Initial support for variant parts
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "byte-vector.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (struct value **, int,
58 const char *, const char *,
59 struct symbol ***,
60 struct badness_vector **,
61 const int no_adl);
62
63 static
64 int find_oload_champ_namespace_loop (struct value **, int,
65 const char *, const char *,
66 int, struct symbol ***,
67 struct badness_vector **, int *,
68 const int no_adl);
69
70 static int find_oload_champ (struct value **, int, int,
71 struct fn_field *,
72 const std::vector<xmethod_worker_up> *,
73 struct symbol **, struct badness_vector **);
74
75 static int oload_method_static_p (struct fn_field *, int);
76
77 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
78
79 static enum
80 oload_classification classify_oload_match (struct badness_vector *,
81 int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 static void find_method_list (struct value **, const char *,
101 LONGEST, struct type *, struct fn_field **, int *,
102 std::vector<xmethod_worker_up> *,
103 struct type **, LONGEST *);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, NULL, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, using_enc;
260 LONGEST top;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_IS_REFERENCE (type2))
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 /* Check if we are casting struct reference to struct reference. */
365 if (TYPE_IS_REFERENCE (check_typedef (type)))
366 {
367 /* We dereference type; then we recurse and finally
368 we generate value of the given reference. Nothing wrong with
369 that. */
370 struct type *t1 = check_typedef (type);
371 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
372 struct value *val = value_cast (dereftype, arg2);
373
374 return value_ref (val, TYPE_CODE (t1));
375 }
376
377 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
380
381 /* Strip typedefs / resolve stubs in order to get at the type's
382 code/length, but remember the original type, to use as the
383 resulting type of the cast, in case it was a typedef. */
384 struct type *to_type = type;
385
386 type = check_typedef (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (!TYPE_IS_REFERENCE (type));
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_static_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (to_type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (to_type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (is_floating_type (type) && scalar)
467 {
468 if (is_floating_value (arg2))
469 {
470 struct value *v = allocate_value (to_type);
471 target_float_convert (value_contents (arg2), type2,
472 value_contents_raw (v), type);
473 return v;
474 }
475
476 /* The only option left is an integral type. */
477 if (TYPE_UNSIGNED (type2))
478 return value_from_ulongest (to_type, value_as_long (arg2));
479 else
480 return value_from_longest (to_type, value_as_long (arg2));
481 }
482 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
483 || code1 == TYPE_CODE_RANGE)
484 && (scalar || code2 == TYPE_CODE_PTR
485 || code2 == TYPE_CODE_MEMBERPTR))
486 {
487 LONGEST longest;
488
489 /* When we cast pointers to integers, we mustn't use
490 gdbarch_pointer_to_address to find the address the pointer
491 represents, as value_as_long would. GDB should evaluate
492 expressions just as the compiler would --- and the compiler
493 sees a cast as a simple reinterpretation of the pointer's
494 bits. */
495 if (code2 == TYPE_CODE_PTR)
496 longest = extract_unsigned_integer
497 (value_contents (arg2), TYPE_LENGTH (type2),
498 gdbarch_byte_order (get_type_arch (type2)));
499 else
500 longest = value_as_long (arg2);
501 return value_from_longest (to_type, convert_to_boolean ?
502 (LONGEST) (longest ? 1 : 0) : longest);
503 }
504 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
505 || code2 == TYPE_CODE_ENUM
506 || code2 == TYPE_CODE_RANGE))
507 {
508 /* TYPE_LENGTH (type) is the length of a pointer, but we really
509 want the length of an address! -- we are really dealing with
510 addresses (i.e., gdb representations) not pointers (i.e.,
511 target representations) here.
512
513 This allows things like "print *(int *)0x01000234" to work
514 without printing a misleading message -- which would
515 otherwise occur when dealing with a target having two byte
516 pointers and four byte addresses. */
517
518 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
519 LONGEST longest = value_as_long (arg2);
520
521 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
522 {
523 if (longest >= ((LONGEST) 1 << addr_bit)
524 || longest <= -((LONGEST) 1 << addr_bit))
525 warning (_("value truncated"));
526 }
527 return value_from_longest (to_type, longest);
528 }
529 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
530 && value_as_long (arg2) == 0)
531 {
532 struct value *result = allocate_value (to_type);
533
534 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
535 return result;
536 }
537 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
538 && value_as_long (arg2) == 0)
539 {
540 /* The Itanium C++ ABI represents NULL pointers to members as
541 minus one, instead of biasing the normal case. */
542 return value_from_longest (to_type, -1);
543 }
544 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
545 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
546 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
547 error (_("Cannot convert between vector values of different sizes"));
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
549 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
550 error (_("can only cast scalar to vector of same size"));
551 else if (code1 == TYPE_CODE_VOID)
552 {
553 return value_zero (to_type, not_lval);
554 }
555 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
556 {
557 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
558 return value_cast_pointers (to_type, arg2, 0);
559
560 arg2 = value_copy (arg2);
561 deprecated_set_value_type (arg2, to_type);
562 set_value_enclosing_type (arg2, to_type);
563 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
564 return arg2;
565 }
566 else if (VALUE_LVAL (arg2) == lval_memory)
567 return value_at_lazy (to_type, value_address (arg2));
568 else
569 {
570 error (_("Invalid cast."));
571 return 0;
572 }
573 }
574
575 /* The C++ reinterpret_cast operator. */
576
577 struct value *
578 value_reinterpret_cast (struct type *type, struct value *arg)
579 {
580 struct value *result;
581 struct type *real_type = check_typedef (type);
582 struct type *arg_type, *dest_type;
583 int is_ref = 0;
584 enum type_code dest_code, arg_code;
585
586 /* Do reference, function, and array conversion. */
587 arg = coerce_array (arg);
588
589 /* Attempt to preserve the type the user asked for. */
590 dest_type = type;
591
592 /* If we are casting to a reference type, transform
593 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
594 if (TYPE_IS_REFERENCE (real_type))
595 {
596 is_ref = 1;
597 arg = value_addr (arg);
598 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
599 real_type = lookup_pointer_type (real_type);
600 }
601
602 arg_type = value_type (arg);
603
604 dest_code = TYPE_CODE (real_type);
605 arg_code = TYPE_CODE (arg_type);
606
607 /* We can convert pointer types, or any pointer type to int, or int
608 type to pointer. */
609 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
610 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
611 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
613 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
615 || (dest_code == arg_code
616 && (dest_code == TYPE_CODE_PTR
617 || dest_code == TYPE_CODE_METHODPTR
618 || dest_code == TYPE_CODE_MEMBERPTR)))
619 result = value_cast (dest_type, arg);
620 else
621 error (_("Invalid reinterpret_cast"));
622
623 if (is_ref)
624 result = value_cast (type, value_ref (value_ind (result),
625 TYPE_CODE (type)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 LONGEST embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 LONGEST offset = baseclass_offset (search_type, i, valaddr,
651 embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 LONGEST embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 LONGEST offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, using_enc;
728 LONGEST top;
729 struct type *resolved_type = check_typedef (type);
730 struct type *arg_type = check_typedef (value_type (arg));
731 struct type *class_type, *rtti_type;
732 struct value *result, *tem, *original_arg = arg;
733 CORE_ADDR addr;
734 int is_ref = TYPE_IS_REFERENCE (resolved_type);
735
736 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
737 && !TYPE_IS_REFERENCE (resolved_type))
738 error (_("Argument to dynamic_cast must be a pointer or reference type"));
739 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
740 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
741 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
742
743 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
744 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
745 {
746 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
747 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
748 && value_as_long (arg) == 0))
749 error (_("Argument to dynamic_cast does not have pointer type"));
750 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
751 {
752 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
753 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
754 error (_("Argument to dynamic_cast does "
755 "not have pointer to class type"));
756 }
757
758 /* Handle NULL pointers. */
759 if (value_as_long (arg) == 0)
760 return value_zero (type, not_lval);
761
762 arg = value_ind (arg);
763 }
764 else
765 {
766 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
767 error (_("Argument to dynamic_cast does not have class type"));
768 }
769
770 /* If the classes are the same, just return the argument. */
771 if (class_types_same_p (class_type, arg_type))
772 return value_cast (type, arg);
773
774 /* If the target type is a unique base class of the argument's
775 declared type, just cast it. */
776 if (is_ancestor (class_type, arg_type))
777 {
778 if (is_unique_ancestor (class_type, arg))
779 return value_cast (type, original_arg);
780 error (_("Ambiguous dynamic_cast"));
781 }
782
783 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
784 if (! rtti_type)
785 error (_("Couldn't determine value's most derived type for dynamic_cast"));
786
787 /* Compute the most derived object's address. */
788 addr = value_address (arg);
789 if (full)
790 {
791 /* Done. */
792 }
793 else if (using_enc)
794 addr += top;
795 else
796 addr += top + value_embedded_offset (arg);
797
798 /* dynamic_cast<void *> means to return a pointer to the
799 most-derived object. */
800 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
801 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
802 return value_at_lazy (type, addr);
803
804 tem = value_at (type, addr);
805 type = value_type (tem);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref
822 ? value_ref (result, TYPE_CODE (resolved_type))
823 : value_addr (result));
824 }
825
826 /* The second dynamic check specified in 5.2.7. */
827 result = NULL;
828 if (is_public_ancestor (arg_type, rtti_type)
829 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
830 value_contents_for_printing (tem),
831 value_embedded_offset (tem),
832 value_address (tem), tem,
833 rtti_type, &result) == 1)
834 return value_cast (type,
835 is_ref
836 ? value_ref (result, TYPE_CODE (resolved_type))
837 : value_addr (result));
838
839 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
840 return value_zero (type, not_lval);
841
842 error (_("dynamic_cast failed"));
843 }
844
845 /* Create a value of type TYPE that is zero, and return it. */
846
847 struct value *
848 value_zero (struct type *type, enum lval_type lv)
849 {
850 struct value *val = allocate_value (type);
851
852 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
853 return val;
854 }
855
856 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
857
858 struct value *
859 value_one (struct type *type)
860 {
861 struct type *type1 = check_typedef (type);
862 struct value *val;
863
864 if (is_integral_type (type1) || is_floating_type (type1))
865 {
866 val = value_from_longest (type, (LONGEST) 1);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
869 {
870 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
871 int i;
872 LONGEST low_bound, high_bound;
873 struct value *tmp;
874
875 if (!get_array_bounds (type1, &low_bound, &high_bound))
876 error (_("Could not determine the vector bounds"));
877
878 val = allocate_value (type);
879 for (i = 0; i < high_bound - low_bound + 1; i++)
880 {
881 tmp = value_one (eltype);
882 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
883 value_contents_all (tmp), TYPE_LENGTH (eltype));
884 }
885 }
886 else
887 {
888 error (_("Not a numeric type."));
889 }
890
891 /* value_one result is never used for assignments to. */
892 gdb_assert (VALUE_LVAL (val) == not_lval);
893
894 return val;
