818 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
819 {
820 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
821 *len_x = TYPE_LENGTH (type1);
822 memcpy (x, value_contents (arg1), *len_x);
823 }
824 else if (is_integral_type (type1))
825 {
826 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
827 *len_x = TYPE_LENGTH (type2);
828 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
829 }
830 else
831 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
832 TYPE_NAME (type2));
833
834 /* Obtain decimal value of arg2, converting from other types
835 if necessary. */
836
837 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
838 {
839 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
840 *len_y = TYPE_LENGTH (type2);
841 memcpy (y, value_contents (arg2), *len_y);
842 }
843 else if (is_integral_type (type2))
844 {
845 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
846 *len_y = TYPE_LENGTH (type1);
847 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
848 }
849 else
850 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
851 TYPE_NAME (type2));
852 }
853
854 /* Perform a binary operation on two operands which have reasonable
855 representations as integers or floats. This includes booleans,
856 characters, integers, or floats.
857 Does not support addition and subtraction on pointers;
858 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
859
860 struct value *
861 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
862 {
863 struct value *val;
864 struct type *type1, *type2, *result_type;
865
866 arg1 = coerce_ref (arg1);
867 arg2 = coerce_ref (arg2);
868
869 type1 = check_typedef (value_type (arg1));
870 type2 = check_typedef (value_type (arg2));
871
872 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
873 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
874 && !is_integral_type (type1))
875 || (TYPE_CODE (type2) != TYPE_CODE_FLT
876 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
877 && !is_integral_type (type2)))
878 error (_("Argument to arithmetic operation not a number or boolean."));
879
880 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
881 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
882 {
883 struct type *v_type;
884 int len_v1, len_v2, len_v;
885 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
886 gdb_byte v1[16], v2[16];
887 gdb_byte v[16];
888
889 /* If only one type is decimal float, use its type.
890 Otherwise use the bigger type. */
891 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
892 result_type = type2;
893 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
894 result_type = type1;
895 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
896 result_type = type2;
897 else
898 result_type = type1;
899
900 len_v = TYPE_LENGTH (result_type);
901 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
902
903 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
904 v2, &len_v2, &byte_order_v2);
905
906 switch (op)
907 {
908 case BINOP_ADD:
909 case BINOP_SUB:
910 case BINOP_MUL:
911 case BINOP_DIV:
912 case BINOP_EXP:
913 decimal_binop (op, v1, len_v1, byte_order_v1,
914 v2, len_v2, byte_order_v2,
915 v, len_v, byte_order_v);
916 break;
917
918 default:
919 error (_("Operation not valid for decimal floating point number."));
920 }
921
922 val = value_from_decfloat (result_type, v);
923 }
924 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
925 || TYPE_CODE (type2) == TYPE_CODE_FLT)
926 {
927 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
928 in target format. real.c in GCC probably has the necessary
929 code. */
930 DOUBLEST v1, v2, v = 0;
931 v1 = value_as_double (arg1);
932 v2 = value_as_double (arg2);
933
934 switch (op)
935 {
936 case BINOP_ADD:
937 v = v1 + v2;
938 break;
939
940 case BINOP_SUB:
941 v = v1 - v2;
942 break;
943
944 case BINOP_MUL:
945 v = v1 * v2;
946 break;
947
948 case BINOP_DIV:
949 v = v1 / v2;
950 break;
951
952 case BINOP_EXP:
953 errno = 0;
954 v = pow (v1, v2);
955 if (errno)
956 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
957 break;
958
959 case BINOP_MIN:
960 v = v1 < v2 ? v1 : v2;
961 break;
962
963 case BINOP_MAX:
964 v = v1 > v2 ? v1 : v2;
965 break;
966
967 default:
968 error (_("Integer-only operation on floating point number."));
969 }
970
971 /* If only one type is float, use its type.
