remove msymbol_objfile
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "cp-support.h"
43 #include "observer.h"
44 #include "objfiles.h"
45 #include "symtab.h"
46 #include "exceptions.h"
47
48 extern unsigned int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (const char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **,
65 const int no_adl);
66
67 static
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
72 const int no_adl);
73
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (sym != NULL)
138 {
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 {
141 error (_("\"%s\" exists in this program but is not a function."),
142 name);
143 }
144
145 if (objf_p)
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147
148 return value_of_variable (sym, NULL);
149 }
150 else
151 {
152 struct bound_minimal_symbol msymbol =
153 lookup_bound_minimal_symbol (name);
154
155 if (msymbol.minsym != NULL)
156 {
157 struct objfile *objfile = msymbol.objfile;
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
177 else
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
180 name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
204 else
205 error (_("No memory available to program: call to malloc failed"));
206 }
207 return val;
208 }
209
210 static CORE_ADDR
211 allocate_space_in_inferior (int len)
212 {
213 return value_as_long (value_allocate_space_in_inferior (len));
214 }
215
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
220
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
223 {
224 struct type *t1;
225 struct type *t2;
226 struct value *v;
227
228 gdb_assert (type != NULL && v2 != NULL);
229
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
232
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
240
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 return NULL;
245
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
250 {
251 v = search_struct_field (type_name_no_tag (t1),
252 v2, 0, t2, 1);
253 if (v)
254 return v;
255 }
256
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
261 {
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
265
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 if (real_type)
268 {
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
906
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
909 {
910 struct value *val;
911
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
914
915 val = value_from_contents_and_address (type, NULL, addr);
916
917 if (!lazy)
918 value_fetch_lazy (val);
919
920 return val;
921 }
922
923 /* Return a value with type TYPE located at ADDR.
924
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
931
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
934
935 struct value *
936 value_at (struct type *type, CORE_ADDR addr)
937 {
938 return get_value_at (type, addr, 0);
939 }
940
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 if (length)
955 {
956 VEC(mem_range_s) *available_memory;
957
958 if (!traceframe_available_memory (&available_memory, memaddr, length))
959 {
960 if (stack)
961 read_stack (memaddr, buffer, length);
962 else
963 read_memory (memaddr, buffer, length);
964 }
965 else
966 {
967 struct target_section_table *table;
968 struct cleanup *old_chain;
969 CORE_ADDR unavail;
970 mem_range_s *r;
971 int i;
972
973 /* Fallback to reading from read-only sections. */
974 table = target_get_section_table (&exec_ops);
975 available_memory =
976 section_table_available_memory (available_memory,
977 memaddr, length,
978 table->sections,
979 table->sections_end);
980
981 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
982 &available_memory);
983
984 normalize_mem_ranges (available_memory);
985
986 /* Mark which bytes are unavailable, and read those which
987 are available. */
988
989 unavail = memaddr;
990
991 for (i = 0;
992 VEC_iterate (mem_range_s, available_memory, i, r);
993 i++)
994 {
995 if (mem_ranges_overlap (r->start, r->length,
996 memaddr, length))
997 {
998 CORE_ADDR lo1, hi1, lo2, hi2;
999 CORE_ADDR start, end;
1000
1001 /* Get the intersection window. */
1002 lo1 = memaddr;
1003 hi1 = memaddr + length;
1004 lo2 = r->start;
1005 hi2 = r->start + r->length;
1006 start = max (lo1, lo2);
1007 end = min (hi1, hi2);
1008
1009 gdb_assert (end - memaddr <= length);
1010
1011 if (start > unavail)
1012 mark_value_bytes_unavailable (val,
1013 (embedded_offset
1014 + unavail - memaddr),
1015 start - unavail);
1016 unavail = end;
1017
1018 read_memory (start, buffer + start - memaddr, end - start);
1019 }
1020 }
1021
1022 if (unavail != memaddr + length)
1023 mark_value_bytes_unavailable (val,
1024 embedded_offset + unavail - memaddr,
1025 (memaddr + length) - unavail);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Store the contents of FROMVAL into the location of TOVAL.
1033 Return a new value with the location of TOVAL and contents of FROMVAL. */
1034
1035 struct value *
1036 value_assign (struct value *toval, struct value *fromval)
1037 {
1038 struct type *type;
1039 struct value *val;
1040 struct frame_id old_frame;
1041
1042 if (!deprecated_value_modifiable (toval))
1043 error (_("Left operand of assignment is not a modifiable lvalue."));
1044
1045 toval = coerce_ref (toval);
1046
1047 type = value_type (toval);
1048 if (VALUE_LVAL (toval) != lval_internalvar)
1049 fromval = value_cast (type, fromval);
1050 else
1051 {
1052 /* Coerce arrays and functions to pointers, except for arrays
1053 which only live in GDB's storage. */
1054 if (!value_must_coerce_to_target (fromval))
1055 fromval = coerce_array (fromval);
1056 }
1057
1058 CHECK_TYPEDEF (type);
1059
1060 /* Since modifying a register can trash the frame chain, and
1061 modifying memory can trash the frame cache, we save the old frame
1062 and then restore the new frame afterwards. */
1063 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1064
1065 switch (VALUE_LVAL (toval))
1066 {
1067 case lval_internalvar:
1068 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1069 return value_of_internalvar (get_type_arch (type),
1070 VALUE_INTERNALVAR (toval));
1071
1072 case lval_internalvar_component:
1073 {
1074 int offset = value_offset (toval);
1075
1076 /* Are we dealing with a bitfield?
1077
1078 It is important to mention that `value_parent (toval)' is
1079 non-NULL iff `value_bitsize (toval)' is non-zero. */
1080 if (value_bitsize (toval))
1081 {
1082 /* VALUE_INTERNALVAR below refers to the parent value, while
1083 the offset is relative to this parent value. */
1084 gdb_assert (value_parent (value_parent (toval)) == NULL);
1085 offset += value_offset (value_parent (toval));
1086 }
1087
1088 set_internalvar_component (VALUE_INTERNALVAR (toval),
1089 offset,
1090 value_bitpos (toval),
1091 value_bitsize (toval),
1092 fromval);
1093 }
1094 break;
1095
1096 case lval_memory:
1097 {
1098 const gdb_byte *dest_buffer;
1099 CORE_ADDR changed_addr;
1100 int changed_len;
1101 gdb_byte buffer[sizeof (LONGEST)];
1102
1103 if (value_bitsize (toval))
1104 {
1105 struct value *parent = value_parent (toval);
1106
1107 changed_addr = value_address (parent) + value_offset (toval);
1108 changed_len = (value_bitpos (toval)
1109 + value_bitsize (toval)
1110 + HOST_CHAR_BIT - 1)
1111 / HOST_CHAR_BIT;
1112
1113 /* If we can read-modify-write exactly the size of the
1114 containing type (e.g. short or int) then do so. This
1115 is safer for volatile bitfields mapped to hardware
1116 registers. */
1117 if (changed_len < TYPE_LENGTH (type)
1118 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1119 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1120 changed_len = TYPE_LENGTH (type);
1121
1122 if (changed_len > (int) sizeof (LONGEST))
1123 error (_("Can't handle bitfields which "
1124 "don't fit in a %d bit word."),
1125 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1126
1127 read_memory (changed_addr, buffer, changed_len);
1128 modify_field (type, buffer, value_as_long (fromval),
1129 value_bitpos (toval), value_bitsize (toval));
1130 dest_buffer = buffer;
1131 }
1132 else
1133 {
1134 changed_addr = value_address (toval);
1135 changed_len = TYPE_LENGTH (type);
1136 dest_buffer = value_contents (fromval);
1137 }
1138
1139 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1140 }
1141 break;
1142
1143 case lval_register:
1144 {
1145 struct frame_info *frame;
1146 struct gdbarch *gdbarch;
1147 int value_reg;
1148
1149 /* Figure out which frame this is in currently. */
1150 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1151 value_reg = VALUE_REGNUM (toval);
1152
1153 if (!frame)
1154 error (_("Value being assigned to is no longer active."));
1155
1156 gdbarch = get_frame_arch (frame);
1157 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 if (value_bitsize (toval))
1169 {
1170 struct value *parent = value_parent (toval);
1171 int offset = value_offset (parent) + value_offset (toval);
1172 int changed_len;
1173 gdb_byte buffer[sizeof (LONGEST)];
1174 int optim, unavail;
1175
1176 changed_len = (value_bitpos (toval)
1177 + value_bitsize (toval)
1178 + HOST_CHAR_BIT - 1)
1179 / HOST_CHAR_BIT;
1180
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which "
1183 "don't fit in a %d bit word."),
1184 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1185
1186 if (!get_frame_register_bytes (frame, value_reg, offset,
1187 changed_len, buffer,
1188 &optim, &unavail))
1189 {
1190 if (optim)
1191 error (_("value has been optimized out"));
1192 if (unavail)
1193 throw_error (NOT_AVAILABLE_ERROR,
1194 _("value is not available"));
1195 }
1196
1197 modify_field (type, buffer, value_as_long (fromval),
1198 value_bitpos (toval), value_bitsize (toval));
1199
1200 put_frame_register_bytes (frame, value_reg, offset,
1201 changed_len, buffer);
1202 }
1203 else
1204 {
1205 put_frame_register_bytes (frame, value_reg,
1206 value_offset (toval),
1207 TYPE_LENGTH (type),
1208 value_contents (fromval));
1209 }
1210 }
1211
1212 if (deprecated_register_changed_hook)
1213 deprecated_register_changed_hook (-1);
1214 break;
1215 }
1216
1217 case lval_computed:
1218 {
1219 const struct lval_funcs *funcs = value_computed_funcs (toval);
1220
1221 if (funcs->write != NULL)
1222 {
1223 funcs->write (toval, fromval);
1224 break;
1225 }
1226 }
1227 /* Fall through. */
1228
1229 default:
1230 error (_("Left operand of assignment is not an lvalue."));
1231 }
1232
1233 /* Assigning to the stack pointer, frame pointer, and other
1234 (architecture and calling convention specific) registers may
1235 cause the frame cache and regcache to be out of date. Assigning to memory
1236 also can. We just do this on all assignments to registers or
1237 memory, for simplicity's sake; I doubt the slowdown matters. */
1238 switch (VALUE_LVAL (toval))
1239 {
1240 case lval_memory:
1241 case lval_register:
1242 case lval_computed:
1243
1244 observer_notify_target_changed (&current_target);
