* valarith.c (value_binop): Handle unsigned integer
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
43
44 void _initialize_valarith (void);
45 \f
46
47 /* Given a pointer, return the size of its target.
48 If the pointer type is void *, then return 1.
49 If the target type is incomplete, then error out.
50 This isn't a general purpose function, but just a
51 helper for value_sub & value_add.
52 */
53
54 static LONGEST
55 find_size_for_pointer_math (struct type *ptr_type)
56 {
57 LONGEST sz = -1;
58 struct type *ptr_target;
59
60 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
61
62 sz = TYPE_LENGTH (ptr_target);
63 if (sz == 0)
64 {
65 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
66 sz = 1;
67 else
68 {
69 char *name;
70
71 name = TYPE_NAME (ptr_target);
72 if (name == NULL)
73 name = TYPE_TAG_NAME (ptr_target);
74 if (name == NULL)
75 error (_("Cannot perform pointer math on incomplete types, "
76 "try casting to a known type, or void *."));
77 else
78 error (_("Cannot perform pointer math on incomplete type \"%s\", "
79 "try casting to a known type, or void *."), name);
80 }
81 }
82 return sz;
83 }
84
85 struct value *
86 value_add (struct value *arg1, struct value *arg2)
87 {
88 struct value *valint;
89 struct value *valptr;
90 LONGEST sz;
91 struct type *type1, *type2, *valptrtype;
92
93 arg1 = coerce_array (arg1);
94 arg2 = coerce_array (arg2);
95 type1 = check_typedef (value_type (arg1));
96 type2 = check_typedef (value_type (arg2));
97
98 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
99 || TYPE_CODE (type2) == TYPE_CODE_PTR)
100 &&
101 (is_integral_type (type1) || is_integral_type (type2)))
102 /* Exactly one argument is a pointer, and one is an integer. */
103 {
104 struct value *retval;
105
106 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
107 {
108 valptr = arg1;
109 valint = arg2;
110 valptrtype = type1;
111 }
112 else
113 {
114 valptr = arg2;
115 valint = arg1;
116 valptrtype = type2;
117 }
118
119 sz = find_size_for_pointer_math (valptrtype);
120
121 retval = value_from_pointer (valptrtype,
122 value_as_address (valptr)
123 + (sz * value_as_long (valint)));
124 return retval;
125 }
126
127 return value_binop (arg1, arg2, BINOP_ADD);
128 }
129
130 struct value *
131 value_sub (struct value *arg1, struct value *arg2)
132 {
133 struct type *type1, *type2;
134 arg1 = coerce_array (arg1);
135 arg2 = coerce_array (arg2);
136 type1 = check_typedef (value_type (arg1));
137 type2 = check_typedef (value_type (arg2));
138
139 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
140 {
141 if (is_integral_type (type2))
142 {
143 /* pointer - integer. */
144 LONGEST sz = find_size_for_pointer_math (type1);
145
146 return value_from_pointer (type1,
147 (value_as_address (arg1)
148 - (sz * value_as_long (arg2))));
149 }
150 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
151 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
152 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
153 {
154 /* pointer to <type x> - pointer to <type x>. */
155 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
156 return value_from_longest
157 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
158 (value_as_long (arg1) - value_as_long (arg2)) / sz);
159 }
160 else
161 {
162 error (_("\
163 First argument of `-' is a pointer and second argument is neither\n\
164 an integer nor a pointer of the same type."));
165 }
166 }
167
168 return value_binop (arg1, arg2, BINOP_SUB);
169 }
170
171 /* Return the value of ARRAY[IDX].
172 See comments in value_coerce_array() for rationale for reason for
173 doing lower bounds adjustment here rather than there.
174 FIXME: Perhaps we should validate that the index is valid and if
175 verbosity is set, warn about invalid indices (but still use them). */
176
177 struct value *
178 value_subscript (struct value *array, struct value *idx)
179 {
180 struct value *bound;
181 int c_style = current_language->c_style_arrays;
182 struct type *tarray;
183
184 array = coerce_ref (array);
185 tarray = check_typedef (value_type (array));
186
187 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
188 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
189 {
190 struct type *range_type = TYPE_INDEX_TYPE (tarray);
191 LONGEST lowerbound, upperbound;
192 get_discrete_bounds (range_type, &lowerbound, &upperbound);
193
194 if (VALUE_LVAL (array) != lval_memory)
195 return value_subscripted_rvalue (array, idx, lowerbound);
196
197 if (c_style == 0)
198 {
199 LONGEST index = value_as_long (idx);
200 if (index >= lowerbound && index <= upperbound)
201 return value_subscripted_rvalue (array, idx, lowerbound);
202 /* Emit warning unless we have an array of unknown size.
203 An array of unknown size has lowerbound 0 and upperbound -1. */
204 if (upperbound > -1)
205 warning (_("array or string index out of range"));
206 /* fall doing C stuff */
207 c_style = 1;
208 }
209
210 if (lowerbound != 0)
211 {
212 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
213 idx = value_sub (idx, bound);
214 }
215
216 array = value_coerce_array (array);
217 }
218
219 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
220 {
221 struct type *range_type = TYPE_INDEX_TYPE (tarray);
222 LONGEST index = value_as_long (idx);
223 struct value *v;
224 int offset, byte, bit_index;
225 LONGEST lowerbound, upperbound;
226 get_discrete_bounds (range_type, &lowerbound, &upperbound);
227 if (index < lowerbound || index > upperbound)
228 error (_("bitstring index out of range"));
229 index -= lowerbound;
230 offset = index / TARGET_CHAR_BIT;
231 byte = *((char *) value_contents (array) + offset);
232 bit_index = index % TARGET_CHAR_BIT;
233 byte >>= (gdbarch_bits_big_endian (current_gdbarch) ?