972 Otherwise use the bigger type. */
973 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
974 result_type = type2;
975 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
976 result_type = type1;
977 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
978 result_type = type2;
979 else
980 result_type = type1;
981
982 val = allocate_value (result_type);
983 store_typed_floating (value_contents_raw (val), value_type (val), v);
984 }
985 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
986 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
987 {
988 LONGEST v1, v2, v = 0;
989 v1 = value_as_long (arg1);
990 v2 = value_as_long (arg2);
991
992 switch (op)
993 {
994 case BINOP_BITWISE_AND:
995 v = v1 & v2;
996 break;
997
998 case BINOP_BITWISE_IOR:
999 v = v1 | v2;
1000 break;
1001
1002 case BINOP_BITWISE_XOR:
1003 v = v1 ^ v2;
1004 break;
1005
1006 case BINOP_EQUAL:
1007 v = v1 == v2;
1008 break;
1009
1010 case BINOP_NOTEQUAL:
1011 v = v1 != v2;
1012 break;
1013
1014 default:
1015 error (_("Invalid operation on booleans."));
1016 }
1017
1018 result_type = type1;
1019
1020 val = allocate_value (result_type);
1021 store_signed_integer (value_contents_raw (val),
1022 TYPE_LENGTH (result_type),
1023 gdbarch_byte_order (get_type_arch (result_type)),
1024 v);
1025 }
1026 else
1027 /* Integral operations here. */
1028 {
1029 /* Determine type length of the result, and if the operation should
1030 be done unsigned. For exponentiation and shift operators,
1031 use the length and type of the left operand. Otherwise,
1032 use the signedness of the operand with the greater length.
1033 If both operands are of equal length, use unsigned operation
1034 if one of the operands is unsigned. */
1035 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1036 result_type = type1;
1037 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1038 result_type = type1;
1039 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1040 result_type = type2;
1041 else if (TYPE_UNSIGNED (type1))
1042 result_type = type1;
1043 else if (TYPE_UNSIGNED (type2))
1044 result_type = type2;
1045 else
1046 result_type = type1;
1047
1048 if (TYPE_UNSIGNED (result_type))
1049 {
1050 LONGEST v2_signed = value_as_long (arg2);
1051 ULONGEST v1, v2, v = 0;
1052 v1 = (ULONGEST) value_as_long (arg1);
1053 v2 = (ULONGEST) v2_signed;
1054
1055 switch (op)
1056 {
1057 case BINOP_ADD:
1058 v = v1 + v2;
1059 break;
1060
1061 case BINOP_SUB:
1062 v = v1 - v2;
1063 break;
1064
1065 case BINOP_MUL:
1066 v = v1 * v2;
1067 break;
1068
1069 case BINOP_DIV:
1070 case BINOP_INTDIV:
1071 if (v2 != 0)
1072 v = v1 / v2;
1073 else
1074 error (_("Division by zero"));
1075 break;
1076
1077 case BINOP_EXP:
1078 v = uinteger_pow (v1, v2_signed);
1079 break;
1080
1081 case BINOP_REM:
1082 if (v2 != 0)
1083 v = v1 % v2;
1084 else
1085 error (_("Division by zero"));
1086 break;
1087
1088 case BINOP_MOD:
1089 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1090 v1 mod 0 has a defined value, v1. */
1091 if (v2 == 0)
1092 {
1093 v = v1;
1094 }
1095 else
1096 {
1097 v = v1 / v2;
1098 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1099 v = v1 - (v2 * v);
1100 }
1101 break;
1102
1103 case BINOP_LSH:
1104 v = v1 << v2;
1105 break;
1106
1107 case BINOP_RSH:
1108 v = v1 >> v2;
1109 break;
1110
1111 case BINOP_BITWISE_AND:
1112 v = v1 & v2;
1113 break;
1114
1115 case BINOP_BITWISE_IOR:
1116 v = v1 | v2;
1117 break;
1118
1119 case BINOP_BITWISE_XOR:
1120 v = v1 ^ v2;