895 }
896
897 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
898 The type of the created value may differ from the passed type TYPE.
899 Make sure to retrieve the returned values's new type after this call
900 e.g. in case the type is a variable length array. */
901
902 static struct value *
903 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
904 {
905 struct value *val;
906
907 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
908 error (_("Attempt to dereference a generic pointer."));
909
910 val = value_from_contents_and_address (type, NULL, addr);
911
912 if (!lazy)
913 value_fetch_lazy (val);
914
915 return val;
916 }
917
918 /* Return a value with type TYPE located at ADDR.
919
920 Call value_at only if the data needs to be fetched immediately;
921 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
922 value_at_lazy instead. value_at_lazy simply records the address of
923 the data and sets the lazy-evaluation-required flag. The lazy flag
924 is tested in the value_contents macro, which is used if and when
925 the contents are actually required. The type of the created value
926 may differ from the passed type TYPE. Make sure to retrieve the
927 returned values's new type after this call e.g. in case the type
928 is a variable length array.
929
930 Note: value_at does *NOT* handle embedded offsets; perform such
931 adjustments before or after calling it. */
932
933 struct value *
934 value_at (struct type *type, CORE_ADDR addr)
935 {
936 return get_value_at (type, addr, 0);
937 }
938
939 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
940 The type of the created value may differ from the passed type TYPE.
941 Make sure to retrieve the returned values's new type after this call
942 e.g. in case the type is a variable length array. */
943
944 struct value *
945 value_at_lazy (struct type *type, CORE_ADDR addr)
946 {
947 return get_value_at (type, addr, 1);
948 }
949
950 void
951 read_value_memory (struct value *val, LONGEST bit_offset,
952 int stack, CORE_ADDR memaddr,
953 gdb_byte *buffer, size_t length)
954 {
955 ULONGEST xfered_total = 0;
956 struct gdbarch *arch = get_value_arch (val);
957 int unit_size = gdbarch_addressable_memory_unit_size (arch);
958 enum target_object object;
959
960 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
961
962 while (xfered_total < length)
963 {
964 enum target_xfer_status status;
965 ULONGEST xfered_partial;
966
967 status = target_xfer_partial (current_target.beneath,
968 object, NULL,
969 buffer + xfered_total * unit_size, NULL,
970 memaddr + xfered_total,
971 length - xfered_total,
972 &xfered_partial);
973
974 if (status == TARGET_XFER_OK)
975 /* nothing */;
976 else if (status == TARGET_XFER_UNAVAILABLE)
977 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
978 + bit_offset),
979 xfered_partial * HOST_CHAR_BIT);
980 else if (status == TARGET_XFER_EOF)
981 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
982 else
983 memory_error (status, memaddr + xfered_total);
984
985 xfered_total += xfered_partial;
986 QUIT;
987 }
988 }
989
990 /* Store the contents of FROMVAL into the location of TOVAL.
991 Return a new value with the location of TOVAL and contents of FROMVAL. */
992
993 struct value *
994 value_assign (struct value *toval, struct value *fromval)
995 {
996 struct type *type;
997 struct value *val;
998 struct frame_id old_frame;
999
1000 if (!deprecated_value_modifiable (toval))
1001 error (_("Left operand of assignment is not a modifiable lvalue."));
1002
1003 toval = coerce_ref (toval);
1004
1005 type = value_type (toval);
1006 if (VALUE_LVAL (toval) != lval_internalvar)
1007 fromval = value_cast (type, fromval);
1008 else
1009 {
1010 /* Coerce arrays and functions to pointers, except for arrays
1011 which only live in GDB's storage. */
1012 if (!value_must_coerce_to_target (fromval))
1013 fromval = coerce_array (fromval);
1014 }
1015
1016 type = check_typedef (type);
1017
1018 /* Since modifying a register can trash the frame chain, and
1019 modifying memory can trash the frame cache, we save the old frame
1020 and then restore the new frame afterwards. */
1021 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1022
1023 switch (VALUE_LVAL (toval))
1024 {
1025 case lval_internalvar:
1026 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1027 return value_of_internalvar (get_type_arch (type),
1028 VALUE_INTERNALVAR (toval));
1029
1030 case lval_internalvar_component:
1031 {
1032 LONGEST offset = value_offset (toval);
1033
1034 /* Are we dealing with a bitfield?
1035
1036 It is important to mention that `value_parent (toval)' is
1037 non-NULL iff `value_bitsize (toval)' is non-zero. */
1038 if (value_bitsize (toval))
1039 {
1040 /* VALUE_INTERNALVAR below refers to the parent value, while
1041 the offset is relative to this parent value. */
1042 gdb_assert (value_parent (value_parent (toval)) == NULL);
1043 offset += value_offset (value_parent (toval));
1044 }
1045
1046 set_internalvar_component (VALUE_INTERNALVAR (toval),
1047 offset,
1048 value_bitpos (toval),
1049 value_bitsize (toval),
1050 fromval);
1051 }
1052 break;
1053
1054 case lval_memory:
1055 {
1056 const gdb_byte *dest_buffer;
1057 CORE_ADDR changed_addr;
1058 int changed_len;
1059 gdb_byte buffer[sizeof (LONGEST)];
1060
1061 if (value_bitsize (toval))
1062 {
1063 struct value *parent = value_parent (toval);
1064
1065 changed_addr = value_address (parent) + value_offset (toval);
1066 changed_len = (value_bitpos (toval)
1067 + value_bitsize (toval)
1068 + HOST_CHAR_BIT - 1)
1069 / HOST_CHAR_BIT;
1070
1071 /* If we can read-modify-write exactly the size of the
1072 containing type (e.g. short or int) then do so. This
1073 is safer for volatile bitfields mapped to hardware
1074 registers. */
1075 if (changed_len < TYPE_LENGTH (type)
1076 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1077 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1078 changed_len = TYPE_LENGTH (type);
1079
1080 if (changed_len > (int) sizeof (LONGEST))
1081 error (_("Can't handle bitfields which "
1082 "don't fit in a %d bit word."),
1083 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1084
1085 read_memory (changed_addr, buffer, changed_len);
1086 modify_field (type, buffer, value_as_long (fromval),
1087 value_bitpos (toval), value_bitsize (toval));
1088 dest_buffer = buffer;
1089 }
1090 else
1091 {
1092 changed_addr = value_address (toval);
1093 changed_len = type_length_units (type);
1094 dest_buffer = value_contents (fromval);
1095 }
1096
1097 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1098 }
1099 break;
1100
1101 case lval_register:
1102 {
1103 struct frame_info *frame;
1104 struct gdbarch *gdbarch;
1105 int value_reg;
1106
1107 /* Figure out which frame this is in currently.
