PR gdb/28480: Improve ambiguous member detection
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 /* TYPE might be equal in meaning to the existing type of ARG2, but for
419 many reasons, might be a different type object (e.g. TYPE might be a
420 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
421 type).
422
423 In this case we want to preserve the LVAL of ARG2 as this allows the
424 resulting value to be used in more places. We do this by calling
425 VALUE_COPY if appropriate. */
426 if (types_deeply_equal (value_type (arg2), type))
427 {
428 /* If the types are exactly equal then we can avoid creating a new
429 value completely. */
430 if (value_type (arg2) != type)
431 {
432 arg2 = value_copy (arg2);
433 deprecated_set_value_type (arg2, type);
434 }
435 return arg2;
436 }
437
438 if (is_fixed_point_type (type))
439 return value_cast_to_fixed_point (type, arg2);
440
441 /* Check if we are casting struct reference to struct reference. */
442 if (TYPE_IS_REFERENCE (check_typedef (type)))
443 {
444 /* We dereference type; then we recurse and finally
445 we generate value of the given reference. Nothing wrong with
446 that. */
447 struct type *t1 = check_typedef (type);
448 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
449 struct value *val = value_cast (dereftype, arg2);
450
451 return value_ref (val, t1->code ());
452 }
453
454 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
455 /* We deref the value and then do the cast. */
456 return value_cast (type, coerce_ref (arg2));
457
458 /* Strip typedefs / resolve stubs in order to get at the type's
459 code/length, but remember the original type, to use as the
460 resulting type of the cast, in case it was a typedef. */
461 struct type *to_type = type;
462
463 type = check_typedef (type);
464 code1 = type->code ();
465 arg2 = coerce_ref (arg2);
466 type2 = check_typedef (value_type (arg2));
467
468 /* You can't cast to a reference type. See value_cast_pointers
469 instead. */
470 gdb_assert (!TYPE_IS_REFERENCE (type));
471
472 /* A cast to an undetermined-length array_type, such as
473 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
474 where N is sizeof(OBJECT)/sizeof(TYPE). */
475 if (code1 == TYPE_CODE_ARRAY)
476 {
477 struct type *element_type = TYPE_TARGET_TYPE (type);
478 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
479
480 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
481 {
482 struct type *range_type = type->index_type ();
483 int val_length = TYPE_LENGTH (type2);
484 LONGEST low_bound, high_bound, new_length;
485
486 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
487 low_bound = 0, high_bound = 0;
488 new_length = val_length / element_length;
489 if (val_length % element_length != 0)
490 warning (_("array element type size does not "
491 "divide object size in cast"));
492 /* FIXME-type-allocation: need a way to free this type when
493 we are done with it. */
494 range_type = create_static_range_type (NULL,
495 TYPE_TARGET_TYPE (range_type),
496 low_bound,
497 new_length + low_bound - 1);
498 deprecated_set_value_type (arg2,
499 create_array_type (NULL,
500 element_type,
501 range_type));
502 return arg2;
503 }
504 }
505
506 if (current_language->c_style_arrays_p ()
507 && type2->code () == TYPE_CODE_ARRAY
508 && !type2->is_vector ())
509 arg2 = value_coerce_array (arg2);
510
511 if (type2->code () == TYPE_CODE_FUNC)
512 arg2 = value_coerce_function (arg2);
513
514 type2 = check_typedef (value_type (arg2));
515 code2 = type2->code ();
516
517 if (code1 == TYPE_CODE_COMPLEX)
518 return cast_into_complex (to_type, arg2);
519 if (code1 == TYPE_CODE_BOOL)
520 {
521 code1 = TYPE_CODE_INT;
522 convert_to_boolean = 1;
523 }
524 if (code1 == TYPE_CODE_CHAR)
525 code1 = TYPE_CODE_INT;
526 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
527 code2 = TYPE_CODE_INT;
528
529 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
530 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
531 || code2 == TYPE_CODE_RANGE
532 || is_fixed_point_type (type2));
533
534 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
535 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
536 && type->name () != 0)
537 {
538 struct value *v = value_cast_structs (to_type, arg2);
539
540 if (v)
541 return v;
542 }
543
544 if (is_floating_type (type) && scalar)
545 {
546 if (is_floating_value (arg2))
547 {
548 struct value *v = allocate_value (to_type);
549 target_float_convert (value_contents (arg2), type2,
550 value_contents_raw (v), type);
551 return v;
552 }
553 else if (is_fixed_point_type (type2))
554 {
555 gdb_mpq fp_val;
556
557 fp_val.read_fixed_point
558 (gdb::make_array_view (value_contents (arg2), TYPE_LENGTH (type2)),
559 type_byte_order (type2), type2->is_unsigned (),
560 type2->fixed_point_scaling_factor ());
561
562 struct value *v = allocate_value (to_type);
563 target_float_from_host_double (value_contents_raw (v),
564 to_type, mpq_get_d (fp_val.val));
565 return v;
566 }
567
568 /* The only option left is an integral type. */
569 if (type2->is_unsigned ())
570 return value_from_ulongest (to_type, value_as_long (arg2));
571 else
572 return value_from_longest (to_type, value_as_long (arg2));
573 }
574 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
575 || code1 == TYPE_CODE_RANGE)
576 && (scalar || code2 == TYPE_CODE_PTR
577 || code2 == TYPE_CODE_MEMBERPTR))
578 {
579 LONGEST longest;
580
581 /* When we cast pointers to integers, we mustn't use
582 gdbarch_pointer_to_address to find the address the pointer
583 represents, as value_as_long would. GDB should evaluate
584 expressions just as the compiler would --- and the compiler
585 sees a cast as a simple reinterpretation of the pointer's
586 bits. */
587 if (code2 == TYPE_CODE_PTR)
588 longest = extract_unsigned_integer
589 (value_contents (arg2), TYPE_LENGTH (type2),
590 type_byte_order (type2));
591 else
592 longest = value_as_long (arg2);
593 return value_from_longest (to_type, convert_to_boolean ?
594 (LONGEST) (longest ? 1 : 0) : longest);
595 }
596 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
597 || code2 == TYPE_CODE_ENUM
598 || code2 == TYPE_CODE_RANGE))
599 {
600 /* TYPE_LENGTH (type) is the length of a pointer, but we really
601 want the length of an address! -- we are really dealing with
602 addresses (i.e., gdb representations) not pointers (i.e.,
603 target representations) here.
604
605 This allows things like "print *(int *)0x01000234" to work
606 without printing a misleading message -- which would
607 otherwise occur when dealing with a target having two byte
608 pointers and four byte addresses. */
609
610 int addr_bit = gdbarch_addr_bit (type2->arch ());
611 LONGEST longest = value_as_long (arg2);
612
613 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
614 {
615 if (longest >= ((LONGEST) 1 << addr_bit)
616 || longest <= -((LONGEST) 1 << addr_bit))
617 warning (_("value truncated"));
618 }
619 return value_from_longest (to_type, longest);
620 }
621 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
622 && value_as_long (arg2) == 0)
623 {
624 struct value *result = allocate_value (to_type);
625
626 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
627 return result;
628 }
629 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
630 && value_as_long (arg2) == 0)
631 {
632 /* The Itanium C++ ABI represents NULL pointers to members as
633 minus one, instead of biasing the normal case. */
634 return value_from_longest (to_type, -1);
635 }
636 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
637 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
638 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
639 error (_("Cannot convert between vector values of different sizes"));
640 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
641 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
642 error (_("can only cast scalar to vector of same size"));
643 else if (code1 == TYPE_CODE_VOID)
644 {
645 return value_zero (to_type, not_lval);
646 }
647 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
648 {
649 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
650 return value_cast_pointers (to_type, arg2, 0);
651
652 arg2 = value_copy (arg2);
653 deprecated_set_value_type (arg2, to_type);
654 set_value_enclosing_type (arg2, to_type);
655 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
656 return arg2;
657 }
658 else if (VALUE_LVAL (arg2) == lval_memory)
659 return value_at_lazy (to_type, value_address (arg2));
660 else
661 {
662 if (current_language->la_language == language_ada)
663 error (_("Invalid type conversion."));
664 error (_("Invalid cast."));
665 }
666 }
667
668 /* The C++ reinterpret_cast operator. */
669
670 struct value *
671 value_reinterpret_cast (struct type *type, struct value *arg)
672 {
673 struct value *result;
674 struct type *real_type = check_typedef (type);
675 struct type *arg_type, *dest_type;
676 int is_ref = 0;
677 enum type_code dest_code, arg_code;
678
679 /* Do reference, function, and array conversion. */
680 arg = coerce_array (arg);
681
682 /* Attempt to preserve the type the user asked for. */
683 dest_type = type;
684
685 /* If we are casting to a reference type, transform
686 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
687 if (TYPE_IS_REFERENCE (real_type))
688 {
689 is_ref = 1;
690 arg = value_addr (arg);
691 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
692 real_type = lookup_pointer_type (real_type);
693 }
694
695 arg_type = value_type (arg);
696
697 dest_code = real_type->code ();
698 arg_code = arg_type->code ();
699
700 /* We can convert pointer types, or any pointer type to int, or int
701 type to pointer. */
702 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
703 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
704 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
706 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
707 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
708 || (dest_code == arg_code
709 && (dest_code == TYPE_CODE_PTR
710 || dest_code == TYPE_CODE_METHODPTR
711 || dest_code == TYPE_CODE_MEMBERPTR)))
712 result = value_cast (dest_type, arg);
713 else
714 error (_("Invalid reinterpret_cast"));
715
716 if (is_ref)
717 result = value_cast (type, value_ref (value_ind (result),
718 type->code ()));
719
720 return result;
721 }
722
723 /* A helper for value_dynamic_cast. This implements the first of two
724 runtime checks: we iterate over all the base classes of the value's
725 class which are equal to the desired class; if only one of these
726 holds the value, then it is the answer. */
727
728 static int
729 dynamic_cast_check_1 (struct type *desired_type,
730 const gdb_byte *valaddr,
731 LONGEST embedded_offset,
732 CORE_ADDR address,
733 struct value *val,
734 struct type *search_type,
735 CORE_ADDR arg_addr,
736 struct type *arg_type,
737 struct value **result)
738 {
739 int i, result_count = 0;
740
741 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
742 {
743 LONGEST offset = baseclass_offset (search_type, i, valaddr,
744 embedded_offset,
745 address, val);
746
747 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
748 {
749 if (address + embedded_offset + offset >= arg_addr
750 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
751 {
752 ++result_count;
753 if (!*result)
754 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
755 address + embedded_offset + offset);
756 }
757 }
758 else
759 result_count += dynamic_cast_check_1 (desired_type,
760 valaddr,
761 embedded_offset + offset,
762 address, val,
763 TYPE_BASECLASS (search_type, i),
764 arg_addr,
765 arg_type,
766 result);
767 }
768
769 return result_count;
770 }
771
772 /* A helper for value_dynamic_cast. This implements the second of two
773 runtime checks: we look for a unique public sibling class of the
774 argument's declared class. */
775
776 static int
777 dynamic_cast_check_2 (struct type *desired_type,
778 const gdb_byte *valaddr,
779 LONGEST embedded_offset,
780 CORE_ADDR address,
781 struct value *val,
782 struct type *search_type,
783 struct value **result)
784 {
785 int i, result_count = 0;
786
787 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
788 {
789 LONGEST offset;
790
791 if (! BASETYPE_VIA_PUBLIC (search_type, i))
792 continue;
793
794 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
795 address, val);
796 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
797 {
798 ++result_count;
799 if (*result == NULL)
800 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
801 address + embedded_offset + offset);
802 }
803 else
804 result_count += dynamic_cast_check_2 (desired_type,
805 valaddr,
806 embedded_offset + offset,
807 address, val,
808 TYPE_BASECLASS (search_type, i),
809 result);
810 }
811
812 return result_count;
813 }
814
815 /* The C++ dynamic_cast operator. */
816
817 struct value *
818 value_dynamic_cast (struct type *type, struct value *arg)
819 {
820 int full, using_enc;
821 LONGEST top;
822 struct type *resolved_type = check_typedef (type);
823 struct type *arg_type = check_typedef (value_type (arg));
824 struct type *class_type, *rtti_type;
825 struct value *result, *tem, *original_arg = arg;
826 CORE_ADDR addr;
827 int is_ref = TYPE_IS_REFERENCE (resolved_type);
828
829 if (resolved_type->code () != TYPE_CODE_PTR
830 && !TYPE_IS_REFERENCE (resolved_type))
831 error (_("Argument to dynamic_cast must be a pointer or reference type"));
832 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
833 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
834 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
835
836 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
837 if (resolved_type->code () == TYPE_CODE_PTR)
838 {
839 if (arg_type->code () != TYPE_CODE_PTR
840 && ! (arg_type->code () == TYPE_CODE_INT
841 && value_as_long (arg) == 0))
842 error (_("Argument to dynamic_cast does not have pointer type"));
843 if (arg_type->code () == TYPE_CODE_PTR)
844 {
845 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
846 if (arg_type->code () != TYPE_CODE_STRUCT)
847 error (_("Argument to dynamic_cast does "
848 "not have pointer to class type"));
849 }
850
851 /* Handle NULL pointers. */
852 if (value_as_long (arg) == 0)
853 return value_zero (type, not_lval);
854
855 arg = value_ind (arg);
856 }
857 else
858 {
859 if (arg_type->code () != TYPE_CODE_STRUCT)
860 error (_("Argument to dynamic_cast does not have class type"));
861 }
862
863 /* If the classes are the same, just return the argument. */
864 if (class_types_same_p (class_type, arg_type))
865 return value_cast (type, arg);
866
867 /* If the target type is a unique base class of the argument's
868 declared type, just cast it. */
869 if (is_ancestor (class_type, arg_type))
870 {
871 if (is_unique_ancestor (class_type, arg))
872 return value_cast (type, original_arg);
873 error (_("Ambiguous dynamic_cast"));
874 }
875
876 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
877 if (! rtti_type)
878 error (_("Couldn't determine value's most derived type for dynamic_cast"));
879
880 /* Compute the most derived object's address. */
881 addr = value_address (arg);
882 if (full)
883 {
884 /* Done. */
885 }
886 else if (using_enc)
887 addr += top;
888 else
889 addr += top + value_embedded_offset (arg);
890
891 /* dynamic_cast<void *> means to return a pointer to the
892 most-derived object. */
893 if (resolved_type->code () == TYPE_CODE_PTR
894 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
895 return value_at_lazy (type, addr);
896
897 tem = value_at (type, addr);
898 type = value_type (tem);
899
900 /* The first dynamic check specified in 5.2.7. */
901 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
902 {
903 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
904 return tem;
905 result = NULL;
906 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
907 value_contents_for_printing (tem),
908 value_embedded_offset (tem),
909 value_address (tem), tem,
910 rtti_type, addr,
911 arg_type,
912 &result) == 1)
913 return value_cast (type,
914 is_ref
915 ? value_ref (result, resolved_type->code ())
916 : value_addr (result));
917 }
918
919 /* The second dynamic check specified in 5.2.7. */
920 result = NULL;
921 if (is_public_ancestor (arg_type, rtti_type)
922 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
923 value_contents_for_printing (tem),
924 value_embedded_offset (tem),
925 value_address (tem), tem,
926 rtti_type, &result) == 1)
927 return value_cast (type,
928 is_ref
929 ? value_ref (result, resolved_type->code ())
930 : value_addr (result));
931
932 if (resolved_type->code () == TYPE_CODE_PTR)
933 return value_zero (type, not_lval);
934
935 error (_("dynamic_cast failed"));
936 }
937
938 /* Create a value of type TYPE that is zero, and return it. */
939
940 struct value *
941 value_zero (struct type *type, enum lval_type lv)
942 {
943 struct value *val = allocate_value (type);
944
945 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
946 return val;
947 }
948
949 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
950
951 struct value *
952 value_one (struct type *type)
953 {
954 struct type *type1 = check_typedef (type);
955 struct value *val;
956
957 if (is_integral_type (type1) || is_floating_type (type1))
958 {
959 val = value_from_longest (type, (LONGEST) 1);
960 }
961 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
962 {
963 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
964 int i;
965 LONGEST low_bound, high_bound;
966 struct value *tmp;
967
968 if (!get_array_bounds (type1, &low_bound, &high_bound))
969 error (_("Could not determine the vector bounds"));
970
971 val = allocate_value (type);
972 for (i = 0; i < high_bound - low_bound + 1; i++)
973 {
974 tmp = value_one (eltype);
975 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
976 value_contents_all (tmp), TYPE_LENGTH (eltype));
977 }
978 }
979 else
980 {
981 error (_("Not a numeric type."));
982 }
983
984 /* value_one result is never used for assignments to. */
985 gdb_assert (VALUE_LVAL (val) == not_lval);
986
987 return val;