1121 break;
1122
1123 case BINOP_LOGICAL_AND:
1124 v = v1 && v2;
1125 break;
1126
1127 case BINOP_LOGICAL_OR:
1128 v = v1 || v2;
1129 break;
1130
1131 case BINOP_MIN:
1132 v = v1 < v2 ? v1 : v2;
1133 break;
1134
1135 case BINOP_MAX:
1136 v = v1 > v2 ? v1 : v2;
1137 break;
1138
1139 case BINOP_EQUAL:
1140 v = v1 == v2;
1141 break;
1142
1143 case BINOP_NOTEQUAL:
1144 v = v1 != v2;
1145 break;
1146
1147 case BINOP_LESS:
1148 v = v1 < v2;
1149 break;
1150
1151 case BINOP_GTR:
1152 v = v1 > v2;
1153 break;
1154
1155 case BINOP_LEQ:
1156 v = v1 <= v2;
1157 break;
1158
1159 case BINOP_GEQ:
1160 v = v1 >= v2;
1161 break;
1162
1163 default:
1164 error (_("Invalid binary operation on numbers."));
1165 }
1166
1167 val = allocate_value (result_type);
1168 store_unsigned_integer (value_contents_raw (val),
1169 TYPE_LENGTH (value_type (val)),
1170 gdbarch_byte_order
1171 (get_type_arch (result_type)),
1172 v);
1173 }
1174 else
1175 {
1176 LONGEST v1, v2, v = 0;
1177 v1 = value_as_long (arg1);
1178 v2 = value_as_long (arg2);
1179
1180 switch (op)
1181 {
1182 case BINOP_ADD:
1183 v = v1 + v2;
1184 break;
1185
1186 case BINOP_SUB:
1187 v = v1 - v2;
1188 break;
1189
1190 case BINOP_MUL:
1191 v = v1 * v2;
1192 break;
1193
1194 case BINOP_DIV:
1195 case BINOP_INTDIV:
1196 if (v2 != 0)
1197 v = v1 / v2;
1198 else
1199 error (_("Division by zero"));
1200 break;
1201
1202 case BINOP_EXP:
1203 v = integer_pow (v1, v2);
1204 break;
1205
1206 case BINOP_REM:
1207 if (v2 != 0)
1208 v = v1 % v2;
1209 else
1210 error (_("Division by zero"));
1211 break;
1212
1213 case BINOP_MOD:
1214 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1215 X mod 0 has a defined value, X. */
1216 if (v2 == 0)
1217 {
1218 v = v1;
1219 }
1220 else
1221 {
1222 v = v1 / v2;
1223 /* Compute floor. */
1224 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1225 {
1226 v--;
1227 }
1228 v = v1 - (v2 * v);
1229 }
1230 break;
1231
1232 case BINOP_LSH:
1233 v = v1 << v2;
1234 break;
1235
1236 case BINOP_RSH:
1237 v = v1 >> v2;
1238 break;
1239
1240 case BINOP_BITWISE_AND:
1241 v = v1 & v2;
1242 break;
1243
1244 case BINOP_BITWISE_IOR:
1245 v = v1 | v2;
1246 break;
1247
1248 case BINOP_BITWISE_XOR:
1249 v = v1 ^ v2;
1250 break;
1251
1252 case BINOP_LOGICAL_AND:
1253 v = v1 && v2;
1254 break;
1255
1256 case BINOP_LOGICAL_OR:
1257 v = v1 || v2;
1258 break;
1259
1260 case BINOP_MIN:
1261 v = v1 < v2 ? v1 : v2;
1262 break;
1263
1264 case BINOP_MAX:
1265 v = v1 > v2 ? v1 : v2;
1266 break;
1267
1268 case BINOP_EQUAL:
1269 v = v1 == v2;
1270 break;
1271
1272 case BINOP_NOTEQUAL:
1273 v = v1 != v2;
1274 break;
1275
1276 case BINOP_LESS:
1277 v = v1 < v2;
1278 break;
1279
1280 case BINOP_GTR:
1281 v = v1 > v2;
1282 break;
1283
1284 case BINOP_LEQ:
1285 v = v1 <= v2;
1286 break;
1287
1288 case BINOP_GEQ:
1289 v = v1 >= v2;
1290 break;
1291
1292 default:
1293 error (_("Invalid binary operation on numbers."));
1294 }
1295
1296 val = allocate_value (result_type);
1297 store_signed_integer (value_contents_raw (val),
1298 TYPE_LENGTH (value_type (val)),
1299 gdbarch_byte_order
1300 (get_type_arch (result_type)),
1301 v);
1302 }
1303 }
1304
1305 return val;
1306 }
1307 \f
1308 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1309
1310 int
1311 value_logical_not (struct value *arg1)
1312 {
1313 int len;
1314 const gdb_byte *p;
1315 struct type *type1;
1316
1317 arg1 = coerce_array (arg1);
1318 type1 = check_typedef (value_type (arg1));
1319