234 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
235 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
236 set_value_bitpos (v, bit_index);
237 set_value_bitsize (v, 1);
238 VALUE_LVAL (v) = VALUE_LVAL (array);
239 if (VALUE_LVAL (array) == lval_internalvar)
240 VALUE_LVAL (v) = lval_internalvar_component;
241 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
242 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
243 set_value_offset (v, offset + value_offset (array));
244 return v;
245 }
246
247 if (c_style)
248 return value_ind (value_add (array, idx));
249 else
250 error (_("not an array or string"));
251 }
252
253 /* Return the value of EXPR[IDX], expr an aggregate rvalue
254 (eg, a vector register). This routine used to promote floats
255 to doubles, but no longer does. */
256
257 static struct value *
258 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
259 {
260 struct type *array_type = check_typedef (value_type (array));
261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
262 unsigned int elt_size = TYPE_LENGTH (elt_type);
263 LONGEST index = value_as_long (idx);
264 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
265 struct value *v;
266
267 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
268 error (_("no such vector element"));
269
270 v = allocate_value (elt_type);
271 if (value_lazy (array))
272 set_value_lazy (v, 1);
273 else
274 memcpy (value_contents_writeable (v),
275 value_contents (array) + elt_offs, elt_size);
276
277 if (VALUE_LVAL (array) == lval_internalvar)
278 VALUE_LVAL (v) = lval_internalvar_component;
279 else
280 VALUE_LVAL (v) = VALUE_LVAL (array);
281 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
282 VALUE_REGNUM (v) = VALUE_REGNUM (array);
283 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
284 set_value_offset (v, value_offset (array) + elt_offs);
285 return v;
286 }
287 \f
288 /* Check to see if either argument is a structure, or a reference to
289 one. This is called so we know whether to go ahead with the normal
290 binop or look for a user defined function instead.
291
292 For now, we do not overload the `=' operator. */
293
294 int
295 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
296 {
297 struct type *type1, *type2;
298 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
299 return 0;
300
301 type1 = check_typedef (value_type (arg1));
302 if (TYPE_CODE (type1) == TYPE_CODE_REF)
303 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
304
305 type2 = check_typedef (value_type (arg2));
306 if (TYPE_CODE (type2) == TYPE_CODE_REF)
307 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
308
309 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
311 }
312
313 /* Check to see if argument is a structure. This is called so
314 we know whether to go ahead with the normal unop or look for a
315 user defined function instead.
316
317 For now, we do not overload the `&' operator. */
318
319 int
320 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
321 {
322 struct type *type1;
323 if (op == UNOP_ADDR)
324 return 0;
325 type1 = check_typedef (value_type (arg1));
326 for (;;)
327 {
328 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
329 return 1;
330 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
331 type1 = TYPE_TARGET_TYPE (type1);
332 else
333 return 0;
334 }
335 }
336
337 /* We know either arg1 or arg2 is a structure, so try to find the right
338 user defined function. Create an argument vector that calls
339 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
340 binary operator which is legal for GNU C++).
341
342 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
343 is the opcode saying how to modify it. Otherwise, OTHEROP is
344 unused. */
345
346 struct value *
347 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
348 enum exp_opcode otherop, enum noside noside)
349 {
350 struct value **argvec;
351 char *ptr;
352 char tstr[13];
353 int static_memfuncp;
354
355 arg1 = coerce_ref (arg1);
356 arg2 = coerce_ref (arg2);
357 arg1 = coerce_enum (arg1);
358 arg2 = coerce_enum (arg2);
359
360 /* now we know that what we have to do is construct our
361 arg vector and find the right function to call it with. */
362
363 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
364 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
365
366 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
367 argvec[1] = value_addr (arg1);
368 argvec[2] = arg2;
369 argvec[3] = 0;
370
371 /* make the right function name up */
372 strcpy (tstr, "operator__");
373 ptr = tstr + 8;
374 switch (op)
375 {
376 case BINOP_ADD:
377 strcpy (ptr, "+");
378 break;
379 case BINOP_SUB:
380 strcpy (ptr, "-");
381 break;
382 case BINOP_MUL:
383 strcpy (ptr, "*");
384 break;
385 case BINOP_DIV:
386 strcpy (ptr, "/");
387 break;
388 case BINOP_REM:
389 strcpy (ptr, "%");
390 break;
391 case BINOP_LSH:
392 strcpy (ptr, "<<");
393 break;
394 case BINOP_RSH:
395 strcpy (ptr, ">>");
396 break;
397 case BINOP_BITWISE_AND:
398 strcpy (ptr, "&");
399 break;
400 case BINOP_BITWISE_IOR:
401 strcpy (ptr, "|");
402 break;
403 case BINOP_BITWISE_XOR:
404 strcpy (ptr, "^");
405 break;
406 case BINOP_LOGICAL_AND:
407 strcpy (ptr, "&&");
408 break;
409 case BINOP_LOGICAL_OR:
410 strcpy (ptr, "||");
411 break;
412 case BINOP_MIN:
413 strcpy (ptr, "<?");
414 break;
415 case BINOP_MAX:
416 strcpy (ptr, ">?");
417 break;
418 case BINOP_ASSIGN:
419 strcpy (ptr, "=");
420 break;
421 case BINOP_ASSIGN_MODIFY:
422 switch (otherop)
423 {
424 case BINOP_ADD:
425 strcpy (ptr, "+=");
426 break;
427 case BINOP_SUB:
428 strcpy (ptr, "-=");
429 break;
430 case BINOP_MUL:
431 strcpy (ptr, "*=");
432 break;
433 case BINOP_DIV:
434 strcpy (ptr, "/=");
435 break;
436 case BINOP_REM:
437 strcpy (ptr, "%=");
438 break;
439 case BINOP_BITWISE_AND:
440 strcpy (ptr, "&=");
441 break;
442 case BINOP_BITWISE_IOR:
443 strcpy (ptr, "|=");
444 break;
445 case BINOP_BITWISE_XOR:
446 strcpy (ptr, "^=");
447 break;
448 case BINOP_MOD: /* invalid */
449 default:
450 error (_("Invalid binary operation specified."));
451 }
452 break;
453 case BINOP_SUBSCRIPT:
454 strcpy (ptr, "[]");
455 break;
456 case BINOP_EQUAL:
457 strcpy (ptr, "==");
458 break;
459 case BINOP_NOTEQUAL:
460 strcpy (ptr, "!=");
461 break;
462 case BINOP_LESS:
463 strcpy (ptr, "<");
464 break;
465 case BINOP_GTR:
466 strcpy (ptr, ">");
467 break;
468 case BINOP_GEQ:
469 strcpy (ptr, ">=");
470 break;
471 case BINOP_LEQ:
472 strcpy (ptr, "<=");
473 break;
474 case BINOP_MOD: /* invalid */
475 default:
476 error (_("Invalid binary operation specified."));
477 }
478
479 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
480
481 if (argvec[0])
482 {
483 if (static_memfuncp)
484 {
485 argvec[1] = argvec[0];
486 argvec++;
487 }
488 if (noside == EVAL_AVOID_SIDE_EFFECTS)
489 {
490 struct type *return_type;
491 return_type
492 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
493 return value_zero (return_type, VALUE_LVAL (arg1));
494 }
495 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
496 }
497 error (_("member function %s not found"), tstr);
498 #ifdef lint
499 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
500 #endif
501 }
502
503 /* We know that arg1 is a structure, so try to find a unary user
504 defined operator that matches the operator in question.
505 Create an argument vector that calls arg1.operator @ (arg1)
506 and return that value (where '@' is (almost) any unary operator which
507 is legal for GNU C++). */
508
509 struct value *
510 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
511 {
512 struct value **argvec;
513 char *ptr, *mangle_ptr;
514 char tstr[13], mangle_tstr[13];
515 int static_memfuncp, nargs;
516
517 arg1 = coerce_ref (arg1);
518 arg1 = coerce_enum (arg1);
519
520 /* now we know that what we have to do is construct our
521 arg vector and find the right function to call it with. */
522
523 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
524 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
525
526 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
527 argvec[1] = value_addr (arg1);
528 argvec[2] = 0;
529
530 nargs = 1;
531
532 /* make the right function name up */
533 strcpy (tstr, "operator__");
534 ptr = tstr + 8;
535 strcpy (mangle_tstr, "__");
536 mangle_ptr = mangle_tstr + 2;
537 switch (op)
538 {
539 case UNOP_PREINCREMENT:
540 strcpy (ptr, "++");
541 break;
542 case UNOP_PREDECREMENT:
543 strcpy (ptr, "--");
544 break;
545 case UNOP_POSTINCREMENT:
546 strcpy (ptr, "++");
547 argvec[2] = value_from_longest (builtin_type_int, 0);
548 argvec[3] = 0;
549 nargs ++;
550 break;
551 case UNOP_POSTDECREMENT:
552 strcpy (ptr, "--");
553 argvec[2] = value_from_longest (builtin_type_int, 0);
554 argvec[3] = 0;
555 nargs ++;
556 break;
557 case UNOP_LOGICAL_NOT:
558 strcpy (ptr, "!");
559 break;
560 case UNOP_COMPLEMENT:
561 strcpy (ptr, "~");
562 break;
563 case UNOP_NEG:
564 strcpy (ptr, "-");
565 break;
566 case UNOP_PLUS:
567 strcpy (ptr, "+");
568 break;
569 case UNOP_IND:
570 strcpy (ptr, "*");
571 break;
572 default:
573 error (_("Invalid unary operation specified."));
574 }
575
576 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
577
578 if (argvec[0])
579 {
580 if (static_memfuncp)
581 {
582 argvec[1] = argvec[0];
583 nargs --;
584 argvec++;
585 }
586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
587 {
588 struct type *return_type;
589 return_type
590 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
591 return value_zero (return_type, VALUE_LVAL (arg1));
592 }
593 return call_function_by_hand (argvec[0], nargs, argvec + 1);
594 }
595 error (_("member function %s not found"), tstr);
596 return 0; /* For lint -- never reached */
597 }
598 \f
599
600 /* Concatenate two values with the following conditions:
601
602 (1) Both values must be either bitstring values or character string
603 values and the resulting value consists of the concatenation of
604 ARG1 followed by ARG2.
605
606 or
607
608 One value must be an integer value and the other value must be
609 either a bitstring value or character string value, which is
610 to be repeated by the number of times specified by the integer
611 value.
612
613
614 (2) Boolean values are also allowed and are treated as bit string
615 values of length 1.
616
617 (3) Character values are also allowed and are treated as character
618 string values of length 1.