988 }
989
990 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
991 The type of the created value may differ from the passed type TYPE.
992 Make sure to retrieve the returned values's new type after this call
993 e.g. in case the type is a variable length array. */
994
995 static struct value *
996 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
997 {
998 struct value *val;
999
1000 if (check_typedef (type)->code () == TYPE_CODE_VOID)
1001 error (_("Attempt to dereference a generic pointer."));
1002
1003 val = value_from_contents_and_address (type, NULL, addr);
1004
1005 if (!lazy)
1006 value_fetch_lazy (val);
1007
1008 return val;
1009 }
1010
1011 /* Return a value with type TYPE located at ADDR.
1012
1013 Call value_at only if the data needs to be fetched immediately;
1014 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1015 value_at_lazy instead. value_at_lazy simply records the address of
1016 the data and sets the lazy-evaluation-required flag. The lazy flag
1017 is tested in the value_contents macro, which is used if and when
1018 the contents are actually required. The type of the created value
1019 may differ from the passed type TYPE. Make sure to retrieve the
1020 returned values's new type after this call e.g. in case the type
1021 is a variable length array.
1022
1023 Note: value_at does *NOT* handle embedded offsets; perform such
1024 adjustments before or after calling it. */
1025
1026 struct value *
1027 value_at (struct type *type, CORE_ADDR addr)
1028 {
1029 return get_value_at (type, addr, 0);
1030 }
1031
1032 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1033 The type of the created value may differ from the passed type TYPE.
1034 Make sure to retrieve the returned values's new type after this call
1035 e.g. in case the type is a variable length array. */
1036
1037 struct value *
1038 value_at_lazy (struct type *type, CORE_ADDR addr)
1039 {
1040 return get_value_at (type, addr, 1);
1041 }
1042
1043 void
1044 read_value_memory (struct value *val, LONGEST bit_offset,
1045 int stack, CORE_ADDR memaddr,
1046 gdb_byte *buffer, size_t length)
1047 {
1048 ULONGEST xfered_total = 0;
1049 struct gdbarch *arch = get_value_arch (val);
1050 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1051 enum target_object object;
1052
1053 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1054
1055 while (xfered_total < length)
1056 {
1057 enum target_xfer_status status;
1058 ULONGEST xfered_partial;
1059
1060 status = target_xfer_partial (current_inferior ()->top_target (),
1061 object, NULL,
1062 buffer + xfered_total * unit_size, NULL,
1063 memaddr + xfered_total,
1064 length - xfered_total,
1065 &xfered_partial);
1066
1067 if (status == TARGET_XFER_OK)
1068 /* nothing */;
1069 else if (status == TARGET_XFER_UNAVAILABLE)
1070 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1071 + bit_offset),
1072 xfered_partial * HOST_CHAR_BIT);
1073 else if (status == TARGET_XFER_EOF)
1074 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1075 else
1076 memory_error (status, memaddr + xfered_total);
1077
1078 xfered_total += xfered_partial;
1079 QUIT;
1080 }
1081 }
1082
1083 /* Store the contents of FROMVAL into the location of TOVAL.
1084 Return a new value with the location of TOVAL and contents of FROMVAL. */
1085
1086 struct value *
1087 value_assign (struct value *toval, struct value *fromval)
1088 {
1089 struct type *type;
1090 struct value *val;
1091 struct frame_id old_frame;
1092
1093 if (!deprecated_value_modifiable (toval))
1094 error (_("Left operand of assignment is not a modifiable lvalue."));
1095
1096 toval = coerce_ref (toval);
1097
1098 type = value_type (toval);
1099 if (VALUE_LVAL (toval) != lval_internalvar)
1100 fromval = value_cast (type, fromval);
1101 else
1102 {
1103 /* Coerce arrays and functions to pointers, except for arrays
1104 which only live in GDB's storage. */
1105 if (!value_must_coerce_to_target (fromval))
1106 fromval = coerce_array (fromval);
1107 }
1108
1109 type = check_typedef (type);
1110
1111 /* Since modifying a register can trash the frame chain, and
1112 modifying memory can trash the frame cache, we save the old frame
1113 and then restore the new frame afterwards. */
1114 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1115
1116 switch (VALUE_LVAL (toval))
1117 {
1118 case lval_internalvar:
1119 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1120 return value_of_internalvar (type->arch (),
1121 VALUE_INTERNALVAR (toval));
1122
1123 case lval_internalvar_component:
1124 {
1125 LONGEST offset = value_offset (toval);
1126
1127 /* Are we dealing with a bitfield?
1128
1129 It is important to mention that `value_parent (toval)' is
1130 non-NULL iff `value_bitsize (toval)' is non-zero. */
1131 if (value_bitsize (toval))
1132 {
1133 /* VALUE_INTERNALVAR below refers to the parent value, while
1134 the offset is relative to this parent value. */
1135 gdb_assert (value_parent (value_parent (toval)) == NULL);
1136 offset += value_offset (value_parent (toval));
1137 }
1138
1139 set_internalvar_component (VALUE_INTERNALVAR (toval),
1140 offset,
1141 value_bitpos (toval),
1142 value_bitsize (toval),
1143 fromval);
1144 }
1145 break;
1146
1147 case lval_memory:
1148 {
1149 const gdb_byte *dest_buffer;
1150 CORE_ADDR changed_addr;
1151 int changed_len;
1152 gdb_byte buffer[sizeof (LONGEST)];
1153
1154 if (value_bitsize (toval))
1155 {
1156 struct value *parent = value_parent (toval);
1157
1158 changed_addr = value_address (parent) + value_offset (toval);
1159 changed_len = (value_bitpos (toval)
1160 + value_bitsize (toval)
1161 + HOST_CHAR_BIT - 1)
1162 / HOST_CHAR_BIT;
1163
1164 /* If we can read-modify-write exactly the size of the
1165 containing type (e.g. short or int) then do so. This
1166 is safer for volatile bitfields mapped to hardware
1167 registers. */
1168 if (changed_len < TYPE_LENGTH (type)
1169 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1170 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1171 changed_len = TYPE_LENGTH (type);
1172
1173 if (changed_len > (int) sizeof (LONGEST))
1174 error (_("Can't handle bitfields which "
1175 "don't fit in a %d bit word."),
1176 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1177
1178 read_memory (changed_addr, buffer, changed_len);
1179 modify_field (type, buffer, value_as_long (fromval),
1180 value_bitpos (toval), value_bitsize (toval));
1181 dest_buffer = buffer;
1182 }
1183 else
1184 {
1185 changed_addr = value_address (toval);
1186 changed_len = type_length_units (type);
1187 dest_buffer = value_contents (fromval);
1188 }
1189
1190 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1191 }
1192 break;
1193
1194 case lval_register:
1195 {
1196 struct frame_info *frame;
1197 struct gdbarch *gdbarch;
1198 int value_reg;
1199
1200 /* Figure out which frame this is in currently.
1201
1202 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1203 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1204 put_frame_register_bytes() below. That function will (eventually)
1205 perform the necessary unwind operation by first obtaining the next
1206 frame. */
1207 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1208
1209 value_reg = VALUE_REGNUM (toval);
1210
1211 if (!frame)
1212 error (_("Value being assigned to is no longer active."));
1213
1214 gdbarch = get_frame_arch (frame);
1215
1216 if (value_bitsize (toval))
1217 {
1218 struct value *parent = value_parent (toval);
1219 LONGEST offset = value_offset (parent) + value_offset (toval);
1220 size_t changed_len;
1221 gdb_byte buffer[sizeof (LONGEST)];
1222 int optim, unavail;
1223
1224 changed_len = (value_bitpos (toval)
1225 + value_bitsize (toval)
1226 + HOST_CHAR_BIT - 1)
1227 / HOST_CHAR_BIT;
1228
1229 if (changed_len > sizeof (LONGEST))
1230 error (_("Can't handle bitfields which "
1231 "don't fit in a %d bit word."),
1232 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1233
1234 if (!get_frame_register_bytes (frame, value_reg, offset,
1235 {buffer, changed_len},
1236 &optim, &unavail))
1237 {
1238 if (optim)
1239 throw_error (OPTIMIZED_OUT_ERROR,
1240 _("value has been optimized out"));
1241 if (unavail)
1242 throw_error (NOT_AVAILABLE_ERROR,
1243 _("value is not available"));
1244 }
1245
1246 modify_field (type, buffer, value_as_long (fromval),
1247 value_bitpos (toval), value_bitsize (toval));
1248
1249 put_frame_register_bytes (frame, value_reg, offset,
1250 {buffer, changed_len});
1251 }
1252 else
1253 {
1254 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1255 type))
1256 {
1257 /* If TOVAL is a special machine register requiring
1258 conversion of program values to a special raw
1259 format. */
1260 gdbarch_value_to_register (gdbarch, frame,
1261 VALUE_REGNUM (toval), type,
1262 value_contents (fromval));
1263 }
1264 else
1265 {
1266 gdb::array_view<const gdb_byte> contents
1267 = gdb::make_array_view (value_contents (fromval),
1268 TYPE_LENGTH (type));
1269 put_frame_register_bytes (frame, value_reg,
1270 value_offset (toval),
1271 contents);
1272 }
1273 }
1274
1275 gdb::observers::register_changed.notify (frame, value_reg);
1276 break;
1277 }
1278
1279 case lval_computed:
1280 {
1281 const struct lval_funcs *funcs = value_computed_funcs (toval);
1282
1283 if (funcs->write != NULL)
1284 {
1285 funcs->write (toval, fromval);
1286 break;
1287 }
1288 }
1289 /* Fall through. */
1290
1291 default:
1292 error (_("Left operand of assignment is not an lvalue."));
1293 }
1294
1295 /* Assigning to the stack pointer, frame pointer, and other
1296 (architecture and calling convention specific) registers may
1297 cause the frame cache and regcache to be out of date. Assigning to memory
1298 also can. We just do this on all assignments to registers or
1299 memory, for simplicity's sake; I doubt the slowdown matters. */
1300 switch (VALUE_LVAL (toval))
1301 {
1302 case lval_memory:
1303 case lval_register:
1304 case lval_computed:
1305
1306 gdb::observers::target_changed.notify
1307 (current_inferior ()->top_target ());
1308
1309 /* Having destroyed the frame cache, restore the selected
1310 frame. */
1311
1312 /* FIXME: cagney/2002-11-02: There has to be a better way of
1313 doing this. Instead of constantly saving/restoring the
1314 frame. Why not create a get_selected_frame() function that,
1315 having saved the selected frame's ID can automatically
1316 re-find the previously selected frame automatically. */
1317
1318 {
1319 struct frame_info *fi = frame_find_by_id (old_frame);
1320
1321 if (fi != NULL)
1322 select_frame (fi);
1323 }
1324
1325 break;
1326 default:
1327 break;
1328 }
1329
1330 /* If the field does not entirely fill a LONGEST, then zero the sign
1331 bits. If the field is signed, and is negative, then sign
1332 extend. */
1333 if ((value_bitsize (toval) > 0)
1334 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1335 {
1336 LONGEST fieldval = value_as_long (fromval);
1337 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1338
1339 fieldval &= valmask;
1340 if (!type->is_unsigned ()
1341 && (fieldval & (valmask ^ (valmask >> 1))))
1342 fieldval |= ~valmask;
1343
1344 fromval = value_from_longest (type, fieldval);
1345 }
1346
1347 /* The return value is a copy of TOVAL so it shares its location
1348 information, but its contents are updated from FROMVAL. This
1349 implies the returned value is not lazy, even if TOVAL was. */
1350 val = value_copy (toval);
1351 set_value_lazy (val, 0);
1352 memcpy (value_contents_raw (val), value_contents (fromval),
1353 TYPE_LENGTH (type));
1354
1355 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1356 in the case of pointer types. For object types, the enclosing type
1357 and embedded offset must *not* be copied: the target object refered
1358 to by TOVAL retains its original dynamic type after assignment. */
1359 if (type->code () == TYPE_CODE_PTR)
1360 {
1361 set_value_enclosing_type (val, value_enclosing_type (fromval));
1362 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1363 }
1364
1365 return val;
1366 }
1367
1368 /* Extend a value ARG1 to COUNT repetitions of its type. */
1369
1370 struct value *
1371 value_repeat (struct value *arg1, int count)
1372 {
1373 struct value *val;
1374
1375 if (VALUE_LVAL (arg1) != lval_memory)
1376 error (_("Only values in memory can be extended with '@'."));
1377 if (count < 1)
1378 error (_("Invalid number %d of repetitions."), count);
1379
1380 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1381
1382 VALUE_LVAL (val) = lval_memory;
1383 set_value_address (val, value_address (arg1));
1384
1385 read_value_memory (val, 0, value_stack (val), value_address (val),
1386 value_contents_all_raw (val),
1387 type_length_units (value_enclosing_type (val)));
1388
1389 return val;
1390 }
1391
1392 struct value *
1393 value_of_variable (struct symbol *var, const struct block *b)
1394 {
1395 struct frame_info *frame = NULL;
1396
1397 if (symbol_read_needs_frame (var))
1398 frame = get_selected_frame (_("No frame selected."));
1399
1400 return read_var_value (var, b, frame);
1401 }
1402
1403 struct value *
1404 address_of_variable (struct symbol *var, const struct block *b)
1405 {
1406 struct type *type = SYMBOL_TYPE (var);
1407 struct value *val;
1408
1409 /* Evaluate it first; if the result is a memory address, we're fine.