1245
1246 /* Having destroyed the frame cache, restore the selected
1247 frame. */
1248
1249 /* FIXME: cagney/2002-11-02: There has to be a better way of
1250 doing this. Instead of constantly saving/restoring the
1251 frame. Why not create a get_selected_frame() function that,
1252 having saved the selected frame's ID can automatically
1253 re-find the previously selected frame automatically. */
1254
1255 {
1256 struct frame_info *fi = frame_find_by_id (old_frame);
1257
1258 if (fi != NULL)
1259 select_frame (fi);
1260 }
1261
1262 break;
1263 default:
1264 break;
1265 }
1266
1267 /* If the field does not entirely fill a LONGEST, then zero the sign
1268 bits. If the field is signed, and is negative, then sign
1269 extend. */
1270 if ((value_bitsize (toval) > 0)
1271 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1272 {
1273 LONGEST fieldval = value_as_long (fromval);
1274 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1275
1276 fieldval &= valmask;
1277 if (!TYPE_UNSIGNED (type)
1278 && (fieldval & (valmask ^ (valmask >> 1))))
1279 fieldval |= ~valmask;
1280
1281 fromval = value_from_longest (type, fieldval);
1282 }
1283
1284 /* The return value is a copy of TOVAL so it shares its location
1285 information, but its contents are updated from FROMVAL. This
1286 implies the returned value is not lazy, even if TOVAL was. */
1287 val = value_copy (toval);
1288 set_value_lazy (val, 0);
1289 memcpy (value_contents_raw (val), value_contents (fromval),
1290 TYPE_LENGTH (type));
1291
1292 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1293 in the case of pointer types. For object types, the enclosing type
1294 and embedded offset must *not* be copied: the target object refered
1295 to by TOVAL retains its original dynamic type after assignment. */
1296 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1297 {
1298 set_value_enclosing_type (val, value_enclosing_type (fromval));
1299 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1300 }
1301
1302 return val;
1303 }
1304
1305 /* Extend a value VAL to COUNT repetitions of its type. */
1306
1307 struct value *
1308 value_repeat (struct value *arg1, int count)
1309 {
1310 struct value *val;
1311
1312 if (VALUE_LVAL (arg1) != lval_memory)
1313 error (_("Only values in memory can be extended with '@'."));
1314 if (count < 1)
1315 error (_("Invalid number %d of repetitions."), count);
1316
1317 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1318
1319 VALUE_LVAL (val) = lval_memory;
1320 set_value_address (val, value_address (arg1));
1321
1322 read_value_memory (val, 0, value_stack (val), value_address (val),
1323 value_contents_all_raw (val),
1324 TYPE_LENGTH (value_enclosing_type (val)));
1325
1326 return val;
1327 }
1328
1329 struct value *
1330 value_of_variable (struct symbol *var, const struct block *b)
1331 {
1332 struct frame_info *frame;
1333
1334 if (!symbol_read_needs_frame (var))
1335 frame = NULL;
1336 else if (!b)
1337 frame = get_selected_frame (_("No frame selected."));
1338 else
1339 {
1340 frame = block_innermost_frame (b);
1341 if (!frame)
1342 {
1343 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1344 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1345 error (_("No frame is currently executing in block %s."),
1346 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1347 else
1348 error (_("No frame is currently executing in specified block"));
1349 }
1350 }
1351
1352 return read_var_value (var, frame);
1353 }
1354
1355 struct value *
1356 address_of_variable (struct symbol *var, const struct block *b)
1357 {
1358 struct type *type = SYMBOL_TYPE (var);
1359 struct value *val;
1360
1361 /* Evaluate it first; if the result is a memory address, we're fine.
1362 Lazy evaluation pays off here. */
1363
1364 val = value_of_variable (var, b);
1365
1366 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1367 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1368 {
1369 CORE_ADDR addr = value_address (val);
1370
1371 return value_from_pointer (lookup_pointer_type (type), addr);
1372 }
1373
1374 /* Not a memory address; check what the problem was. */
1375 switch (VALUE_LVAL (val))
1376 {
1377 case lval_register:
1378 {
1379 struct frame_info *frame;
1380 const char *regname;
1381
1382 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1383 gdb_assert (frame);
1384
1385 regname = gdbarch_register_name (get_frame_arch (frame),
1386 VALUE_REGNUM (val));
1387 gdb_assert (regname && *regname);
1388
1389 error (_("Address requested for identifier "
1390 "\"%s\" which is in register $%s"),
1391 SYMBOL_PRINT_NAME (var), regname);
1392 break;
1393 }
1394
1395 default:
1396 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1397 SYMBOL_PRINT_NAME (var));
1398 break;
1399 }
1400
1401 return val;
1402 }
1403
1404 /* Return one if VAL does not live in target memory, but should in order
1405 to operate on it. Otherwise return zero. */
1406
1407 int
1408 value_must_coerce_to_target (struct value *val)
1409 {
1410 struct type *valtype;
1411
1412 /* The only lval kinds which do not live in target memory. */
1413 if (VALUE_LVAL (val) != not_lval
1414 && VALUE_LVAL (val) != lval_internalvar)
1415 return 0;
1416
1417 valtype = check_typedef (value_type (val));
1418
1419 switch (TYPE_CODE (valtype))
1420 {
1421 case TYPE_CODE_ARRAY:
1422 return TYPE_VECTOR (valtype) ? 0 : 1;
1423 case TYPE_CODE_STRING:
1424 return 1;
1425 default:
1426 return 0;
1427 }
1428 }
1429
1430 /* Make sure that VAL lives in target memory if it's supposed to. For
1431 instance, strings are constructed as character arrays in GDB's
1432 storage, and this function copies them to the target. */
1433
1434 struct value *
1435 value_coerce_to_target (struct value *val)
1436 {
1437 LONGEST length;
1438 CORE_ADDR addr;
1439
1440 if (!value_must_coerce_to_target (val))
1441 return val;
1442
1443 length = TYPE_LENGTH (check_typedef (value_type (val)));
1444 addr = allocate_space_in_inferior (length);
1445 write_memory (addr, value_contents (val), length);
1446 return value_at_lazy (value_type (val), addr);
1447 }
1448
1449 /* Given a value which is an array, return a value which is a pointer
1450 to its first element, regardless of whether or not the array has a
1451 nonzero lower bound.
1452
1453 FIXME: A previous comment here indicated that this routine should
1454 be substracting the array's lower bound. It's not clear to me that
1455 this is correct. Given an array subscripting operation, it would
1456 certainly work to do the adjustment here, essentially computing:
1457
1458 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1459
1460 However I believe a more appropriate and logical place to account
1461 for the lower bound is to do so in value_subscript, essentially
1462 computing:
1463
1464 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1465
1466 As further evidence consider what would happen with operations
1467 other than array subscripting, where the caller would get back a
1468 value that had an address somewhere before the actual first element
1469 of the array, and the information about the lower bound would be
1470 lost because of the coercion to pointer type. */
1471
1472 struct value *
1473 value_coerce_array (struct value *arg1)
1474 {
1475 struct type *type = check_typedef (value_type (arg1));
1476
1477 /* If the user tries to do something requiring a pointer with an
1478 array that has not yet been pushed to the target, then this would
1479 be a good time to do so. */
1480 arg1 = value_coerce_to_target (arg1);
1481
1482 if (VALUE_LVAL (arg1) != lval_memory)
1483 error (_("Attempt to take address of value not located in memory."));
1484
1485 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1486 value_address (arg1));
1487 }
1488
1489 /* Given a value which is a function, return a value which is a pointer
1490 to it. */
1491
1492 struct value *
1493 value_coerce_function (struct value *arg1)
1494 {
1495 struct value *retval;
1496
1497 if (VALUE_LVAL (arg1) != lval_memory)
1498 error (_("Attempt to take address of value not located in memory."));
1499
1500 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1501 value_address (arg1));
1502 return retval;
1503 }
1504
1505 /* Return a pointer value for the object for which ARG1 is the
1506 contents. */
1507
1508 struct value *
1509 value_addr (struct value *arg1)
1510 {
1511 struct value *arg2;
1512 struct type *type = check_typedef (value_type (arg1));
1513
1514 if (TYPE_CODE (type) == TYPE_CODE_REF)
1515 {
1516 /* Copy the value, but change the type from (T&) to (T*). We
1517 keep the same location information, which is efficient, and
1518 allows &(&X) to get the location containing the reference. */
1519 arg2 = value_copy (arg1);
1520 deprecated_set_value_type (arg2,
1521 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1522 return arg2;
1523 }
1524 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1525 return value_coerce_function (arg1);
1526
1527 /* If this is an array that has not yet been pushed to the target,
1528 then this would be a good time to force it to memory. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 /* Get target memory address. */
1535 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1536 (value_address (arg1)
1537 + value_embedded_offset (arg1)));
1538
1539 /* This may be a pointer to a base subobject; so remember the
1540 full derived object's type ... */
1541 set_value_enclosing_type (arg2,
1542 lookup_pointer_type (value_enclosing_type (arg1)));
1543 /* ... and also the relative position of the subobject in the full
1544 object. */
1545 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1546 return arg2;
1547 }
1548
1549 /* Return a reference value for the object for which ARG1 is the
1550 contents. */
1551
1552 struct value *
1553 value_ref (struct value *arg1)
1554 {
1555 struct value *arg2;
1556 struct type *type = check_typedef (value_type (arg1));
1557
1558 if (TYPE_CODE (type) == TYPE_CODE_REF)
1559 return arg1;
1560
1561 arg2 = value_addr (arg1);
1562 deprecated_set_value_type (arg2, lookup_reference_type (type));
1563 return arg2;
1564 }
1565
1566 /* Given a value of a pointer type, apply the C unary * operator to
1567 it. */
1568
1569 struct value *
1570 value_ind (struct value *arg1)
1571 {
1572 struct type *base_type;
1573 struct value *arg2;
1574
1575 arg1 = coerce_array (arg1);
1576
1577 base_type = check_typedef (value_type (arg1));
1578
1579 if (VALUE_LVAL (arg1) == lval_computed)
1580 {
1581 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1582
1583 if (funcs->indirect)
1584 {
1585 struct value *result = funcs->indirect (arg1);
1586
1587 if (result)
1588 return result;
1589 }
1590 }
1591
1592 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1593 {
1594 struct type *enc_type;
1595
1596 /* We may be pointing to something embedded in a larger object.