619 */
620
621 struct value *
622 value_concat (struct value *arg1, struct value *arg2)
623 {
624 struct value *inval1;
625 struct value *inval2;
626 struct value *outval = NULL;
627 int inval1len, inval2len;
628 int count, idx;
629 char *ptr;
630 char inchar;
631 struct type *type1 = check_typedef (value_type (arg1));
632 struct type *type2 = check_typedef (value_type (arg2));
633
634 /* First figure out if we are dealing with two values to be concatenated
635 or a repeat count and a value to be repeated. INVAL1 is set to the
636 first of two concatenated values, or the repeat count. INVAL2 is set
637 to the second of the two concatenated values or the value to be
638 repeated. */
639
640 if (TYPE_CODE (type2) == TYPE_CODE_INT)
641 {
642 struct type *tmp = type1;
643 type1 = tmp;
644 tmp = type2;
645 inval1 = arg2;
646 inval2 = arg1;
647 }
648 else
649 {
650 inval1 = arg1;
651 inval2 = arg2;
652 }
653
654 /* Now process the input values. */
655
656 if (TYPE_CODE (type1) == TYPE_CODE_INT)
657 {
658 /* We have a repeat count. Validate the second value and then
659 construct a value repeated that many times. */
660 if (TYPE_CODE (type2) == TYPE_CODE_STRING
661 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
662 {
663 count = longest_to_int (value_as_long (inval1));
664 inval2len = TYPE_LENGTH (type2);
665 ptr = (char *) alloca (count * inval2len);
666 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
667 {
668 inchar = (char) unpack_long (type2,
669 value_contents (inval2));
670 for (idx = 0; idx < count; idx++)
671 {
672 *(ptr + idx) = inchar;
673 }
674 }
675 else
676 {
677 for (idx = 0; idx < count; idx++)
678 {
679 memcpy (ptr + (idx * inval2len), value_contents (inval2),
680 inval2len);
681 }
682 }
683 outval = value_string (ptr, count * inval2len);
684 }
685 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
686 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
687 {
688 error (_("unimplemented support for bitstring/boolean repeats"));
689 }
690 else
691 {
692 error (_("can't repeat values of that type"));
693 }
694 }
695 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
696 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
697 {
698 /* We have two character strings to concatenate. */
699 if (TYPE_CODE (type2) != TYPE_CODE_STRING
700 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
701 {
702 error (_("Strings can only be concatenated with other strings."));
703 }
704 inval1len = TYPE_LENGTH (type1);
705 inval2len = TYPE_LENGTH (type2);
706 ptr = (char *) alloca (inval1len + inval2len);
707 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
708 {
709 *ptr = (char) unpack_long (type1, value_contents (inval1));
710 }
711 else
712 {
713 memcpy (ptr, value_contents (inval1), inval1len);
714 }
715 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
716 {
717 *(ptr + inval1len) =
718 (char) unpack_long (type2, value_contents (inval2));
719 }
720 else
721 {
722 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
723 }
724 outval = value_string (ptr, inval1len + inval2len);
725 }
726 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
727 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
728 {
729 /* We have two bitstrings to concatenate. */
730 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
731 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
732 {
733 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
734 }
735 error (_("unimplemented support for bitstring/boolean concatenation."));
736 }
737 else
738 {
739 /* We don't know how to concatenate these operands. */
740 error (_("illegal operands for concatenation."));
741 }
742 return (outval);
743 }
744 \f
745
746 /* Obtain decimal value of arguments for binary operation, converting from
747 other types if one of them is not decimal floating point. */
748 static void
749 value_args_as_decimal (struct value *arg1, struct value *arg2,
750 gdb_byte *x, int *len_x, gdb_byte *y, int *len_y)
751 {
752 struct type *type1, *type2;
753
754 type1 = check_typedef (value_type (arg1));
755 type2 = check_typedef (value_type (arg2));
756
757 /* At least one of the arguments must be of decimal float type. */
758 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
759 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
760
761 if (TYPE_CODE (type1) == TYPE_CODE_FLT
762 || TYPE_CODE (type2) == TYPE_CODE_FLT)
763 /* The DFP extension to the C language does not allow mixing of
764 * decimal float types with other float types in expressions
765 * (see WDTR 24732, page 12). */
766 error (_("Mixing decimal floating types with other floating types is not allowed."));
767
768 /* Obtain decimal value of arg1, converting from other types
769 if necessary. */
770
771 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
772 {
773 *len_x = TYPE_LENGTH (type1);
774 memcpy (x, value_contents (arg1), *len_x);
775 }
776 else if (is_integral_type (type1))
777 {
778 *len_x = TYPE_LENGTH (type2);
779 decimal_from_integral (arg1, x, *len_x);
780 }
781 else
782 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
783 TYPE_NAME (type2));
784
785 /* Obtain decimal value of arg2, converting from other types
786 if necessary. */
787
788 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
789 {
790 *len_y = TYPE_LENGTH (type2);
791 memcpy (y, value_contents (arg2), *len_y);
792 }
793 else if (is_integral_type (type2))
794 {
795 *len_y = TYPE_LENGTH (type1);
796 decimal_from_integral (arg2, y, *len_y);
797 }
798 else
799 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
800 TYPE_NAME (type2));
801 }
802
803 /* Perform a binary operation on two operands which have reasonable
804 representations as integers or floats. This includes booleans,
805 characters, integers, or floats.