1410 Lazy evaluation pays off here. */
1411
1412 val = value_of_variable (var, b);
1413 type = value_type (val);
1414
1415 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1416 || type->code () == TYPE_CODE_FUNC)
1417 {
1418 CORE_ADDR addr = value_address (val);
1419
1420 return value_from_pointer (lookup_pointer_type (type), addr);
1421 }
1422
1423 /* Not a memory address; check what the problem was. */
1424 switch (VALUE_LVAL (val))
1425 {
1426 case lval_register:
1427 {
1428 struct frame_info *frame;
1429 const char *regname;
1430
1431 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1432 gdb_assert (frame);
1433
1434 regname = gdbarch_register_name (get_frame_arch (frame),
1435 VALUE_REGNUM (val));
1436 gdb_assert (regname && *regname);
1437
1438 error (_("Address requested for identifier "
1439 "\"%s\" which is in register $%s"),
1440 var->print_name (), regname);
1441 break;
1442 }
1443
1444 default:
1445 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1446 var->print_name ());
1447 break;
1448 }
1449
1450 return val;
1451 }
1452
1453 /* See value.h. */
1454
1455 bool
1456 value_must_coerce_to_target (struct value *val)
1457 {
1458 struct type *valtype;
1459
1460 /* The only lval kinds which do not live in target memory. */
1461 if (VALUE_LVAL (val) != not_lval
1462 && VALUE_LVAL (val) != lval_internalvar
1463 && VALUE_LVAL (val) != lval_xcallable)
1464 return false;
1465
1466 valtype = check_typedef (value_type (val));
1467
1468 switch (valtype->code ())
1469 {
1470 case TYPE_CODE_ARRAY:
1471 return valtype->is_vector () ? 0 : 1;
1472 case TYPE_CODE_STRING:
1473 return true;
1474 default:
1475 return false;
1476 }
1477 }
1478
1479 /* Make sure that VAL lives in target memory if it's supposed to. For
1480 instance, strings are constructed as character arrays in GDB's
1481 storage, and this function copies them to the target. */
1482
1483 struct value *
1484 value_coerce_to_target (struct value *val)
1485 {
1486 LONGEST length;
1487 CORE_ADDR addr;
1488
1489 if (!value_must_coerce_to_target (val))
1490 return val;
1491
1492 length = TYPE_LENGTH (check_typedef (value_type (val)));
1493 addr = allocate_space_in_inferior (length);
1494 write_memory (addr, value_contents (val), length);
1495 return value_at_lazy (value_type (val), addr);
1496 }
1497
1498 /* Given a value which is an array, return a value which is a pointer
1499 to its first element, regardless of whether or not the array has a
1500 nonzero lower bound.
1501
1502 FIXME: A previous comment here indicated that this routine should
1503 be substracting the array's lower bound. It's not clear to me that
1504 this is correct. Given an array subscripting operation, it would
1505 certainly work to do the adjustment here, essentially computing:
1506
1507 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1508
1509 However I believe a more appropriate and logical place to account
1510 for the lower bound is to do so in value_subscript, essentially
1511 computing:
1512
1513 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1514
1515 As further evidence consider what would happen with operations
1516 other than array subscripting, where the caller would get back a
1517 value that had an address somewhere before the actual first element
1518 of the array, and the information about the lower bound would be
1519 lost because of the coercion to pointer type. */
1520
1521 struct value *
1522 value_coerce_array (struct value *arg1)
1523 {
1524 struct type *type = check_typedef (value_type (arg1));
1525
1526 /* If the user tries to do something requiring a pointer with an
1527 array that has not yet been pushed to the target, then this would
1528 be a good time to do so. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1535 value_address (arg1));
1536 }
1537
1538 /* Given a value which is a function, return a value which is a pointer
1539 to it. */
1540
1541 struct value *
1542 value_coerce_function (struct value *arg1)
1543 {
1544 struct value *retval;
1545
1546 if (VALUE_LVAL (arg1) != lval_memory)
1547 error (_("Attempt to take address of value not located in memory."));
1548
1549 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1550 value_address (arg1));
1551 return retval;
1552 }
1553
1554 /* Return a pointer value for the object for which ARG1 is the
1555 contents. */
1556
1557 struct value *
1558 value_addr (struct value *arg1)
1559 {
1560 struct value *arg2;
1561 struct type *type = check_typedef (value_type (arg1));
1562
1563 if (TYPE_IS_REFERENCE (type))
1564 {
1565 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1566 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1567 arg1 = coerce_ref (arg1);
1568 else
1569 {
1570 /* Copy the value, but change the type from (T&) to (T*). We
1571 keep the same location information, which is efficient, and
1572 allows &(&X) to get the location containing the reference.
1573 Do the same to its enclosing type for consistency. */
1574 struct type *type_ptr
1575 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1576 struct type *enclosing_type
1577 = check_typedef (value_enclosing_type (arg1));
1578 struct type *enclosing_type_ptr
1579 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1580
1581 arg2 = value_copy (arg1);
1582 deprecated_set_value_type (arg2, type_ptr);
1583 set_value_enclosing_type (arg2, enclosing_type_ptr);
1584
1585 return arg2;
1586 }
1587 }
1588 if (type->code () == TYPE_CODE_FUNC)
1589 return value_coerce_function (arg1);
1590
1591 /* If this is an array that has not yet been pushed to the target,
1592 then this would be a good time to force it to memory. */
1593 arg1 = value_coerce_to_target (arg1);
1594
1595 if (VALUE_LVAL (arg1) != lval_memory)
1596 error (_("Attempt to take address of value not located in memory."));
1597
1598 /* Get target memory address. */
1599 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1600 (value_address (arg1)
1601 + value_embedded_offset (arg1)));
1602
1603 /* This may be a pointer to a base subobject; so remember the
1604 full derived object's type ... */
1605 set_value_enclosing_type (arg2,
1606 lookup_pointer_type (value_enclosing_type (arg1)));
1607 /* ... and also the relative position of the subobject in the full
1608 object. */
1609 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1610 return arg2;
1611 }
1612
1613 /* Return a reference value for the object for which ARG1 is the
1614 contents. */
1615
1616 struct value *
1617 value_ref (struct value *arg1, enum type_code refcode)
1618 {
1619 struct value *arg2;
1620 struct type *type = check_typedef (value_type (arg1));
1621
1622 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1623
1624 if ((type->code () == TYPE_CODE_REF
1625 || type->code () == TYPE_CODE_RVALUE_REF)
1626 && type->code () == refcode)
1627 return arg1;
1628
1629 arg2 = value_addr (arg1);
1630 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1631 return arg2;
1632 }
1633
1634 /* Given a value of a pointer type, apply the C unary * operator to
1635 it. */
1636
1637 struct value *
1638 value_ind (struct value *arg1)
1639 {
1640 struct type *base_type;
1641 struct value *arg2;
1642
1643 arg1 = coerce_array (arg1);
1644
1645 base_type = check_typedef (value_type (arg1));
1646
1647 if (VALUE_LVAL (arg1) == lval_computed)
1648 {
1649 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1650
1651 if (funcs->indirect)
1652 {
1653 struct value *result = funcs->indirect (arg1);
1654
1655 if (result)
1656 return result;
1657 }
1658 }
1659
1660 if (base_type->code () == TYPE_CODE_PTR)
1661 {
1662 struct type *enc_type;
1663
1664 /* We may be pointing to something embedded in a larger object.
1665 Get the real type of the enclosing object. */
1666 enc_type = check_typedef (value_enclosing_type (arg1));
1667 enc_type = TYPE_TARGET_TYPE (enc_type);
1668
1669 CORE_ADDR base_addr;
1670 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1671 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1672 {
1673 /* For functions, go through find_function_addr, which knows
1674 how to handle function descriptors. */
1675 base_addr = find_function_addr (arg1, NULL);
1676 }
1677 else
1678 {
1679 /* Retrieve the enclosing object pointed to. */
1680 base_addr = (value_as_address (arg1)
1681 - value_pointed_to_offset (arg1));
1682 }
1683 arg2 = value_at_lazy (enc_type, base_addr);
1684 enc_type = value_type (arg2);
1685 return readjust_indirect_value_type (arg2, enc_type, base_type,
1686 arg1, base_addr);
1687 }
1688
1689 error (_("Attempt to take contents of a non-pointer value."));
1690 }
1691 \f
1692 /* Create a value for an array by allocating space in GDB, copying the
1693 data into that space, and then setting up an array value.
1694
1695 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1696 is populated from the values passed in ELEMVEC.
1697
1698 The element type of the array is inherited from the type of the
1699 first element, and all elements must have the same size (though we
1700 don't currently enforce any restriction on their types). */
1701
1702 struct value *
1703 value_array (int lowbound, int highbound, struct value **elemvec)
1704 {
1705 int nelem;
1706 int idx;
1707 ULONGEST typelength;
1708 struct value *val;
1709 struct type *arraytype;
1710
1711 /* Validate that the bounds are reasonable and that each of the
1712 elements have the same size. */
1713
1714 nelem = highbound - lowbound + 1;
1715 if (nelem <= 0)
1716 {
1717 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1718 }
1719 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1720 for (idx = 1; idx < nelem; idx++)
1721 {
1722 if (type_length_units (value_enclosing_type (elemvec[idx]))
1723 != typelength)
1724 {
1725 error (_("array elements must all be the same size"));
1726 }
1727 }
1728
1729 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1730 lowbound, highbound);
1731
1732 if (!current_language->c_style_arrays_p ())
1733 {
1734 val = allocate_value (arraytype);
1735 for (idx = 0; idx < nelem; idx++)
1736 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1737 typelength);
1738 return val;
1739 }
1740
1741 /* Allocate space to store the array, and then initialize it by
1742 copying in each element. */
1743
1744 val = allocate_value (arraytype);
1745 for (idx = 0; idx < nelem; idx++)
1746 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1747 return val;
1748 }
1749
1750 struct value *
1751 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1752 {
1753 struct value *val;
1754 int lowbound = current_language->string_lower_bound ();
1755 ssize_t highbound = len / TYPE_LENGTH (char_type);
1756 struct type *stringtype
1757 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1758
1759 val = allocate_value (stringtype);
1760 memcpy (value_contents_raw (val), ptr, len);
1761 return val;
1762 }
1763
1764 /* Create a value for a string constant by allocating space in the
1765 inferior, copying the data into that space, and returning the
1766 address with type TYPE_CODE_STRING. PTR points to the string
1767 constant data; LEN is number of characters.
1768
1769 Note that string types are like array of char types with a lower
1770 bound of zero and an upper bound of LEN - 1. Also note that the
1771 string may contain embedded null bytes. */
1772
1773 struct value *
1774 value_string (const char *ptr, ssize_t len, struct type *char_type)
1775 {
1776 struct value *val;
1777 int lowbound = current_language->string_lower_bound ();
1778 ssize_t highbound = len / TYPE_LENGTH (char_type);
1779 struct type *stringtype
1780 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1781
1782 val = allocate_value (stringtype);
1783 memcpy (value_contents_raw (val), ptr, len);
1784 return val;
1785 }
1786
1787 \f
1788 /* See if we can pass arguments in T2 to a function which takes arguments
1789 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1790 of the values we're trying to pass. If some arguments need coercion of
1791 some sort, then the coerced values are written into T2. Return value is
1792 0 if the arguments could be matched, or the position at which they
1793 differ if not.
1794
1795 STATICP is nonzero if the T1 argument list came from a static
1796 member function. T2 must still include the ``this'' pointer, but
1797 it will be skipped.
