gdb/
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34 #include "exceptions.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 void _initialize_valarith (void);
44 \f
45
46 /* Given a pointer, return the size of its target.
47 If the pointer type is void *, then return 1.
48 If the target type is incomplete, then error out.
49 This isn't a general purpose function, but just a
50 helper for value_ptradd. */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92 struct value *result;
93
94 arg1 = coerce_array (arg1);
95 valptrtype = check_typedef (value_type (arg1));
96 sz = find_size_for_pointer_math (valptrtype);
97
98 result = value_from_pointer (valptrtype,
99 value_as_address (arg1) + sz * arg2);
100 if (VALUE_LVAL (result) != lval_internalvar)
101 set_value_component_location (result, arg1);
102 return result;
103 }
104
105 /* Given two compatible pointer values ARG1 and ARG2, return the
106 result of C-style pointer arithmetic ARG1 - ARG2. */
107
108 LONGEST
109 value_ptrdiff (struct value *arg1, struct value *arg2)
110 {
111 struct type *type1, *type2;
112 LONGEST sz;
113
114 arg1 = coerce_array (arg1);
115 arg2 = coerce_array (arg2);
116 type1 = check_typedef (value_type (arg1));
117 type2 = check_typedef (value_type (arg2));
118
119 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
120 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
121
122 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
123 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
124 error (_("First argument of `-' is a pointer and "
125 "second argument is neither\n"
126 "an integer nor a pointer of the same type."));
127
128 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
129 if (sz == 0)
130 {
131 warning (_("Type size unknown, assuming 1. "
132 "Try casting to a known type, or void *."));
133 sz = 1;
134 }
135
136 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
137 }
138
139 /* Return the value of ARRAY[IDX].
140
141 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
142 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
143 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
144
145 See comments in value_coerce_array() for rationale for reason for
146 doing lower bounds adjustment here rather than there.
147 FIXME: Perhaps we should validate that the index is valid and if
148 verbosity is set, warn about invalid indices (but still use them). */
149
150 struct value *
151 value_subscript (struct value *array, LONGEST index)
152 {
153 int c_style = current_language->c_style_arrays;
154 struct type *tarray;
155
156 array = coerce_ref (array);
157 tarray = check_typedef (value_type (array));
158
159 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
160 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
161 {
162 struct type *range_type = TYPE_INDEX_TYPE (tarray);
163 LONGEST lowerbound, upperbound;
164
165 get_discrete_bounds (range_type, &lowerbound, &upperbound);
166 if (VALUE_LVAL (array) != lval_memory)
167 return value_subscripted_rvalue (array, index, lowerbound);
168
169 if (c_style == 0)
170 {
171 if (index >= lowerbound && index <= upperbound)
172 return value_subscripted_rvalue (array, index, lowerbound);
173 /* Emit warning unless we have an array of unknown size.
174 An array of unknown size has lowerbound 0 and upperbound -1. */
175 if (upperbound > -1)
176 warning (_("array or string index out of range"));
177 /* fall doing C stuff */
178 c_style = 1;
179 }
180
181 index -= lowerbound;
182 array = value_coerce_array (array);
183 }
184
185 if (c_style)
186 return value_ind (value_ptradd (array, index));
187 else
188 error (_("not an array or string"));
189 }
190
191 /* Return the value of EXPR[IDX], expr an aggregate rvalue
192 (eg, a vector register). This routine used to promote floats
193 to doubles, but no longer does. */
194
195 struct value *
196 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
197 {
198 struct type *array_type = check_typedef (value_type (array));
199 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
200 unsigned int elt_size = TYPE_LENGTH (elt_type);
201 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
202 struct value *v;
203
204 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
205 && elt_offs >= TYPE_LENGTH (array_type)))
206 error (_("no such vector element"));
207
208 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
209 v = allocate_value_lazy (elt_type);
210 else
211 {
212 v = allocate_value (elt_type);
213 value_contents_copy (v, value_embedded_offset (v),
214 array, value_embedded_offset (array) + elt_offs,
215 elt_size);
216 }
217
218 set_value_component_location (v, array);
219 VALUE_REGNUM (v) = VALUE_REGNUM (array);
220 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
221 set_value_offset (v, value_offset (array) + elt_offs);
222 return v;
223 }
224
225 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
226
227 struct value *
228 value_bitstring_subscript (struct type *type,
229 struct value *bitstring, LONGEST index)
230 {
231
232 struct type *bitstring_type, *range_type;
233 struct value *v;
234 int offset, byte, bit_index;
235 LONGEST lowerbound, upperbound;
236
237 bitstring_type = check_typedef (value_type (bitstring));
238 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
239
240 range_type = TYPE_INDEX_TYPE (bitstring_type);
241 get_discrete_bounds (range_type, &lowerbound, &upperbound);
242 if (index < lowerbound || index > upperbound)
243 error (_("bitstring index out of range"));
244
245 index -= lowerbound;
246 offset = index / TARGET_CHAR_BIT;
247 byte = *((char *) value_contents (bitstring) + offset);
248
249 bit_index = index % TARGET_CHAR_BIT;
250 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
251 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
252
253 v = value_from_longest (type, byte & 1);
254
255 set_value_bitpos (v, bit_index);
256 set_value_bitsize (v, 1);
257 set_value_component_location (v, bitstring);
258 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
259
260 set_value_offset (v, offset + value_offset (bitstring));
261
262 return v;
263 }
264
265 \f
266 /* Check to see if either argument is a structure, or a reference to
267 one. This is called so we know whether to go ahead with the normal
268 binop or look for a user defined function instead.
269
270 For now, we do not overload the `=' operator. */
271
272 int
273 binop_types_user_defined_p (enum exp_opcode op,
274 struct type *type1, struct type *type2)
275 {
276 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
277 return 0;
278
279 type1 = check_typedef (type1);
280 if (TYPE_CODE (type1) == TYPE_CODE_REF)
281 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
282
283 type2 = check_typedef (type1);
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
286
287 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
288 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
289 }
290
291 /* Check to see if either argument is a structure, or a reference to
292 one. This is called so we know whether to go ahead with the normal
293 binop or look for a user defined function instead.