1597 Get the real type of the enclosing object. */
1598 enc_type = check_typedef (value_enclosing_type (arg1));
1599 enc_type = TYPE_TARGET_TYPE (enc_type);
1600
1601 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1602 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1603 /* For functions, go through find_function_addr, which knows
1604 how to handle function descriptors. */
1605 arg2 = value_at_lazy (enc_type,
1606 find_function_addr (arg1, NULL));
1607 else
1608 /* Retrieve the enclosing object pointed to. */
1609 arg2 = value_at_lazy (enc_type,
1610 (value_as_address (arg1)
1611 - value_pointed_to_offset (arg1)));
1612
1613 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1614 }
1615
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1618 }
1619 \f
1620 /* Create a value for an array by allocating space in GDB, copying the
1621 data into that space, and then setting up an array value.
1622
1623 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1624 is populated from the values passed in ELEMVEC.
1625
1626 The element type of the array is inherited from the type of the
1627 first element, and all elements must have the same size (though we
1628 don't currently enforce any restriction on their types). */
1629
1630 struct value *
1631 value_array (int lowbound, int highbound, struct value **elemvec)
1632 {
1633 int nelem;
1634 int idx;
1635 unsigned int typelength;
1636 struct value *val;
1637 struct type *arraytype;
1638
1639 /* Validate that the bounds are reasonable and that each of the
1640 elements have the same size. */
1641
1642 nelem = highbound - lowbound + 1;
1643 if (nelem <= 0)
1644 {
1645 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1646 }
1647 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1648 for (idx = 1; idx < nelem; idx++)
1649 {
1650 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1651 {
1652 error (_("array elements must all be the same size"));
1653 }
1654 }
1655
1656 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1657 lowbound, highbound);
1658
1659 if (!current_language->c_style_arrays)
1660 {
1661 val = allocate_value (arraytype);
1662 for (idx = 0; idx < nelem; idx++)
1663 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1664 typelength);
1665 return val;
1666 }
1667
1668 /* Allocate space to store the array, and then initialize it by
1669 copying in each element. */
1670
1671 val = allocate_value (arraytype);
1672 for (idx = 0; idx < nelem; idx++)
1673 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1674 return val;
1675 }
1676
1677 struct value *
1678 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1679 {
1680 struct value *val;
1681 int lowbound = current_language->string_lower_bound;
1682 ssize_t highbound = len / TYPE_LENGTH (char_type);
1683 struct type *stringtype
1684 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1685
1686 val = allocate_value (stringtype);
1687 memcpy (value_contents_raw (val), ptr, len);
1688 return val;
1689 }
1690
1691 /* Create a value for a string constant by allocating space in the
1692 inferior, copying the data into that space, and returning the
1693 address with type TYPE_CODE_STRING. PTR points to the string
1694 constant data; LEN is number of characters.
1695
1696 Note that string types are like array of char types with a lower
1697 bound of zero and an upper bound of LEN - 1. Also note that the
1698 string may contain embedded null bytes. */
1699
1700 struct value *
1701 value_string (char *ptr, ssize_t len, struct type *char_type)
1702 {
1703 struct value *val;
1704 int lowbound = current_language->string_lower_bound;
1705 ssize_t highbound = len / TYPE_LENGTH (char_type);
1706 struct type *stringtype
1707 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1708
1709 val = allocate_value (stringtype);
1710 memcpy (value_contents_raw (val), ptr, len);
1711 return val;
1712 }
1713
1714 \f
1715 /* See if we can pass arguments in T2 to a function which takes
1716 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1717 a NULL-terminated vector. If some arguments need coercion of some
1718 sort, then the coerced values are written into T2. Return value is
1719 0 if the arguments could be matched, or the position at which they
1720 differ if not.
1721
1722 STATICP is nonzero if the T1 argument list came from a static
1723 member function. T2 will still include the ``this'' pointer, but
1724 it will be skipped.
1725
1726 For non-static member functions, we ignore the first argument,
1727 which is the type of the instance variable. This is because we
1728 want to handle calls with objects from derived classes. This is
1729 not entirely correct: we should actually check to make sure that a
1730 requested operation is type secure, shouldn't we? FIXME. */
1731
1732 static int
1733 typecmp (int staticp, int varargs, int nargs,
1734 struct field t1[], struct value *t2[])
1735 {
1736 int i;
1737
1738 if (t2 == 0)
1739 internal_error (__FILE__, __LINE__,
1740 _("typecmp: no argument list"));
1741
1742 /* Skip ``this'' argument if applicable. T2 will always include
1743 THIS. */
1744 if (staticp)
1745 t2 ++;
1746
1747 for (i = 0;
1748 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1749 i++)
1750 {
1751 struct type *tt1, *tt2;
1752
1753 if (!t2[i])
1754 return i + 1;
1755
1756 tt1 = check_typedef (t1[i].type);
1757 tt2 = check_typedef (value_type (t2[i]));
1758
1759 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1760 /* We should be doing hairy argument matching, as below. */
1761 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1762 == TYPE_CODE (tt2)))
1763 {
1764 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1765 t2[i] = value_coerce_array (t2[i]);
1766 else
1767 t2[i] = value_ref (t2[i]);
1768 continue;
1769 }
1770
1771 /* djb - 20000715 - Until the new type structure is in the
1772 place, and we can attempt things like implicit conversions,
1773 we need to do this so you can take something like a map<const
1774 char *>, and properly access map["hello"], because the
1775 argument to [] will be a reference to a pointer to a char,
1776 and the argument will be a pointer to a char. */
1777 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1778 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1779 {
1780 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1781 }
1782 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1783 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1784 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1785 {
1786 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1787 }
1788 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1789 continue;
1790 /* Array to pointer is a `trivial conversion' according to the
1791 ARM. */
1792
1793 /* We should be doing much hairier argument matching (see
1794 section 13.2 of the ARM), but as a quick kludge, just check
1795 for the same type code. */
1796 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1797 return i + 1;
1798 }
1799 if (varargs || t2[i] == NULL)
1800 return 0;
1801 return i + 1;
1802 }
1803
1804 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1805 and *LAST_BOFFSET, and possibly throws an exception if the field
1806 search has yielded ambiguous results. */
1807
1808 static void
1809 update_search_result (struct value **result_ptr, struct value *v,
1810 int *last_boffset, int boffset,
1811 const char *name, struct type *type)
1812 {
1813 if (v != NULL)
1814 {
1815 if (*result_ptr != NULL
1816 /* The result is not ambiguous if all the classes that are
1817 found occupy the same space. */
1818 && *last_boffset != boffset)
1819 error (_("base class '%s' is ambiguous in type '%s'"),
1820 name, TYPE_SAFE_NAME (type));
1821 *result_ptr = v;
1822 *last_boffset = boffset;
1823 }
1824 }
1825
1826 /* A helper for search_struct_field. This does all the work; most
1827 arguments are as passed to search_struct_field. The result is
1828 stored in *RESULT_PTR, which must be initialized to NULL.
1829 OUTERMOST_TYPE is the type of the initial type passed to
1830 search_struct_field; this is used for error reporting when the
1831 lookup is ambiguous. */
1832
1833 static void
1834 do_search_struct_field (const char *name, struct value *arg1, int offset,
1835 struct type *type, int looking_for_baseclass,
1836 struct value **result_ptr,
1837 int *last_boffset,
1838 struct type *outermost_type)
1839 {
1840 int i;
1841 int nbases;
1842
1843 CHECK_TYPEDEF (type);
1844 nbases = TYPE_N_BASECLASSES (type);
1845
1846 if (!looking_for_baseclass)
1847 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1848 {
1849 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1850
1851 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1852 {
1853 struct value *v;
1854
1855 if (field_is_static (&TYPE_FIELD (type, i)))
1856 {
1857 v = value_static_field (type, i);
1858 if (v == 0)
1859 error (_("field %s is nonexistent or "
1860 "has been optimized out"),
1861 name);
1862 }
1863 else
1864 v = value_primitive_field (arg1, offset, i, type);
1865 *result_ptr = v;
1866 return;
1867 }
1868
1869 if (t_field_name
1870 && (t_field_name[0] == '\0'
1871 || (TYPE_CODE (type) == TYPE_CODE_UNION
1872 && (strcmp_iw (t_field_name, "else") == 0))))
1873 {
1874 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1875
1876 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1877 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1878 {
1879 /* Look for a match through the fields of an anonymous
1880 union, or anonymous struct. C++ provides anonymous
1881 unions.
1882
1883 In the GNU Chill (now deleted from GDB)
1884 implementation of variant record types, each
1885 <alternative field> has an (anonymous) union type,
1886 each member of the union represents a <variant
1887 alternative>. Each <variant alternative> is
1888 represented as a struct, with a member for each
1889 <variant field>. */
1890
1891 struct value *v = NULL;
1892 int new_offset = offset;
1893
1894 /* This is pretty gross. In G++, the offset in an
1895 anonymous union is relative to the beginning of the
1896 enclosing struct. In the GNU Chill (now deleted
1897 from GDB) implementation of variant records, the
1898 bitpos is zero in an anonymous union field, so we
1899 have to add the offset of the union here. */
1900 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1901 || (TYPE_NFIELDS (field_type) > 0
1902 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1903 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1904
1905 do_search_struct_field (name, arg1, new_offset,
1906 field_type,
1907 looking_for_baseclass, &v,
1908 last_boffset,
1909 outermost_type);
1910 if (v)
1911 {
1912 *result_ptr = v;
1913 return;
1914 }
1915 }
1916 }
1917 }
1918
1919 for (i = 0; i < nbases; i++)
1920 {
1921 struct value *v = NULL;
1922 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1923 /* If we are looking for baseclasses, this is what we get when
1924 we hit them. But it could happen that the base part's member
1925 name is not yet filled in. */
1926 int found_baseclass = (looking_for_baseclass
1927 && TYPE_BASECLASS_NAME (type, i) != NULL
1928 && (strcmp_iw (name,
1929 TYPE_BASECLASS_NAME (type,
1930 i)) == 0));
1931 int boffset = value_embedded_offset (arg1) + offset;
1932
1933 if (BASETYPE_VIA_VIRTUAL (type, i))
1934 {
1935 struct value *v2;
1936
1937 boffset = baseclass_offset (type, i,
1938 value_contents_for_printing (arg1),
1939 value_embedded_offset (arg1) + offset,
1940 value_address (arg1),
1941 arg1);
1942
1943 /* The virtual base class pointer might have been clobbered
1944 by the user program. Make sure that it still points to a
1945 valid memory location. */
1946
1947 boffset += value_embedded_offset (arg1) + offset;
1948 if (boffset < 0
1949 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1950 {
1951 CORE_ADDR base_addr;
1952
1953 v2 = allocate_value (basetype);
1954 base_addr = value_address (arg1) + boffset;
1955 if (target_read_memory (base_addr,
1956 value_contents_raw (v2),
1957 TYPE_LENGTH (basetype)) != 0)
1958 error (_("virtual baseclass botch"));
1959 VALUE_LVAL (v2) = lval_memory;
1960 set_value_address (v2, base_addr);
1961 }
1962 else
1963 {
1964 v2 = value_copy (arg1);
1965 deprecated_set_value_type (v2, basetype);
1966 set_value_embedded_offset (v2, boffset);
1967 }
1968
1969 if (found_baseclass)
1970 v = v2;
1971 else
1972 {
1973 do_search_struct_field (name, v2, 0,
1974 TYPE_BASECLASS (type, i),
1975 looking_for_baseclass,
1976 result_ptr, last_boffset,
1977 outermost_type);
1978 }
1979 }
1980 else if (found_baseclass)
1981 v = value_primitive_field (arg1, offset, i, type);
1982 else
1983 {
1984 do_search_struct_field (name, arg1,
1985 offset + TYPE_BASECLASS_BITPOS (type,
1986 i) / 8,
1987 basetype, looking_for_baseclass,
1988 result_ptr, last_boffset,
1989 outermost_type);
1990 }
1991
1992 update_search_result (result_ptr, v, last_boffset,
1993 boffset, name, outermost_type);
1994 }
1995 }
1996
1997 /* Helper function used by value_struct_elt to recurse through
1998 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1999 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2000 TYPE. If found, return value, else return NULL.