1108
1109 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1110 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1111 put_frame_register_bytes() below. That function will (eventually)
1112 perform the necessary unwind operation by first obtaining the next
1113 frame. */
1114 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1115
1116 value_reg = VALUE_REGNUM (toval);
1117
1118 if (!frame)
1119 error (_("Value being assigned to is no longer active."));
1120
1121 gdbarch = get_frame_arch (frame);
1122
1123 if (value_bitsize (toval))
1124 {
1125 struct value *parent = value_parent (toval);
1126 LONGEST offset = value_offset (parent) + value_offset (toval);
1127 int changed_len;
1128 gdb_byte buffer[sizeof (LONGEST)];
1129 int optim, unavail;
1130
1131 changed_len = (value_bitpos (toval)
1132 + value_bitsize (toval)
1133 + HOST_CHAR_BIT - 1)
1134 / HOST_CHAR_BIT;
1135
1136 if (changed_len > (int) sizeof (LONGEST))
1137 error (_("Can't handle bitfields which "
1138 "don't fit in a %d bit word."),
1139 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1140
1141 if (!get_frame_register_bytes (frame, value_reg, offset,
1142 changed_len, buffer,
1143 &optim, &unavail))
1144 {
1145 if (optim)
1146 throw_error (OPTIMIZED_OUT_ERROR,
1147 _("value has been optimized out"));
1148 if (unavail)
1149 throw_error (NOT_AVAILABLE_ERROR,
1150 _("value is not available"));
1151 }
1152
1153 modify_field (type, buffer, value_as_long (fromval),
1154 value_bitpos (toval), value_bitsize (toval));
1155
1156 put_frame_register_bytes (frame, value_reg, offset,
1157 changed_len, buffer);
1158 }
1159 else
1160 {
1161 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1162 type))
1163 {
1164 /* If TOVAL is a special machine register requiring
1165 conversion of program values to a special raw
1166 format. */
1167 gdbarch_value_to_register (gdbarch, frame,
1168 VALUE_REGNUM (toval), type,
1169 value_contents (fromval));
1170 }
1171 else
1172 {
1173 put_frame_register_bytes (frame, value_reg,
1174 value_offset (toval),
1175 TYPE_LENGTH (type),
1176 value_contents (fromval));
1177 }
1178 }
1179
1180 observer_notify_register_changed (frame, value_reg);
1181 break;
1182 }
1183
1184 case lval_computed:
1185 {
1186 const struct lval_funcs *funcs = value_computed_funcs (toval);
1187
1188 if (funcs->write != NULL)
1189 {
1190 funcs->write (toval, fromval);
1191 break;
1192 }
1193 }
1194 /* Fall through. */
1195
1196 default:
1197 error (_("Left operand of assignment is not an lvalue."));
1198 }
1199
1200 /* Assigning to the stack pointer, frame pointer, and other
1201 (architecture and calling convention specific) registers may
1202 cause the frame cache and regcache to be out of date. Assigning to memory
1203 also can. We just do this on all assignments to registers or
1204 memory, for simplicity's sake; I doubt the slowdown matters. */
1205 switch (VALUE_LVAL (toval))
1206 {
1207 case lval_memory:
1208 case lval_register:
1209 case lval_computed:
1210
1211 observer_notify_target_changed (&current_target);
1212
1213 /* Having destroyed the frame cache, restore the selected
1214 frame. */
1215
1216 /* FIXME: cagney/2002-11-02: There has to be a better way of
1217 doing this. Instead of constantly saving/restoring the
1218 frame. Why not create a get_selected_frame() function that,
1219 having saved the selected frame's ID can automatically
1220 re-find the previously selected frame automatically. */
1221
1222 {
1223 struct frame_info *fi = frame_find_by_id (old_frame);
1224
1225 if (fi != NULL)
1226 select_frame (fi);
1227 }
1228
1229 break;
1230 default:
1231 break;
1232 }
1233
1234 /* If the field does not entirely fill a LONGEST, then zero the sign
1235 bits. If the field is signed, and is negative, then sign
1236 extend. */
1237 if ((value_bitsize (toval) > 0)
1238 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1239 {
1240 LONGEST fieldval = value_as_long (fromval);
1241 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1242
1243 fieldval &= valmask;
1244 if (!TYPE_UNSIGNED (type)
1245 && (fieldval & (valmask ^ (valmask >> 1))))
1246 fieldval |= ~valmask;
1247
1248 fromval = value_from_longest (type, fieldval);
1249 }
1250
1251 /* The return value is a copy of TOVAL so it shares its location
1252 information, but its contents are updated from FROMVAL. This
1253 implies the returned value is not lazy, even if TOVAL was. */
1254 val = value_copy (toval);
1255 set_value_lazy (val, 0);
1256 memcpy (value_contents_raw (val), value_contents (fromval),
1257 TYPE_LENGTH (type));
1258
1259 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1260 in the case of pointer types. For object types, the enclosing type
1261 and embedded offset must *not* be copied: the target object refered
1262 to by TOVAL retains its original dynamic type after assignment. */
1263 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1264 {
1265 set_value_enclosing_type (val, value_enclosing_type (fromval));
1266 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1267 }
1268
1269 return val;
1270 }
1271
1272 /* Extend a value VAL to COUNT repetitions of its type. */
1273
1274 struct value *
1275 value_repeat (struct value *arg1, int count)
1276 {
1277 struct value *val;
1278
1279 if (VALUE_LVAL (arg1) != lval_memory)
1280 error (_("Only values in memory can be extended with '@'."));
1281 if (count < 1)
1282 error (_("Invalid number %d of repetitions."), count);
1283
1284 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1285
1286 VALUE_LVAL (val) = lval_memory;
1287 set_value_address (val, value_address (arg1));
1288
1289 read_value_memory (val, 0, value_stack (val), value_address (val),
1290 value_contents_all_raw (val),
1291 type_length_units (value_enclosing_type (val)));
1292
1293 return val;
1294 }
1295
1296 struct value *
1297 value_of_variable (struct symbol *var, const struct block *b)
1298 {
1299 struct frame_info *frame = NULL;
1300
1301 if (symbol_read_needs_frame (var))
1302 frame = get_selected_frame (_("No frame selected."));
1303
1304 return read_var_value (var, b, frame);
1305 }
1306
1307 struct value *
1308 address_of_variable (struct symbol *var, const struct block *b)
1309 {
1310 struct type *type = SYMBOL_TYPE (var);
1311 struct value *val;
1312
1313 /* Evaluate it first; if the result is a memory address, we're fine.
1314 Lazy evaluation pays off here. */
1315
1316 val = value_of_variable (var, b);
1317 type = value_type (val);
1318
1319 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1320 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1321 {
1322 CORE_ADDR addr = value_address (val);
1323
1324 return value_from_pointer (lookup_pointer_type (type), addr);
1325 }
1326
1327 /* Not a memory address; check what the problem was. */
1328 switch (VALUE_LVAL (val))
1329 {
1330 case lval_register:
1331 {
1332 struct frame_info *frame;
1333 const char *regname;
1334
1335 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1336 gdb_assert (frame);
1337
1338 regname = gdbarch_register_name (get_frame_arch (frame),
1339 VALUE_REGNUM (val));
1340 gdb_assert (regname && *regname);
1341
1342 error (_("Address requested for identifier "
1343 "\"%s\" which is in register $%s"),
1344 SYMBOL_PRINT_NAME (var), regname);
1345 break;
1346 }
1347
1348 default:
1349 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1350 SYMBOL_PRINT_NAME (var));
1351 break;
1352 }
1353
1354 return val;
1355 }
1356
1357 /* Return one if VAL does not live in target memory, but should in order
1358 to operate on it. Otherwise return zero. */
1359
1360 int
1361 value_must_coerce_to_target (struct value *val)
1362 {
1363 struct type *valtype;
1364
1365 /* The only lval kinds which do not live in target memory. */
1366 if (VALUE_LVAL (val) != not_lval
1367 && VALUE_LVAL (val) != lval_internalvar
1368 && VALUE_LVAL (val) != lval_xcallable)
1369 return 0;
1370
1371 valtype = check_typedef (value_type (val));
1372
1373 switch (TYPE_CODE (valtype))
1374 {
1375 case TYPE_CODE_ARRAY:
1376 return TYPE_VECTOR (valtype) ? 0 : 1;
1377 case TYPE_CODE_STRING:
1378 return 1;
1379 default:
1380 return 0;
1381 }
1382 }
1383
1384 /* Make sure that VAL lives in target memory if it's supposed to. For
1385 instance, strings are constructed as character arrays in GDB's
1386 storage, and this function copies them to the target. */
1387
1388 struct value *
1389 value_coerce_to_target (struct value *val)
1390 {
1391 LONGEST length;
1392 CORE_ADDR addr;
1393
1394 if (!value_must_coerce_to_target (val))
1395 return val;
1396
1397 length = TYPE_LENGTH (check_typedef (value_type (val)));
1398 addr = allocate_space_in_inferior (length);
1399 write_memory (addr, value_contents (val), length);
1400 return value_at_lazy (value_type (val), addr);
1401 }
1402
1403 /* Given a value which is an array, return a value which is a pointer
1404 to its first element, regardless of whether or not the array has a
1405 nonzero lower bound.