294
295 For now, we do not overload the `=' operator. */
296
297 int
298 binop_user_defined_p (enum exp_opcode op,
299 struct value *arg1, struct value *arg2)
300 {
301 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
302 }
303
304 /* Check to see if argument is a structure. This is called so
305 we know whether to go ahead with the normal unop or look for a
306 user defined function instead.
307
308 For now, we do not overload the `&' operator. */
309
310 int
311 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
312 {
313 struct type *type1;
314
315 if (op == UNOP_ADDR)
316 return 0;
317 type1 = check_typedef (value_type (arg1));
318 if (TYPE_CODE (type1) == TYPE_CODE_REF)
319 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
320 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
321 }
322
323 /* Try to find an operator named OPERATOR which takes NARGS arguments
324 specified in ARGS. If the operator found is a static member operator
325 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
326 The search if performed through find_overload_match which will handle
327 member operators, non member operators, operators imported implicitly or
328 explicitly, and perform correct overload resolution in all of the above
329 situations or combinations thereof. */
330
331 static struct value *
332 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
333 int *static_memfuncp)
334 {
335
336 struct symbol *symp = NULL;
337 struct value *valp = NULL;
338 struct type **arg_types;
339 int i;
340
341 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
342 /* Prepare list of argument types for overload resolution. */
343 for (i = 0; i < nargs; i++)
344 arg_types[i] = value_type (args[i]);
345
346 find_overload_match (arg_types, nargs, operator, BOTH /* could be method */,
347 0 /* strict match */, &args[0], /* objp */
348 NULL /* pass NULL symbol since symbol is unknown */,
349 &valp, &symp, static_memfuncp, 0);
350
351 if (valp)
352 return valp;
353
354 if (symp)
355 {
356 /* This is a non member function and does not
357 expect a reference as its first argument
358 rather the explicit structure. */
359 args[0] = value_ind (args[0]);
360 return value_of_variable (symp, 0);
361 }
362
363 error (_("Could not find %s."), operator);
364 }
365
366 /* Lookup user defined operator NAME. Return a value representing the
367 function, otherwise return NULL. */
368
369 static struct value *
370 value_user_defined_op (struct value **argp, struct value **args, char *name,
371 int *static_memfuncp, int nargs)
372 {
373 struct value *result = NULL;
374
375 if (current_language->la_language == language_cplus)
376 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
377 else
378 result = value_struct_elt (argp, args, name, static_memfuncp,
379 "structure");
380
381 return result;
382 }
383
384 /* We know either arg1 or arg2 is a structure, so try to find the right
385 user defined function. Create an argument vector that calls
386 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
387 binary operator which is legal for GNU C++).
388
389 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
390 is the opcode saying how to modify it. Otherwise, OTHEROP is
391 unused. */
392
393 struct value *
394 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
395 enum exp_opcode otherop, enum noside noside)
396 {
397 struct value **argvec;
398 char *ptr;
399 char tstr[13];
400 int static_memfuncp;
401
402 arg1 = coerce_ref (arg1);
403 arg2 = coerce_ref (arg2);
404
405 /* now we know that what we have to do is construct our
406 arg vector and find the right function to call it with. */
407
408 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
409 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
410
411 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
412 argvec[1] = value_addr (arg1);
413 argvec[2] = arg2;
414 argvec[3] = 0;
415
416 /* Make the right function name up. */
417 strcpy (tstr, "operator__");
418 ptr = tstr + 8;
419 switch (op)
420 {
421 case BINOP_ADD:
422 strcpy (ptr, "+");
423 break;
424 case BINOP_SUB:
425 strcpy (ptr, "-");
426 break;
427 case BINOP_MUL:
428 strcpy (ptr, "*");
429 break;
430 case BINOP_DIV:
431 strcpy (ptr, "/");
432 break;
433 case BINOP_REM:
434 strcpy (ptr, "%");
435 break;
436 case BINOP_LSH:
437 strcpy (ptr, "<<");
438 break;
439 case BINOP_RSH:
440 strcpy (ptr, ">>");
441 break;
442 case BINOP_BITWISE_AND:
443 strcpy (ptr, "&");
444 break;
445 case BINOP_BITWISE_IOR:
446 strcpy (ptr, "|");
447 break;
448 case BINOP_BITWISE_XOR:
449 strcpy (ptr, "^");
450 break;
451 case BINOP_LOGICAL_AND:
452 strcpy (ptr, "&&");
453 break;
454 case BINOP_LOGICAL_OR:
455 strcpy (ptr, "||");
456 break;
457 case BINOP_MIN:
458 strcpy (ptr, "<?");
459 break;
460 case BINOP_MAX:
461 strcpy (ptr, ">?");
462 break;
463 case BINOP_ASSIGN:
464 strcpy (ptr, "=");
465 break;
466 case BINOP_ASSIGN_MODIFY:
467 switch (otherop)
468 {
469 case BINOP_ADD:
470 strcpy (ptr, "+=");
471 break;
472 case BINOP_SUB:
473 strcpy (ptr, "-=");
474 break;
475 case BINOP_MUL:
476 strcpy (ptr, "*=");
477 break;
478 case BINOP_DIV:
479 strcpy (ptr, "/=");
480 break;
481 case BINOP_REM:
482 strcpy (ptr, "%=");
483 break;
484 case BINOP_BITWISE_AND:
485 strcpy (ptr, "&=");
486 break;
487 case BINOP_BITWISE_IOR:
488 strcpy (ptr, "|=");
489 break;
490 case BINOP_BITWISE_XOR:
491 strcpy (ptr, "^=");
492 break;
493 case BINOP_MOD: /* invalid */
494 default:
495 error (_("Invalid binary operation specified."));
496 }
497 break;
498 case BINOP_SUBSCRIPT:
499 strcpy (ptr, "[]");
500 break;
501 case BINOP_EQUAL:
502 strcpy (ptr, "==");
503 break;
504 case BINOP_NOTEQUAL:
505 strcpy (ptr, "!=");
506 break;
507 case BINOP_LESS:
508 strcpy (ptr, "<");
509 break;
510 case BINOP_GTR:
511 strcpy (ptr, ">");
512 break;
513 case BINOP_GEQ:
514 strcpy (ptr, ">=");
515 break;
516 case BINOP_LEQ:
517 strcpy (ptr, "<=");
518 break;
519 case BINOP_MOD: /* invalid */
520 default:
521 error (_("Invalid binary operation specified."));
522 }
523
524 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
525 &static_memfuncp, 2);
526
527 if (argvec[0])
528 {
529 if (static_memfuncp)
530 {
531 argvec[1] = argvec[0];
532 argvec++;
533 }
534 if (noside == EVAL_AVOID_SIDE_EFFECTS)
535 {
536 struct type *return_type;
537
538 return_type
539 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
540 return value_zero (return_type, VALUE_LVAL (arg1));
541 }
542 return call_function_by_hand (argvec[0], 2 - static_memfuncp,
543 argvec + 1);
544 }
545 throw_error (NOT_FOUND_ERROR,
546 _("member function %s not found"), tstr);
547 #ifdef lint
548 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
549 #endif
550 }
551
552 /* We know that arg1 is a structure, so try to find a unary user
553 defined operator that matches the operator in question.