806 Does not support addition and subtraction on pointers;
807 use value_add or value_sub if you want to handle those possibilities. */
808
809 struct value *
810 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
811 {
812 struct value *val;
813 struct type *type1, *type2;
814
815 arg1 = coerce_ref (arg1);
816 arg2 = coerce_ref (arg2);
817 type1 = check_typedef (value_type (arg1));
818 type2 = check_typedef (value_type (arg2));
819
820 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
821 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT && !is_integral_type (type1))
822 ||
823 (TYPE_CODE (type2) != TYPE_CODE_FLT
824 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT && !is_integral_type (type2)))
825 error (_("Argument to arithmetic operation not a number or boolean."));
826
827 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
828 ||
829 TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
830 {
831 struct type *v_type;
832 int len_v1, len_v2, len_v;
833 gdb_byte v1[16], v2[16];
834 gdb_byte v[16];
835
836 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
837
838 switch (op)
839 {
840 case BINOP_ADD:
841 case BINOP_SUB:
842 case BINOP_MUL:
843 case BINOP_DIV:
844 case BINOP_EXP:
845 decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v);
846 break;
847
848 default:
849 error (_("Operation not valid for decimal floating point number."));
850 }
851
852 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
853 /* If arg1 is not a decimal float, the type of the result is the type
854 of the decimal float argument, arg2. */
855 v_type = type2;
856 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
857 /* Same logic, for the case where arg2 is not a decimal float. */
858 v_type = type1;
859 else
860 /* len_v is equal either to len_v1 or to len_v2. the type of the
861 result is the type of the argument with the same length as v. */
862 v_type = (len_v == len_v1)? type1 : type2;
863
864 val = value_from_decfloat (v_type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
867 ||
868 TYPE_CODE (type2) == TYPE_CODE_FLT)
869 {
870 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
871 in target format. real.c in GCC probably has the necessary
872 code. */
873 DOUBLEST v1, v2, v = 0;
874 v1 = value_as_double (arg1);
875 v2 = value_as_double (arg2);
876 switch (op)
877 {
878 case BINOP_ADD:
879 v = v1 + v2;
880 break;
881
882 case BINOP_SUB:
883 v = v1 - v2;
884 break;
885
886 case BINOP_MUL:
887 v = v1 * v2;
888 break;
889
890 case BINOP_DIV:
891 v = v1 / v2;
892 break;
893
894 case BINOP_EXP:
895 errno = 0;
896 v = pow (v1, v2);
897 if (errno)
898 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
899 break;
900
901 default:
902 error (_("Integer-only operation on floating point number."));
903 }
904
905 /* If either arg was long double, make sure that value is also long
906 double. */
907
908 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (current_gdbarch)
909 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (current_gdbarch))
910 val = allocate_value (builtin_type_long_double);
911 else
912 val = allocate_value (builtin_type_double);
913
914 store_typed_floating (value_contents_raw (val), value_type (val), v);
915 }
916 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
917 &&
918 TYPE_CODE (type2) == TYPE_CODE_BOOL)
919 {
920 LONGEST v1, v2, v = 0;
921 v1 = value_as_long (arg1);
922 v2 = value_as_long (arg2);
923
924 switch (op)
925 {
926 case BINOP_BITWISE_AND:
927 v = v1 & v2;
928 break;
929
930 case BINOP_BITWISE_IOR:
931 v = v1 | v2;
932 break;
933
934 case BINOP_BITWISE_XOR:
935 v = v1 ^ v2;
936 break;
937
938 case BINOP_EQUAL:
939 v = v1 == v2;
940 break;
941
942 case BINOP_NOTEQUAL:
943 v = v1 != v2;
944 break;
945
946 default:
947 error (_("Invalid operation on booleans."));
948 }
949
950 val = allocate_value (type1);
951 store_signed_integer (value_contents_raw (val),
952 TYPE_LENGTH (type1),
953 v);
954 }
955 else
956 /* Integral operations here. */
957 /* FIXME: Also mixed integral/booleans, with result an integer. */
958 /* FIXME: This implements ANSI C rules (also correct for C++).
959 What about FORTRAN and (the deleted) chill ? */
960 {
961 unsigned int promoted_len1 = TYPE_LENGTH (type1);
962 unsigned int promoted_len2 = TYPE_LENGTH (type2);
963 int is_unsigned1 = TYPE_UNSIGNED (type1);
964 int is_unsigned2 = TYPE_UNSIGNED (type2);
965 unsigned int result_len;
966 int unsigned_operation;
967
968 /* Determine type length and signedness after promotion for
969 both operands. */
970 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
971 {
972 is_unsigned1 = 0;
973 promoted_len1 = TYPE_LENGTH (builtin_type_int);
974 }
975 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
976 {
977 is_unsigned2 = 0;
978 promoted_len2 = TYPE_LENGTH (builtin_type_int);
979 }
980
981 /* Determine type length of the result, and if the operation should
982 be done unsigned.