1406
1407 FIXME: A previous comment here indicated that this routine should
1408 be substracting the array's lower bound. It's not clear to me that
1409 this is correct. Given an array subscripting operation, it would
1410 certainly work to do the adjustment here, essentially computing:
1411
1412 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1413
1414 However I believe a more appropriate and logical place to account
1415 for the lower bound is to do so in value_subscript, essentially
1416 computing:
1417
1418 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1419
1420 As further evidence consider what would happen with operations
1421 other than array subscripting, where the caller would get back a
1422 value that had an address somewhere before the actual first element
1423 of the array, and the information about the lower bound would be
1424 lost because of the coercion to pointer type. */
1425
1426 struct value *
1427 value_coerce_array (struct value *arg1)
1428 {
1429 struct type *type = check_typedef (value_type (arg1));
1430
1431 /* If the user tries to do something requiring a pointer with an
1432 array that has not yet been pushed to the target, then this would
1433 be a good time to do so. */
1434 arg1 = value_coerce_to_target (arg1);
1435
1436 if (VALUE_LVAL (arg1) != lval_memory)
1437 error (_("Attempt to take address of value not located in memory."));
1438
1439 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1440 value_address (arg1));
1441 }
1442
1443 /* Given a value which is a function, return a value which is a pointer
1444 to it. */
1445
1446 struct value *
1447 value_coerce_function (struct value *arg1)
1448 {
1449 struct value *retval;
1450
1451 if (VALUE_LVAL (arg1) != lval_memory)
1452 error (_("Attempt to take address of value not located in memory."));
1453
1454 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1455 value_address (arg1));
1456 return retval;
1457 }
1458
1459 /* Return a pointer value for the object for which ARG1 is the
1460 contents. */
1461
1462 struct value *
1463 value_addr (struct value *arg1)
1464 {
1465 struct value *arg2;
1466 struct type *type = check_typedef (value_type (arg1));
1467
1468 if (TYPE_IS_REFERENCE (type))
1469 {
1470 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1471 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1472 arg1 = coerce_ref (arg1);
1473 else
1474 {
1475 /* Copy the value, but change the type from (T&) to (T*). We
1476 keep the same location information, which is efficient, and
1477 allows &(&X) to get the location containing the reference.
1478 Do the same to its enclosing type for consistency. */
1479 struct type *type_ptr
1480 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1481 struct type *enclosing_type
1482 = check_typedef (value_enclosing_type (arg1));
1483 struct type *enclosing_type_ptr
1484 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1485
1486 arg2 = value_copy (arg1);
1487 deprecated_set_value_type (arg2, type_ptr);
1488 set_value_enclosing_type (arg2, enclosing_type_ptr);
1489
1490 return arg2;
1491 }
1492 }
1493 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1494 return value_coerce_function (arg1);
1495
1496 /* If this is an array that has not yet been pushed to the target,
1497 then this would be a good time to force it to memory. */
1498 arg1 = value_coerce_to_target (arg1);
1499
1500 if (VALUE_LVAL (arg1) != lval_memory)
1501 error (_("Attempt to take address of value not located in memory."));
1502
1503 /* Get target memory address. */
1504 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1505 (value_address (arg1)
1506 + value_embedded_offset (arg1)));
1507
1508 /* This may be a pointer to a base subobject; so remember the
1509 full derived object's type ... */
1510 set_value_enclosing_type (arg2,
1511 lookup_pointer_type (value_enclosing_type (arg1)));
1512 /* ... and also the relative position of the subobject in the full
1513 object. */
1514 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1515 return arg2;
1516 }
1517
1518 /* Return a reference value for the object for which ARG1 is the
1519 contents. */
1520
1521 struct value *
1522 value_ref (struct value *arg1, enum type_code refcode)
1523 {
1524 struct value *arg2;
1525 struct type *type = check_typedef (value_type (arg1));
1526
1527 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1528
1529 if ((TYPE_CODE (type) == TYPE_CODE_REF
1530 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
1531 && TYPE_CODE (type) == refcode)
1532 return arg1;
1533
1534 arg2 = value_addr (arg1);
1535 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1536 return arg2;
1537 }
1538
1539 /* Given a value of a pointer type, apply the C unary * operator to
1540 it. */
1541
1542 struct value *
1543 value_ind (struct value *arg1)
1544 {
1545 struct type *base_type;
1546 struct value *arg2;
1547
1548 arg1 = coerce_array (arg1);
1549
1550 base_type = check_typedef (value_type (arg1));
1551
1552 if (VALUE_LVAL (arg1) == lval_computed)
1553 {
1554 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1555
1556 if (funcs->indirect)
1557 {
1558 struct value *result = funcs->indirect (arg1);
1559
1560 if (result)
1561 return result;
1562 }
1563 }
1564
1565 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1566 {
1567 struct type *enc_type;
1568
1569 /* We may be pointing to something embedded in a larger object.
1570 Get the real type of the enclosing object. */
1571 enc_type = check_typedef (value_enclosing_type (arg1));
1572 enc_type = TYPE_TARGET_TYPE (enc_type);
1573
1574 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1575 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1576 /* For functions, go through find_function_addr, which knows
1577 how to handle function descriptors. */
1578 arg2 = value_at_lazy (enc_type,
1579 find_function_addr (arg1, NULL));
1580 else
1581 /* Retrieve the enclosing object pointed to. */
1582 arg2 = value_at_lazy (enc_type,
1583 (value_as_address (arg1)
1584 - value_pointed_to_offset (arg1)));
1585
1586 enc_type = value_type (arg2);
1587 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1588 }
1589
1590 error (_("Attempt to take contents of a non-pointer value."));
1591 return 0; /* For lint -- never reached. */
1592 }
1593 \f
1594 /* Create a value for an array by allocating space in GDB, copying the
1595 data into that space, and then setting up an array value.
1596
1597 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1598 is populated from the values passed in ELEMVEC.
1599
1600 The element type of the array is inherited from the type of the
1601 first element, and all elements must have the same size (though we
1602 don't currently enforce any restriction on their types). */
1603
1604 struct value *
1605 value_array (int lowbound, int highbound, struct value **elemvec)
1606 {
1607 int nelem;
1608 int idx;
1609 ULONGEST typelength;
1610 struct value *val;
1611 struct type *arraytype;
1612
1613 /* Validate that the bounds are reasonable and that each of the
1614 elements have the same size. */
1615
1616 nelem = highbound - lowbound + 1;
1617 if (nelem <= 0)
1618 {
1619 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1620 }
1621 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1622 for (idx = 1; idx < nelem; idx++)
1623 {
1624 if (type_length_units (value_enclosing_type (elemvec[idx]))
1625 != typelength)
1626 {
1627 error (_("array elements must all be the same size"));
1628 }
1629 }
1630
1631 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1632 lowbound, highbound);
1633
1634 if (!current_language->c_style_arrays)
1635 {
1636 val = allocate_value (arraytype);
1637 for (idx = 0; idx < nelem; idx++)
1638 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1639 typelength);
1640 return val;
1641 }
1642
1643 /* Allocate space to store the array, and then initialize it by
1644 copying in each element. */
1645
1646 val = allocate_value (arraytype);
1647 for (idx = 0; idx < nelem; idx++)
1648 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1649 return val;
1650 }
1651
1652 struct value *
1653 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1654 {
1655 struct value *val;
1656 int lowbound = current_language->string_lower_bound;
1657 ssize_t highbound = len / TYPE_LENGTH (char_type);
1658 struct type *stringtype
1659 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1660
1661 val = allocate_value (stringtype);
1662 memcpy (value_contents_raw (val), ptr, len);
1663 return val;
1664 }
1665
1666 /* Create a value for a string constant by allocating space in the
1667 inferior, copying the data into that space, and returning the
1668 address with type TYPE_CODE_STRING. PTR points to the string
1669 constant data; LEN is number of characters.