554 Create an argument vector that calls arg1.operator @ (arg1)
555 and return that value (where '@' is (almost) any unary operator which
556 is legal for GNU C++). */
557
558 struct value *
559 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
560 {
561 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
562 struct value **argvec;
563 char *ptr, *mangle_ptr;
564 char tstr[13], mangle_tstr[13];
565 int static_memfuncp, nargs;
566
567 arg1 = coerce_ref (arg1);
568
569 /* now we know that what we have to do is construct our
570 arg vector and find the right function to call it with. */
571
572 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
573 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
574
575 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
576 argvec[1] = value_addr (arg1);
577 argvec[2] = 0;
578
579 nargs = 1;
580
581 /* Make the right function name up. */
582 strcpy (tstr, "operator__");
583 ptr = tstr + 8;
584 strcpy (mangle_tstr, "__");
585 mangle_ptr = mangle_tstr + 2;
586 switch (op)
587 {
588 case UNOP_PREINCREMENT:
589 strcpy (ptr, "++");
590 break;
591 case UNOP_PREDECREMENT:
592 strcpy (ptr, "--");
593 break;
594 case UNOP_POSTINCREMENT:
595 strcpy (ptr, "++");
596 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
597 argvec[3] = 0;
598 nargs ++;
599 break;
600 case UNOP_POSTDECREMENT:
601 strcpy (ptr, "--");
602 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
603 argvec[3] = 0;
604 nargs ++;
605 break;
606 case UNOP_LOGICAL_NOT:
607 strcpy (ptr, "!");
608 break;
609 case UNOP_COMPLEMENT:
610 strcpy (ptr, "~");
611 break;
612 case UNOP_NEG:
613 strcpy (ptr, "-");
614 break;
615 case UNOP_PLUS:
616 strcpy (ptr, "+");
617 break;
618 case UNOP_IND:
619 strcpy (ptr, "*");
620 break;
621 case STRUCTOP_PTR:
622 strcpy (ptr, "->");
623 break;
624 default:
625 error (_("Invalid unary operation specified."));
626 }
627
628 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
629 &static_memfuncp, nargs);
630
631 if (argvec[0])
632 {
633 if (static_memfuncp)
634 {
635 argvec[1] = argvec[0];
636 nargs --;
637 argvec++;
638 }
639 if (noside == EVAL_AVOID_SIDE_EFFECTS)
640 {
641 struct type *return_type;
642
643 return_type
644 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
645 return value_zero (return_type, VALUE_LVAL (arg1));
646 }
647 return call_function_by_hand (argvec[0], nargs, argvec + 1);
648 }
649 throw_error (NOT_FOUND_ERROR,
650 _("member function %s not found"), tstr);
651
652 return 0; /* For lint -- never reached */
653 }
654 \f
655
656 /* Concatenate two values with the following conditions:
657
658 (1) Both values must be either bitstring values or character string
659 values and the resulting value consists of the concatenation of
660 ARG1 followed by ARG2.
661
662 or
663
664 One value must be an integer value and the other value must be
665 either a bitstring value or character string value, which is
666 to be repeated by the number of times specified by the integer
667 value.
668
669
670 (2) Boolean values are also allowed and are treated as bit string
671 values of length 1.
672
673 (3) Character values are also allowed and are treated as character
674 string values of length 1. */
675
676 struct value *
677 value_concat (struct value *arg1, struct value *arg2)
678 {
679 struct value *inval1;
680 struct value *inval2;
681 struct value *outval = NULL;
682 int inval1len, inval2len;
683 int count, idx;
684 char *ptr;
685 char inchar;
686 struct type *type1 = check_typedef (value_type (arg1));
687 struct type *type2 = check_typedef (value_type (arg2));
688 struct type *char_type;
689
690 /* First figure out if we are dealing with two values to be concatenated
691 or a repeat count and a value to be repeated. INVAL1 is set to the
692 first of two concatenated values, or the repeat count. INVAL2 is set
693 to the second of the two concatenated values or the value to be
694 repeated. */
695
696 if (TYPE_CODE (type2) == TYPE_CODE_INT)
697 {
698 struct type *tmp = type1;
699
700 type1 = tmp;
701 tmp = type2;
702 inval1 = arg2;
703 inval2 = arg1;
704 }
705 else
706 {
707 inval1 = arg1;
708 inval2 = arg2;
709 }
710
711 /* Now process the input values. */
712
713 if (TYPE_CODE (type1) == TYPE_CODE_INT)
714 {
715 /* We have a repeat count. Validate the second value and then
716 construct a value repeated that many times. */
717 if (TYPE_CODE (type2) == TYPE_CODE_STRING
718 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
719 {
720 count = longest_to_int (value_as_long (inval1));
721 inval2len = TYPE_LENGTH (type2);
722 ptr = (char *) alloca (count * inval2len);
723 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
724 {
725 char_type = type2;
726
727 inchar = (char) unpack_long (type2,
728 value_contents (inval2));
729 for (idx = 0; idx < count; idx++)
730 {
731 *(ptr + idx) = inchar;
732 }
733 }
734 else
735 {
736 char_type = TYPE_TARGET_TYPE (type2);
737
738 for (idx = 0; idx < count; idx++)
739 {
740 memcpy (ptr + (idx * inval2len), value_contents (inval2),
741 inval2len);
742 }
743 }
744 outval = value_string (ptr, count * inval2len, char_type);
745 }
746 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
747 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
748 {
749 error (_("unimplemented support for bitstring/boolean repeats"));
750 }
751 else
752 {
753 error (_("can't repeat values of that type"));
754 }
755 }
756 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
757 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
758 {
759 /* We have two character strings to concatenate. */
760 if (TYPE_CODE (type2) != TYPE_CODE_STRING
761 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
762 {
763 error (_("Strings can only be concatenated with other strings."));
764 }
765 inval1len = TYPE_LENGTH (type1);
766 inval2len = TYPE_LENGTH (type2);
767 ptr = (char *) alloca (inval1len + inval2len);