1320 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1321 return 0 == value_as_double (arg1);
1322 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1323 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1324 gdbarch_byte_order (get_type_arch (type1)));
1325
1326 len = TYPE_LENGTH (type1);
1327 p = value_contents (arg1);
1328
1329 while (--len >= 0)
1330 {
1331 if (*p++)
1332 break;
1333 }
1334
1335 return len < 0;
1336 }
1337
1338 /* Perform a comparison on two string values (whose content are not
1339 necessarily null terminated) based on their length */
1340
1341 static int
1342 value_strcmp (struct value *arg1, struct value *arg2)
1343 {
1344 int len1 = TYPE_LENGTH (value_type (arg1));
1345 int len2 = TYPE_LENGTH (value_type (arg2));
1346 const gdb_byte *s1 = value_contents (arg1);
1347 const gdb_byte *s2 = value_contents (arg2);
1348 int i, len = len1 < len2 ? len1 : len2;
1349
1350 for (i = 0; i < len; i++)
1351 {
1352 if (s1[i] < s2[i])
1353 return -1;
1354 else if (s1[i] > s2[i])
1355 return 1;
1356 else
1357 continue;
1358 }
1359
1360 if (len1 < len2)
1361 return -1;
1362 else if (len1 > len2)
1363 return 1;
1364 else
1365 return 0;
1366 }
1367
1368 /* Simulate the C operator == by returning a 1
1369 iff ARG1 and ARG2 have equal contents. */
1370
1371 int
1372 value_equal (struct value *arg1, struct value *arg2)
1373 {
1374 int len;
1375 const gdb_byte *p1;
1376 const gdb_byte *p2;
1377 struct type *type1, *type2;
1378 enum type_code code1;
1379 enum type_code code2;
1380 int is_int1, is_int2;
1381
1382 arg1 = coerce_array (arg1);
1383 arg2 = coerce_array (arg2);
1384
1385 type1 = check_typedef (value_type (arg1));
1386 type2 = check_typedef (value_type (arg2));
1387 code1 = TYPE_CODE (type1);
1388 code2 = TYPE_CODE (type2);
1389 is_int1 = is_integral_type (type1);
1390 is_int2 = is_integral_type (type2);
1391
1392 if (is_int1 && is_int2)
1393 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1394 BINOP_EQUAL)));
1395 else if ((code1 == TYPE_CODE_FLT || is_int1)
1396 && (code2 == TYPE_CODE_FLT || is_int2))
1397 {
1398 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1399 `long double' values are returned in static storage (m68k). */
1400 DOUBLEST d = value_as_double (arg1);
1401 return d == value_as_double (arg2);
1402 }
1403 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1404 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1405 {
1406 gdb_byte v1[16], v2[16];
1407 int len_v1, len_v2;
1408 enum bfd_endian byte_order_v1, byte_order_v2;
1409
1410 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1411 v2, &len_v2, &byte_order_v2);
1412
1413 return decimal_compare (v1, len_v1, byte_order_v1,
1414 v2, len_v2, byte_order_v2) == 0;
1415 }
1416
1417 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1418 is bigger. */
1419 else if (code1 == TYPE_CODE_PTR && is_int2)
1420 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1421 else if (code2 == TYPE_CODE_PTR && is_int1)
1422 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1423
1424 else if (code1 == code2
1425 && ((len = (int) TYPE_LENGTH (type1))
1426 == (int) TYPE_LENGTH (type2)))
1427 {
1428 p1 = value_contents (arg1);
1429 p2 = value_contents (arg2);
1430 while (--len >= 0)
1431 {
1432 if (*p1++ != *p2++)
1433 break;
1434 }
1435 return len < 0;
1436 }
1437 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1438 {
1439 return value_strcmp (arg1, arg2) == 0;
1440 }
1441 else
1442 {
1443 error (_("Invalid type combination in equality test."));