1670
1671 Note that string types are like array of char types with a lower
1672 bound of zero and an upper bound of LEN - 1. Also note that the
1673 string may contain embedded null bytes. */
1674
1675 struct value *
1676 value_string (const char *ptr, ssize_t len, struct type *char_type)
1677 {
1678 struct value *val;
1679 int lowbound = current_language->string_lower_bound;
1680 ssize_t highbound = len / TYPE_LENGTH (char_type);
1681 struct type *stringtype
1682 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1683
1684 val = allocate_value (stringtype);
1685 memcpy (value_contents_raw (val), ptr, len);
1686 return val;
1687 }
1688
1689 \f
1690 /* See if we can pass arguments in T2 to a function which takes
1691 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1692 a NULL-terminated vector. If some arguments need coercion of some
1693 sort, then the coerced values are written into T2. Return value is
1694 0 if the arguments could be matched, or the position at which they
1695 differ if not.
1696
1697 STATICP is nonzero if the T1 argument list came from a static
1698 member function. T2 will still include the ``this'' pointer, but
1699 it will be skipped.
1700
1701 For non-static member functions, we ignore the first argument,
1702 which is the type of the instance variable. This is because we
1703 want to handle calls with objects from derived classes. This is
1704 not entirely correct: we should actually check to make sure that a
1705 requested operation is type secure, shouldn't we? FIXME. */
1706
1707 static int
1708 typecmp (int staticp, int varargs, int nargs,
1709 struct field t1[], struct value *t2[])
1710 {
1711 int i;
1712
1713 if (t2 == 0)
1714 internal_error (__FILE__, __LINE__,
1715 _("typecmp: no argument list"));
1716
1717 /* Skip ``this'' argument if applicable. T2 will always include
1718 THIS. */
1719 if (staticp)
1720 t2 ++;
1721
1722 for (i = 0;
1723 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1724 i++)
1725 {
1726 struct type *tt1, *tt2;
1727
1728 if (!t2[i])
1729 return i + 1;
1730
1731 tt1 = check_typedef (t1[i].type);
1732 tt2 = check_typedef (value_type (t2[i]));
1733
1734 if (TYPE_IS_REFERENCE (tt1)
1735 /* We should be doing hairy argument matching, as below. */
1736 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1737 == TYPE_CODE (tt2)))
1738 {
1739 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1740 t2[i] = value_coerce_array (t2[i]);
1741 else
1742 t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
1743 continue;
1744 }
1745
1746 /* djb - 20000715 - Until the new type structure is in the
1747 place, and we can attempt things like implicit conversions,
1748 we need to do this so you can take something like a map<const
1749 char *>, and properly access map["hello"], because the
1750 argument to [] will be a reference to a pointer to a char,
1751 and the argument will be a pointer to a char. */
1752 while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1753 {
1754 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1755 }
1756 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1757 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1758 || TYPE_IS_REFERENCE (tt2))
1759 {
1760 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1761 }
1762 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1763 continue;
1764 /* Array to pointer is a `trivial conversion' according to the
1765 ARM. */
1766
1767 /* We should be doing much hairier argument matching (see
1768 section 13.2 of the ARM), but as a quick kludge, just check
1769 for the same type code. */
1770 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1771 return i + 1;
1772 }
1773 if (varargs || t2[i] == NULL)
1774 return 0;
1775 return i + 1;
1776 }
1777
1778 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1779 and *LAST_BOFFSET, and possibly throws an exception if the field
1780 search has yielded ambiguous results. */
1781
1782 static void
1783 update_search_result (struct value **result_ptr, struct value *v,
1784 LONGEST *last_boffset, LONGEST boffset,
1785 const char *name, struct type *type)
1786 {
1787 if (v != NULL)
1788 {
1789 if (*result_ptr != NULL
1790 /* The result is not ambiguous if all the classes that are
1791 found occupy the same space. */
1792 && *last_boffset != boffset)
1793 error (_("base class '%s' is ambiguous in type '%s'"),
1794 name, TYPE_SAFE_NAME (type));
1795 *result_ptr = v;
1796 *last_boffset = boffset;
1797 }
1798 }
1799
1800 /* A helper for search_struct_field. This does all the work; most
1801 arguments are as passed to search_struct_field. The result is
1802 stored in *RESULT_PTR, which must be initialized to NULL.
1803 OUTERMOST_TYPE is the type of the initial type passed to
1804 search_struct_field; this is used for error reporting when the
1805 lookup is ambiguous. */
1806
1807 static void
1808 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1809 struct type *type, int looking_for_baseclass,
1810 struct value **result_ptr,
1811 LONGEST *last_boffset,
1812 struct type *outermost_type)
1813 {
1814 int i;
1815 int nbases;
1816
1817 type = check_typedef (type);
1818 nbases = TYPE_N_BASECLASSES (type);
1819
1820 if (!looking_for_baseclass)
1821 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1822 {
1823 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1824
1825 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1826 {
1827 struct value *v;
1828
1829 if (field_is_static (&TYPE_FIELD (type, i)))
1830 v = value_static_field (type, i);
1831 else
1832 v = value_primitive_field (arg1, offset, i, type);
1833 *result_ptr = v;
1834 return;
1835 }
1836
1837 if (t_field_name
1838 && t_field_name[0] == '\0')
1839 {
1840 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1841
1842 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1843 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1844 {
1845 /* Look for a match through the fields of an anonymous
1846 union, or anonymous struct. C++ provides anonymous
1847 unions.
1848
1849 In the GNU Chill (now deleted from GDB)
1850 implementation of variant record types, each
1851 <alternative field> has an (anonymous) union type,
1852 each member of the union represents a <variant
1853 alternative>. Each <variant alternative> is
1854 represented as a struct, with a member for each
1855 <variant field>. */
1856
1857 struct value *v = NULL;
1858 LONGEST new_offset = offset;
1859
1860 /* This is pretty gross. In G++, the offset in an
1861 anonymous union is relative to the beginning of the
1862 enclosing struct. In the GNU Chill (now deleted
1863 from GDB) implementation of variant records, the
1864 bitpos is zero in an anonymous union field, so we
1865 have to add the offset of the union here. */
1866 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1867 || (TYPE_NFIELDS (field_type) > 0
1868 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1869 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1870
1871 do_search_struct_field (name, arg1, new_offset,
1872 field_type,
1873 looking_for_baseclass, &v,
1874 last_boffset,
1875 outermost_type);
1876 if (v)
1877 {
1878 *result_ptr = v;
1879 return;
1880 }
1881 }
1882 }
1883 }
1884
1885 for (i = 0; i < nbases; i++)
1886 {
1887 struct value *v = NULL;
1888 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1889 /* If we are looking for baseclasses, this is what we get when
1890 we hit them. But it could happen that the base part's member
1891 name is not yet filled in. */
1892 int found_baseclass = (looking_for_baseclass
1893 && TYPE_BASECLASS_NAME (type, i) != NULL
1894 && (strcmp_iw (name,
1895 TYPE_BASECLASS_NAME (type,
1896 i)) == 0));
1897 LONGEST boffset = value_embedded_offset (arg1) + offset;
1898
1899 if (BASETYPE_VIA_VIRTUAL (type, i))
1900 {
1901 struct value *v2;
1902
1903 boffset = baseclass_offset (type, i,
1904 value_contents_for_printing (arg1),
1905 value_embedded_offset (arg1) + offset,
1906 value_address (arg1),
1907 arg1);
1908
1909 /* The virtual base class pointer might have been clobbered
1910 by the user program. Make sure that it still points to a
1911 valid memory location. */
1912
1913 boffset += value_embedded_offset (arg1) + offset;
1914 if (boffset < 0
1915 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1916 {
1917 CORE_ADDR base_addr;
1918
1919 base_addr = value_address (arg1) + boffset;
1920 v2 = value_at_lazy (basetype, base_addr);
1921 if (target_read_memory (base_addr,
1922 value_contents_raw (v2),
1923 TYPE_LENGTH (value_type (v2))) != 0)
1924 error (_("virtual baseclass botch"));
1925 }
1926 else
1927 {
1928 v2 = value_copy (arg1);
1929 deprecated_set_value_type (v2, basetype);
1930 set_value_embedded_offset (v2, boffset);
1931 }
1932
1933 if (found_baseclass)
1934 v = v2;
1935 else
1936 {
1937 do_search_struct_field (name, v2, 0,
1938 TYPE_BASECLASS (type, i),
1939 looking_for_baseclass,
1940 result_ptr, last_boffset,
1941 outermost_type);
1942 }
1943 }
1944 else if (found_baseclass)
1945 v = value_primitive_field (arg1, offset, i, type);
1946 else
1947 {
1948 do_search_struct_field (name, arg1,
1949 offset + TYPE_BASECLASS_BITPOS (type,
1950 i) / 8,
1951 basetype, looking_for_baseclass,
1952 result_ptr, last_boffset,
1953 outermost_type);
1954 }
1955
1956 update_search_result (result_ptr, v, last_boffset,
1957 boffset, name, outermost_type);
1958 }
1959 }
1960
1961 /* Helper function used by value_struct_elt to recurse through
1962 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1963 it has (class) type TYPE. If found, return value, else return NULL.