2001
2002 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2003 fields, look for a baseclass named NAME. */
2004
2005 static struct value *
2006 search_struct_field (const char *name, struct value *arg1, int offset,
2007 struct type *type, int looking_for_baseclass)
2008 {
2009 struct value *result = NULL;
2010 int boffset = 0;
2011
2012 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2013 &result, &boffset, type);
2014 return result;
2015 }
2016
2017 /* Helper function used by value_struct_elt to recurse through
2018 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2019 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2020 TYPE.
2021
2022 If found, return value, else if name matched and args not return
2023 (value) -1, else return NULL. */
2024
2025 static struct value *
2026 search_struct_method (const char *name, struct value **arg1p,
2027 struct value **args, int offset,
2028 int *static_memfuncp, struct type *type)
2029 {
2030 int i;
2031 struct value *v;
2032 int name_matched = 0;
2033 char dem_opname[64];
2034
2035 CHECK_TYPEDEF (type);
2036 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2037 {
2038 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2039
2040 /* FIXME! May need to check for ARM demangling here. */
2041 if (strncmp (t_field_name, "__", 2) == 0 ||
2042 strncmp (t_field_name, "op", 2) == 0 ||
2043 strncmp (t_field_name, "type", 4) == 0)
2044 {
2045 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2046 t_field_name = dem_opname;
2047 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2048 t_field_name = dem_opname;
2049 }
2050 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2051 {
2052 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2053 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2054
2055 name_matched = 1;
2056 check_stub_method_group (type, i);
2057 if (j > 0 && args == 0)
2058 error (_("cannot resolve overloaded method "
2059 "`%s': no arguments supplied"), name);
2060 else if (j == 0 && args == 0)
2061 {
2062 v = value_fn_field (arg1p, f, j, type, offset);
2063 if (v != NULL)
2064 return v;
2065 }
2066 else
2067 while (j >= 0)
2068 {
2069 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2070 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2071 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2072 TYPE_FN_FIELD_ARGS (f, j), args))
2073 {
2074 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2075 return value_virtual_fn_field (arg1p, f, j,
2076 type, offset);
2077 if (TYPE_FN_FIELD_STATIC_P (f, j)
2078 && static_memfuncp)
2079 *static_memfuncp = 1;
2080 v = value_fn_field (arg1p, f, j, type, offset);
2081 if (v != NULL)
2082 return v;
2083 }
2084 j--;
2085 }
2086 }
2087 }
2088
2089 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2090 {
2091 int base_offset;
2092 int this_offset;
2093
2094 if (BASETYPE_VIA_VIRTUAL (type, i))
2095 {
2096 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2097 struct value *base_val;
2098 const gdb_byte *base_valaddr;
2099
2100 /* The virtual base class pointer might have been
2101 clobbered by the user program. Make sure that it
2102 still points to a valid memory location. */
2103
2104 if (offset < 0 || offset >= TYPE_LENGTH (type))
2105 {
2106 gdb_byte *tmp;
2107 struct cleanup *back_to;
2108 CORE_ADDR address;
2109
2110 tmp = xmalloc (TYPE_LENGTH (baseclass));
2111 back_to = make_cleanup (xfree, tmp);
2112 address = value_address (*arg1p);
2113
2114 if (target_read_memory (address + offset,
2115 tmp, TYPE_LENGTH (baseclass)) != 0)
2116 error (_("virtual baseclass botch"));
2117
2118 base_val = value_from_contents_and_address (baseclass,
2119 tmp,
2120 address + offset);
2121 base_valaddr = value_contents_for_printing (base_val);
2122 this_offset = 0;
2123 do_cleanups (back_to);
2124 }
2125 else
2126 {
2127 base_val = *arg1p;
2128 base_valaddr = value_contents_for_printing (*arg1p);
2129 this_offset = offset;
2130 }
2131
2132 base_offset = baseclass_offset (type, i, base_valaddr,
2133 this_offset, value_address (base_val),
2134 base_val);
2135 }
2136 else
2137 {
2138 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2139 }
2140 v = search_struct_method (name, arg1p, args, base_offset + offset,
2141 static_memfuncp, TYPE_BASECLASS (type, i));
2142 if (v == (struct value *) - 1)
2143 {
2144 name_matched = 1;
2145 }
2146 else if (v)
2147 {
2148 /* FIXME-bothner: Why is this commented out? Why is it here? */
2149 /* *arg1p = arg1_tmp; */
2150 return v;
2151 }
2152 }
2153 if (name_matched)
2154 return (struct value *) - 1;
2155 else
2156 return NULL;
2157 }
2158
2159 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2160 extract the component named NAME from the ultimate target
2161 structure/union and return it as a value with its appropriate type.
2162 ERR is used in the error message if *ARGP's type is wrong.
2163
2164 C++: ARGS is a list of argument types to aid in the selection of
2165 an appropriate method. Also, handle derived types.
2166
2167 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2168 where the truthvalue of whether the function that was resolved was
2169 a static member function or not is stored.
2170
2171 ERR is an error message to be printed in case the field is not
2172 found. */
2173
2174 struct value *
2175 value_struct_elt (struct value **argp, struct value **args,
2176 const char *name, int *static_memfuncp, const char *err)
2177 {
2178 struct type *t;
2179 struct value *v;
2180
2181 *argp = coerce_array (*argp);
2182
2183 t = check_typedef (value_type (*argp));
2184
2185 /* Follow pointers until we get to a non-pointer. */
2186
2187 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2188 {
2189 *argp = value_ind (*argp);
2190 /* Don't coerce fn pointer to fn and then back again! */
2191 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2192 *argp = coerce_array (*argp);
2193 t = check_typedef (value_type (*argp));
2194 }
2195
2196 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2197 && TYPE_CODE (t) != TYPE_CODE_UNION)
2198 error (_("Attempt to extract a component of a value that is not a %s."),
2199 err);
2200
2201 /* Assume it's not, unless we see that it is. */
2202 if (static_memfuncp)
2203 *static_memfuncp = 0;
2204
2205 if (!args)
2206 {
2207 /* if there are no arguments ...do this... */
2208
2209 /* Try as a field first, because if we succeed, there is less
2210 work to be done. */
2211 v = search_struct_field (name, *argp, 0, t, 0);
2212 if (v)
2213 return v;
2214
2215 /* C++: If it was not found as a data field, then try to
2216 return it as a pointer to a method. */
2217 v = search_struct_method (name, argp, args, 0,
2218 static_memfuncp, t);
2219
2220 if (v == (struct value *) - 1)
2221 error (_("Cannot take address of method %s."), name);
2222 else if (v == 0)
2223 {
2224 if (TYPE_NFN_FIELDS (t))
2225 error (_("There is no member or method named %s."), name);
2226 else
2227 error (_("There is no member named %s."), name);
2228 }
2229 return v;
2230 }
2231
2232 v = search_struct_method (name, argp, args, 0,
2233 static_memfuncp, t);
2234
2235 if (v == (struct value *) - 1)
2236 {
2237 error (_("One of the arguments you tried to pass to %s could not "
2238 "be converted to what the function wants."), name);
2239 }
2240 else if (v == 0)
2241 {
2242 /* See if user tried to invoke data as function. If so, hand it
2243 back. If it's not callable (i.e., a pointer to function),
2244 gdb should give an error. */
2245 v = search_struct_field (name, *argp, 0, t, 0);
2246 /* If we found an ordinary field, then it is not a method call.
2247 So, treat it as if it were a static member function. */
2248 if (v && static_memfuncp)
2249 *static_memfuncp = 1;
2250 }
2251
2252 if (!v)
2253 throw_error (NOT_FOUND_ERROR,
2254 _("Structure has no component named %s."), name);
2255 return v;
2256 }
2257
2258 /* Search through the methods of an object (and its bases) to find a
2259 specified method. Return the pointer to the fn_field list of
2260 overloaded instances.
2261
2262 Helper function for value_find_oload_list.
2263 ARGP is a pointer to a pointer to a value (the object).
2264 METHOD is a string containing the method name.
2265 OFFSET is the offset within the value.
2266 TYPE is the assumed type of the object.
2267 NUM_FNS is the number of overloaded instances.
2268 BASETYPE is set to the actual type of the subobject where the
2269 method is found.