983 Use the signedness of the operand with the greater length.
984 If both operands are of equal length, use unsigned operation
985 if one of the operands is unsigned. */
986 if (op == BINOP_RSH || op == BINOP_LSH)
987 {
988 /* In case of the shift operators the type of the result only
989 depends on the type of the left operand. */
990 unsigned_operation = is_unsigned1;
991 result_len = promoted_len1;
992 }
993 else if (promoted_len1 > promoted_len2)
994 {
995 unsigned_operation = is_unsigned1;
996 result_len = promoted_len1;
997 }
998 else if (promoted_len2 > promoted_len1)
999 {
1000 unsigned_operation = is_unsigned2;
1001 result_len = promoted_len2;
1002 }
1003 else
1004 {
1005 unsigned_operation = is_unsigned1 || is_unsigned2;
1006 result_len = promoted_len1;
1007 }
1008
1009 if (unsigned_operation)
1010 {
1011 ULONGEST v1, v2, v = 0;
1012 v1 = (ULONGEST) value_as_long (arg1);
1013 v2 = (ULONGEST) value_as_long (arg2);
1014
1015 /* Truncate values to the type length of the result. */
1016 if (result_len < sizeof (ULONGEST))
1017 {
1018 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1019 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1020 }
1021
1022 switch (op)
1023 {
1024 case BINOP_ADD:
1025 v = v1 + v2;
1026 break;
1027
1028 case BINOP_SUB:
1029 v = v1 - v2;
1030 break;
1031
1032 case BINOP_MUL:
1033 v = v1 * v2;
1034 break;
1035
1036 case BINOP_DIV:
1037 case BINOP_INTDIV:
1038 if (v2 != 0)
1039 v = v1 / v2;
1040 else
1041 error (_("Division by zero"));
1042 break;
1043
1044 case BINOP_EXP:
1045 errno = 0;
1046 v = pow (v1, v2);
1047 if (errno)
1048 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1049 break;
1050
1051 case BINOP_REM:
1052 v = v1 % v2;
1053 break;
1054
1055 case BINOP_MOD:
1056 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1057 v1 mod 0 has a defined value, v1. */
1058 if (v2 == 0)
1059 {
1060 v = v1;
1061 }
1062 else
1063 {
1064 v = v1 / v2;
1065 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1066 v = v1 - (v2 * v);
1067 }
1068 break;
1069
1070 case BINOP_LSH:
1071 v = v1 << v2;
1072 break;
1073
1074 case BINOP_RSH:
1075 v = v1 >> v2;
1076 break;
1077
1078 case BINOP_BITWISE_AND:
1079 v = v1 & v2;
1080 break;
1081
1082 case BINOP_BITWISE_IOR:
1083 v = v1 | v2;
1084 break;
1085
1086 case BINOP_BITWISE_XOR:
1087 v = v1 ^ v2;
1088 break;
1089
1090 case BINOP_LOGICAL_AND:
1091 v = v1 && v2;
1092 break;
1093
1094 case BINOP_LOGICAL_OR:
1095 v = v1 || v2;
1096 break;
1097
1098 case BINOP_MIN:
1099 v = v1 < v2 ? v1 : v2;
1100 break;
1101
1102 case BINOP_MAX:
1103 v = v1 > v2 ? v1 : v2;
1104 break;
1105
1106 case BINOP_EQUAL:
1107 v = v1 == v2;
1108 break;
1109
1110 case BINOP_NOTEQUAL:
1111 v = v1 != v2;
1112 break;
1113
1114 case BINOP_LESS:
1115 v = v1 < v2;
1116 break;
1117
1118 default:
1119 error (_("Invalid binary operation on numbers."));
1120 }
1121
1122 /* This is a kludge to get around the fact that we don't
1123 know how to determine the result type from the types of
1124 the operands. (I'm not really sure how much we feel the
1125 need to duplicate the exact rules of the current
1126 language. They can get really hairy. But not to do so
1127 makes it hard to document just what we *do* do). */
1128
1129 /* Can't just call init_type because we wouldn't know what
1130 name to give the type. */
1131 val = allocate_value
1132 (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT
1133 ? builtin_type_unsigned_long_long
1134 : builtin_type_unsigned_long);
1135 store_unsigned_integer (value_contents_raw (val),
1136 TYPE_LENGTH (value_type (val)),
1137 v);
1138 }
1139 else
1140 {
1141 LONGEST v1, v2, v = 0;
1142 v1 = value_as_long (arg1);
1143 v2 = value_as_long (arg2);
1144
1145 switch (op)
1146 {
1147 case BINOP_ADD:
1148 v = v1 + v2;
1149 break;
1150
1151 case BINOP_SUB:
1152 v = v1 - v2;
1153 break;
1154
1155 case BINOP_MUL:
1156 v = v1 * v2;
1157 break;
1158
1159 case BINOP_DIV:
1160 case BINOP_INTDIV:
1161 if (v2 != 0)
1162 v = v1 / v2;
1163 else
1164 error (_("Division by zero"));
1165 break;
1166
1167 case BINOP_EXP:
1168 errno = 0;
1169 v = pow (v1, v2);
1170 if (errno)
1171 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1172 break;
1173
1174 case BINOP_REM:
1175 if (v2 != 0)
1176 v = v1 % v2;
1177 else
1178 error (_("Division by zero"));
1179 break;
1180
1181 case BINOP_MOD:
1182 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1183 X mod 0 has a defined value, X. */
1184 if (v2 == 0)
1185 {
1186 v = v1;
1187 }
1188 else
1189 {
1190 v = v1 / v2;
1191 /* Compute floor. */
1192 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1193 {
1194 v--;
1195 }
1196 v = v1 - (v2 * v);
1197 }
1198 break;
1199
1200 case BINOP_LSH:
1201 v = v1 << v2;
1202 break;
1203
1204 case BINOP_RSH:
1205 v = v1 >> v2;
1206 break;
1207
1208 case BINOP_BITWISE_AND:
1209 v = v1 & v2;
1210 break;
1211
1212 case BINOP_BITWISE_IOR:
1213 v = v1 | v2;
1214 break;
1215
1216 case BINOP_BITWISE_XOR:
1217 v = v1 ^ v2;
1218 break;
1219
1220 case BINOP_LOGICAL_AND:
1221 v = v1 && v2;
1222 break;
1223
1224 case BINOP_LOGICAL_OR:
1225 v = v1 || v2;
1226 break;
1227
1228 case BINOP_MIN:
1229 v = v1 < v2 ? v1 : v2;
1230 break;
1231
1232 case BINOP_MAX:
1233 v = v1 > v2 ? v1 : v2;
1234 break;
1235
1236 case BINOP_EQUAL:
1237 v = v1 == v2;
1238 break;
1239
1240 case BINOP_LESS:
1241 v = v1 < v2;
1242 break;
1243
1244 default:
1245 error (_("Invalid binary operation on numbers."));
1246 }
1247
1248 /* This is a kludge to get around the fact that we don't
1249 know how to determine the result type from the types of