1798
1799 For non-static member functions, we ignore the first argument,
1800 which is the type of the instance variable. This is because we
1801 want to handle calls with objects from derived classes. This is
1802 not entirely correct: we should actually check to make sure that a
1803 requested operation is type secure, shouldn't we? FIXME. */
1804
1805 static int
1806 typecmp (bool staticp, bool varargs, int nargs,
1807 struct field t1[], gdb::array_view<value *> t2)
1808 {
1809 int i;
1810
1811 /* Skip ``this'' argument if applicable. T2 will always include
1812 THIS. */
1813 if (staticp)
1814 t2 = t2.slice (1);
1815
1816 for (i = 0;
1817 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1818 i++)
1819 {
1820 struct type *tt1, *tt2;
1821
1822 if (i == t2.size ())
1823 return i + 1;
1824
1825 tt1 = check_typedef (t1[i].type ());
1826 tt2 = check_typedef (value_type (t2[i]));
1827
1828 if (TYPE_IS_REFERENCE (tt1)
1829 /* We should be doing hairy argument matching, as below. */
1830 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1831 == tt2->code ()))
1832 {
1833 if (tt2->code () == TYPE_CODE_ARRAY)
1834 t2[i] = value_coerce_array (t2[i]);
1835 else
1836 t2[i] = value_ref (t2[i], tt1->code ());
1837 continue;
1838 }
1839
1840 /* djb - 20000715 - Until the new type structure is in the
1841 place, and we can attempt things like implicit conversions,
1842 we need to do this so you can take something like a map<const
1843 char *>, and properly access map["hello"], because the
1844 argument to [] will be a reference to a pointer to a char,
1845 and the argument will be a pointer to a char. */
1846 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1847 {
1848 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1849 }
1850 while (tt2->code () == TYPE_CODE_ARRAY
1851 || tt2->code () == TYPE_CODE_PTR
1852 || TYPE_IS_REFERENCE (tt2))
1853 {
1854 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1855 }
1856 if (tt1->code () == tt2->code ())
1857 continue;
1858 /* Array to pointer is a `trivial conversion' according to the
1859 ARM. */
1860
1861 /* We should be doing much hairier argument matching (see
1862 section 13.2 of the ARM), but as a quick kludge, just check
1863 for the same type code. */
1864 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1865 return i + 1;
1866 }
1867 if (varargs || i == t2.size ())
1868 return 0;
1869 return i + 1;
1870 }
1871
1872 /* Helper class for search_struct_field that keeps track of found
1873 results and possibly throws an exception if the search yields
1874 ambiguous results. See search_struct_field for description of
1875 LOOKING_FOR_BASECLASS. */
1876
1877 struct struct_field_searcher
1878 {
1879 /* A found field. */
1880 struct found_field
1881 {
1882 /* Path to the structure where the field was found. */
1883 std::vector<struct type *> path;
1884
1885 /* The field found. */
1886 struct value *field_value;
1887 };
1888
1889 /* See corresponding fields for description of parameters. */
1890 struct_field_searcher (const char *name,
1891 struct type *outermost_type,
1892 bool looking_for_baseclass)
1893 : m_name (name),
1894 m_looking_for_baseclass (looking_for_baseclass),
1895 m_outermost_type (outermost_type)
1896 {
1897 }
1898
1899 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1900 base class search yields ambiguous results, this throws an
1901 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1902 are accumulated and the caller (search_struct_field) takes care
1903 of throwing an error if the field search yields ambiguous
1904 results. The latter is done that way so that the error message
1905 can include a list of all the found candidates. */
1906 void search (struct value *arg, LONGEST offset, struct type *type);
1907
1908 const std::vector<found_field> &fields ()
1909 {
1910 return m_fields;
1911 }
1912
1913 struct value *baseclass ()
1914 {
1915 return m_baseclass;
1916 }
1917
1918 private:
1919 /* Update results to include V, a found field/baseclass. */
1920 void update_result (struct value *v, LONGEST boffset);
1921
1922 /* The name of the field/baseclass we're searching for. */
1923 const char *m_name;
1924
1925 /* Whether we're looking for a baseclass, or a field. */
1926 const bool m_looking_for_baseclass;
1927
1928 /* The offset of the baseclass containing the field/baseclass we
1929 last recorded. */
1930 LONGEST m_last_boffset = 0;
1931
1932 /* If looking for a baseclass, then the result is stored here. */
1933 struct value *m_baseclass = nullptr;
1934
1935 /* When looking for fields, the found candidates are stored
1936 here. */
1937 std::vector<found_field> m_fields;
1938
1939 /* The type of the initial type passed to search_struct_field; this
1940 is used for error reporting when the lookup is ambiguous. */
1941 struct type *m_outermost_type;
1942
1943 /* The full path to the struct being inspected. E.g. for field 'x'
1944 defined in class B inherited by class A, we have A and B pushed
1945 on the path. */
1946 std::vector <struct type *> m_struct_path;
1947 };
1948
1949 void
1950 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1951 {
1952 if (v != NULL)
1953 {
1954 if (m_looking_for_baseclass)
1955 {
1956 if (m_baseclass != nullptr
1957 /* The result is not ambiguous if all the classes that are
1958 found occupy the same space. */
1959 && m_last_boffset != boffset)
1960 error (_("base class '%s' is ambiguous in type '%s'"),
1961 m_name, TYPE_SAFE_NAME (m_outermost_type));
1962
1963 m_baseclass = v;
1964 m_last_boffset = boffset;
1965 }
1966 else
1967 {
1968 /* The field is not ambiguous if it occupies the same
1969 space. */
1970 if (m_fields.empty () || m_last_boffset != boffset)
1971 m_fields.push_back ({m_struct_path, v});
1972 else
1973 {
1974 /*Fields can occupy the same space and have the same name (be
1975 ambiguous). This can happen when fields in two different base
1976 classes are marked [[no_unique_address]] and have the same name.
1977 The C++ standard says that such fields can only occupy the same
1978 space if they are of different type, but we don't rely on that in
1979 the following code. */
1980 bool ambiguous = false, insert = true;
1981 for (const found_field &field: m_fields)
1982 {
1983 if(field.path.back () != m_struct_path.back ())
1984 {
1985 /* Same boffset points to members of different classes.
1986 We have found an ambiguity and should record it. */
1987 ambiguous = true;
1988 }
1989 else
1990 {
1991 /* We don't need to insert this value again, because a
1992 non-ambiguous path already leads to it. */
1993 insert = false;
1994 break;
1995 }
1996 }
1997 if (ambiguous && insert)
1998 m_fields.push_back ({m_struct_path, v});
1999 }
2000 }
2001 }
2002 }
2003
2004 /* A helper for search_struct_field. This does all the work; most
2005 arguments are as passed to search_struct_field. */
2006
2007 void
2008 struct_field_searcher::search (struct value *arg1, LONGEST offset,
2009 struct type *type)
2010 {
2011 int i;
2012 int nbases;
2013
2014 m_struct_path.push_back (type);
2015 SCOPE_EXIT { m_struct_path.pop_back (); };
2016
2017 type = check_typedef (type);
2018 nbases = TYPE_N_BASECLASSES (type);
2019
2020 if (!m_looking_for_baseclass)
2021 for (i = type->num_fields () - 1; i >= nbases; i--)
2022 {
2023 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2024
2025 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2026 {
2027 struct value *v;
2028
2029 if (field_is_static (&type->field (i)))
2030 v = value_static_field (type, i);
2031 else
2032 v = value_primitive_field (arg1, offset, i, type);
2033
2034 update_result (v, offset);
2035 return;
2036 }
2037
2038 if (t_field_name
2039 && t_field_name[0] == '\0')
2040 {
2041 struct type *field_type = type->field (i).type ();
2042
2043 if (field_type->code () == TYPE_CODE_UNION
2044 || field_type->code () == TYPE_CODE_STRUCT)
2045 {
2046 /* Look for a match through the fields of an anonymous
2047 union, or anonymous struct. C++ provides anonymous
2048 unions.
2049
2050 In the GNU Chill (now deleted from GDB)
2051 implementation of variant record types, each
2052 <alternative field> has an (anonymous) union type,
2053 each member of the union represents a <variant
2054 alternative>. Each <variant alternative> is
2055 represented as a struct, with a member for each
2056 <variant field>. */
2057
2058 LONGEST new_offset = offset;
2059
2060 /* This is pretty gross. In G++, the offset in an
2061 anonymous union is relative to the beginning of the
2062 enclosing struct. In the GNU Chill (now deleted
2063 from GDB) implementation of variant records, the
2064 bitpos is zero in an anonymous union field, so we
2065 have to add the offset of the union here. */
2066 if (field_type->code () == TYPE_CODE_STRUCT
2067 || (field_type->num_fields () > 0
2068 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2069 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2070
2071 search (arg1, new_offset, field_type);
2072 }
2073 }
2074 }
2075
2076 for (i = 0; i < nbases; i++)
2077 {
2078 struct value *v = NULL;
2079 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2080 /* If we are looking for baseclasses, this is what we get when
2081 we hit them. But it could happen that the base part's member
2082 name is not yet filled in. */
2083 int found_baseclass = (m_looking_for_baseclass
2084 && TYPE_BASECLASS_NAME (type, i) != NULL
2085 && (strcmp_iw (m_name,
2086 TYPE_BASECLASS_NAME (type,
2087 i)) == 0));
2088 LONGEST boffset = value_embedded_offset (arg1) + offset;
2089
2090 if (BASETYPE_VIA_VIRTUAL (type, i))
2091 {
2092 struct value *v2;
2093
2094 boffset = baseclass_offset (type, i,
2095 value_contents_for_printing (arg1),
2096 value_embedded_offset (arg1) + offset,
2097 value_address (arg1),
2098 arg1);
2099
2100 /* The virtual base class pointer might have been clobbered
2101 by the user program. Make sure that it still points to a
2102 valid memory location. */
2103
2104 boffset += value_embedded_offset (arg1) + offset;
2105 if (boffset < 0
2106 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2107 {
2108 CORE_ADDR base_addr;
2109
2110 base_addr = value_address (arg1) + boffset;
2111 v2 = value_at_lazy (basetype, base_addr);
2112 if (target_read_memory (base_addr,
2113 value_contents_raw (v2),
2114 TYPE_LENGTH (value_type (v2))) != 0)
2115 error (_("virtual baseclass botch"));
2116 }
2117 else
2118 {
2119 v2 = value_copy (arg1);
2120 deprecated_set_value_type (v2, basetype);
2121 set_value_embedded_offset (v2, boffset);
2122 }
2123
2124 if (found_baseclass)
2125 v = v2;
2126 else
2127 search (v2, 0, TYPE_BASECLASS (type, i));
2128 }
2129 else if (found_baseclass)
2130 v = value_primitive_field (arg1, offset, i, type);
2131 else
2132 {
2133 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2134 basetype);
2135 }
2136
2137 update_result (v, boffset);
2138 }
2139 }
2140
2141 /* Helper function used by value_struct_elt to recurse through
2142 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2143 it has (class) type TYPE. If found, return value, else return NULL.
2144
2145 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2146 fields, look for a baseclass named NAME. */
2147
2148 static struct value *
2149 search_struct_field (const char *name, struct value *arg1,
2150 struct type *type, int looking_for_baseclass)
2151 {
2152 struct_field_searcher searcher (name, type, looking_for_baseclass);
2153
2154 searcher.search (arg1, 0, type);
2155
2156 if (!looking_for_baseclass)
2157 {
2158 const auto &fields = searcher.fields ();
2159
2160 if (fields.empty ())
2161 return nullptr;
2162 else if (fields.size () == 1)
2163 return fields[0].field_value;
2164 else
2165 {
2166 std::string candidates;
2167
2168 for (auto &&candidate : fields)
2169 {
2170 gdb_assert (!candidate.path.empty ());
2171
2172 struct type *field_type = value_type (candidate.field_value);
2173 struct type *struct_type = candidate.path.back ();
2174
2175 std::string path;
2176 bool first = true;
2177 for (struct type *t : candidate.path)
2178 {
2179 if (first)
2180 first = false;
2181 else
2182 path += " -> ";
2183 path += t->name ();
2184 }
2185
2186 candidates += string_printf ("\n '%s %s::%s' (%s)",
2187 TYPE_SAFE_NAME (field_type),
2188 TYPE_SAFE_NAME (struct_type),
2189 name,
2190 path.c_str ());
2191 }
2192
2193 error (_("Request for member '%s' is ambiguous in type '%s'."
2194 " Candidates are:%s"),
2195 name, TYPE_SAFE_NAME (type),
2196 candidates.c_str ());
2197 }
2198 }
2199 else
2200 return searcher.baseclass ();
2201 }
2202
2203 /* Helper function used by value_struct_elt to recurse through
2204 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2205 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2206 TYPE.
2207
2208 ARGS is an optional array of argument values used to help finding NAME.
2209 The contents of ARGS can be adjusted if type coercion is required in
2210 order to find a matching NAME.
2211
2212 If found, return value, else if name matched and args not return
2213 (value) -1, else return NULL. */
2214
2215 static struct value *
2216 search_struct_method (const char *name, struct value **arg1p,
2217 gdb::optional<gdb::array_view<value *>> args,
2218 LONGEST offset, int *static_memfuncp,
2219 struct type *type)
2220 {
2221 int i;
2222 struct value *v;
2223 int name_matched = 0;
2224
2225 type = check_typedef (type);
2226 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2227 {
2228 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2229
2230 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2231 {
2232 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2233 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2234
2235 name_matched = 1;
2236 check_stub_method_group (type, i);
2237 if (j > 0 && !args.has_value ())
2238 error (_("cannot resolve overloaded method "
2239 "`%s': no arguments supplied"), name);
2240 else if (j == 0 && !args.has_value ())
2241 {
2242 v = value_fn_field (arg1p, f, j, type, offset);
2243 if (v != NULL)
2244 return v;
2245 }
2246 else
2247 while (j >= 0)
2248 {
2249 gdb_assert (args.has_value ());
2250 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2251 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2252 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2253 TYPE_FN_FIELD_ARGS (f, j), *args))
2254 {
2255 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2256 return value_virtual_fn_field (arg1p, f, j,
2257 type, offset);
2258 if (TYPE_FN_FIELD_STATIC_P (f, j)
2259 && static_memfuncp)
2260 *static_memfuncp = 1;
2261 v = value_fn_field (arg1p, f, j, type, offset);
2262 if (v != NULL)
2263 return v;
2264 }
2265 j--;
2266 }
2267 }
2268 }
2269
2270 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2271 {
2272 LONGEST base_offset;
2273 LONGEST this_offset;
2274
2275 if (BASETYPE_VIA_VIRTUAL (type, i))
2276 {
2277 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2278 struct value *base_val;
2279 const gdb_byte *base_valaddr;
2280
2281 /* The virtual base class pointer might have been
2282 clobbered by the user program. Make sure that it
2283 still points to a valid memory location. */
2284
2285 if (offset < 0 || offset >= TYPE_LENGTH (type))
2286 {
2287 CORE_ADDR address;
2288
2289 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2290 address = value_address (*arg1p);
2291
2292 if (target_read_memory (address + offset,
2293 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2294 error (_("virtual baseclass botch"));
2295
2296 base_val = value_from_contents_and_address (baseclass,
2297 tmp.data (),
2298 address + offset);
2299 base_valaddr = value_contents_for_printing (base_val);
2300 this_offset = 0;
2301 }
2302 else
2303 {
2304 base_val = *arg1p;
2305 base_valaddr = value_contents_for_printing (*arg1p);
2306 this_offset = offset;
2307 }
2308
2309 base_offset = baseclass_offset (type, i, base_valaddr,
2310 this_offset, value_address (base_val),
2311 base_val);
2312 }
2313 else
2314 {
2315 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2316 }
2317 v = search_struct_method (name, arg1p, args, base_offset + offset,
2318 static_memfuncp, TYPE_BASECLASS (type, i));
2319 if (v == (struct value *) - 1)
2320 {
2321 name_matched = 1;
2322 }
2323 else if (v)
2324 {
2325 /* FIXME-bothner: Why is this commented out? Why is it here? */
2326 /* *arg1p = arg1_tmp; */
2327 return v;
2328 }
2329 }
2330 if (name_matched)
2331 return (struct value *) - 1;
2332 else
2333 return NULL;
2334 }
2335
2336 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2337 extract the component named NAME from the ultimate target
2338 structure/union and return it as a value with its appropriate type.