2270 BOFFSET is the offset of the base subobject where the method is found. */
2271
2272 static struct fn_field *
2273 find_method_list (struct value **argp, const char *method,
2274 int offset, struct type *type, int *num_fns,
2275 struct type **basetype, int *boffset)
2276 {
2277 int i;
2278 struct fn_field *f;
2279 CHECK_TYPEDEF (type);
2280
2281 *num_fns = 0;
2282
2283 /* First check in object itself. */
2284 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2285 {
2286 /* pai: FIXME What about operators and type conversions? */
2287 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2288
2289 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2290 {
2291 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2292 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2293
2294 *num_fns = len;
2295 *basetype = type;
2296 *boffset = offset;
2297
2298 /* Resolve any stub methods. */
2299 check_stub_method_group (type, i);
2300
2301 return f;
2302 }
2303 }
2304
2305 /* Not found in object, check in base subobjects. */
2306 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2307 {
2308 int base_offset;
2309
2310 if (BASETYPE_VIA_VIRTUAL (type, i))
2311 {
2312 base_offset = baseclass_offset (type, i,
2313 value_contents_for_printing (*argp),
2314 value_offset (*argp) + offset,
2315 value_address (*argp), *argp);
2316 }
2317 else /* Non-virtual base, simply use bit position from debug
2318 info. */
2319 {
2320 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2321 }
2322 f = find_method_list (argp, method, base_offset + offset,
2323 TYPE_BASECLASS (type, i), num_fns,
2324 basetype, boffset);
2325 if (f)
2326 return f;
2327 }
2328 return NULL;
2329 }
2330
2331 /* Return the list of overloaded methods of a specified name.
2332
2333 ARGP is a pointer to a pointer to a value (the object).
2334 METHOD is the method name.
2335 OFFSET is the offset within the value contents.
2336 NUM_FNS is the number of overloaded instances.
2337 BASETYPE is set to the type of the base subobject that defines the
2338 method.
2339 BOFFSET is the offset of the base subobject which defines the method. */
2340
2341 static struct fn_field *
2342 value_find_oload_method_list (struct value **argp, const char *method,
2343 int offset, int *num_fns,
2344 struct type **basetype, int *boffset)
2345 {
2346 struct type *t;
2347
2348 t = check_typedef (value_type (*argp));
2349
2350 /* Code snarfed from value_struct_elt. */
2351 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2352 {
2353 *argp = value_ind (*argp);
2354 /* Don't coerce fn pointer to fn and then back again! */
2355 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2356 *argp = coerce_array (*argp);
2357 t = check_typedef (value_type (*argp));
2358 }
2359
2360 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2361 && TYPE_CODE (t) != TYPE_CODE_UNION)
2362 error (_("Attempt to extract a component of a "
2363 "value that is not a struct or union"));
2364
2365 return find_method_list (argp, method, 0, t, num_fns,
2366 basetype, boffset);
2367 }
2368
2369 /* Given an array of arguments (ARGS) (which includes an
2370 entry for "this" in the case of C++ methods), the number of
2371 arguments NARGS, the NAME of a function, and whether it's a method or
2372 not (METHOD), find the best function that matches on the argument types
2373 according to the overload resolution rules.
2374
2375 METHOD can be one of three values:
2376 NON_METHOD for non-member functions.
2377 METHOD: for member functions.
2378 BOTH: used for overload resolution of operators where the
2379 candidates are expected to be either member or non member
2380 functions. In this case the first argument ARGTYPES
2381 (representing 'this') is expected to be a reference to the
2382 target object, and will be dereferenced when attempting the
2383 non-member search.
2384
2385 In the case of class methods, the parameter OBJ is an object value
2386 in which to search for overloaded methods.
2387
2388 In the case of non-method functions, the parameter FSYM is a symbol
2389 corresponding to one of the overloaded functions.
2390
2391 Return value is an integer: 0 -> good match, 10 -> debugger applied
2392 non-standard coercions, 100 -> incompatible.
2393
2394 If a method is being searched for, VALP will hold the value.
2395 If a non-method is being searched for, SYMP will hold the symbol
2396 for it.
2397
2398 If a method is being searched for, and it is a static method,
2399 then STATICP will point to a non-zero value.
2400
2401 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2402 ADL overload candidates when performing overload resolution for a fully
2403 qualified name.
2404
2405 Note: This function does *not* check the value of
2406 overload_resolution. Caller must check it to see whether overload
2407 resolution is permitted. */
2408
2409 int
2410 find_overload_match (struct value **args, int nargs,
2411 const char *name, enum oload_search_type method,
2412 struct value **objp, struct symbol *fsym,
2413 struct value **valp, struct symbol **symp,
2414 int *staticp, const int no_adl)
2415 {
2416 struct value *obj = (objp ? *objp : NULL);
2417 struct type *obj_type = obj ? value_type (obj) : NULL;
2418 /* Index of best overloaded function. */
2419 int func_oload_champ = -1;
2420 int method_oload_champ = -1;
2421
2422 /* The measure for the current best match. */
2423 struct badness_vector *method_badness = NULL;
2424 struct badness_vector *func_badness = NULL;
2425
2426 struct value *temp = obj;
2427 /* For methods, the list of overloaded methods. */
2428 struct fn_field *fns_ptr = NULL;
2429 /* For non-methods, the list of overloaded function symbols. */
2430 struct symbol **oload_syms = NULL;
2431 /* Number of overloaded instances being considered. */
2432 int num_fns = 0;
2433 struct type *basetype = NULL;
2434 int boffset;
2435
2436 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2437
2438 const char *obj_type_name = NULL;
2439 const char *func_name = NULL;
2440 enum oload_classification match_quality;
2441 enum oload_classification method_match_quality = INCOMPATIBLE;
2442 enum oload_classification func_match_quality = INCOMPATIBLE;
2443
2444 /* Get the list of overloaded methods or functions. */
2445 if (method == METHOD || method == BOTH)
2446 {
2447 gdb_assert (obj);
2448
2449 /* OBJ may be a pointer value rather than the object itself. */
2450 obj = coerce_ref (obj);
2451 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2452 obj = coerce_ref (value_ind (obj));
2453 obj_type_name = TYPE_NAME (value_type (obj));
2454
2455 /* First check whether this is a data member, e.g. a pointer to
2456 a function. */
2457 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2458 {
2459 *valp = search_struct_field (name, obj, 0,
2460 check_typedef (value_type (obj)), 0);
2461 if (*valp)
2462 {
2463 *staticp = 1;
2464 do_cleanups (all_cleanups);
2465 return 0;
2466 }
2467 }
2468
2469 /* Retrieve the list of methods with the name NAME. */
2470 fns_ptr = value_find_oload_method_list (&temp, name,
2471 0, &num_fns,
2472 &basetype, &boffset);
2473 /* If this is a method only search, and no methods were found
2474 the search has faild. */
2475 if (method == METHOD && (!fns_ptr || !num_fns))
2476 error (_("Couldn't find method %s%s%s"),
2477 obj_type_name,
2478 (obj_type_name && *obj_type_name) ? "::" : "",
2479 name);
2480 /* If we are dealing with stub method types, they should have
2481 been resolved by find_method_list via
2482 value_find_oload_method_list above. */
2483 if (fns_ptr)
2484 {
2485 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2486 method_oload_champ = find_oload_champ (args, nargs, method,
2487 num_fns, fns_ptr,
2488 oload_syms, &method_badness);
2489
2490 method_match_quality =
2491 classify_oload_match (method_badness, nargs,
2492 oload_method_static (method, fns_ptr,
2493 method_oload_champ));
2494
2495 make_cleanup (xfree, method_badness);
2496 }
2497
2498 }
2499
2500 if (method == NON_METHOD || method == BOTH)
2501 {
2502 const char *qualified_name = NULL;
2503
2504 /* If the overload match is being search for both as a method
2505 and non member function, the first argument must now be
2506 dereferenced. */
2507 if (method == BOTH)
2508 args[0] = value_ind (args[0]);
2509
2510 if (fsym)
2511 {
2512 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2513
2514 /* If we have a function with a C++ name, try to extract just
2515 the function part. Do not try this for non-functions (e.g.
2516 function pointers). */
2517 if (qualified_name
2518 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2519 == TYPE_CODE_FUNC)
2520 {
2521 char *temp;
2522
2523 temp = cp_func_name (qualified_name);
2524
2525 /* If cp_func_name did not remove anything, the name of the
2526 symbol did not include scope or argument types - it was
2527 probably a C-style function. */
2528 if (temp)
2529 {
2530 make_cleanup (xfree, temp);
2531 if (strcmp (temp, qualified_name) == 0)
2532 func_name = NULL;
2533 else
2534 func_name = temp;
2535 }
2536 }
2537 }
2538 else
2539 {
2540 func_name = name;
2541 qualified_name = name;
2542 }
2543
2544 /* If there was no C++ name, this must be a C-style function or
2545 not a function at all. Just return the same symbol. Do the
2546 same if cp_func_name fails for some reason. */
2547 if (func_name == NULL)
2548 {
2549 *symp = fsym;
2550 do_cleanups (all_cleanups);
2551 return 0;
2552 }
2553
2554 func_oload_champ = find_oload_champ_namespace (args, nargs,
2555 func_name,
2556 qualified_name,
2557 &oload_syms,
2558 &func_badness,
2559 no_adl);
2560
2561 if (func_oload_champ >= 0)
2562 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2563
2564 make_cleanup (xfree, oload_syms);
2565 make_cleanup (xfree, func_badness);
2566 }
2567
2568 /* Did we find a match ? */
2569 if (method_oload_champ == -1 && func_oload_champ == -1)
2570 throw_error (NOT_FOUND_ERROR,
2571 _("No symbol \"%s\" in current context."),
2572 name);
2573
2574 /* If we have found both a method match and a function
2575 match, find out which one is better, and calculate match
2576 quality. */
2577 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2578 {
2579 switch (compare_badness (func_badness, method_badness))
2580 {
2581 case 0: /* Top two contenders are equally good. */
2582 /* FIXME: GDB does not support the general ambiguous case.