768 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
769 {
770 char_type = type1;
771
772 *ptr = (char) unpack_long (type1, value_contents (inval1));
773 }
774 else
775 {
776 char_type = TYPE_TARGET_TYPE (type1);
777
778 memcpy (ptr, value_contents (inval1), inval1len);
779 }
780 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
781 {
782 *(ptr + inval1len) =
783 (char) unpack_long (type2, value_contents (inval2));
784 }
785 else
786 {
787 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
788 }
789 outval = value_string (ptr, inval1len + inval2len, char_type);
790 }
791 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
792 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
793 {
794 /* We have two bitstrings to concatenate. */
795 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
796 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
797 {
798 error (_("Bitstrings or booleans can only be concatenated "
799 "with other bitstrings or booleans."));
800 }
801 error (_("unimplemented support for bitstring/boolean concatenation."));
802 }
803 else
804 {
805 /* We don't know how to concatenate these operands. */
806 error (_("illegal operands for concatenation."));
807 }
808 return (outval);
809 }
810 \f
811 /* Integer exponentiation: V1**V2, where both arguments are
812 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
813
814 static LONGEST
815 integer_pow (LONGEST v1, LONGEST v2)
816 {
817 if (v2 < 0)
818 {
819 if (v1 == 0)
820 error (_("Attempt to raise 0 to negative power."));
821 else
822 return 0;
823 }
824 else
825 {
826 /* The Russian Peasant's Algorithm. */
827 LONGEST v;
828
829 v = 1;
830 for (;;)
831 {
832 if (v2 & 1L)
833 v *= v1;
834 v2 >>= 1;
835 if (v2 == 0)
836 return v;
837 v1 *= v1;
838 }
839 }
840 }
841
842 /* Integer exponentiation: V1**V2, where both arguments are
843 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
844
845 static ULONGEST
846 uinteger_pow (ULONGEST v1, LONGEST v2)
847 {
848 if (v2 < 0)
849 {
850 if (v1 == 0)
851 error (_("Attempt to raise 0 to negative power."));
852 else
853 return 0;
854 }
855 else
856 {
857 /* The Russian Peasant's Algorithm. */
858 ULONGEST v;
859
860 v = 1;
861 for (;;)
862 {
863 if (v2 & 1L)
864 v *= v1;
865 v2 >>= 1;
866 if (v2 == 0)
867 return v;
868 v1 *= v1;
869 }
870 }
871 }
872
873 /* Obtain decimal value of arguments for binary operation, converting from
874 other types if one of them is not decimal floating point. */
875 static void
876 value_args_as_decimal (struct value *arg1, struct value *arg2,
877 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
878 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
879 {
880 struct type *type1, *type2;
881
882 type1 = check_typedef (value_type (arg1));
883 type2 = check_typedef (value_type (arg2));
884
885 /* At least one of the arguments must be of decimal float type. */
886 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
887 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
888
889 if (TYPE_CODE (type1) == TYPE_CODE_FLT
890 || TYPE_CODE (type2) == TYPE_CODE_FLT)
891 /* The DFP extension to the C language does not allow mixing of
892 * decimal float types with other float types in expressions
893 * (see WDTR 24732, page 12). */
894 error (_("Mixing decimal floating types with "
895 "other floating types is not allowed."));
896
897 /* Obtain decimal value of arg1, converting from other types
898 if necessary. */
899
900 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
901 {
902 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
903 *len_x = TYPE_LENGTH (type1);
904 memcpy (x, value_contents (arg1), *len_x);
905 }
906 else if (is_integral_type (type1))
907 {
908 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
909 *len_x = TYPE_LENGTH (type2);
910 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
911 }
912 else
913 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
914 TYPE_NAME (type2));
915
916 /* Obtain decimal value of arg2, converting from other types
917 if necessary. */
918
919 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
920 {
921 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
922 *len_y = TYPE_LENGTH (type2);
923 memcpy (y, value_contents (arg2), *len_y);
924 }
925 else if (is_integral_type (type2))
926 {
927 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
928 *len_y = TYPE_LENGTH (type1);
929 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
930 }
931 else
932 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
933 TYPE_NAME (type2));
934 }
935
936 /* Perform a binary operation on two operands which have reasonable
937 representations as integers or floats. This includes booleans,
938 characters, integers, or floats.
939 Does not support addition and subtraction on pointers;
940 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
941
942 static struct value *
943 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
944 {
945 struct value *val;
946 struct type *type1, *type2, *result_type;
947
948 arg1 = coerce_ref (arg1);
949 arg2 = coerce_ref (arg2);
950
951 type1 = check_typedef (value_type (arg1));
952 type2 = check_typedef (value_type (arg2));
953
954 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
955 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
956 && !is_integral_type (type1))
957 || (TYPE_CODE (type2) != TYPE_CODE_FLT
958 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
959 && !is_integral_type (type2)))
960 error (_("Argument to arithmetic operation not a number or boolean."));
961
962 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
963 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
964 {
965 int len_v1, len_v2, len_v;
966 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
967 gdb_byte v1[16], v2[16];
968 gdb_byte v[16];
969
970 /* If only one type is decimal float, use its type.