2339 ERR is used in the error message if *ARGP's type is wrong.
2340
2341 C++: ARGS is a list of argument types to aid in the selection of
2342 an appropriate method. Also, handle derived types.
2343
2344 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2345 where the truthvalue of whether the function that was resolved was
2346 a static member function or not is stored.
2347
2348 ERR is an error message to be printed in case the field is not
2349 found. */
2350
2351 struct value *
2352 value_struct_elt (struct value **argp,
2353 gdb::optional<gdb::array_view<value *>> args,
2354 const char *name, int *static_memfuncp, const char *err)
2355 {
2356 struct type *t;
2357 struct value *v;
2358
2359 *argp = coerce_array (*argp);
2360
2361 t = check_typedef (value_type (*argp));
2362
2363 /* Follow pointers until we get to a non-pointer. */
2364
2365 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2366 {
2367 *argp = value_ind (*argp);
2368 /* Don't coerce fn pointer to fn and then back again! */
2369 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2370 *argp = coerce_array (*argp);
2371 t = check_typedef (value_type (*argp));
2372 }
2373
2374 if (t->code () != TYPE_CODE_STRUCT
2375 && t->code () != TYPE_CODE_UNION)
2376 error (_("Attempt to extract a component of a value that is not a %s."),
2377 err);
2378
2379 /* Assume it's not, unless we see that it is. */
2380 if (static_memfuncp)
2381 *static_memfuncp = 0;
2382
2383 if (!args.has_value ())
2384 {
2385 /* if there are no arguments ...do this... */
2386
2387 /* Try as a field first, because if we succeed, there is less
2388 work to be done. */
2389 v = search_struct_field (name, *argp, t, 0);
2390 if (v)
2391 return v;
2392
2393 /* C++: If it was not found as a data field, then try to
2394 return it as a pointer to a method. */
2395 v = search_struct_method (name, argp, args, 0,
2396 static_memfuncp, t);
2397
2398 if (v == (struct value *) - 1)
2399 error (_("Cannot take address of method %s."), name);
2400 else if (v == 0)
2401 {
2402 if (TYPE_NFN_FIELDS (t))
2403 error (_("There is no member or method named %s."), name);
2404 else
2405 error (_("There is no member named %s."), name);
2406 }
2407 return v;
2408 }
2409
2410 v = search_struct_method (name, argp, args, 0,
2411 static_memfuncp, t);
2412
2413 if (v == (struct value *) - 1)
2414 {
2415 error (_("One of the arguments you tried to pass to %s could not "
2416 "be converted to what the function wants."), name);
2417 }
2418 else if (v == 0)
2419 {
2420 /* See if user tried to invoke data as function. If so, hand it
2421 back. If it's not callable (i.e., a pointer to function),
2422 gdb should give an error. */
2423 v = search_struct_field (name, *argp, t, 0);
2424 /* If we found an ordinary field, then it is not a method call.
2425 So, treat it as if it were a static member function. */
2426 if (v && static_memfuncp)
2427 *static_memfuncp = 1;
2428 }
2429
2430 if (!v)
2431 throw_error (NOT_FOUND_ERROR,
2432 _("Structure has no component named %s."), name);
2433 return v;
2434 }
2435
2436 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2437 to a structure or union, extract and return its component (field) of
2438 type FTYPE at the specified BITPOS.
2439 Throw an exception on error. */
2440
2441 struct value *
2442 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2443 const char *err)
2444 {
2445 struct type *t;
2446 int i;
2447
2448 *argp = coerce_array (*argp);
2449
2450 t = check_typedef (value_type (*argp));
2451
2452 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2453 {
2454 *argp = value_ind (*argp);
2455 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2456 *argp = coerce_array (*argp);
2457 t = check_typedef (value_type (*argp));
2458 }
2459
2460 if (t->code () != TYPE_CODE_STRUCT
2461 && t->code () != TYPE_CODE_UNION)
2462 error (_("Attempt to extract a component of a value that is not a %s."),
2463 err);
2464
2465 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2466 {
2467 if (!field_is_static (&t->field (i))
2468 && bitpos == TYPE_FIELD_BITPOS (t, i)
2469 && types_equal (ftype, t->field (i).type ()))
2470 return value_primitive_field (*argp, 0, i, t);
2471 }
2472
2473 error (_("No field with matching bitpos and type."));
2474
2475 /* Never hit. */
2476 return NULL;
2477 }
2478
2479 /* Search through the methods of an object (and its bases) to find a
2480 specified method. Return a reference to the fn_field list METHODS of
2481 overloaded instances defined in the source language. If available
2482 and matching, a vector of matching xmethods defined in extension
2483 languages are also returned in XMETHODS.
2484
2485 Helper function for value_find_oload_list.
2486 ARGP is a pointer to a pointer to a value (the object).
2487 METHOD is a string containing the method name.
2488 OFFSET is the offset within the value.
2489 TYPE is the assumed type of the object.
2490 METHODS is a pointer to the matching overloaded instances defined
2491 in the source language. Since this is a recursive function,
2492 *METHODS should be set to NULL when calling this function.
2493 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2494 0 when calling this function.
2495 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2496 should also be set to NULL when calling this function.
2497 BASETYPE is set to the actual type of the subobject where the
2498 method is found.
2499 BOFFSET is the offset of the base subobject where the method is found. */
2500
2501 static void
2502 find_method_list (struct value **argp, const char *method,
2503 LONGEST offset, struct type *type,
2504 gdb::array_view<fn_field> *methods,
2505 std::vector<xmethod_worker_up> *xmethods,
2506 struct type **basetype, LONGEST *boffset)
2507 {
2508 int i;
2509 struct fn_field *f = NULL;
2510
2511 gdb_assert (methods != NULL && xmethods != NULL);
2512 type = check_typedef (type);
2513
2514 /* First check in object itself.
2515 This function is called recursively to search through base classes.
2516 If there is a source method match found at some stage, then we need not
2517 look for source methods in consequent recursive calls. */
2518 if (methods->empty ())
2519 {
2520 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2521 {
2522 /* pai: FIXME What about operators and type conversions? */
2523 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2524
2525 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2526 {
2527 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2528 f = TYPE_FN_FIELDLIST1 (type, i);
2529 *methods = gdb::make_array_view (f, len);
2530
2531 *basetype = type;
2532 *boffset = offset;
2533
2534 /* Resolve any stub methods. */
2535 check_stub_method_group (type, i);
2536
2537 break;
2538 }
2539 }
2540 }
2541
2542 /* Unlike source methods, xmethods can be accumulated over successive
2543 recursive calls. In other words, an xmethod named 'm' in a class
2544 will not hide an xmethod named 'm' in its base class(es). We want
2545 it to be this way because xmethods are after all convenience functions
2546 and hence there is no point restricting them with something like method
2547 hiding. Moreover, if hiding is done for xmethods as well, then we will
2548 have to provide a mechanism to un-hide (like the 'using' construct). */
2549 get_matching_xmethod_workers (type, method, xmethods);
2550
2551 /* If source methods are not found in current class, look for them in the
2552 base classes. We also have to go through the base classes to gather
2553 extension methods. */
2554 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2555 {
2556 LONGEST base_offset;
2557
2558 if (BASETYPE_VIA_VIRTUAL (type, i))
2559 {
2560 base_offset = baseclass_offset (type, i,
2561 value_contents_for_printing (*argp),
2562 value_offset (*argp) + offset,
2563 value_address (*argp), *argp);
2564 }
2565 else /* Non-virtual base, simply use bit position from debug
2566 info. */
2567 {
2568 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2569 }
2570
2571 find_method_list (argp, method, base_offset + offset,
2572 TYPE_BASECLASS (type, i), methods,
2573 xmethods, basetype, boffset);
2574 }
2575 }
2576
2577 /* Return the list of overloaded methods of a specified name. The methods
2578 could be those GDB finds in the binary, or xmethod. Methods found in
2579 the binary are returned in METHODS, and xmethods are returned in
2580 XMETHODS.
2581
2582 ARGP is a pointer to a pointer to a value (the object).
2583 METHOD is the method name.
2584 OFFSET is the offset within the value contents.
2585 METHODS is the list of matching overloaded instances defined in
2586 the source language.
2587 XMETHODS is the vector of matching xmethod workers defined in
2588 extension languages.
2589 BASETYPE is set to the type of the base subobject that defines the
2590 method.
2591 BOFFSET is the offset of the base subobject which defines the method. */
2592
2593 static void
2594 value_find_oload_method_list (struct value **argp, const char *method,
2595 LONGEST offset,
2596 gdb::array_view<fn_field> *methods,
2597 std::vector<xmethod_worker_up> *xmethods,
2598 struct type **basetype, LONGEST *boffset)
2599 {
2600 struct type *t;
2601
2602 t = check_typedef (value_type (*argp));
2603
2604 /* Code snarfed from value_struct_elt. */
2605 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2606 {
2607 *argp = value_ind (*argp);
2608 /* Don't coerce fn pointer to fn and then back again! */
2609 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2610 *argp = coerce_array (*argp);
2611 t = check_typedef (value_type (*argp));
2612 }
2613
2614 if (t->code () != TYPE_CODE_STRUCT
2615 && t->code () != TYPE_CODE_UNION)
2616 error (_("Attempt to extract a component of a "
2617 "value that is not a struct or union"));
2618
2619 gdb_assert (methods != NULL && xmethods != NULL);
2620
2621 /* Clear the lists. */
2622 *methods = {};
2623 xmethods->clear ();
2624
2625 find_method_list (argp, method, 0, t, methods, xmethods,
2626 basetype, boffset);
2627 }
2628
2629 /* Given an array of arguments (ARGS) (which includes an entry for
2630 "this" in the case of C++ methods), the NAME of a function, and
2631 whether it's a method or not (METHOD), find the best function that
2632 matches on the argument types according to the overload resolution
2633 rules.
2634
2635 METHOD can be one of three values:
2636 NON_METHOD for non-member functions.
2637 METHOD: for member functions.
2638 BOTH: used for overload resolution of operators where the
2639 candidates are expected to be either member or non member
2640 functions. In this case the first argument ARGTYPES
2641 (representing 'this') is expected to be a reference to the
2642 target object, and will be dereferenced when attempting the
2643 non-member search.
2644
2645 In the case of class methods, the parameter OBJ is an object value
2646 in which to search for overloaded methods.
2647
2648 In the case of non-method functions, the parameter FSYM is a symbol
2649 corresponding to one of the overloaded functions.
2650
2651 Return value is an integer: 0 -> good match, 10 -> debugger applied
2652 non-standard coercions, 100 -> incompatible.
2653
2654 If a method is being searched for, VALP will hold the value.
2655 If a non-method is being searched for, SYMP will hold the symbol
2656 for it.
2657
2658 If a method is being searched for, and it is a static method,
2659 then STATICP will point to a non-zero value.
2660
2661 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2662 ADL overload candidates when performing overload resolution for a fully
2663 qualified name.
2664
2665 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2666 read while picking the best overload match (it may be all zeroes and thus
2667 not have a vtable pointer), in which case skip virtual function lookup.
2668 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2669 the result type.