1964
1965 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1966 fields, look for a baseclass named NAME. */
1967
1968 static struct value *
1969 search_struct_field (const char *name, struct value *arg1,
1970 struct type *type, int looking_for_baseclass)
1971 {
1972 struct value *result = NULL;
1973 LONGEST boffset = 0;
1974
1975 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1976 &result, &boffset, type);
1977 return result;
1978 }
1979
1980 /* Helper function used by value_struct_elt to recurse through
1981 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1982 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1983 TYPE.
1984
1985 If found, return value, else if name matched and args not return
1986 (value) -1, else return NULL. */
1987
1988 static struct value *
1989 search_struct_method (const char *name, struct value **arg1p,
1990 struct value **args, LONGEST offset,
1991 int *static_memfuncp, struct type *type)
1992 {
1993 int i;
1994 struct value *v;
1995 int name_matched = 0;
1996 char dem_opname[64];
1997
1998 type = check_typedef (type);
1999 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2000 {
2001 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2002
2003 /* FIXME! May need to check for ARM demangling here. */
2004 if (startswith (t_field_name, "__") ||
2005 startswith (t_field_name, "op") ||
2006 startswith (t_field_name, "type"))
2007 {
2008 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2009 t_field_name = dem_opname;
2010 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2011 t_field_name = dem_opname;
2012 }
2013 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2014 {
2015 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2016 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2017
2018 name_matched = 1;
2019 check_stub_method_group (type, i);
2020 if (j > 0 && args == 0)
2021 error (_("cannot resolve overloaded method "
2022 "`%s': no arguments supplied"), name);
2023 else if (j == 0 && args == 0)
2024 {
2025 v = value_fn_field (arg1p, f, j, type, offset);
2026 if (v != NULL)
2027 return v;
2028 }
2029 else
2030 while (j >= 0)
2031 {
2032 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2033 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2034 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2035 TYPE_FN_FIELD_ARGS (f, j), args))
2036 {
2037 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2038 return value_virtual_fn_field (arg1p, f, j,
2039 type, offset);
2040 if (TYPE_FN_FIELD_STATIC_P (f, j)
2041 && static_memfuncp)
2042 *static_memfuncp = 1;
2043 v = value_fn_field (arg1p, f, j, type, offset);
2044 if (v != NULL)
2045 return v;
2046 }
2047 j--;
2048 }
2049 }
2050 }
2051
2052 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2053 {
2054 LONGEST base_offset;
2055 LONGEST this_offset;
2056
2057 if (BASETYPE_VIA_VIRTUAL (type, i))
2058 {
2059 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2060 struct value *base_val;
2061 const gdb_byte *base_valaddr;
2062
2063 /* The virtual base class pointer might have been
2064 clobbered by the user program. Make sure that it
2065 still points to a valid memory location. */
2066
2067 if (offset < 0 || offset >= TYPE_LENGTH (type))
2068 {
2069 CORE_ADDR address;
2070
2071 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2072 address = value_address (*arg1p);
2073
2074 if (target_read_memory (address + offset,
2075 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2076 error (_("virtual baseclass botch"));
2077
2078 base_val = value_from_contents_and_address (baseclass,
2079 tmp.data (),
2080 address + offset);
2081 base_valaddr = value_contents_for_printing (base_val);
2082 this_offset = 0;
2083 }
2084 else
2085 {
2086 base_val = *arg1p;
2087 base_valaddr = value_contents_for_printing (*arg1p);
2088 this_offset = offset;
2089 }
2090
2091 base_offset = baseclass_offset (type, i, base_valaddr,
2092 this_offset, value_address (base_val),
2093 base_val);
2094 }
2095 else
2096 {
2097 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2098 }
2099 v = search_struct_method (name, arg1p, args, base_offset + offset,
2100 static_memfuncp, TYPE_BASECLASS (type, i));
2101 if (v == (struct value *) - 1)
2102 {
2103 name_matched = 1;
2104 }
2105 else if (v)
2106 {
2107 /* FIXME-bothner: Why is this commented out? Why is it here? */
2108 /* *arg1p = arg1_tmp; */
2109 return v;
2110 }
2111 }
2112 if (name_matched)
2113 return (struct value *) - 1;
2114 else
2115 return NULL;
2116 }
2117
2118 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2119 extract the component named NAME from the ultimate target
2120 structure/union and return it as a value with its appropriate type.
2121 ERR is used in the error message if *ARGP's type is wrong.
2122
2123 C++: ARGS is a list of argument types to aid in the selection of
2124 an appropriate method. Also, handle derived types.
2125
2126 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2127 where the truthvalue of whether the function that was resolved was
2128 a static member function or not is stored.
2129
2130 ERR is an error message to be printed in case the field is not
2131 found. */
2132
2133 struct value *
2134 value_struct_elt (struct value **argp, struct value **args,
2135 const char *name, int *static_memfuncp, const char *err)
2136 {
2137 struct type *t;
2138 struct value *v;
2139
2140 *argp = coerce_array (*argp);
2141
2142 t = check_typedef (value_type (*argp));
2143
2144 /* Follow pointers until we get to a non-pointer. */
2145
2146 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2147 {
2148 *argp = value_ind (*argp);
2149 /* Don't coerce fn pointer to fn and then back again! */
2150 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2151 *argp = coerce_array (*argp);
2152 t = check_typedef (value_type (*argp));
2153 }
2154
2155 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2156 && TYPE_CODE (t) != TYPE_CODE_UNION)
2157 error (_("Attempt to extract a component of a value that is not a %s."),
2158 err);
2159
2160 /* Assume it's not, unless we see that it is. */
2161 if (static_memfuncp)
2162 *static_memfuncp = 0;
2163
2164 if (!args)
2165 {
2166 /* if there are no arguments ...do this... */
2167
2168 /* Try as a field first, because if we succeed, there is less
2169 work to be done. */
2170 v = search_struct_field (name, *argp, t, 0);
2171 if (v)
2172 return v;
2173
2174 /* C++: If it was not found as a data field, then try to
2175 return it as a pointer to a method. */
2176 v = search_struct_method (name, argp, args, 0,
2177 static_memfuncp, t);
2178
2179 if (v == (struct value *) - 1)
2180 error (_("Cannot take address of method %s."), name);
2181 else if (v == 0)
2182 {
2183 if (TYPE_NFN_FIELDS (t))
2184 error (_("There is no member or method named %s."), name);
2185 else
2186 error (_("There is no member named %s."), name);
2187 }
2188 return v;
2189 }
2190
2191 v = search_struct_method (name, argp, args, 0,
2192 static_memfuncp, t);
2193
2194 if (v == (struct value *) - 1)
2195 {
2196 error (_("One of the arguments you tried to pass to %s could not "
2197 "be converted to what the function wants."), name);
2198 }
2199 else if (v == 0)
2200 {
2201 /* See if user tried to invoke data as function. If so, hand it
2202 back. If it's not callable (i.e., a pointer to function),
2203 gdb should give an error. */
2204 v = search_struct_field (name, *argp, t, 0);
2205 /* If we found an ordinary field, then it is not a method call.
2206 So, treat it as if it were a static member function. */
2207 if (v && static_memfuncp)
2208 *static_memfuncp = 1;
2209 }
2210
2211 if (!v)
2212 throw_error (NOT_FOUND_ERROR,
2213 _("Structure has no component named %s."), name);
2214 return v;
2215 }
2216
2217 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2218 to a structure or union, extract and return its component (field) of
2219 type FTYPE at the specified BITPOS.