971 Otherwise use the bigger type. */
972 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
973 result_type = type2;
974 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
975 result_type = type1;
976 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
977 result_type = type2;
978 else
979 result_type = type1;
980
981 len_v = TYPE_LENGTH (result_type);
982 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
983
984 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
985 v2, &len_v2, &byte_order_v2);
986
987 switch (op)
988 {
989 case BINOP_ADD:
990 case BINOP_SUB:
991 case BINOP_MUL:
992 case BINOP_DIV:
993 case BINOP_EXP:
994 decimal_binop (op, v1, len_v1, byte_order_v1,
995 v2, len_v2, byte_order_v2,
996 v, len_v, byte_order_v);
997 break;
998
999 default:
1000 error (_("Operation not valid for decimal floating point number."));
1001 }
1002
1003 val = value_from_decfloat (result_type, v);
1004 }
1005 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
1006 || TYPE_CODE (type2) == TYPE_CODE_FLT)
1007 {
1008 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
1009 in target format. real.c in GCC probably has the necessary
1010 code. */
1011 DOUBLEST v1, v2, v = 0;
1012
1013 v1 = value_as_double (arg1);
1014 v2 = value_as_double (arg2);
1015
1016 switch (op)
1017 {
1018 case BINOP_ADD:
1019 v = v1 + v2;
1020 break;
1021
1022 case BINOP_SUB:
1023 v = v1 - v2;
1024 break;
1025
1026 case BINOP_MUL:
1027 v = v1 * v2;
1028 break;
1029
1030 case BINOP_DIV:
1031 v = v1 / v2;
1032 break;
1033
1034 case BINOP_EXP:
1035 errno = 0;
1036 v = pow (v1, v2);
1037 if (errno)
1038 error (_("Cannot perform exponentiation: %s"),
1039 safe_strerror (errno));
1040 break;
1041
1042 case BINOP_MIN:
1043 v = v1 < v2 ? v1 : v2;
1044 break;
1045
1046 case BINOP_MAX:
1047 v = v1 > v2 ? v1 : v2;
1048 break;
1049
1050 default:
1051 error (_("Integer-only operation on floating point number."));
1052 }
1053
1054 /* If only one type is float, use its type.
1055 Otherwise use the bigger type. */
1056 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1057 result_type = type2;
1058 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1059 result_type = type1;
1060 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1061 result_type = type2;
1062 else
1063 result_type = type1;
1064
1065 val = allocate_value (result_type);
1066 store_typed_floating (value_contents_raw (val), value_type (val), v);
1067 }
1068 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1069 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1070 {
1071 LONGEST v1, v2, v = 0;
1072
1073 v1 = value_as_long (arg1);
1074 v2 = value_as_long (arg2);
1075
1076 switch (op)
1077 {
1078 case BINOP_BITWISE_AND:
1079 v = v1 & v2;
1080 break;
1081
1082 case BINOP_BITWISE_IOR:
1083 v = v1 | v2;
1084 break;
1085
1086 case BINOP_BITWISE_XOR:
1087 v = v1 ^ v2;
1088 break;
1089
1090 case BINOP_EQUAL:
1091 v = v1 == v2;
1092 break;
1093
1094 case BINOP_NOTEQUAL:
1095 v = v1 != v2;
1096 break;
1097
1098 default:
1099 error (_("Invalid operation on booleans."));
1100 }
1101
1102 result_type = type1;
1103
1104 val = allocate_value (result_type);
1105 store_signed_integer (value_contents_raw (val),
1106 TYPE_LENGTH (result_type),
1107 gdbarch_byte_order (get_type_arch (result_type)),
1108 v);
1109 }
1110 else
1111 /* Integral operations here. */
1112 {
1113 /* Determine type length of the result, and if the operation should
1114 be done unsigned. For exponentiation and shift operators,
1115 use the length and type of the left operand. Otherwise,
1116 use the signedness of the operand with the greater length.
1117 If both operands are of equal length, use unsigned operation
1118 if one of the operands is unsigned. */
1119 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1120 result_type = type1;
1121 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1122 result_type = type1;
1123 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1124 result_type = type2;
1125 else if (TYPE_UNSIGNED (type1))
1126 result_type = type1;
1127 else if (TYPE_UNSIGNED (type2))
1128 result_type = type2;
1129 else
1130 result_type = type1;
1131
1132 if (TYPE_UNSIGNED (result_type))
1133 {
1134 LONGEST v2_signed = value_as_long (arg2);
1135 ULONGEST v1, v2, v = 0;
1136
1137 v1 = (ULONGEST) value_as_long (arg1);
1138 v2 = (ULONGEST) v2_signed;
1139
1140 switch (op)
1141 {
1142 case BINOP_ADD:
1143 v = v1 + v2;
1144 break;
1145
1146 case BINOP_SUB:
1147 v = v1 - v2;
1148 break;
1149
1150 case BINOP_MUL:
1151 v = v1 * v2;
1152 break;
1153
1154 case BINOP_DIV:
1155 case BINOP_INTDIV:
1156 if (v2 != 0)
1157 v = v1 / v2;
1158 else
1159 error (_("Division by zero"));
1160 break;
1161
1162 case BINOP_EXP:
1163 v = uinteger_pow (v1, v2_signed);
1164 break;
1165
1166 case BINOP_REM:
1167 if (v2 != 0)
1168 v = v1 % v2;
1169 else
1170 error (_("Division by zero"));
1171 break;
1172
1173 case BINOP_MOD:
1174 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1175 v1 mod 0 has a defined value, v1. */
1176 if (v2 == 0)
1177 {
1178 v = v1;
1179 }
1180 else
1181 {
1182 v = v1 / v2;
1183 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1184 v = v1 - (v2 * v);
1185 }
1186 break;
1187
1188 case BINOP_LSH:
1189 v = v1 << v2;
1190 break;
1191
1192 case BINOP_RSH:
1193 v = v1 >> v2;
1194 break;
1195
1196 case BINOP_BITWISE_AND:
1197 v = v1 & v2;
1198 break;
1199
1200 case BINOP_BITWISE_IOR:
1201 v = v1 | v2;
1202 break;
1203
1204 case BINOP_BITWISE_XOR:
1205 v = v1 ^ v2;
1206 break;
1207
1208 case BINOP_LOGICAL_AND:
1209 v = v1 && v2;
1210 break;
1211
1212 case BINOP_LOGICAL_OR:
1213 v = v1 || v2;
1214 break;
1215
1216 case BINOP_MIN:
1217 v = v1 < v2 ? v1 : v2;
1218 break;
1219
1220 case BINOP_MAX:
1221 v = v1 > v2 ? v1 : v2;
1222 break;
1223
1224 case BINOP_EQUAL:
1225 v = v1 == v2;
1226 break;
1227
1228 case BINOP_NOTEQUAL:
1229 v = v1 != v2;
1230 break;
1231
1232 case BINOP_LESS:
1233 v = v1 < v2;
1234 break;
1235
1236 case BINOP_GTR:
1237 v = v1 > v2;