2670
2671 Note: This function does *not* check the value of
2672 overload_resolution. Caller must check it to see whether overload
2673 resolution is permitted. */
2674
2675 int
2676 find_overload_match (gdb::array_view<value *> args,
2677 const char *name, enum oload_search_type method,
2678 struct value **objp, struct symbol *fsym,
2679 struct value **valp, struct symbol **symp,
2680 int *staticp, const int no_adl,
2681 const enum noside noside)
2682 {
2683 struct value *obj = (objp ? *objp : NULL);
2684 struct type *obj_type = obj ? value_type (obj) : NULL;
2685 /* Index of best overloaded function. */
2686 int func_oload_champ = -1;
2687 int method_oload_champ = -1;
2688 int src_method_oload_champ = -1;
2689 int ext_method_oload_champ = -1;
2690
2691 /* The measure for the current best match. */
2692 badness_vector method_badness;
2693 badness_vector func_badness;
2694 badness_vector ext_method_badness;
2695 badness_vector src_method_badness;
2696
2697 struct value *temp = obj;
2698 /* For methods, the list of overloaded methods. */
2699 gdb::array_view<fn_field> methods;
2700 /* For non-methods, the list of overloaded function symbols. */
2701 std::vector<symbol *> functions;
2702 /* For xmethods, the vector of xmethod workers. */
2703 std::vector<xmethod_worker_up> xmethods;
2704 struct type *basetype = NULL;
2705 LONGEST boffset;
2706
2707 const char *obj_type_name = NULL;
2708 const char *func_name = NULL;
2709 gdb::unique_xmalloc_ptr<char> temp_func;
2710 enum oload_classification match_quality;
2711 enum oload_classification method_match_quality = INCOMPATIBLE;
2712 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2713 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2714 enum oload_classification func_match_quality = INCOMPATIBLE;
2715
2716 /* Get the list of overloaded methods or functions. */
2717 if (method == METHOD || method == BOTH)
2718 {
2719 gdb_assert (obj);
2720
2721 /* OBJ may be a pointer value rather than the object itself. */
2722 obj = coerce_ref (obj);
2723 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2724 obj = coerce_ref (value_ind (obj));
2725 obj_type_name = value_type (obj)->name ();
2726
2727 /* First check whether this is a data member, e.g. a pointer to
2728 a function. */
2729 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2730 {
2731 *valp = search_struct_field (name, obj,
2732 check_typedef (value_type (obj)), 0);
2733 if (*valp)
2734 {
2735 *staticp = 1;
2736 return 0;
2737 }
2738 }
2739
2740 /* Retrieve the list of methods with the name NAME. */
2741 value_find_oload_method_list (&temp, name, 0, &methods,
2742 &xmethods, &basetype, &boffset);
2743 /* If this is a method only search, and no methods were found
2744 the search has failed. */
2745 if (method == METHOD && methods.empty () && xmethods.empty ())
2746 error (_("Couldn't find method %s%s%s"),
2747 obj_type_name,
2748 (obj_type_name && *obj_type_name) ? "::" : "",
2749 name);
2750 /* If we are dealing with stub method types, they should have
2751 been resolved by find_method_list via
2752 value_find_oload_method_list above. */
2753 if (!methods.empty ())
2754 {
2755 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2756
2757 src_method_oload_champ
2758 = find_oload_champ (args,
2759 methods.size (),
2760 methods.data (), NULL, NULL,
2761 &src_method_badness);
2762
2763 src_method_match_quality = classify_oload_match
2764 (src_method_badness, args.size (),
2765 oload_method_static_p (methods.data (), src_method_oload_champ));
2766 }
2767
2768 if (!xmethods.empty ())
2769 {
2770 ext_method_oload_champ
2771 = find_oload_champ (args,
2772 xmethods.size (),
2773 NULL, xmethods.data (), NULL,
2774 &ext_method_badness);
2775 ext_method_match_quality = classify_oload_match (ext_method_badness,
2776 args.size (), 0);
2777 }
2778
2779 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2780 {
2781 switch (compare_badness (ext_method_badness, src_method_badness))
2782 {
2783 case 0: /* Src method and xmethod are equally good. */
2784 /* If src method and xmethod are equally good, then
2785 xmethod should be the winner. Hence, fall through to the
2786 case where a xmethod is better than the source
2787 method, except when the xmethod match quality is
2788 non-standard. */
2789 /* FALLTHROUGH */
2790 case 1: /* Src method and ext method are incompatible. */
2791 /* If ext method match is not standard, then let source method
2792 win. Otherwise, fallthrough to let xmethod win. */
2793 if (ext_method_match_quality != STANDARD)
2794 {
2795 method_oload_champ = src_method_oload_champ;
2796 method_badness = src_method_badness;
2797 ext_method_oload_champ = -1;
2798 method_match_quality = src_method_match_quality;
2799 break;
2800 }
2801 /* FALLTHROUGH */
2802 case 2: /* Ext method is champion. */
2803 method_oload_champ = ext_method_oload_champ;
2804 method_badness = ext_method_badness;
2805 src_method_oload_champ = -1;
2806 method_match_quality = ext_method_match_quality;
2807 break;
2808 case 3: /* Src method is champion. */
2809 method_oload_champ = src_method_oload_champ;
2810 method_badness = src_method_badness;
2811 ext_method_oload_champ = -1;
2812 method_match_quality = src_method_match_quality;
2813 break;
2814 default:
2815 gdb_assert_not_reached ("Unexpected overload comparison "
2816 "result");
2817 break;
2818 }
2819 }
2820 else if (src_method_oload_champ >= 0)
2821 {
2822 method_oload_champ = src_method_oload_champ;
2823 method_badness = src_method_badness;
2824 method_match_quality = src_method_match_quality;
2825 }
2826 else if (ext_method_oload_champ >= 0)
2827 {
2828 method_oload_champ = ext_method_oload_champ;
2829 method_badness = ext_method_badness;
2830 method_match_quality = ext_method_match_quality;
2831 }
2832 }
2833
2834 if (method == NON_METHOD || method == BOTH)
2835 {
2836 const char *qualified_name = NULL;
2837
2838 /* If the overload match is being search for both as a method
2839 and non member function, the first argument must now be
2840 dereferenced. */
2841 if (method == BOTH)
2842 args[0] = value_ind (args[0]);
2843
2844 if (fsym)
2845 {
2846 qualified_name = fsym->natural_name ();
2847
2848 /* If we have a function with a C++ name, try to extract just
2849 the function part. Do not try this for non-functions (e.g.
2850 function pointers). */
2851 if (qualified_name
2852 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2853 == TYPE_CODE_FUNC))
2854 {
2855 temp_func = cp_func_name (qualified_name);
2856
2857 /* If cp_func_name did not remove anything, the name of the
2858 symbol did not include scope or argument types - it was
2859 probably a C-style function. */
2860 if (temp_func != nullptr)
2861 {
2862 if (strcmp (temp_func.get (), qualified_name) == 0)
2863 func_name = NULL;
2864 else
2865 func_name = temp_func.get ();
2866 }
2867 }
2868 }
2869 else
2870 {
2871 func_name = name;
2872 qualified_name = name;
2873 }
2874
2875 /* If there was no C++ name, this must be a C-style function or
2876 not a function at all. Just return the same symbol. Do the
2877 same if cp_func_name fails for some reason. */
2878 if (func_name == NULL)
2879 {
2880 *symp = fsym;
2881 return 0;
2882 }
2883
2884 func_oload_champ = find_oload_champ_namespace (args,
2885 func_name,
2886 qualified_name,
2887 &functions,
2888 &func_badness,
2889 no_adl);
2890
2891 if (func_oload_champ >= 0)
2892 func_match_quality = classify_oload_match (func_badness,
2893 args.size (), 0);
2894 }
2895
2896 /* Did we find a match ? */
2897 if (method_oload_champ == -1 && func_oload_champ == -1)
2898 throw_error (NOT_FOUND_ERROR,
2899 _("No symbol \"%s\" in current context."),
2900 name);
2901
2902 /* If we have found both a method match and a function
2903 match, find out which one is better, and calculate match
2904 quality. */
2905 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2906 {
2907 switch (compare_badness (func_badness, method_badness))
2908 {
2909 case 0: /* Top two contenders are equally good. */
2910 /* FIXME: GDB does not support the general ambiguous case.
2911 All candidates should be collected and presented the
2912 user. */
2913 error (_("Ambiguous overload resolution"));
2914 break;
2915 case 1: /* Incomparable top contenders. */
2916 /* This is an error incompatible candidates
2917 should not have been proposed. */
2918 error (_("Internal error: incompatible "
2919 "overload candidates proposed"));
2920 break;
2921 case 2: /* Function champion. */
2922 method_oload_champ = -1;
2923 match_quality = func_match_quality;
2924 break;
2925 case 3: /* Method champion. */
2926 func_oload_champ = -1;
2927 match_quality = method_match_quality;
2928 break;
2929 default:
2930 error (_("Internal error: unexpected overload comparison result"));
2931 break;
2932 }
2933 }
2934 else
2935 {
2936 /* We have either a method match or a function match. */
2937 if (method_oload_champ >= 0)
2938 match_quality = method_match_quality;
2939 else
2940 match_quality = func_match_quality;
2941 }
2942
2943 if (match_quality == INCOMPATIBLE)
2944 {
2945 if (method == METHOD)
2946 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2947 obj_type_name,
2948 (obj_type_name && *obj_type_name) ? "::" : "",
2949 name);
2950 else
2951 error (_("Cannot resolve function %s to any overloaded instance"),
2952 func_name);
2953 }
2954 else if (match_quality == NON_STANDARD)
2955 {
2956 if (method == METHOD)
2957 warning (_("Using non-standard conversion to match "
2958 "method %s%s%s to supplied arguments"),
2959 obj_type_name,
2960 (obj_type_name && *obj_type_name) ? "::" : "",
2961 name);
2962 else
2963 warning (_("Using non-standard conversion to match "
2964 "function %s to supplied arguments"),
2965 func_name);
2966 }
2967
2968 if (staticp != NULL)
2969 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2970
2971 if (method_oload_champ >= 0)
2972 {
2973 if (src_method_oload_champ >= 0)
2974 {
2975 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2976 && noside != EVAL_AVOID_SIDE_EFFECTS)
2977 {
2978 *valp = value_virtual_fn_field (&temp, methods.data (),
2979 method_oload_champ, basetype,
2980 boffset);
2981 }
2982 else
2983 *valp = value_fn_field (&temp, methods.data (),
2984 method_oload_champ, basetype, boffset);
2985 }
2986 else
2987 *valp = value_from_xmethod
2988 (std::move (xmethods[ext_method_oload_champ]));
2989 }
2990 else
2991 *symp = functions[func_oload_champ];
2992
2993 if (objp)
2994 {
2995 struct type *temp_type = check_typedef (value_type (temp));
2996 struct type *objtype = check_typedef (obj_type);
2997
2998 if (temp_type->code () != TYPE_CODE_PTR
2999 && (objtype->code () == TYPE_CODE_PTR
3000 || TYPE_IS_REFERENCE (objtype)))
3001 {
3002 temp = value_addr (temp);
3003 }
3004 *objp = temp;
3005 }
3006
3007 switch (match_quality)
3008 {
3009 case INCOMPATIBLE:
3010 return 100;
3011 case NON_STANDARD:
3012 return 10;
3013 default: /* STANDARD */
3014 return 0;
3015 }
3016 }
3017
3018 /* Find the best overload match, searching for FUNC_NAME in namespaces
3019 contained in QUALIFIED_NAME until it either finds a good match or
3020 runs out of namespaces. It stores the overloaded functions in
3021 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3022 argument dependent lookup is not performed. */
3023
3024 static int
3025 find_oload_champ_namespace (gdb::array_view<value *> args,
3026 const char *func_name,
3027 const char *qualified_name,
3028 std::vector<symbol *> *oload_syms,
3029 badness_vector *oload_champ_bv,
3030 const int no_adl)
3031 {
3032 int oload_champ;
3033
3034 find_oload_champ_namespace_loop (args,
3035 func_name,
3036 qualified_name, 0,
3037 oload_syms, oload_champ_bv,
3038 &oload_champ,
3039 no_adl);
3040
3041 return oload_champ;
3042 }
3043
3044 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3045 how deep we've looked for namespaces, and the champ is stored in
3046 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3047 if it isn't. Other arguments are the same as in
3048 find_oload_champ_namespace. */
3049
3050 static int
3051 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3052 const char *func_name,
3053 const char *qualified_name,
3054 int namespace_len,
3055 std::vector<symbol *> *oload_syms,
3056 badness_vector *oload_champ_bv,
3057 int *oload_champ,
3058 const int no_adl)
3059 {
3060 int next_namespace_len = namespace_len;
3061 int searched_deeper = 0;
3062 int new_oload_champ;
3063 char *new_namespace;
3064
3065 if (next_namespace_len != 0)
3066 {
3067 gdb_assert (qualified_name[next_namespace_len] == ':');
3068 next_namespace_len += 2;
3069 }
3070 next_namespace_len +=
3071 cp_find_first_component (qualified_name + next_namespace_len);
3072
3073 /* First, see if we have a deeper namespace we can search in.
3074 If we get a good match there, use it. */
3075
3076 if (qualified_name[next_namespace_len] == ':')
3077 {
3078 searched_deeper = 1;
3079
3080 if (find_oload_champ_namespace_loop (args,
3081 func_name, qualified_name,
3082 next_namespace_len,
3083 oload_syms, oload_champ_bv,
3084 oload_champ, no_adl))
3085 {
3086 return 1;
3087 }
3088 };
3089
3090 /* If we reach here, either we're in the deepest namespace or we
3091 didn't find a good match in a deeper namespace. But, in the
3092 latter case, we still have a bad match in a deeper namespace;
3093 note that we might not find any match at all in the current
3094 namespace. (There's always a match in the deepest namespace,
3095 because this overload mechanism only gets called if there's a
3096 function symbol to start off with.) */
3097
3098 new_namespace = (char *) alloca (namespace_len + 1);
3099 strncpy (new_namespace, qualified_name, namespace_len);
3100 new_namespace[namespace_len] = '\0';
3101
3102 std::vector<symbol *> new_oload_syms
3103 = make_symbol_overload_list (func_name, new_namespace);
3104
3105 /* If we have reached the deepest level perform argument
3106 determined lookup. */
3107 if (!searched_deeper && !no_adl)
3108 {
3109 int ix;
3110 struct type **arg_types;
3111
3112 /* Prepare list of argument types for overload resolution. */
3113 arg_types = (struct type **)
3114 alloca (args.size () * (sizeof (struct type *)));
3115 for (ix = 0; ix < args.size (); ix++)
3116 arg_types[ix] = value_type (args[ix]);
3117 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3118 &new_oload_syms);
3119 }
3120
3121 badness_vector new_oload_champ_bv;
3122 new_oload_champ = find_oload_champ (args,
3123 new_oload_syms.size (),
3124 NULL, NULL, new_oload_syms.data (),
3125 &new_oload_champ_bv);
3126
3127 /* Case 1: We found a good match. Free earlier matches (if any),
3128 and return it. Case 2: We didn't find a good match, but we're
3129 not the deepest function. Then go with the bad match that the
3130 deeper function found. Case 3: We found a bad match, and we're
3131 the deepest function. Then return what we found, even though
3132 it's a bad match. */
3133
3134 if (new_oload_champ != -1
3135 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3136 {
3137 *oload_syms = std::move (new_oload_syms);
3138 *oload_champ = new_oload_champ;
3139 *oload_champ_bv = std::move (new_oload_champ_bv);
3140 return 1;
3141 }
3142 else if (searched_deeper)
3143 {
3144 return 0;
3145 }
3146 else
3147 {
3148 *oload_syms = std::move (new_oload_syms);
3149 *oload_champ = new_oload_champ;
3150 *oload_champ_bv = std::move (new_oload_champ_bv);
3151 return 0;
3152 }
3153 }
3154
3155 /* Look for a function to take ARGS. Find the best match from among
3156 the overloaded methods or functions given by METHODS or FUNCTIONS
3157 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3158 and XMETHODS can be non-NULL.
3159
3160 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3161 or XMETHODS, whichever is non-NULL.