1444 return 0; /* For lint -- never reached */
1445 }
1446 }
1447
1448 /* Compare values based on their raw contents. Useful for arrays since
1449 value_equal coerces them to pointers, thus comparing just the address
1450 of the array instead of its contents. */
1451
1452 int
1453 value_equal_contents (struct value *arg1, struct value *arg2)
1454 {
1455 struct type *type1, *type2;
1456
1457 type1 = check_typedef (value_type (arg1));
1458 type2 = check_typedef (value_type (arg2));
1459
1460 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1461 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1462 && memcmp (value_contents (arg1), value_contents (arg2),
1463 TYPE_LENGTH (type1)) == 0);
1464 }
1465
1466 /* Simulate the C operator < by returning 1
1467 iff ARG1's contents are less than ARG2's. */
1468
1469 int
1470 value_less (struct value *arg1, struct value *arg2)
1471 {
1472 enum type_code code1;
1473 enum type_code code2;
1474 struct type *type1, *type2;
1475 int is_int1, is_int2;
1476
1477 arg1 = coerce_array (arg1);
1478 arg2 = coerce_array (arg2);
1479
1480 type1 = check_typedef (value_type (arg1));
1481 type2 = check_typedef (value_type (arg2));
1482 code1 = TYPE_CODE (type1);
1483 code2 = TYPE_CODE (type2);
1484 is_int1 = is_integral_type (type1);
1485 is_int2 = is_integral_type (type2);
1486
1487 if (is_int1 && is_int2)
1488 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1489 BINOP_LESS)));
1490 else if ((code1 == TYPE_CODE_FLT || is_int1)
1491 && (code2 == TYPE_CODE_FLT || is_int2))
1492 {
1493 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1494 `long double' values are returned in static storage (m68k). */
1495 DOUBLEST d = value_as_double (arg1);
1496 return d < value_as_double (arg2);
1497 }
1498 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1499 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1500 {
1501 gdb_byte v1[16], v2[16];
1502 int len_v1, len_v2;
1503 enum bfd_endian byte_order_v1, byte_order_v2;
1504
1505 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1506 v2, &len_v2, &byte_order_v2);
1507
1508 return decimal_compare (v1, len_v1, byte_order_v1,
1509 v2, len_v2, byte_order_v2) == -1;
1510 }
1511 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1512 return value_as_address (arg1) < value_as_address (arg2);
1513
1514 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1515 is bigger. */
1516 else if (code1 == TYPE_CODE_PTR && is_int2)
1517 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1518 else if (code2 == TYPE_CODE_PTR && is_int1)
1519 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1520 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1521 return value_strcmp (arg1, arg2) < 0;
1522 else
1523 {
1524 error (_("Invalid type combination in ordering comparison."));
1525 return 0;
1526 }
1527 }
1528 \f
1529 /* The unary operators +, - and ~. They free the argument ARG1. */
1530
1531 struct value *
1532 value_pos (struct value *arg1)
1533 {
1534 struct type *type;
1535
1536 arg1 = coerce_ref (arg1);
1537 type = check_typedef (value_type (arg1));
1538
1539 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1540 return value_from_double (type, value_as_double (arg1));
1541 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1542 return value_from_decfloat (type, value_contents (arg1));
1543 else if (is_integral_type (type))
1544 {
1545 return value_from_longest (type, value_as_long (arg1));
1546 }
1547 else
1548 {