1238 break;
1239
1240 case BINOP_LEQ:
1241 v = v1 <= v2;
1242 break;
1243
1244 case BINOP_GEQ:
1245 v = v1 >= v2;
1246 break;
1247
1248 default:
1249 error (_("Invalid binary operation on numbers."));
1250 }
1251
1252 val = allocate_value (result_type);
1253 store_unsigned_integer (value_contents_raw (val),
1254 TYPE_LENGTH (value_type (val)),
1255 gdbarch_byte_order
1256 (get_type_arch (result_type)),
1257 v);
1258 }
1259 else
1260 {
1261 LONGEST v1, v2, v = 0;
1262
1263 v1 = value_as_long (arg1);
1264 v2 = value_as_long (arg2);
1265
1266 switch (op)
1267 {
1268 case BINOP_ADD:
1269 v = v1 + v2;
1270 break;
1271
1272 case BINOP_SUB:
1273 v = v1 - v2;
1274 break;
1275
1276 case BINOP_MUL:
1277 v = v1 * v2;
1278 break;
1279
1280 case BINOP_DIV:
1281 case BINOP_INTDIV:
1282 if (v2 != 0)
1283 v = v1 / v2;
1284 else
1285 error (_("Division by zero"));
1286 break;
1287
1288 case BINOP_EXP:
1289 v = integer_pow (v1, v2);
1290 break;
1291
1292 case BINOP_REM:
1293 if (v2 != 0)
1294 v = v1 % v2;
1295 else
1296 error (_("Division by zero"));
1297 break;
1298
1299 case BINOP_MOD:
1300 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1301 X mod 0 has a defined value, X. */
1302 if (v2 == 0)
1303 {
1304 v = v1;
1305 }
1306 else
1307 {
1308 v = v1 / v2;
1309 /* Compute floor. */
1310 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1311 {
1312 v--;
1313 }
1314 v = v1 - (v2 * v);
1315 }
1316 break;
1317
1318 case BINOP_LSH:
1319 v = v1 << v2;
1320 break;
1321
1322 case BINOP_RSH:
1323 v = v1 >> v2;
1324 break;
1325
1326 case BINOP_BITWISE_AND:
1327 v = v1 & v2;
1328 break;
1329
1330 case BINOP_BITWISE_IOR:
1331 v = v1 | v2;
1332 break;
1333
1334 case BINOP_BITWISE_XOR:
1335 v = v1 ^ v2;
1336 break;
1337
1338 case BINOP_LOGICAL_AND:
1339 v = v1 && v2;
1340 break;
1341
1342 case BINOP_LOGICAL_OR:
1343 v = v1 || v2;
1344 break;
1345
1346 case BINOP_MIN:
1347 v = v1 < v2 ? v1 : v2;
1348 break;
1349
1350 case BINOP_MAX:
1351 v = v1 > v2 ? v1 : v2;
1352 break;
1353
1354 case BINOP_EQUAL:
1355 v = v1 == v2;
1356 break;
1357
1358 case BINOP_NOTEQUAL:
1359 v = v1 != v2;
1360 break;
1361
1362 case BINOP_LESS:
1363 v = v1 < v2;
1364 break;
1365
1366 case BINOP_GTR:
1367 v = v1 > v2;
1368 break;
1369
1370 case BINOP_LEQ:
1371 v = v1 <= v2;
1372 break;
1373
1374 case BINOP_GEQ:
1375 v = v1 >= v2;
1376 break;
1377
1378 default:
1379 error (_("Invalid binary operation on numbers."));
1380 }
1381
1382 val = allocate_value (result_type);
1383 store_signed_integer (value_contents_raw (val),
1384 TYPE_LENGTH (value_type (val)),
1385 gdbarch_byte_order
1386 (get_type_arch (result_type)),
1387 v);
1388 }
1389 }
1390
1391 return val;
1392 }
1393
1394 /* Performs a binary operation on two vector operands by calling scalar_binop
1395 for each pair of vector components. */
1396
1397 static struct value *
1398 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1399 {
1400 struct value *val, *tmp, *mark;
1401 struct type *type1, *type2, *eltype1, *eltype2, *result_type;
1402 int t1_is_vec, t2_is_vec, elsize, i;
1403 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1404
1405 type1 = check_typedef (value_type (val1));
1406 type2 = check_typedef (value_type (val2));
1407
1408 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1409 && TYPE_VECTOR (type1)) ? 1 : 0;
1410 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1411 && TYPE_VECTOR (type2)) ? 1 : 0;
1412
1413 if (!t1_is_vec || !t2_is_vec)
1414 error (_("Vector operations are only supported among vectors"));
1415
1416 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1417 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1418 error (_("Could not determine the vector bounds"));
1419
1420 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1421 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1422 elsize = TYPE_LENGTH (eltype1);
1423
1424 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1425 || elsize != TYPE_LENGTH (eltype2)
1426 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1427 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1428 error (_("Cannot perform operation on vectors with different types"));
1429
1430 val = allocate_value (type1);
1431 mark = value_mark ();
1432 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1433 {
1434 tmp = value_binop (value_subscript (val1, i),
1435 value_subscript (val2, i), op);
1436 memcpy (value_contents_writeable (val) + i * elsize,
1437 value_contents_all (tmp),
1438 elsize);
1439 }
1440 value_free_to_mark (mark);
1441
1442 return val;
1443 }
1444
1445 /* Perform a binary operation on two operands. */
1446
1447 struct value *
1448 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1449 {
1450 struct value *val;
1451 struct type *type1 = check_typedef (value_type (arg1));
1452 struct type *type2 = check_typedef (value_type (arg2));
1453 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1454 && TYPE_VECTOR (type1));
1455 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1456 && TYPE_VECTOR (type2));
1457
1458 if (!t1_is_vec && !t2_is_vec)
1459 val = scalar_binop (arg1, arg2, op);
1460 else if (t1_is_vec && t2_is_vec)
1461 val = vector_binop (arg1, arg2, op);
1462 else
1463 {
1464 /* Widen the scalar operand to a vector. */
1465 struct value **v = t1_is_vec ? &arg2 : &arg1;
1466 struct type *t = t1_is_vec ? type2 : type1;
1467
1468 if (TYPE_CODE (t) != TYPE_CODE_FLT
1469 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1470 && !is_integral_type (t))
1471 error (_("Argument to operation not a number or boolean."));
1472
1473 *v = value_cast (t1_is_vec ? type1 : type2, *v);
1474 val = vector_binop (arg1, arg2, op);
1475 }
1476
1477 return val;
1478 }
1479 \f
1480 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1481
1482 int
1483 value_logical_not (struct value *arg1)
1484 {
1485 int len;
1486 const gdb_byte *p;
1487 struct type *type1;
1488
1489 arg1 = coerce_array (arg1);
1490 type1 = check_typedef (value_type (arg1));
1491