2220 Throw an exception on error. */
2221
2222 struct value *
2223 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2224 const char *err)
2225 {
2226 struct type *t;
2227 int i;
2228
2229 *argp = coerce_array (*argp);
2230
2231 t = check_typedef (value_type (*argp));
2232
2233 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2234 {
2235 *argp = value_ind (*argp);
2236 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2237 *argp = coerce_array (*argp);
2238 t = check_typedef (value_type (*argp));
2239 }
2240
2241 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2242 && TYPE_CODE (t) != TYPE_CODE_UNION)
2243 error (_("Attempt to extract a component of a value that is not a %s."),
2244 err);
2245
2246 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2247 {
2248 if (!field_is_static (&TYPE_FIELD (t, i))
2249 && bitpos == TYPE_FIELD_BITPOS (t, i)
2250 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2251 return value_primitive_field (*argp, 0, i, t);
2252 }
2253
2254 error (_("No field with matching bitpos and type."));
2255
2256 /* Never hit. */
2257 return NULL;
2258 }
2259
2260 /* See value.h. */
2261
2262 int
2263 value_union_variant (struct type *union_type, const gdb_byte *contents)
2264 {
2265 gdb_assert (TYPE_CODE (union_type) == TYPE_CODE_UNION
2266 && TYPE_FLAG_DISCRIMINATED_UNION (union_type));
2267
2268 struct dynamic_prop *discriminant_prop
2269 = get_dyn_prop (DYN_PROP_DISCRIMINATED, union_type);
2270 gdb_assert (discriminant_prop != nullptr);
2271
2272 struct discriminant_info *info
2273 = (struct discriminant_info *) discriminant_prop->data.baton;
2274 gdb_assert (info != nullptr);
2275
2276 /* If this is a univariant union, just return the sole field. */
2277 if (TYPE_NFIELDS (union_type) == 1)
2278 return 0;
2279 /* This should only happen for univariants, which we already dealt
2280 with. */
2281 gdb_assert (info->discriminant_index != -1);
2282
2283 /* Compute the discriminant. Note that unpack_field_as_long handles
2284 sign extension when necessary, as does the DWARF reader -- so
2285 signed discriminants will be handled correctly despite the use of
2286 an unsigned type here. */
2287 ULONGEST discriminant = unpack_field_as_long (union_type, contents,
2288 info->discriminant_index);
2289
2290 for (int i = 0; i < TYPE_NFIELDS (union_type); ++i)
2291 {
2292 if (i != info->default_index
2293 && i != info->discriminant_index
2294 && discriminant == info->discriminants[i])
2295 return i;
2296 }
2297
2298 if (info->default_index == -1)
2299 error (_("Could not find variant corresponding to discriminant %s"),
2300 pulongest (discriminant));
2301 return info->default_index;
2302 }
2303
2304 /* Search through the methods of an object (and its bases) to find a
2305 specified method. Return the pointer to the fn_field list FN_LIST of
2306 overloaded instances defined in the source language. If available
2307 and matching, a vector of matching xmethods defined in extension
2308 languages are also returned in XM_WORKER_VEC
2309
2310 Helper function for value_find_oload_list.
2311 ARGP is a pointer to a pointer to a value (the object).
2312 METHOD is a string containing the method name.
2313 OFFSET is the offset within the value.
2314 TYPE is the assumed type of the object.
2315 FN_LIST is the pointer to matching overloaded instances defined in
2316 source language. Since this is a recursive function, *FN_LIST
2317 should be set to NULL when calling this function.
2318 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2319 0 when calling this function.
2320 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2321 should also be set to NULL when calling this function.
2322 BASETYPE is set to the actual type of the subobject where the
2323 method is found.
2324 BOFFSET is the offset of the base subobject where the method is found. */
2325
2326 static void
2327 find_method_list (struct value **argp, const char *method,
2328 LONGEST offset, struct type *type,
2329 struct fn_field **fn_list, int *num_fns,
2330 std::vector<xmethod_worker_up> *xm_worker_vec,
2331 struct type **basetype, LONGEST *boffset)
2332 {
2333 int i;
2334 struct fn_field *f = NULL;
2335
2336 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2337 type = check_typedef (type);
2338
2339 /* First check in object itself.
2340 This function is called recursively to search through base classes.
2341 If there is a source method match found at some stage, then we need not
2342 look for source methods in consequent recursive calls. */
2343 if ((*fn_list) == NULL)
2344 {
2345 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2346 {
2347 /* pai: FIXME What about operators and type conversions? */
2348 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2349
2350 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2351 {
2352 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2353 f = TYPE_FN_FIELDLIST1 (type, i);
2354 *fn_list = f;
2355
2356 *num_fns = len;
2357 *basetype = type;
2358 *boffset = offset;
2359
2360 /* Resolve any stub methods. */
2361 check_stub_method_group (type, i);
2362
2363 break;
2364 }
2365 }
2366 }
2367
2368 /* Unlike source methods, xmethods can be accumulated over successive
2369 recursive calls. In other words, an xmethod named 'm' in a class
2370 will not hide an xmethod named 'm' in its base class(es). We want
2371 it to be this way because xmethods are after all convenience functions
2372 and hence there is no point restricting them with something like method
2373 hiding. Moreover, if hiding is done for xmethods as well, then we will
2374 have to provide a mechanism to un-hide (like the 'using' construct). */
2375 get_matching_xmethod_workers (type, method, xm_worker_vec);
2376
2377 /* If source methods are not found in current class, look for them in the
2378 base classes. We also have to go through the base classes to gather
2379 extension methods. */
2380 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2381 {
2382 LONGEST base_offset;
2383
2384 if (BASETYPE_VIA_VIRTUAL (type, i))
2385 {
2386 base_offset = baseclass_offset (type, i,
2387 value_contents_for_printing (*argp),
2388 value_offset (*argp) + offset,
2389 value_address (*argp), *argp);
2390 }
2391 else /* Non-virtual base, simply use bit position from debug
2392 info. */
2393 {
2394 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2395 }
2396
2397 find_method_list (argp, method, base_offset + offset,
2398 TYPE_BASECLASS (type, i), fn_list, num_fns,
2399 xm_worker_vec, basetype, boffset);
2400 }
2401 }
2402
2403 /* Return the list of overloaded methods of a specified name. The methods
2404 could be those GDB finds in the binary, or xmethod. Methods found in
2405 the binary are returned in FN_LIST, and xmethods are returned in
2406 XM_WORKER_VEC.
2407
2408 ARGP is a pointer to a pointer to a value (the object).
2409 METHOD is the method name.
2410 OFFSET is the offset within the value contents.
2411 FN_LIST is the pointer to matching overloaded instances defined in
2412 source language.
2413 NUM_FNS is the number of overloaded instances.
2414 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2415 extension languages.
2416 BASETYPE is set to the type of the base subobject that defines the
2417 method.
2418 BOFFSET is the offset of the base subobject which defines the method. */
2419
2420 static void
2421 value_find_oload_method_list (struct value **argp, const char *method,
2422 LONGEST offset, struct fn_field **fn_list,
2423 int *num_fns,
2424 std::vector<xmethod_worker_up> *xm_worker_vec,
2425 struct type **basetype, LONGEST *boffset)
2426 {
2427 struct type *t;
2428
2429 t = check_typedef (value_type (*argp));
2430
2431 /* Code snarfed from value_struct_elt. */
2432 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2433 {
2434 *argp = value_ind (*argp);
2435 /* Don't coerce fn pointer to fn and then back again! */
2436 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2437 *argp = coerce_array (*argp);
2438 t = check_typedef (value_type (*argp));
2439 }
2440
2441 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2442 && TYPE_CODE (t) != TYPE_CODE_UNION)
2443 error (_("Attempt to extract a component of a "
2444 "value that is not a struct or union"));
2445
2446 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2447
2448 /* Clear the lists. */
2449 *fn_list = NULL;
2450 *num_fns = 0;
2451 xm_worker_vec->clear ();
2452
2453 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2454 basetype, boffset);
2455 }
2456
2457 /* Given an array of arguments (ARGS) (which includes an
2458 entry for "this" in the case of C++ methods), the number of
2459 arguments NARGS, the NAME of a function, and whether it's a method or
2460 not (METHOD), find the best function that matches on the argument types
2461 according to the overload resolution rules.
2462
2463 METHOD can be one of three values:
2464 NON_METHOD for non-member functions.
2465 METHOD: for member functions.
2466 BOTH: used for overload resolution of operators where the
2467 candidates are expected to be either member or non member
2468 functions. In this case the first argument ARGTYPES
2469 (representing 'this') is expected to be a reference to the
2470 target object, and will be dereferenced when attempting the
2471 non-member search.