1250 the operands. (I'm not really sure how much we feel the
1251 need to duplicate the exact rules of the current
1252 language. They can get really hairy. But not to do so
1253 makes it hard to document just what we *do* do). */
1254
1255 /* Can't just call init_type because we wouldn't know what
1256 name to give the type. */
1257 val = allocate_value
1258 (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT
1259 ? builtin_type_long_long
1260 : builtin_type_long);
1261 store_signed_integer (value_contents_raw (val),
1262 TYPE_LENGTH (value_type (val)),
1263 v);
1264 }
1265 }
1266
1267 return val;
1268 }
1269 \f
1270 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1271
1272 int
1273 value_logical_not (struct value *arg1)
1274 {
1275 int len;
1276 const gdb_byte *p;
1277 struct type *type1;
1278
1279 arg1 = coerce_number (arg1);
1280 type1 = check_typedef (value_type (arg1));
1281
1282 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1283 return 0 == value_as_double (arg1);
1284 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1285 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1));
1286
1287 len = TYPE_LENGTH (type1);
1288 p = value_contents (arg1);
1289
1290 while (--len >= 0)
1291 {
1292 if (*p++)
1293 break;
1294 }
1295
1296 return len < 0;
1297 }
1298
1299 /* Perform a comparison on two string values (whose content are not
1300 necessarily null terminated) based on their length */
1301
1302 static int
1303 value_strcmp (struct value *arg1, struct value *arg2)
1304 {
1305 int len1 = TYPE_LENGTH (value_type (arg1));
1306 int len2 = TYPE_LENGTH (value_type (arg2));
1307 const gdb_byte *s1 = value_contents (arg1);
1308 const gdb_byte *s2 = value_contents (arg2);
1309 int i, len = len1 < len2 ? len1 : len2;
1310
1311 for (i = 0; i < len; i++)
1312 {
1313 if (s1[i] < s2[i])
1314 return -1;
1315 else if (s1[i] > s2[i])
1316 return 1;
1317 else
1318 continue;
1319 }
1320
1321 if (len1 < len2)
1322 return -1;
1323 else if (len1 > len2)
1324 return 1;
1325 else
1326 return 0;
1327 }
1328
1329 /* Simulate the C operator == by returning a 1
1330 iff ARG1 and ARG2 have equal contents. */
1331
1332 int
1333 value_equal (struct value *arg1, struct value *arg2)
1334 {
1335 int len;
1336 const gdb_byte *p1;
1337 const gdb_byte *p2;
1338 struct type *type1, *type2;
1339 enum type_code code1;
1340 enum type_code code2;
1341 int is_int1, is_int2;
1342
1343 arg1 = coerce_array (arg1);
1344 arg2 = coerce_array (arg2);
1345
1346 type1 = check_typedef (value_type (arg1));
1347 type2 = check_typedef (value_type (arg2));
1348 code1 = TYPE_CODE (type1);
1349 code2 = TYPE_CODE (type2);
1350 is_int1 = is_integral_type (type1);
1351 is_int2 = is_integral_type (type2);
1352
1353 if (is_int1 && is_int2)
1354 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1355 BINOP_EQUAL)));
1356 else if ((code1 == TYPE_CODE_FLT || is_int1)
1357 && (code2 == TYPE_CODE_FLT || is_int2))
1358 {
1359 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1360 `long double' values are returned in static storage (m68k). */
1361 DOUBLEST d = value_as_double (arg1);
1362 return d == value_as_double (arg2);
1363 }
1364 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1365 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1366 {
1367 gdb_byte v1[16], v2[16];
1368 int len_v1, len_v2;
1369
1370 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1371
1372 return decimal_compare (v1, len_v1, v2, len_v2) == 0;
1373 }
1374
1375 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1376 is bigger. */
1377 else if (code1 == TYPE_CODE_PTR && is_int2)
1378 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1379 else if (code2 == TYPE_CODE_PTR && is_int1)
1380 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1381
1382 else if (code1 == code2
1383 && ((len = (int) TYPE_LENGTH (type1))
1384 == (int) TYPE_LENGTH (type2)))
1385 {
1386 p1 = value_contents (arg1);
1387 p2 = value_contents (arg2);
1388 while (--len >= 0)
1389 {
1390 if (*p1++ != *p2++)
1391 break;
1392 }
1393 return len < 0;
1394 }
1395 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1396 {
1397 return value_strcmp (arg1, arg2) == 0;
1398 }
1399 else
1400 {
1401 error (_("Invalid type combination in equality test."));
1402 return 0; /* For lint -- never reached */
1403 }
1404 }
1405
1406 /* Simulate the C operator < by returning 1
1407 iff ARG1's contents are less than ARG2's. */
1408
1409 int
1410 value_less (struct value *arg1, struct value *arg2)
1411 {
1412 enum type_code code1;
1413 enum type_code code2;
1414 struct type *type1, *type2;
1415 int is_int1, is_int2;
1416
1417 arg1 = coerce_array (arg1);
1418 arg2 = coerce_array (arg2);
1419
1420 type1 = check_typedef (value_type (arg1));
1421 type2 = check_typedef (value_type (arg2));
1422 code1 = TYPE_CODE (type1);
1423 code2 = TYPE_CODE (type2);
1424 is_int1 = is_integral_type (type1);
1425 is_int2 = is_integral_type (type2);
1426
1427 if (is_int1 && is_int2)
1428 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1429 BINOP_LESS)));
1430 else if ((code1 == TYPE_CODE_FLT || is_int1)
1431 && (code2 == TYPE_CODE_FLT || is_int2))
1432 {
1433 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1434 `long double' values are returned in static storage (m68k). */
1435 DOUBLEST d = value_as_double (arg1);
1436 return d < value_as_double (arg2);
1437 }
1438 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1439 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1440 {
1441 gdb_byte v1[16], v2[16];
1442 int len_v1, len_v2;
1443
1444 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1445