2583 All candidates should be collected and presented the
2584 user. */
2585 error (_("Ambiguous overload resolution"));
2586 break;
2587 case 1: /* Incomparable top contenders. */
2588 /* This is an error incompatible candidates
2589 should not have been proposed. */
2590 error (_("Internal error: incompatible "
2591 "overload candidates proposed"));
2592 break;
2593 case 2: /* Function champion. */
2594 method_oload_champ = -1;
2595 match_quality = func_match_quality;
2596 break;
2597 case 3: /* Method champion. */
2598 func_oload_champ = -1;
2599 match_quality = method_match_quality;
2600 break;
2601 default:
2602 error (_("Internal error: unexpected overload comparison result"));
2603 break;
2604 }
2605 }
2606 else
2607 {
2608 /* We have either a method match or a function match. */
2609 if (method_oload_champ >= 0)
2610 match_quality = method_match_quality;
2611 else
2612 match_quality = func_match_quality;
2613 }
2614
2615 if (match_quality == INCOMPATIBLE)
2616 {
2617 if (method == METHOD)
2618 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2619 obj_type_name,
2620 (obj_type_name && *obj_type_name) ? "::" : "",
2621 name);
2622 else
2623 error (_("Cannot resolve function %s to any overloaded instance"),
2624 func_name);
2625 }
2626 else if (match_quality == NON_STANDARD)
2627 {
2628 if (method == METHOD)
2629 warning (_("Using non-standard conversion to match "
2630 "method %s%s%s to supplied arguments"),
2631 obj_type_name,
2632 (obj_type_name && *obj_type_name) ? "::" : "",
2633 name);
2634 else
2635 warning (_("Using non-standard conversion to match "
2636 "function %s to supplied arguments"),
2637 func_name);
2638 }
2639
2640 if (staticp != NULL)
2641 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2642
2643 if (method_oload_champ >= 0)
2644 {
2645 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2646 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2647 basetype, boffset);
2648 else
2649 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2650 basetype, boffset);
2651 }
2652 else
2653 *symp = oload_syms[func_oload_champ];
2654
2655 if (objp)
2656 {
2657 struct type *temp_type = check_typedef (value_type (temp));
2658 struct type *objtype = check_typedef (obj_type);
2659
2660 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2661 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2662 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2663 {
2664 temp = value_addr (temp);
2665 }
2666 *objp = temp;
2667 }
2668
2669 do_cleanups (all_cleanups);
2670
2671 switch (match_quality)
2672 {
2673 case INCOMPATIBLE:
2674 return 100;
2675 case NON_STANDARD:
2676 return 10;
2677 default: /* STANDARD */
2678 return 0;
2679 }
2680 }
2681
2682 /* Find the best overload match, searching for FUNC_NAME in namespaces
2683 contained in QUALIFIED_NAME until it either finds a good match or
2684 runs out of namespaces. It stores the overloaded functions in
2685 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2686 calling function is responsible for freeing *OLOAD_SYMS and
2687 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2688 performned. */
2689
2690 static int
2691 find_oload_champ_namespace (struct value **args, int nargs,
2692 const char *func_name,
2693 const char *qualified_name,
2694 struct symbol ***oload_syms,
2695 struct badness_vector **oload_champ_bv,
2696 const int no_adl)
2697 {
2698 int oload_champ;
2699
2700 find_oload_champ_namespace_loop (args, nargs,
2701 func_name,
2702 qualified_name, 0,
2703 oload_syms, oload_champ_bv,
2704 &oload_champ,
2705 no_adl);
2706
2707 return oload_champ;
2708 }
2709
2710 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2711 how deep we've looked for namespaces, and the champ is stored in
2712 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2713 if it isn't. Other arguments are the same as in
2714 find_oload_champ_namespace
2715
2716 It is the caller's responsibility to free *OLOAD_SYMS and
2717 *OLOAD_CHAMP_BV. */
2718
2719 static int
2720 find_oload_champ_namespace_loop (struct value **args, int nargs,
2721 const char *func_name,
2722 const char *qualified_name,
2723 int namespace_len,
2724 struct symbol ***oload_syms,
2725 struct badness_vector **oload_champ_bv,
2726 int *oload_champ,
2727 const int no_adl)
2728 {
2729 int next_namespace_len = namespace_len;
2730 int searched_deeper = 0;
2731 int num_fns = 0;
2732 struct cleanup *old_cleanups;
2733 int new_oload_champ;
2734 struct symbol **new_oload_syms;
2735 struct badness_vector *new_oload_champ_bv;
2736 char *new_namespace;
2737
2738 if (next_namespace_len != 0)
2739 {
2740 gdb_assert (qualified_name[next_namespace_len] == ':');
2741 next_namespace_len += 2;
2742 }
2743 next_namespace_len +=
2744 cp_find_first_component (qualified_name + next_namespace_len);
2745
2746 /* Initialize these to values that can safely be xfree'd. */
2747 *oload_syms = NULL;
2748 *oload_champ_bv = NULL;
2749
2750 /* First, see if we have a deeper namespace we can search in.
2751 If we get a good match there, use it. */
2752
2753 if (qualified_name[next_namespace_len] == ':')
2754 {
2755 searched_deeper = 1;
2756
2757 if (find_oload_champ_namespace_loop (args, nargs,
2758 func_name, qualified_name,
2759 next_namespace_len,
2760 oload_syms, oload_champ_bv,
2761 oload_champ, no_adl))
2762 {
2763 return 1;
2764 }
2765 };
2766
2767 /* If we reach here, either we're in the deepest namespace or we
2768 didn't find a good match in a deeper namespace. But, in the
2769 latter case, we still have a bad match in a deeper namespace;
2770 note that we might not find any match at all in the current
2771 namespace. (There's always a match in the deepest namespace,
2772 because this overload mechanism only gets called if there's a
2773 function symbol to start off with.) */
2774
2775 old_cleanups = make_cleanup (xfree, *oload_syms);
2776 make_cleanup (xfree, *oload_champ_bv);
2777 new_namespace = alloca (namespace_len + 1);
2778 strncpy (new_namespace, qualified_name, namespace_len);
2779 new_namespace[namespace_len] = '\0';
2780 new_oload_syms = make_symbol_overload_list (func_name,
2781 new_namespace);
2782
2783 /* If we have reached the deepest level perform argument
2784 determined lookup. */
2785 if (!searched_deeper && !no_adl)
2786 {
2787 int ix;
2788 struct type **arg_types;
2789
2790 /* Prepare list of argument types for overload resolution. */
2791 arg_types = (struct type **)
2792 alloca (nargs * (sizeof (struct type *)));
2793 for (ix = 0; ix < nargs; ix++)
2794 arg_types[ix] = value_type (args[ix]);
2795 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2796 }
2797
2798 while (new_oload_syms[num_fns])
2799 ++num_fns;
2800
2801 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2802 NULL, new_oload_syms,
2803 &new_oload_champ_bv);
2804
2805 /* Case 1: We found a good match. Free earlier matches (if any),
2806 and return it. Case 2: We didn't find a good match, but we're
2807 not the deepest function. Then go with the bad match that the
2808 deeper function found. Case 3: We found a bad match, and we're
2809 the deepest function. Then return what we found, even though
2810 it's a bad match. */
2811
2812 if (new_oload_champ != -1
2813 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2814 {
2815 *oload_syms = new_oload_syms;
2816 *oload_champ = new_oload_champ;
2817 *oload_champ_bv = new_oload_champ_bv;
2818 do_cleanups (old_cleanups);
2819 return 1;
2820 }
2821 else if (searched_deeper)
2822 {
2823 xfree (new_oload_syms);
2824 xfree (new_oload_champ_bv);
2825 discard_cleanups (old_cleanups);
2826 return 0;
2827 }
2828 else
2829 {
2830 *oload_syms = new_oload_syms;
2831 *oload_champ = new_oload_champ;
2832 *oload_champ_bv = new_oload_champ_bv;
2833 do_cleanups (old_cleanups);
2834 return 0;
2835 }
2836 }
2837
2838 /* Look for a function to take NARGS args of ARGS. Find
2839 the best match from among the overloaded methods or functions
2840 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2841 The number of methods/functions in the list is given by NUM_FNS.
2842 Return the index of the best match; store an indication of the
2843 quality of the match in OLOAD_CHAMP_BV.
2844
2845 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2846
2847 static int
2848 find_oload_champ (struct value **args, int nargs, int method,
2849 int num_fns, struct fn_field *fns_ptr,
2850 struct symbol **oload_syms,
2851 struct badness_vector **oload_champ_bv)
2852 {
2853 int ix;
2854 /* A measure of how good an overloaded instance is. */
2855 struct badness_vector *bv;
2856 /* Index of best overloaded function. */
2857 int oload_champ = -1;
2858 /* Current ambiguity state for overload resolution. */
2859 int oload_ambiguous = 0;
2860 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2861
2862 *oload_champ_bv = NULL;
2863
2864 /* Consider each candidate in turn. */
2865 for (ix = 0; ix < num_fns; ix++)
2866 {
2867 int jj;
2868 int static_offset = oload_method_static (method, fns_ptr, ix);
2869 int nparms;
2870 struct type **parm_types;
2871
2872 if (method)
2873 {
2874 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2875 }
2876 else
2877 {
2878 /* If it's not a method, this is the proper place. */
2879 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2880 }
2881
2882 /* Prepare array of parameter types. */
2883 parm_types = (struct type **)
2884 xmalloc (nparms * (sizeof (struct type *)));
2885 for (jj = 0; jj < nparms; jj++)
2886 parm_types[jj] = (method
2887 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2888 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2889 jj));
2890
2891 /* Compare parameter types to supplied argument types. Skip
2892 THIS for static methods. */
2893 bv = rank_function (parm_types, nparms,
2894 args + static_offset,
2895 nargs - static_offset);
2896
2897 if (!*oload_champ_bv)
2898 {
2899 *oload_champ_bv = bv;
2900 oload_champ = 0;
2901 }
2902 else /* See whether current candidate is better or worse than
2903 previous best. */
2904 switch (compare_badness (bv, *oload_champ_bv))
2905 {
2906 case 0: /* Top two contenders are equally good. */
2907 oload_ambiguous = 1;
2908 break;
2909 case 1: /* Incomparable top contenders. */
2910 oload_ambiguous = 2;
2911 break;
2912 case 2: /* New champion, record details. */
2913 *oload_champ_bv = bv;
2914 oload_ambiguous = 0;
2915 oload_champ = ix;
2916 break;
2917 case 3:
2918 default:
2919 break;
2920 }
2921 xfree (parm_types);
2922 if (overload_debug)
2923 {
2924 if (method)
2925 fprintf_filtered (gdb_stderr,
2926 "Overloaded method instance %s, # of parms %d\n",
2927 fns_ptr[ix].physname, nparms);
2928 else
2929 fprintf_filtered (gdb_stderr,
2930 "Overloaded function instance "
2931 "%s # of parms %d\n",
2932 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2933 nparms);
2934 for (jj = 0; jj < nargs - static_offset; jj++)
2935 fprintf_filtered (gdb_stderr,
2936 "...Badness @ %d : %d\n",
2937 jj, bv->rank[jj].rank);
2938 fprintf_filtered (gdb_stderr, "Overload resolution "
2939 "champion is %d, ambiguous? %d\n",
2940 oload_champ, oload_ambiguous);
2941 }
2942 }
2943
2944 return oload_champ;
2945 }
2946
2947 /* Return 1 if we're looking at a static method, 0 if we're looking at
2948 a non-static method or a function that isn't a method. */
2949
2950 static int
2951 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2952 {
2953 if (method && fns_ptr && index >= 0
2954 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2955 return 1;
2956 else
2957 return 0;
2958 }
2959
2960 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2961
2962 static enum oload_classification
2963 classify_oload_match (struct badness_vector *oload_champ_bv,
2964 int nargs,
2965 int static_offset)
2966 {
2967 int ix;
2968 enum oload_classification worst = STANDARD;
2969
2970 for (ix = 1; ix <= nargs - static_offset; ix++)
2971 {