1492 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1493 return 0 == value_as_double (arg1);
1494 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1495 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1496 gdbarch_byte_order (get_type_arch (type1)));
1497
1498 len = TYPE_LENGTH (type1);
1499 p = value_contents (arg1);
1500
1501 while (--len >= 0)
1502 {
1503 if (*p++)
1504 break;
1505 }
1506
1507 return len < 0;
1508 }
1509
1510 /* Perform a comparison on two string values (whose content are not
1511 necessarily null terminated) based on their length. */
1512
1513 static int
1514 value_strcmp (struct value *arg1, struct value *arg2)
1515 {
1516 int len1 = TYPE_LENGTH (value_type (arg1));
1517 int len2 = TYPE_LENGTH (value_type (arg2));
1518 const gdb_byte *s1 = value_contents (arg1);
1519 const gdb_byte *s2 = value_contents (arg2);
1520 int i, len = len1 < len2 ? len1 : len2;
1521
1522 for (i = 0; i < len; i++)
1523 {
1524 if (s1[i] < s2[i])
1525 return -1;
1526 else if (s1[i] > s2[i])
1527 return 1;
1528 else
1529 continue;
1530 }
1531
1532 if (len1 < len2)
1533 return -1;
1534 else if (len1 > len2)
1535 return 1;
1536 else
1537 return 0;
1538 }
1539
1540 /* Simulate the C operator == by returning a 1
1541 iff ARG1 and ARG2 have equal contents. */
1542
1543 int
1544 value_equal (struct value *arg1, struct value *arg2)
1545 {
1546 int len;
1547 const gdb_byte *p1;
1548 const gdb_byte *p2;
1549 struct type *type1, *type2;
1550 enum type_code code1;
1551 enum type_code code2;
1552 int is_int1, is_int2;
1553
1554 arg1 = coerce_array (arg1);
1555 arg2 = coerce_array (arg2);
1556
1557 type1 = check_typedef (value_type (arg1));
1558 type2 = check_typedef (value_type (arg2));
1559 code1 = TYPE_CODE (type1);
1560 code2 = TYPE_CODE (type2);
1561 is_int1 = is_integral_type (type1);
1562 is_int2 = is_integral_type (type2);
1563
1564 if (is_int1 && is_int2)
1565 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1566 BINOP_EQUAL)));
1567 else if ((code1 == TYPE_CODE_FLT || is_int1)
1568 && (code2 == TYPE_CODE_FLT || is_int2))
1569 {
1570 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1571 `long double' values are returned in static storage (m68k). */
1572 DOUBLEST d = value_as_double (arg1);
1573
1574 return d == value_as_double (arg2);
1575 }
1576 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1577 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1578 {
1579 gdb_byte v1[16], v2[16];
1580 int len_v1, len_v2;
1581 enum bfd_endian byte_order_v1, byte_order_v2;
1582
1583 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1584 v2, &len_v2, &byte_order_v2);
1585
1586 return decimal_compare (v1, len_v1, byte_order_v1,
1587 v2, len_v2, byte_order_v2) == 0;
1588 }
1589
1590 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1591 is bigger. */
1592 else if (code1 == TYPE_CODE_PTR && is_int2)
1593 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1594 else if (code2 == TYPE_CODE_PTR && is_int1)
1595 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1596
1597 else if (code1 == code2
1598 && ((len = (int) TYPE_LENGTH (type1))
1599 == (int) TYPE_LENGTH (type2)))
1600 {
1601 p1 = value_contents (arg1);
1602 p2 = value_contents (arg2);
1603 while (--len >= 0)
1604 {
1605 if (*p1++ != *p2++)
1606 break;
1607 }
1608 return len < 0;
1609 }
1610 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1611 {
1612 return value_strcmp (arg1, arg2) == 0;
1613 }
1614 else
1615 {
1616 error (_("Invalid type combination in equality test."));
1617 return 0; /* For lint -- never reached. */
1618 }
1619 }
1620
1621 /* Compare values based on their raw contents. Useful for arrays since
1622 value_equal coerces them to pointers, thus comparing just the address
1623 of the array instead of its contents. */
1624
1625 int
1626 value_equal_contents (struct value *arg1, struct value *arg2)
1627 {
1628 struct type *type1, *type2;
1629
1630 type1 = check_typedef (value_type (arg1));
1631 type2 = check_typedef (value_type (arg2));
1632
1633 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1634 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1635 && memcmp (value_contents (arg1), value_contents (arg2),
1636 TYPE_LENGTH (type1)) == 0);
1637 }
1638
1639 /* Simulate the C operator < by returning 1
1640 iff ARG1's contents are less than ARG2's. */
1641
1642 int
1643 value_less (struct value *arg1, struct value *arg2)
1644 {
1645 enum type_code code1;
1646 enum type_code code2;
1647 struct type *type1, *type2;
1648 int is_int1, is_int2;
1649
1650 arg1 = coerce_array (arg1);
1651 arg2 = coerce_array (arg2);
1652
1653 type1 = check_typedef (value_type (arg1));
1654 type2 = check_typedef (value_type (arg2));
1655 code1 = TYPE_CODE (type1);
1656 code2 = TYPE_CODE (type2);
1657 is_int1 = is_integral_type (type1);
1658 is_int2 = is_integral_type (type2);
1659
1660 if (is_int1 && is_int2)
1661 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1662 BINOP_LESS)));
1663 else if ((code1 == TYPE_CODE_FLT || is_int1)
1664 && (code2 == TYPE_CODE_FLT || is_int2))
1665 {
1666 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1667 `long double' values are returned in static storage (m68k). */
1668 DOUBLEST d = value_as_double (arg1);
1669
1670 return d < value_as_double (arg2);
1671 }
1672 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1673 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1674 {
1675 gdb_byte v1[16], v2[16];
1676 int len_v1, len_v2;
1677 enum bfd_endian byte_order_v1, byte_order_v2;
1678
1679 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1680 v2, &len_v2, &byte_order_v2);
1681
1682 return decimal_compare (v1, len_v1, byte_order_v1,
1683 v2, len_v2, byte_order_v2) == -1;
1684 }
1685 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1686 return value_as_address (arg1) < value_as_address (arg2);
1687
1688 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1689 is bigger. */
1690 else if (code1 == TYPE_CODE_PTR && is_int2)