1446 return decimal_compare (v1, len_v1, v2, len_v2) == -1;
1447 }
1448 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1449 return value_as_address (arg1) < value_as_address (arg2);
1450
1451 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1452 is bigger. */
1453 else if (code1 == TYPE_CODE_PTR && is_int2)
1454 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1455 else if (code2 == TYPE_CODE_PTR && is_int1)
1456 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1457 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1458 return value_strcmp (arg1, arg2) < 0;
1459 else
1460 {
1461 error (_("Invalid type combination in ordering comparison."));
1462 return 0;
1463 }
1464 }
1465 \f
1466 /* The unary operators +, - and ~. They free the argument ARG1. */
1467
1468 struct value *
1469 value_pos (struct value *arg1)
1470 {
1471 struct type *type;
1472
1473 arg1 = coerce_ref (arg1);
1474
1475 type = check_typedef (value_type (arg1));
1476
1477 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1478 return value_from_double (type, value_as_double (arg1));
1479 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1480 return value_from_decfloat (type, value_contents (arg1));
1481 else if (is_integral_type (type))
1482 {
1483 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1484 FORTRAN and (the deleted) chill ? */
1485 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1486 type = builtin_type_int;
1487
1488 return value_from_longest (type, value_as_long (arg1));
1489 }
1490 else
1491 {
1492 error ("Argument to positive operation not a number.");
1493 return 0; /* For lint -- never reached */
1494 }
1495 }
1496
1497 struct value *
1498 value_neg (struct value *arg1)
1499 {
1500 struct type *type;
1501 struct type *result_type = value_type (arg1);
1502
1503 arg1 = coerce_ref (arg1);
1504
1505 type = check_typedef (value_type (arg1));
1506
1507 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1508 {
1509 struct value *val = allocate_value (result_type);
1510 int len = TYPE_LENGTH (type);
1511 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1512
1513 memcpy (decbytes, value_contents (arg1), len);
1514
1515 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1516 decbytes[len-1] = decbytes[len - 1] | 0x80;
1517 else
1518 decbytes[0] = decbytes[0] | 0x80;
1519
1520 memcpy (value_contents_raw (val), decbytes, len);
1521 return val;
1522 }
1523
1524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1525 return value_from_double (result_type, -value_as_double (arg1));
1526 else if (is_integral_type (type))
1527 {
1528 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1529 FORTRAN and (the deleted) chill ? */
1530 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1531 result_type = builtin_type_int;
1532
1533 return value_from_longest (result_type, -value_as_long (arg1));
1534 }
1535 else
1536 {
1537 error (_("Argument to negate operation not a number."));
1538 return 0; /* For lint -- never reached */
1539 }
1540 }
1541
1542 struct value *
1543 value_complement (struct value *arg1)
1544 {
1545 struct type *type;
1546 struct type *result_type = value_type (arg1);
1547
1548 arg1 = coerce_ref (arg1);
1549
1550 type = check_typedef (value_type (arg1));
1551
1552 if (!is_integral_type (type))
1553 error (_("Argument to complement operation not an integer or boolean."));
1554
1555 /* Perform integral promotion for ANSI C/C++.
1556 FIXME: What about FORTRAN ? */
1557 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1558 result_type = builtin_type_int;
1559
1560 return value_from_longest (result_type, ~value_as_long (arg1));
1561 }
1562 \f
1563 /* The INDEX'th bit of SET value whose value_type is TYPE,
1564 and whose value_contents is valaddr.
1565 Return -1 if out of range, -2 other error. */
1566
1567 int
1568 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1569 {
1570 LONGEST low_bound, high_bound;
1571 LONGEST word;
1572 unsigned rel_index;
1573 struct type *range = TYPE_FIELD_TYPE (type, 0);
1574 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1575 return -2;
1576 if (index < low_bound || index > high_bound)
1577 return -1;
1578 rel_index = index - low_bound;
1579 word = unpack_long (builtin_type_unsigned_char,
1580 valaddr + (rel_index / TARGET_CHAR_BIT));
1581 rel_index %= TARGET_CHAR_BIT;
1582 if (gdbarch_bits_big_endian (current_gdbarch))
1583 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1584 return (word >> rel_index) & 1;
1585 }
1586
1587 struct value *
1588 value_in (struct value *element, struct value *set)
1589 {
1590 int member;
1591 struct type *settype = check_typedef (value_type (set));
1592 struct type *eltype = check_typedef (value_type (element));
1593 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1594 eltype = TYPE_TARGET_TYPE (eltype);
1595 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1596 error (_("Second argument of 'IN' has wrong type"));
1597 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1598 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1599 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1600 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1601 error (_("First argument of 'IN' has wrong type"));
1602 member = value_bit_index (settype, value_contents (set),
1603 value_as_long (element));
1604 if (member < 0)
1605 error (_("First argument of 'IN' not in range"));
1606 return value_from_longest (LA_BOOL_TYPE, member);
1607 }
1608
1609 void
1610 _initialize_valarith (void)
1611 {
1612 }
This page took 0.086029 seconds and 5 git commands to generate.