2972 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2973 or worse return INCOMPATIBLE. */
2974 if (compare_ranks (oload_champ_bv->rank[ix],
2975 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2976 return INCOMPATIBLE; /* Truly mismatched types. */
2977 /* Otherwise If this conversion is as bad as
2978 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2979 else if (compare_ranks (oload_champ_bv->rank[ix],
2980 NS_POINTER_CONVERSION_BADNESS) <= 0)
2981 worst = NON_STANDARD; /* Non-standard type conversions
2982 needed. */
2983 }
2984
2985 /* If no INCOMPATIBLE classification was found, return the worst one
2986 that was found (if any). */
2987 return worst;
2988 }
2989
2990 /* C++: return 1 is NAME is a legitimate name for the destructor of
2991 type TYPE. If TYPE does not have a destructor, or if NAME is
2992 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2993 have CHECK_TYPEDEF applied, this function will apply it itself. */
2994
2995 int
2996 destructor_name_p (const char *name, struct type *type)
2997 {
2998 if (name[0] == '~')
2999 {
3000 const char *dname = type_name_no_tag_or_error (type);
3001 const char *cp = strchr (dname, '<');
3002 unsigned int len;
3003
3004 /* Do not compare the template part for template classes. */
3005 if (cp == NULL)
3006 len = strlen (dname);
3007 else
3008 len = cp - dname;
3009 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3010 error (_("name of destructor must equal name of class"));
3011 else
3012 return 1;
3013 }
3014 return 0;
3015 }
3016
3017 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3018 return the appropriate member (or the address of the member, if
3019 WANT_ADDRESS). This function is used to resolve user expressions
3020 of the form "DOMAIN::NAME". For more details on what happens, see
3021 the comment before value_struct_elt_for_reference. */
3022
3023 struct value *
3024 value_aggregate_elt (struct type *curtype, char *name,
3025 struct type *expect_type, int want_address,
3026 enum noside noside)
3027 {
3028 switch (TYPE_CODE (curtype))
3029 {
3030 case TYPE_CODE_STRUCT:
3031 case TYPE_CODE_UNION:
3032 return value_struct_elt_for_reference (curtype, 0, curtype,
3033 name, expect_type,
3034 want_address, noside);
3035 case TYPE_CODE_NAMESPACE:
3036 return value_namespace_elt (curtype, name,
3037 want_address, noside);
3038 default:
3039 internal_error (__FILE__, __LINE__,
3040 _("non-aggregate type in value_aggregate_elt"));
3041 }
3042 }
3043
3044 /* Compares the two method/function types T1 and T2 for "equality"
3045 with respect to the methods' parameters. If the types of the
3046 two parameter lists are the same, returns 1; 0 otherwise. This
3047 comparison may ignore any artificial parameters in T1 if
3048 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3049 the first artificial parameter in T1, assumed to be a 'this' pointer.
3050
3051 The type T2 is expected to have come from make_params (in eval.c). */
3052
3053 static int
3054 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3055 {
3056 int start = 0;
3057
3058 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3059 ++start;
3060
3061 /* If skipping artificial fields, find the first real field
3062 in T1. */
3063 if (skip_artificial)
3064 {
3065 while (start < TYPE_NFIELDS (t1)
3066 && TYPE_FIELD_ARTIFICIAL (t1, start))
3067 ++start;
3068 }
3069
3070 /* Now compare parameters. */
3071
3072 /* Special case: a method taking void. T1 will contain no
3073 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3074 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3075 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3076 return 1;
3077
3078 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3079 {
3080 int i;
3081
3082 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3083 {
3084 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3085 TYPE_FIELD_TYPE (t2, i), NULL),
3086 EXACT_MATCH_BADNESS) != 0)
3087 return 0;
3088 }
3089
3090 return 1;
3091 }
3092
3093 return 0;
3094 }
3095
3096 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3097 return the address of this member as a "pointer to member" type.
3098 If INTYPE is non-null, then it will be the type of the member we
3099 are looking for. This will help us resolve "pointers to member
3100 functions". This function is used to resolve user expressions of
3101 the form "DOMAIN::NAME". */
3102
3103 static struct value *
3104 value_struct_elt_for_reference (struct type *domain, int offset,
3105 struct type *curtype, char *name,
3106 struct type *intype,
3107 int want_address,
3108 enum noside noside)
3109 {
3110 struct type *t = curtype;
3111 int i;
3112 struct value *v, *result;
3113
3114 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3115 && TYPE_CODE (t) != TYPE_CODE_UNION)
3116 error (_("Internal error: non-aggregate type "
3117 "to value_struct_elt_for_reference"));
3118
3119 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3120 {
3121 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3122
3123 if (t_field_name && strcmp (t_field_name, name) == 0)
3124 {
3125 if (field_is_static (&TYPE_FIELD (t, i)))
3126 {
3127 v = value_static_field (t, i);
3128 if (v == NULL)
3129 error (_("static field %s has been optimized out"),
3130 name);
3131 if (want_address)
3132 v = value_addr (v);
3133 return v;
3134 }
3135 if (TYPE_FIELD_PACKED (t, i))
3136 error (_("pointers to bitfield members not allowed"));
3137
3138 if (want_address)
3139 return value_from_longest
3140 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3141 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3143 return allocate_value (TYPE_FIELD_TYPE (t, i));
3144 else
3145 error (_("Cannot reference non-static field \"%s\""), name);
3146 }
3147 }
3148
3149 /* C++: If it was not found as a data field, then try to return it
3150 as a pointer to a method. */
3151
3152 /* Perform all necessary dereferencing. */
3153 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3154 intype = TYPE_TARGET_TYPE (intype);
3155
3156 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3157 {
3158 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3159 char dem_opname[64];
3160
3161 if (strncmp (t_field_name, "__", 2) == 0
3162 || strncmp (t_field_name, "op", 2) == 0
3163 || strncmp (t_field_name, "type", 4) == 0)
3164 {
3165 if (cplus_demangle_opname (t_field_name,
3166 dem_opname, DMGL_ANSI))
3167 t_field_name = dem_opname;
3168 else if (cplus_demangle_opname (t_field_name,
3169 dem_opname, 0))
3170 t_field_name = dem_opname;
3171 }
3172 if (t_field_name && strcmp (t_field_name, name) == 0)
3173 {
3174 int j;
3175 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3176 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3177
3178 check_stub_method_group (t, i);
3179
3180 if (intype)
3181 {
3182 for (j = 0; j < len; ++j)
3183 {
3184 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3185 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3186 intype, 1))
3187 break;
3188 }
3189
3190 if (j == len)
3191 error (_("no member function matches "
3192 "that type instantiation"));
3193 }
3194 else
3195 {
3196 int ii;
3197
3198 j = -1;
3199 for (ii = 0; ii < len; ++ii)
3200 {
3201 /* Skip artificial methods. This is necessary if,
3202 for example, the user wants to "print
3203 subclass::subclass" with only one user-defined
3204 constructor. There is no ambiguity in this case.
3205 We are careful here to allow artificial methods
3206 if they are the unique result. */
3207 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3208 {
3209 if (j == -1)
3210 j = ii;
3211 continue;
3212 }
3213
3214 /* Desired method is ambiguous if more than one
3215 method is defined. */
3216 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3217 error (_("non-unique member `%s' requires "
3218 "type instantiation"), name);
3219
3220 j = ii;
3221 }
3222
3223 if (j == -1)
3224 error (_("no matching member function"));
3225 }
3226
3227 if (TYPE_FN_FIELD_STATIC_P (f, j))
3228 {
3229 struct symbol *s =
3230 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3231 0, VAR_DOMAIN, 0);
3232
3233 if (s == NULL)
3234 return NULL;
3235
3236 if (want_address)
3237 return value_addr (read_var_value (s, 0));
3238 else
3239 return read_var_value (s, 0);
3240 }
3241
3242 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3243 {
3244 if (want_address)
3245 {
3246 result = allocate_value
3247 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3248 cplus_make_method_ptr (value_type (result),
3249 value_contents_writeable (result),
3250 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3251 }
3252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3253 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3254 else
3255 error (_("Cannot reference virtual member function \"%s\""),
3256 name);
3257 }
3258 else
3259 {
3260 struct symbol *s =
3261 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3262 0, VAR_DOMAIN, 0);
3263
3264 if (s == NULL)
3265 return NULL;
3266
3267 v = read_var_value (s, 0);
3268 if (!want_address)
3269 result = v;
3270 else
3271 {
3272 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3273 cplus_make_method_ptr (value_type (result),
3274 value_contents_writeable (result),
3275 value_address (v), 0);
3276 }
3277 }
3278 return result;
3279 }
3280 }
3281 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3282 {
3283 struct value *v;
3284 int base_offset;
3285
3286 if (BASETYPE_VIA_VIRTUAL (t, i))
3287 base_offset = 0;
3288 else
3289 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3290 v = value_struct_elt_for_reference (domain,
3291 offset + base_offset,
3292 TYPE_BASECLASS (t, i),
3293 name, intype,
3294 want_address, noside);
3295 if (v)
3296 return v;
3297 }
3298
3299 /* As a last chance, pretend that CURTYPE is a namespace, and look
3300 it up that way; this (frequently) works for types nested inside
3301 classes. */
3302
3303 return value_maybe_namespace_elt (curtype, name,
3304 want_address, noside);
3305 }
3306
3307 /* C++: Return the member NAME of the namespace given by the type
3308 CURTYPE. */
3309
3310 static struct value *
3311 value_namespace_elt (const struct type *curtype,
3312 char *name, int want_address,
3313 enum noside noside)
3314 {
3315 struct value *retval = value_maybe_namespace_elt (curtype, name,
3316 want_address,
3317 noside);
3318
3319 if (retval == NULL)
3320 error (_("No symbol \"%s\" in namespace \"%s\"."),
3321 name, TYPE_TAG_NAME (curtype));
3322
3323 return retval;
3324 }
3325
3326 /* A helper function used by value_namespace_elt and
3327 value_struct_elt_for_reference. It looks up NAME inside the
3328 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3329 is a class and NAME refers to a type in CURTYPE itself (as opposed
3330 to, say, some base class of CURTYPE). */
3331
3332 static struct value *
3333 value_maybe_namespace_elt (const struct type *curtype,
3334 char *name, int want_address,
3335 enum noside noside)
3336 {
3337 const char *namespace_name = TYPE_TAG_NAME (curtype);
3338 struct symbol *sym;
3339 struct value *result;
3340
3341 sym = cp_lookup_symbol_namespace (namespace_name, name,
3342 get_selected_block (0), VAR_DOMAIN);
3343
3344 if (sym == NULL)
3345 {
3346 char *concatenated_name = alloca (strlen (namespace_name) + 2
3347 + strlen (name) + 1);
3348
3349 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3350 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3351 }
3352
3353 if (sym == NULL)
3354 return NULL;
3355 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3356 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3357 result = allocate_value (SYMBOL_TYPE (sym));
3358 else
3359 result = value_of_variable (sym, get_selected_block (0));
3360
3361 if (result && want_address)
3362 result = value_addr (result);
3363
3364 return result;
3365 }
3366
3367 /* Given a pointer or a reference value V, find its real (RTTI) type.