1549 error ("Argument to positive operation not a number.");
1550 return 0; /* For lint -- never reached */
1551 }
1552 }
1553
1554 struct value *
1555 value_neg (struct value *arg1)
1556 {
1557 struct type *type;
1558
1559 arg1 = coerce_ref (arg1);
1560 type = check_typedef (value_type (arg1));
1561
1562 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1563 {
1564 struct value *val = allocate_value (type);
1565 int len = TYPE_LENGTH (type);
1566 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1567
1568 memcpy (decbytes, value_contents (arg1), len);
1569
1570 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1571 decbytes[len-1] = decbytes[len - 1] | 0x80;
1572 else
1573 decbytes[0] = decbytes[0] | 0x80;
1574
1575 memcpy (value_contents_raw (val), decbytes, len);
1576 return val;
1577 }
1578 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1579 return value_from_double (type, -value_as_double (arg1));
1580 else if (is_integral_type (type))
1581 {
1582 return value_from_longest (type, -value_as_long (arg1));
1583 }
1584 else
1585 {
1586 error (_("Argument to negate operation not a number."));
1587 return 0; /* For lint -- never reached */
1588 }
1589 }
1590
1591 struct value *
1592 value_complement (struct value *arg1)
1593 {
1594 struct type *type;
1595
1596 arg1 = coerce_ref (arg1);
1597 type = check_typedef (value_type (arg1));
1598
1599 if (!is_integral_type (type))
1600 error (_("Argument to complement operation not an integer or boolean."));
1601
1602 return value_from_longest (type, ~value_as_long (arg1));
1603 }
1604 \f
1605 /* The INDEX'th bit of SET value whose value_type is TYPE,
1606 and whose value_contents is valaddr.
1607 Return -1 if out of range, -2 other error. */
1608
1609 int
1610 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1611 {
1612 struct gdbarch *gdbarch = get_type_arch (type);
1613 LONGEST low_bound, high_bound;
1614 LONGEST word;
1615 unsigned rel_index;
1616 struct type *range = TYPE_INDEX_TYPE (type);
1617 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1618 return -2;
1619 if (index < low_bound || index > high_bound)
1620 return -1;
1621 rel_index = index - low_bound;
1622 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1623 gdbarch_byte_order (gdbarch));
1624 rel_index %= TARGET_CHAR_BIT;
1625 if (gdbarch_bits_big_endian (gdbarch))
1626 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1627 return (word >> rel_index) & 1;
1628 }
1629
1630 int
1631 value_in (struct value *element, struct value *set)
1632 {
1633 int member;
1634 struct type *settype = check_typedef (value_type (set));
1635 struct type *eltype = check_typedef (value_type (element));
1636 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1637 eltype = TYPE_TARGET_TYPE (eltype);
1638 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1639 error (_("Second argument of 'IN' has wrong type"));
1640 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1641 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1642 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1643 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1644 error (_("First argument of 'IN' has wrong type"));
1645 member = value_bit_index (settype, value_contents (set),
1646 value_as_long (element));
1647 if (member < 0)
1648 error (_("First argument of 'IN' not in range"));
1649 return member;
1650 }
1651
1652 void
1653 _initialize_valarith (void)
1654 {
1655 }
This page took 0.067609 seconds and 5 git commands to generate.