3162
3163 Return the index of the best match; store an indication of the
3164 quality of the match in OLOAD_CHAMP_BV. */
3165
3166 static int
3167 find_oload_champ (gdb::array_view<value *> args,
3168 size_t num_fns,
3169 fn_field *methods,
3170 xmethod_worker_up *xmethods,
3171 symbol **functions,
3172 badness_vector *oload_champ_bv)
3173 {
3174 /* A measure of how good an overloaded instance is. */
3175 badness_vector bv;
3176 /* Index of best overloaded function. */
3177 int oload_champ = -1;
3178 /* Current ambiguity state for overload resolution. */
3179 int oload_ambiguous = 0;
3180 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3181
3182 /* A champion can be found among methods alone, or among functions
3183 alone, or in xmethods alone, but not in more than one of these
3184 groups. */
3185 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3186 == 1);
3187
3188 /* Consider each candidate in turn. */
3189 for (size_t ix = 0; ix < num_fns; ix++)
3190 {
3191 int jj;
3192 int static_offset = 0;
3193 std::vector<type *> parm_types;
3194
3195 if (xmethods != NULL)
3196 parm_types = xmethods[ix]->get_arg_types ();
3197 else
3198 {
3199 size_t nparms;
3200
3201 if (methods != NULL)
3202 {
3203 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3204 static_offset = oload_method_static_p (methods, ix);
3205 }
3206 else
3207 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3208
3209 parm_types.reserve (nparms);
3210 for (jj = 0; jj < nparms; jj++)
3211 {
3212 type *t = (methods != NULL
3213 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3214 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3215 parm_types.push_back (t);
3216 }
3217 }
3218
3219 /* Compare parameter types to supplied argument types. Skip
3220 THIS for static methods. */
3221 bv = rank_function (parm_types,
3222 args.slice (static_offset));
3223
3224 if (overload_debug)
3225 {
3226 if (methods != NULL)
3227 fprintf_filtered (gdb_stderr,
3228 "Overloaded method instance %s, # of parms %d\n",
3229 methods[ix].physname, (int) parm_types.size ());
3230 else if (xmethods != NULL)
3231 fprintf_filtered (gdb_stderr,
3232 "Xmethod worker, # of parms %d\n",
3233 (int) parm_types.size ());
3234 else
3235 fprintf_filtered (gdb_stderr,
3236 "Overloaded function instance "
3237 "%s # of parms %d\n",
3238 functions[ix]->demangled_name (),
3239 (int) parm_types.size ());
3240
3241 fprintf_filtered (gdb_stderr,
3242 "...Badness of length : {%d, %d}\n",
3243 bv[0].rank, bv[0].subrank);
3244
3245 for (jj = 1; jj < bv.size (); jj++)
3246 fprintf_filtered (gdb_stderr,
3247 "...Badness of arg %d : {%d, %d}\n",
3248 jj, bv[jj].rank, bv[jj].subrank);
3249 }
3250
3251 if (oload_champ_bv->empty ())
3252 {
3253 *oload_champ_bv = std::move (bv);
3254 oload_champ = 0;
3255 }
3256 else /* See whether current candidate is better or worse than
3257 previous best. */
3258 switch (compare_badness (bv, *oload_champ_bv))
3259 {
3260 case 0: /* Top two contenders are equally good. */
3261 oload_ambiguous = 1;
3262 break;
3263 case 1: /* Incomparable top contenders. */
3264 oload_ambiguous = 2;
3265 break;
3266 case 2: /* New champion, record details. */
3267 *oload_champ_bv = std::move (bv);
3268 oload_ambiguous = 0;
3269 oload_champ = ix;
3270 break;
3271 case 3:
3272 default:
3273 break;
3274 }
3275 if (overload_debug)
3276 fprintf_filtered (gdb_stderr, "Overload resolution "
3277 "champion is %d, ambiguous? %d\n",
3278 oload_champ, oload_ambiguous);
3279 }
3280
3281 return oload_champ;
3282 }
3283
3284 /* Return 1 if we're looking at a static method, 0 if we're looking at
3285 a non-static method or a function that isn't a method. */
3286
3287 static int
3288 oload_method_static_p (struct fn_field *fns_ptr, int index)
3289 {
3290 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3291 return 1;
3292 else
3293 return 0;
3294 }
3295
3296 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3297
3298 static enum oload_classification
3299 classify_oload_match (const badness_vector &oload_champ_bv,
3300 int nargs,
3301 int static_offset)
3302 {
3303 int ix;
3304 enum oload_classification worst = STANDARD;
3305
3306 for (ix = 1; ix <= nargs - static_offset; ix++)
3307 {
3308 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3309 or worse return INCOMPATIBLE. */
3310 if (compare_ranks (oload_champ_bv[ix],
3311 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3312 return INCOMPATIBLE; /* Truly mismatched types. */
3313 /* Otherwise If this conversion is as bad as
3314 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3315 else if (compare_ranks (oload_champ_bv[ix],
3316 NS_POINTER_CONVERSION_BADNESS) <= 0)
3317 worst = NON_STANDARD; /* Non-standard type conversions
3318 needed. */
3319 }
3320
3321 /* If no INCOMPATIBLE classification was found, return the worst one
3322 that was found (if any). */
3323 return worst;
3324 }
3325
3326 /* C++: return 1 is NAME is a legitimate name for the destructor of
3327 type TYPE. If TYPE does not have a destructor, or if NAME is
3328 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3329 have CHECK_TYPEDEF applied, this function will apply it itself. */
3330
3331 int
3332 destructor_name_p (const char *name, struct type *type)
3333 {
3334 if (name[0] == '~')
3335 {
3336 const char *dname = type_name_or_error (type);
3337 const char *cp = strchr (dname, '<');
3338 unsigned int len;
3339
3340 /* Do not compare the template part for template classes. */
3341 if (cp == NULL)
3342 len = strlen (dname);
3343 else
3344 len = cp - dname;
3345 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3346 error (_("name of destructor must equal name of class"));
3347 else
3348 return 1;
3349 }
3350 return 0;
3351 }
3352
3353 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3354 class". If the name is found, return a value representing it;
3355 otherwise throw an exception. */
3356
3357 static struct value *
3358 enum_constant_from_type (struct type *type, const char *name)
3359 {
3360 int i;
3361 int name_len = strlen (name);
3362
3363 gdb_assert (type->code () == TYPE_CODE_ENUM
3364 && type->is_declared_class ());
3365
3366 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3367 {
3368 const char *fname = TYPE_FIELD_NAME (type, i);
3369 int len;
3370
3371 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3372 || fname == NULL)
3373 continue;
3374
3375 /* Look for the trailing "::NAME", since enum class constant
3376 names are qualified here. */
3377 len = strlen (fname);
3378 if (len + 2 >= name_len
3379 && fname[len - name_len - 2] == ':'
3380 && fname[len - name_len - 1] == ':'
3381 && strcmp (&fname[len - name_len], name) == 0)
3382 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3383 }
3384
3385 error (_("no constant named \"%s\" in enum \"%s\""),
3386 name, type->name ());
3387 }
3388
3389 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3390 return the appropriate member (or the address of the member, if
3391 WANT_ADDRESS). This function is used to resolve user expressions
3392 of the form "DOMAIN::NAME". For more details on what happens, see
3393 the comment before value_struct_elt_for_reference. */
3394
3395 struct value *
3396 value_aggregate_elt (struct type *curtype, const char *name,
3397 struct type *expect_type, int want_address,
3398 enum noside noside)
3399 {
3400 switch (curtype->code ())
3401 {
3402 case TYPE_CODE_STRUCT:
3403 case TYPE_CODE_UNION:
3404 return value_struct_elt_for_reference (curtype, 0, curtype,
3405 name, expect_type,
3406 want_address, noside);
3407 case TYPE_CODE_NAMESPACE:
3408 return value_namespace_elt (curtype, name,
3409 want_address, noside);
3410
3411 case TYPE_CODE_ENUM:
3412 return enum_constant_from_type (curtype, name);
3413
3414 default:
3415 internal_error (__FILE__, __LINE__,
3416 _("non-aggregate type in value_aggregate_elt"));
3417 }
3418 }
3419
3420 /* Compares the two method/function types T1 and T2 for "equality"
3421 with respect to the methods' parameters. If the types of the
3422 two parameter lists are the same, returns 1; 0 otherwise. This
3423 comparison may ignore any artificial parameters in T1 if
3424 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3425 the first artificial parameter in T1, assumed to be a 'this' pointer.
3426
3427 The type T2 is expected to have come from make_params (in eval.c). */
3428
3429 static int
3430 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3431 {
3432 int start = 0;
3433
3434 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3435 ++start;
3436
3437 /* If skipping artificial fields, find the first real field
3438 in T1. */
3439 if (skip_artificial)
3440 {
3441 while (start < t1->num_fields ()
3442 && TYPE_FIELD_ARTIFICIAL (t1, start))
3443 ++start;
3444 }
3445
3446 /* Now compare parameters. */
3447
3448 /* Special case: a method taking void. T1 will contain no
3449 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3450 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3451 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3452 return 1;
3453
3454 if ((t1->num_fields () - start) == t2->num_fields ())
3455 {
3456 int i;
3457
3458 for (i = 0; i < t2->num_fields (); ++i)
3459 {
3460 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3461 t2->field (i).type (), NULL),
3462 EXACT_MATCH_BADNESS) != 0)
3463 return 0;
3464 }
3465
3466 return 1;
3467 }
3468
3469 return 0;
3470 }
3471
3472 /* C++: Given an aggregate type VT, and a class type CLS, search
3473 recursively for CLS using value V; If found, store the offset
3474 which is either fetched from the virtual base pointer if CLS
3475 is virtual or accumulated offset of its parent classes if
3476 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3477 is virtual, and return true. If not found, return false. */
3478
3479 static bool
3480 get_baseclass_offset (struct type *vt, struct type *cls,
3481 struct value *v, int *boffs, bool *isvirt)
3482 {
3483 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3484 {
3485 struct type *t = vt->field (i).type ();
3486 if (types_equal (t, cls))
3487 {
3488 if (BASETYPE_VIA_VIRTUAL (vt, i))
3489 {
3490 const gdb_byte *adr = value_contents_for_printing (v);
3491 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3492 value_as_long (v), v);
3493 *isvirt = true;
3494 }
3495 else
3496 *isvirt = false;
3497 return true;
3498 }
3499
3500 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3501 {
3502 if (*isvirt == false) /* Add non-virtual base offset. */
3503 {
3504 const gdb_byte *adr = value_contents_for_printing (v);
3505 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3506 value_as_long (v), v);
3507 }
3508 return true;
3509 }
3510 }
3511
3512 return false;
3513 }
3514
3515 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3516 return the address of this member as a "pointer to member" type.
3517 If INTYPE is non-null, then it will be the type of the member we
3518 are looking for. This will help us resolve "pointers to member
3519 functions". This function is used to resolve user expressions of
3520 the form "DOMAIN::NAME". */
3521
3522 static struct value *
3523 value_struct_elt_for_reference (struct type *domain, int offset,
3524 struct type *curtype, const char *name,
3525 struct type *intype,
3526 int want_address,
3527 enum noside noside)
3528 {
3529 struct type *t = check_typedef (curtype);
3530 int i;
3531 struct value *result;
3532
3533 if (t->code () != TYPE_CODE_STRUCT
3534 && t->code () != TYPE_CODE_UNION)
3535 error (_("Internal error: non-aggregate type "
3536 "to value_struct_elt_for_reference"));
3537
3538 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3539 {
3540 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3541
3542 if (t_field_name && strcmp (t_field_name, name) == 0)
3543 {
3544 if (field_is_static (&t->field (i)))
3545 {
3546 struct value *v = value_static_field (t, i);
3547 if (want_address)
3548 v = value_addr (v);
3549 return v;
3550 }
3551 if (TYPE_FIELD_PACKED (t, i))
3552 error (_("pointers to bitfield members not allowed"));
3553
3554 if (want_address)
3555 return value_from_longest
3556 (lookup_memberptr_type (t->field (i).type (), domain),
3557 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3558 else if (noside != EVAL_NORMAL)
3559 return allocate_value (t->field (i).type ());
3560 else
3561 {
3562 /* Try to evaluate NAME as a qualified name with implicit
3563 this pointer. In this case, attempt to return the
3564 equivalent to `this->*(&TYPE::NAME)'. */
3565 struct value *v = value_of_this_silent (current_language);
3566 if (v != NULL)
3567 {
3568 struct value *ptr, *this_v = v;
3569 long mem_offset;
3570 struct type *type, *tmp;
3571
3572 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3573 type = check_typedef (value_type (ptr));
3574 gdb_assert (type != NULL
3575 && type->code () == TYPE_CODE_MEMBERPTR);
3576 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3577 v = value_cast_pointers (tmp, v, 1);
3578 mem_offset = value_as_long (ptr);
3579 if (domain != curtype)
3580 {
3581 /* Find class offset of type CURTYPE from either its
3582 parent type DOMAIN or the type of implied this. */
3583 int boff = 0;
3584 bool isvirt = false;
3585 if (get_baseclass_offset (domain, curtype, v, &boff,
3586 &isvirt))
3587 mem_offset += boff;
3588 else
3589 {
3590 struct type *p = check_typedef (value_type (this_v));
3591 p = check_typedef (TYPE_TARGET_TYPE (p));
3592 if (get_baseclass_offset (p, curtype, this_v,
3593 &boff, &isvirt))
3594 mem_offset += boff;
3595 }
3596 }
3597 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3598 result = value_from_pointer (tmp,
3599 value_as_long (v) + mem_offset);
3600 return value_ind (result);
3601 }
3602
3603 error (_("Cannot reference non-static field \"%s\""), name);
3604 }
3605 }
3606 }
3607
3608 /* C++: If it was not found as a data field, then try to return it
3609 as a pointer to a method. */
3610
3611 /* Perform all necessary dereferencing. */
3612 while (intype && intype->code () == TYPE_CODE_PTR)
3613 intype = TYPE_TARGET_TYPE (intype);
3614
3615 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3616 {
3617 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3618
3619 if (t_field_name && strcmp (t_field_name, name) == 0)
3620 {
3621 int j;
3622 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3623 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3624
3625 check_stub_method_group (t, i);
3626
3627 if (intype)
3628 {
3629 for (j = 0; j < len; ++j)
3630 {
3631 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3632 continue;
3633 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3634 continue;
3635
3636 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3637 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3638 intype, 1))
3639 break;
3640 }
3641
3642 if (j == len)
3643 error (_("no member function matches "
3644 "that type instantiation"));
3645 }
3646 else
3647 {
3648 int ii;
3649
3650 j = -1;
3651 for (ii = 0; ii < len; ++ii)
3652 {
3653 /* Skip artificial methods. This is necessary if,
3654 for example, the user wants to "print
3655 subclass::subclass" with only one user-defined
3656 constructor. There is no ambiguity in this case.