1691 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1692 else if (code2 == TYPE_CODE_PTR && is_int1)
1693 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1694 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1695 return value_strcmp (arg1, arg2) < 0;
1696 else
1697 {
1698 error (_("Invalid type combination in ordering comparison."));
1699 return 0;
1700 }
1701 }
1702 \f
1703 /* The unary operators +, - and ~. They free the argument ARG1. */
1704
1705 struct value *
1706 value_pos (struct value *arg1)
1707 {
1708 struct type *type;
1709
1710 arg1 = coerce_ref (arg1);
1711 type = check_typedef (value_type (arg1));
1712
1713 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1714 return value_from_double (type, value_as_double (arg1));
1715 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1716 return value_from_decfloat (type, value_contents (arg1));
1717 else if (is_integral_type (type))
1718 {
1719 return value_from_longest (type, value_as_long (arg1));
1720 }
1721 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1722 {
1723 struct value *val = allocate_value (type);
1724
1725 memcpy (value_contents_raw (val), value_contents (arg1),
1726 TYPE_LENGTH (type));
1727 return val;
1728 }
1729 else
1730 {
1731 error (_("Argument to positive operation not a number."));
1732 return 0; /* For lint -- never reached. */
1733 }
1734 }
1735
1736 struct value *
1737 value_neg (struct value *arg1)
1738 {
1739 struct type *type;
1740
1741 arg1 = coerce_ref (arg1);
1742 type = check_typedef (value_type (arg1));
1743
1744 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1745 {
1746 struct value *val = allocate_value (type);
1747 int len = TYPE_LENGTH (type);
1748 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
1749
1750 memcpy (decbytes, value_contents (arg1), len);
1751
1752 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1753 decbytes[len-1] = decbytes[len - 1] | 0x80;
1754 else
1755 decbytes[0] = decbytes[0] | 0x80;
1756
1757 memcpy (value_contents_raw (val), decbytes, len);
1758 return val;
1759 }
1760 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1761 return value_from_double (type, -value_as_double (arg1));
1762 else if (is_integral_type (type))
1763 {
1764 return value_from_longest (type, -value_as_long (arg1));
1765 }
1766 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1767 {
1768 struct value *tmp, *val = allocate_value (type);
1769 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1770 int i;
1771 LONGEST low_bound, high_bound;
1772
1773 if (!get_array_bounds (type, &low_bound, &high_bound))
1774 error (_("Could not determine the vector bounds"));
1775
1776 for (i = 0; i < high_bound - low_bound + 1; i++)
1777 {
1778 tmp = value_neg (value_subscript (arg1, i));
1779 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1780 value_contents_all (tmp), TYPE_LENGTH (eltype));
1781 }
1782 return val;
1783 }
1784 else
1785 {
1786 error (_("Argument to negate operation not a number."));
1787 return 0; /* For lint -- never reached. */
1788 }
1789 }
1790
1791 struct value *
1792 value_complement (struct value *arg1)
1793 {
1794 struct type *type;
1795 struct value *val;
1796
1797 arg1 = coerce_ref (arg1);
1798 type = check_typedef (value_type (arg1));
1799
1800 if (is_integral_type (type))
1801 val = value_from_longest (type, ~value_as_long (arg1));
1802 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1803 {
1804 struct value *tmp;
1805 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1806 int i;
1807 LONGEST low_bound, high_bound;
1808
1809 if (!get_array_bounds (type, &low_bound, &high_bound))
1810 error (_("Could not determine the vector bounds"));
1811
1812 val = allocate_value (type);
1813 for (i = 0; i < high_bound - low_bound + 1; i++)
1814 {
1815 tmp = value_complement (value_subscript (arg1, i));
1816 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1817 value_contents_all (tmp), TYPE_LENGTH (eltype));
1818 }
1819 }
1820 else
1821 error (_("Argument to complement operation not an integer, boolean."));
1822
1823 return val;
1824 }
1825 \f
1826 /* The INDEX'th bit of SET value whose value_type is TYPE,
1827 and whose value_contents is valaddr.
1828 Return -1 if out of range, -2 other error. */
1829
1830 int
1831 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1832 {
1833 struct gdbarch *gdbarch = get_type_arch (type);
1834 LONGEST low_bound, high_bound;
1835 LONGEST word;
1836 unsigned rel_index;
1837 struct type *range = TYPE_INDEX_TYPE (type);
1838
1839 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1840 return -2;
1841 if (index < low_bound || index > high_bound)
1842 return -1;
1843 rel_index = index - low_bound;
1844 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1845 gdbarch_byte_order (gdbarch));
1846 rel_index %= TARGET_CHAR_BIT;
1847 if (gdbarch_bits_big_endian (gdbarch))
1848 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1849 return (word >> rel_index) & 1;
1850 }
1851
1852 int
1853 value_in (struct value *element, struct value *set)
1854 {
1855 int member;
1856 struct type *settype = check_typedef (value_type (set));
1857 struct type *eltype = check_typedef (value_type (element));
1858
1859 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1860 eltype = TYPE_TARGET_TYPE (eltype);
1861 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1862 error (_("Second argument of 'IN' has wrong type"));
1863 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1864 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1865 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1866 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1867 error (_("First argument of 'IN' has wrong type"));
1868 member = value_bit_index (settype, value_contents (set),
1869 value_as_long (element));
1870 if (member < 0)
1871 error (_("First argument of 'IN' not in range"));
1872 return member;
1873 }
1874
1875 void
1876 _initialize_valarith (void)
1877 {
1878 }
This page took 0.067331 seconds and 5 git commands to generate.