3368
3369 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3370 and refer to the values computed for the object pointed to. */
3371
3372 struct type *
3373 value_rtti_indirect_type (struct value *v, int *full,
3374 int *top, int *using_enc)
3375 {
3376 struct value *target;
3377 struct type *type, *real_type, *target_type;
3378
3379 type = value_type (v);
3380 type = check_typedef (type);
3381 if (TYPE_CODE (type) == TYPE_CODE_REF)
3382 target = coerce_ref (v);
3383 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3384 target = value_ind (v);
3385 else
3386 return NULL;
3387
3388 real_type = value_rtti_type (target, full, top, using_enc);
3389
3390 if (real_type)
3391 {
3392 /* Copy qualifiers to the referenced object. */
3393 target_type = value_type (target);
3394 real_type = make_cv_type (TYPE_CONST (target_type),
3395 TYPE_VOLATILE (target_type), real_type, NULL);
3396 if (TYPE_CODE (type) == TYPE_CODE_REF)
3397 real_type = lookup_reference_type (real_type);
3398 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3399 real_type = lookup_pointer_type (real_type);
3400 else
3401 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3402
3403 /* Copy qualifiers to the pointer/reference. */
3404 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3405 real_type, NULL);
3406 }
3407
3408 return real_type;
3409 }
3410
3411 /* Given a value pointed to by ARGP, check its real run-time type, and
3412 if that is different from the enclosing type, create a new value
3413 using the real run-time type as the enclosing type (and of the same
3414 type as ARGP) and return it, with the embedded offset adjusted to
3415 be the correct offset to the enclosed object. RTYPE is the type,
3416 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3417 by value_rtti_type(). If these are available, they can be supplied
3418 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3419 NULL if they're not available. */
3420
3421 struct value *
3422 value_full_object (struct value *argp,
3423 struct type *rtype,
3424 int xfull, int xtop,
3425 int xusing_enc)
3426 {
3427 struct type *real_type;
3428 int full = 0;
3429 int top = -1;
3430 int using_enc = 0;
3431 struct value *new_val;
3432
3433 if (rtype)
3434 {
3435 real_type = rtype;
3436 full = xfull;
3437 top = xtop;
3438 using_enc = xusing_enc;
3439 }
3440 else
3441 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3442
3443 /* If no RTTI data, or if object is already complete, do nothing. */
3444 if (!real_type || real_type == value_enclosing_type (argp))
3445 return argp;
3446
3447 /* In a destructor we might see a real type that is a superclass of
3448 the object's type. In this case it is better to leave the object
3449 as-is. */
3450 if (full
3451 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3452 return argp;
3453
3454 /* If we have the full object, but for some reason the enclosing
3455 type is wrong, set it. */
3456 /* pai: FIXME -- sounds iffy */
3457 if (full)
3458 {
3459 argp = value_copy (argp);
3460 set_value_enclosing_type (argp, real_type);
3461 return argp;
3462 }
3463
3464 /* Check if object is in memory. */
3465 if (VALUE_LVAL (argp) != lval_memory)
3466 {
3467 warning (_("Couldn't retrieve complete object of RTTI "
3468 "type %s; object may be in register(s)."),
3469 TYPE_NAME (real_type));
3470
3471 return argp;
3472 }
3473
3474 /* All other cases -- retrieve the complete object. */
3475 /* Go back by the computed top_offset from the beginning of the
3476 object, adjusting for the embedded offset of argp if that's what
3477 value_rtti_type used for its computation. */
3478 new_val = value_at_lazy (real_type, value_address (argp) - top +
3479 (using_enc ? 0 : value_embedded_offset (argp)));
3480 deprecated_set_value_type (new_val, value_type (argp));
3481 set_value_embedded_offset (new_val, (using_enc
3482 ? top + value_embedded_offset (argp)
3483 : top));
3484 return new_val;
3485 }
3486
3487
3488 /* Return the value of the local variable, if one exists. Throw error
3489 otherwise, such as if the request is made in an inappropriate context. */
3490
3491 struct value *
3492 value_of_this (const struct language_defn *lang)
3493 {
3494 struct symbol *sym;
3495 struct block *b;
3496 struct frame_info *frame;
3497
3498 if (!lang->la_name_of_this)
3499 error (_("no `this' in current language"));
3500
3501 frame = get_selected_frame (_("no frame selected"));
3502
3503 b = get_frame_block (frame, NULL);
3504
3505 sym = lookup_language_this (lang, b);
3506 if (sym == NULL)
3507 error (_("current stack frame does not contain a variable named `%s'"),
3508 lang->la_name_of_this);
3509
3510 return read_var_value (sym, frame);
3511 }
3512
3513 /* Return the value of the local variable, if one exists. Return NULL
3514 otherwise. Never throw error. */
3515
3516 struct value *
3517 value_of_this_silent (const struct language_defn *lang)
3518 {
3519 struct value *ret = NULL;
3520 volatile struct gdb_exception except;
3521
3522 TRY_CATCH (except, RETURN_MASK_ERROR)
3523 {
3524 ret = value_of_this (lang);
3525 }
3526
3527 return ret;
3528 }
3529
3530 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3531 elements long, starting at LOWBOUND. The result has the same lower
3532 bound as the original ARRAY. */
3533
3534 struct value *
3535 value_slice (struct value *array, int lowbound, int length)
3536 {
3537 struct type *slice_range_type, *slice_type, *range_type;
3538 LONGEST lowerbound, upperbound;
3539 struct value *slice;
3540 struct type *array_type;
3541
3542 array_type = check_typedef (value_type (array));
3543 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3544 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3545 error (_("cannot take slice of non-array"));
3546
3547 range_type = TYPE_INDEX_TYPE (array_type);
3548 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3549 error (_("slice from bad array or bitstring"));
3550
3551 if (lowbound < lowerbound || length < 0
3552 || lowbound + length - 1 > upperbound)
3553 error (_("slice out of range"));
3554
3555 /* FIXME-type-allocation: need a way to free this type when we are
3556 done with it. */
3557 slice_range_type = create_range_type ((struct type *) NULL,
3558 TYPE_TARGET_TYPE (range_type),
3559 lowbound,
3560 lowbound + length - 1);
3561
3562 {
3563 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3564 LONGEST offset =
3565 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3566
3567 slice_type = create_array_type ((struct type *) NULL,
3568 element_type,
3569 slice_range_type);
3570 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3571
3572 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3573 slice = allocate_value_lazy (slice_type);
3574 else
3575 {
3576 slice = allocate_value (slice_type);
3577 value_contents_copy (slice, 0, array, offset,
3578 TYPE_LENGTH (slice_type));
3579 }
3580
3581 set_value_component_location (slice, array);
3582 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3583 set_value_offset (slice, value_offset (array) + offset);
3584 }
3585 return slice;
3586 }
3587
3588 /* Create a value for a FORTRAN complex number. Currently most of the
3589 time values are coerced to COMPLEX*16 (i.e. a complex number
3590 composed of 2 doubles. This really should be a smarter routine
3591 that figures out precision inteligently as opposed to assuming
3592 doubles. FIXME: fmb */
3593
3594 struct value *
3595 value_literal_complex (struct value *arg1,
3596 struct value *arg2,
3597 struct type *type)
3598 {
3599 struct value *val;
3600 struct type *real_type = TYPE_TARGET_TYPE (type);
3601
3602 val = allocate_value (type);
3603 arg1 = value_cast (real_type, arg1);
3604 arg2 = value_cast (real_type, arg2);
3605
3606 memcpy (value_contents_raw (val),
3607 value_contents (arg1), TYPE_LENGTH (real_type));
3608 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3609 value_contents (arg2), TYPE_LENGTH (real_type));
3610 return val;
3611 }
3612
3613 /* Cast a value into the appropriate complex data type. */
3614
3615 static struct value *
3616 cast_into_complex (struct type *type, struct value *val)
3617 {
3618 struct type *real_type = TYPE_TARGET_TYPE (type);
3619
3620 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3621 {
3622 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3623 struct value *re_val = allocate_value (val_real_type);
3624 struct value *im_val = allocate_value (val_real_type);
3625
3626 memcpy (value_contents_raw (re_val),
3627 value_contents (val), TYPE_LENGTH (val_real_type));
3628 memcpy (value_contents_raw (im_val),
3629 value_contents (val) + TYPE_LENGTH (val_real_type),
3630 TYPE_LENGTH (val_real_type));
3631
3632 return value_literal_complex (re_val, im_val, type);
3633 }
3634 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3635 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3636 return value_literal_complex (val,
3637 value_zero (real_type, not_lval),
3638 type);
3639 else
3640 error (_("cannot cast non-number to complex"));
3641 }
3642
3643 void
3644 _initialize_valops (void)
3645 {
3646 add_setshow_boolean_cmd ("overload-resolution", class_support,
3647 &overload_resolution, _("\
3648 Set overload resolution in evaluating C++ functions."), _("\
3649 Show overload resolution in evaluating C++ functions."),
3650 NULL, NULL,
3651 show_overload_resolution,
3652 &setlist, &showlist);
3653 overload_resolution = 1;
3654 }
This page took 0.152095 seconds and 4 git commands to generate.