3657 We are careful here to allow artificial methods
3658 if they are the unique result. */
3659 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3660 {
3661 if (j == -1)
3662 j = ii;
3663 continue;
3664 }
3665
3666 /* Desired method is ambiguous if more than one
3667 method is defined. */
3668 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3669 error (_("non-unique member `%s' requires "
3670 "type instantiation"), name);
3671
3672 j = ii;
3673 }
3674
3675 if (j == -1)
3676 error (_("no matching member function"));
3677 }
3678
3679 if (TYPE_FN_FIELD_STATIC_P (f, j))
3680 {
3681 struct symbol *s =
3682 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3683 0, VAR_DOMAIN, 0).symbol;
3684
3685 if (s == NULL)
3686 return NULL;
3687
3688 if (want_address)
3689 return value_addr (read_var_value (s, 0, 0));
3690 else
3691 return read_var_value (s, 0, 0);
3692 }
3693
3694 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3695 {
3696 if (want_address)
3697 {
3698 result = allocate_value
3699 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3700 cplus_make_method_ptr (value_type (result),
3701 value_contents_writeable (result),
3702 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3703 }
3704 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3705 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3706 else
3707 error (_("Cannot reference virtual member function \"%s\""),
3708 name);
3709 }
3710 else
3711 {
3712 struct symbol *s =
3713 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3714 0, VAR_DOMAIN, 0).symbol;
3715
3716 if (s == NULL)
3717 return NULL;
3718
3719 struct value *v = read_var_value (s, 0, 0);
3720 if (!want_address)
3721 result = v;
3722 else
3723 {
3724 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3725 cplus_make_method_ptr (value_type (result),
3726 value_contents_writeable (result),
3727 value_address (v), 0);
3728 }
3729 }
3730 return result;
3731 }
3732 }
3733 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3734 {
3735 struct value *v;
3736 int base_offset;
3737
3738 if (BASETYPE_VIA_VIRTUAL (t, i))
3739 base_offset = 0;
3740 else
3741 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3742 v = value_struct_elt_for_reference (domain,
3743 offset + base_offset,
3744 TYPE_BASECLASS (t, i),
3745 name, intype,
3746 want_address, noside);
3747 if (v)
3748 return v;
3749 }
3750
3751 /* As a last chance, pretend that CURTYPE is a namespace, and look
3752 it up that way; this (frequently) works for types nested inside
3753 classes. */
3754
3755 return value_maybe_namespace_elt (curtype, name,
3756 want_address, noside);
3757 }
3758
3759 /* C++: Return the member NAME of the namespace given by the type
3760 CURTYPE. */
3761
3762 static struct value *
3763 value_namespace_elt (const struct type *curtype,
3764 const char *name, int want_address,
3765 enum noside noside)
3766 {
3767 struct value *retval = value_maybe_namespace_elt (curtype, name,
3768 want_address,
3769 noside);
3770
3771 if (retval == NULL)
3772 error (_("No symbol \"%s\" in namespace \"%s\"."),
3773 name, curtype->name ());
3774
3775 return retval;
3776 }
3777
3778 /* A helper function used by value_namespace_elt and
3779 value_struct_elt_for_reference. It looks up NAME inside the
3780 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3781 is a class and NAME refers to a type in CURTYPE itself (as opposed
3782 to, say, some base class of CURTYPE). */
3783
3784 static struct value *
3785 value_maybe_namespace_elt (const struct type *curtype,
3786 const char *name, int want_address,
3787 enum noside noside)
3788 {
3789 const char *namespace_name = curtype->name ();
3790 struct block_symbol sym;
3791 struct value *result;
3792
3793 sym = cp_lookup_symbol_namespace (namespace_name, name,
3794 get_selected_block (0), VAR_DOMAIN);
3795
3796 if (sym.symbol == NULL)
3797 return NULL;
3798 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3799 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3800 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3801 else
3802 result = value_of_variable (sym.symbol, sym.block);
3803
3804 if (want_address)
3805 result = value_addr (result);
3806
3807 return result;
3808 }
3809
3810 /* Given a pointer or a reference value V, find its real (RTTI) type.
3811
3812 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3813 and refer to the values computed for the object pointed to. */
3814
3815 struct type *
3816 value_rtti_indirect_type (struct value *v, int *full,
3817 LONGEST *top, int *using_enc)
3818 {
3819 struct value *target = NULL;
3820 struct type *type, *real_type, *target_type;
3821
3822 type = value_type (v);
3823 type = check_typedef (type);
3824 if (TYPE_IS_REFERENCE (type))
3825 target = coerce_ref (v);
3826 else if (type->code () == TYPE_CODE_PTR)
3827 {
3828
3829 try
3830 {
3831 target = value_ind (v);
3832 }
3833 catch (const gdb_exception_error &except)
3834 {
3835 if (except.error == MEMORY_ERROR)
3836 {
3837 /* value_ind threw a memory error. The pointer is NULL or
3838 contains an uninitialized value: we can't determine any
3839 type. */
3840 return NULL;
3841 }
3842 throw;
3843 }
3844 }
3845 else
3846 return NULL;
3847
3848 real_type = value_rtti_type (target, full, top, using_enc);
3849
3850 if (real_type)
3851 {
3852 /* Copy qualifiers to the referenced object. */
3853 target_type = value_type (target);
3854 real_type = make_cv_type (TYPE_CONST (target_type),
3855 TYPE_VOLATILE (target_type), real_type, NULL);
3856 if (TYPE_IS_REFERENCE (type))
3857 real_type = lookup_reference_type (real_type, type->code ());
3858 else if (type->code () == TYPE_CODE_PTR)
3859 real_type = lookup_pointer_type (real_type);
3860 else
3861 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3862
3863 /* Copy qualifiers to the pointer/reference. */
3864 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3865 real_type, NULL);
3866 }
3867
3868 return real_type;
3869 }
3870
3871 /* Given a value pointed to by ARGP, check its real run-time type, and
3872 if that is different from the enclosing type, create a new value
3873 using the real run-time type as the enclosing type (and of the same
3874 type as ARGP) and return it, with the embedded offset adjusted to
3875 be the correct offset to the enclosed object. RTYPE is the type,
3876 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3877 by value_rtti_type(). If these are available, they can be supplied
3878 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3879 NULL if they're not available. */
3880
3881 struct value *
3882 value_full_object (struct value *argp,
3883 struct type *rtype,
3884 int xfull, int xtop,
3885 int xusing_enc)
3886 {
3887 struct type *real_type;
3888 int full = 0;
3889 LONGEST top = -1;
3890 int using_enc = 0;
3891 struct value *new_val;
3892
3893 if (rtype)
3894 {
3895 real_type = rtype;
3896 full = xfull;
3897 top = xtop;
3898 using_enc = xusing_enc;
3899 }
3900 else
3901 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3902
3903 /* If no RTTI data, or if object is already complete, do nothing. */
3904 if (!real_type || real_type == value_enclosing_type (argp))
3905 return argp;
3906
3907 /* In a destructor we might see a real type that is a superclass of
3908 the object's type. In this case it is better to leave the object
3909 as-is. */
3910 if (full
3911 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3912 return argp;
3913
3914 /* If we have the full object, but for some reason the enclosing
3915 type is wrong, set it. */
3916 /* pai: FIXME -- sounds iffy */
3917 if (full)
3918 {
3919 argp = value_copy (argp);
3920 set_value_enclosing_type (argp, real_type);
3921 return argp;
3922 }
3923
3924 /* Check if object is in memory. */
3925 if (VALUE_LVAL (argp) != lval_memory)
3926 {
3927 warning (_("Couldn't retrieve complete object of RTTI "
3928 "type %s; object may be in register(s)."),
3929 real_type->name ());
3930
3931 return argp;
3932 }
3933
3934 /* All other cases -- retrieve the complete object. */
3935 /* Go back by the computed top_offset from the beginning of the
3936 object, adjusting for the embedded offset of argp if that's what
3937 value_rtti_type used for its computation. */
3938 new_val = value_at_lazy (real_type, value_address (argp) - top +
3939 (using_enc ? 0 : value_embedded_offset (argp)));
3940 deprecated_set_value_type (new_val, value_type (argp));
3941 set_value_embedded_offset (new_val, (using_enc
3942 ? top + value_embedded_offset (argp)
3943 : top));
3944 return new_val;
3945 }
3946
3947
3948 /* Return the value of the local variable, if one exists. Throw error
3949 otherwise, such as if the request is made in an inappropriate context. */
3950
3951 struct value *
3952 value_of_this (const struct language_defn *lang)
3953 {
3954 struct block_symbol sym;
3955 const struct block *b;
3956 struct frame_info *frame;
3957
3958 if (lang->name_of_this () == NULL)
3959 error (_("no `this' in current language"));
3960
3961 frame = get_selected_frame (_("no frame selected"));
3962
3963 b = get_frame_block (frame, NULL);
3964
3965 sym = lookup_language_this (lang, b);
3966 if (sym.symbol == NULL)
3967 error (_("current stack frame does not contain a variable named `%s'"),
3968 lang->name_of_this ());
3969
3970 return read_var_value (sym.symbol, sym.block, frame);
3971 }
3972
3973 /* Return the value of the local variable, if one exists. Return NULL
3974 otherwise. Never throw error. */
3975
3976 struct value *
3977 value_of_this_silent (const struct language_defn *lang)
3978 {
3979 struct value *ret = NULL;
3980
3981 try
3982 {
3983 ret = value_of_this (lang);
3984 }
3985 catch (const gdb_exception_error &except)
3986 {
3987 }
3988
3989 return ret;
3990 }
3991
3992 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3993 elements long, starting at LOWBOUND. The result has the same lower
3994 bound as the original ARRAY. */
3995
3996 struct value *
3997 value_slice (struct value *array, int lowbound, int length)
3998 {
3999 struct type *slice_range_type, *slice_type, *range_type;
4000 LONGEST lowerbound, upperbound;
4001 struct value *slice;
4002 struct type *array_type;
4003
4004 array_type = check_typedef (value_type (array));
4005 if (array_type->code () != TYPE_CODE_ARRAY
4006 && array_type->code () != TYPE_CODE_STRING)
4007 error (_("cannot take slice of non-array"));
4008
4009 if (type_not_allocated (array_type))
4010 error (_("array not allocated"));
4011 if (type_not_associated (array_type))
4012 error (_("array not associated"));
4013
4014 range_type = array_type->index_type ();
4015 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
4016 error (_("slice from bad array or bitstring"));
4017
4018 if (lowbound < lowerbound || length < 0
4019 || lowbound + length - 1 > upperbound)
4020 error (_("slice out of range"));
4021
4022 /* FIXME-type-allocation: need a way to free this type when we are
4023 done with it. */
4024 slice_range_type = create_static_range_type (NULL,
4025 TYPE_TARGET_TYPE (range_type),
4026 lowbound,
4027 lowbound + length - 1);
4028
4029 {
4030 struct type *element_type = TYPE_TARGET_TYPE (array_type);
4031 LONGEST offset
4032 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
4033
4034 slice_type = create_array_type (NULL,
4035 element_type,
4036 slice_range_type);
4037 slice_type->set_code (array_type->code ());
4038
4039 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4040 slice = allocate_value_lazy (slice_type);
4041 else
4042 {
4043 slice = allocate_value (slice_type);
4044 value_contents_copy (slice, 0, array, offset,
4045 type_length_units (slice_type));
4046 }
4047
4048 set_value_component_location (slice, array);
4049 set_value_offset (slice, value_offset (array) + offset);
4050 }
4051
4052 return slice;
4053 }
4054
4055 /* See value.h. */
4056
4057 struct value *
4058 value_literal_complex (struct value *arg1,
4059 struct value *arg2,
4060 struct type *type)
4061 {
4062 struct value *val;
4063 struct type *real_type = TYPE_TARGET_TYPE (type);
4064
4065 val = allocate_value (type);
4066 arg1 = value_cast (real_type, arg1);
4067 arg2 = value_cast (real_type, arg2);
4068
4069 memcpy (value_contents_raw (val),
4070 value_contents (arg1), TYPE_LENGTH (real_type));
4071 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
4072 value_contents (arg2), TYPE_LENGTH (real_type));
4073 return val;
4074 }
4075
4076 /* See value.h. */
4077
4078 struct value *
4079 value_real_part (struct value *value)
4080 {
4081 struct type *type = check_typedef (value_type (value));
4082 struct type *ttype = TYPE_TARGET_TYPE (type);
4083
4084 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4085 return value_from_component (value, ttype, 0);
4086 }
4087
4088 /* See value.h. */
4089
4090 struct value *
4091 value_imaginary_part (struct value *value)
4092 {
4093 struct type *type = check_typedef (value_type (value));
4094 struct type *ttype = TYPE_TARGET_TYPE (type);
4095
4096 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4097 return value_from_component (value, ttype,
4098 TYPE_LENGTH (check_typedef (ttype)));
4099 }
4100
4101 /* Cast a value into the appropriate complex data type. */
4102
4103 static struct value *
4104 cast_into_complex (struct type *type, struct value *val)
4105 {
4106 struct type *real_type = TYPE_TARGET_TYPE (type);
4107
4108 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4109 {
4110 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4111 struct value *re_val = allocate_value (val_real_type);
4112 struct value *im_val = allocate_value (val_real_type);
4113
4114 memcpy (value_contents_raw (re_val),
4115 value_contents (val), TYPE_LENGTH (val_real_type));
4116 memcpy (value_contents_raw (im_val),
4117 value_contents (val) + TYPE_LENGTH (val_real_type),
4118 TYPE_LENGTH (val_real_type));
4119
4120 return value_literal_complex (re_val, im_val, type);
4121 }
4122 else if (value_type (val)->code () == TYPE_CODE_FLT
4123 || value_type (val)->code () == TYPE_CODE_INT)
4124 return value_literal_complex (val,
4125 value_zero (real_type, not_lval),
4126 type);
4127 else
4128 error (_("cannot cast non-number to complex"));
4129 }
4130
4131 void _initialize_valops ();
4132 void
4133 _initialize_valops ()
4134 {
4135 add_setshow_boolean_cmd ("overload-resolution", class_support,
4136 &overload_resolution, _("\
4137 Set overload resolution in evaluating C++ functions."), _("\
4138 Show overload resolution in evaluating C++ functions."),
4139 NULL, NULL,
4140 show_overload_resolution,
4141 &setlist, &showlist);
4142 overload_resolution = 1;
4143 }
This page took 0.114165 seconds and 4 git commands to generate.