2472
2473 In the case of class methods, the parameter OBJ is an object value
2474 in which to search for overloaded methods.
2475
2476 In the case of non-method functions, the parameter FSYM is a symbol
2477 corresponding to one of the overloaded functions.
2478
2479 Return value is an integer: 0 -> good match, 10 -> debugger applied
2480 non-standard coercions, 100 -> incompatible.
2481
2482 If a method is being searched for, VALP will hold the value.
2483 If a non-method is being searched for, SYMP will hold the symbol
2484 for it.
2485
2486 If a method is being searched for, and it is a static method,
2487 then STATICP will point to a non-zero value.
2488
2489 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2490 ADL overload candidates when performing overload resolution for a fully
2491 qualified name.
2492
2493 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2494 read while picking the best overload match (it may be all zeroes and thus
2495 not have a vtable pointer), in which case skip virtual function lookup.
2496 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2497 the result type.
2498
2499 Note: This function does *not* check the value of
2500 overload_resolution. Caller must check it to see whether overload
2501 resolution is permitted. */
2502
2503 int
2504 find_overload_match (struct value **args, int nargs,
2505 const char *name, enum oload_search_type method,
2506 struct value **objp, struct symbol *fsym,
2507 struct value **valp, struct symbol **symp,
2508 int *staticp, const int no_adl,
2509 const enum noside noside)
2510 {
2511 struct value *obj = (objp ? *objp : NULL);
2512 struct type *obj_type = obj ? value_type (obj) : NULL;
2513 /* Index of best overloaded function. */
2514 int func_oload_champ = -1;
2515 int method_oload_champ = -1;
2516 int src_method_oload_champ = -1;
2517 int ext_method_oload_champ = -1;
2518
2519 /* The measure for the current best match. */
2520 struct badness_vector *method_badness = NULL;
2521 struct badness_vector *func_badness = NULL;
2522 struct badness_vector *ext_method_badness = NULL;
2523 struct badness_vector *src_method_badness = NULL;
2524
2525 struct value *temp = obj;
2526 /* For methods, the list of overloaded methods. */
2527 struct fn_field *fns_ptr = NULL;
2528 /* For non-methods, the list of overloaded function symbols. */
2529 struct symbol **oload_syms = NULL;
2530 /* For xmethods, the vector of xmethod workers. */
2531 std::vector<xmethod_worker_up> xm_worker_vec;
2532 /* Number of overloaded instances being considered. */
2533 int num_fns = 0;
2534 struct type *basetype = NULL;
2535 LONGEST boffset;
2536
2537 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2538
2539 const char *obj_type_name = NULL;
2540 const char *func_name = NULL;
2541 enum oload_classification match_quality;
2542 enum oload_classification method_match_quality = INCOMPATIBLE;
2543 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2544 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2545 enum oload_classification func_match_quality = INCOMPATIBLE;
2546
2547 /* Get the list of overloaded methods or functions. */
2548 if (method == METHOD || method == BOTH)
2549 {
2550 gdb_assert (obj);
2551
2552 /* OBJ may be a pointer value rather than the object itself. */
2553 obj = coerce_ref (obj);
2554 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2555 obj = coerce_ref (value_ind (obj));
2556 obj_type_name = TYPE_NAME (value_type (obj));
2557
2558 /* First check whether this is a data member, e.g. a pointer to
2559 a function. */
2560 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2561 {
2562 *valp = search_struct_field (name, obj,
2563 check_typedef (value_type (obj)), 0);
2564 if (*valp)
2565 {
2566 *staticp = 1;
2567 do_cleanups (all_cleanups);
2568 return 0;
2569 }
2570 }
2571
2572 /* Retrieve the list of methods with the name NAME. */
2573 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2574 &xm_worker_vec, &basetype, &boffset);
2575 /* If this is a method only search, and no methods were found
2576 the search has failed. */
2577 if (method == METHOD && (!fns_ptr || !num_fns) && xm_worker_vec.empty ())
2578 error (_("Couldn't find method %s%s%s"),
2579 obj_type_name,
2580 (obj_type_name && *obj_type_name) ? "::" : "",
2581 name);
2582 /* If we are dealing with stub method types, they should have
2583 been resolved by find_method_list via
2584 value_find_oload_method_list above. */
2585 if (fns_ptr)
2586 {
2587 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2588
2589 src_method_oload_champ = find_oload_champ (args, nargs,
2590 num_fns, fns_ptr, NULL,
2591 NULL, &src_method_badness);
2592
2593 src_method_match_quality = classify_oload_match
2594 (src_method_badness, nargs,
2595 oload_method_static_p (fns_ptr, src_method_oload_champ));
2596
2597 make_cleanup (xfree, src_method_badness);
2598 }
2599
2600 if (!xm_worker_vec.empty ())
2601 {
2602 ext_method_oload_champ = find_oload_champ (args, nargs,
2603 0, NULL, &xm_worker_vec,
2604 NULL, &ext_method_badness);
2605 ext_method_match_quality = classify_oload_match (ext_method_badness,
2606 nargs, 0);
2607 make_cleanup (xfree, ext_method_badness);
2608 }
2609
2610 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2611 {
2612 switch (compare_badness (ext_method_badness, src_method_badness))
2613 {
2614 case 0: /* Src method and xmethod are equally good. */
2615 /* If src method and xmethod are equally good, then
2616 xmethod should be the winner. Hence, fall through to the
2617 case where a xmethod is better than the source
2618 method, except when the xmethod match quality is
2619 non-standard. */
2620 /* FALLTHROUGH */
2621 case 1: /* Src method and ext method are incompatible. */
2622 /* If ext method match is not standard, then let source method
2623 win. Otherwise, fallthrough to let xmethod win. */
2624 if (ext_method_match_quality != STANDARD)
2625 {
2626 method_oload_champ = src_method_oload_champ;
2627 method_badness = src_method_badness;
2628 ext_method_oload_champ = -1;
2629 method_match_quality = src_method_match_quality;
2630 break;
2631 }
2632 /* FALLTHROUGH */
2633 case 2: /* Ext method is champion. */
2634 method_oload_champ = ext_method_oload_champ;
2635 method_badness = ext_method_badness;
2636 src_method_oload_champ = -1;
2637 method_match_quality = ext_method_match_quality;
2638 break;
2639 case 3: /* Src method is champion. */
2640 method_oload_champ = src_method_oload_champ;
2641 method_badness = src_method_badness;
2642 ext_method_oload_champ = -1;
2643 method_match_quality = src_method_match_quality;
2644 break;
2645 default:
2646 gdb_assert_not_reached ("Unexpected overload comparison "
2647 "result");
2648 break;
2649 }
2650 }
2651 else if (src_method_oload_champ >= 0)
2652 {
2653 method_oload_champ = src_method_oload_champ;
2654 method_badness = src_method_badness;
2655 method_match_quality = src_method_match_quality;
2656 }
2657 else if (ext_method_oload_champ >= 0)
2658 {
2659 method_oload_champ = ext_method_oload_champ;
2660 method_badness = ext_method_badness;
2661 method_match_quality = ext_method_match_quality;
2662 }
2663 }
2664
2665 if (method == NON_METHOD || method == BOTH)
2666 {
2667 const char *qualified_name = NULL;
2668
2669 /* If the overload match is being search for both as a method
2670 and non member function, the first argument must now be
2671 dereferenced. */
2672 if (method == BOTH)
2673 args[0] = value_ind (args[0]);
2674
2675 if (fsym)
2676 {
2677 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2678
2679 /* If we have a function with a C++ name, try to extract just
2680 the function part. Do not try this for non-functions (e.g.
2681 function pointers). */
2682 if (qualified_name
2683 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2684 == TYPE_CODE_FUNC)
2685 {
2686 char *temp;
2687
2688 temp = cp_func_name (qualified_name);
2689
2690 /* If cp_func_name did not remove anything, the name of the
2691 symbol did not include scope or argument types - it was
2692 probably a C-style function. */
2693 if (temp)
2694 {
2695 make_cleanup (xfree, temp);
2696 if (strcmp (temp, qualified_name) == 0)
2697 func_name = NULL;
2698 else
2699 func_name = temp;
2700 }
2701 }
2702 }
2703 else
2704 {
2705 func_name = name;
2706 qualified_name = name;
2707 }
2708
2709 /* If there was no C++ name, this must be a C-style function or
2710 not a function at all. Just return the same symbol. Do the
2711 same if cp_func_name fails for some reason. */
2712 if (func_name == NULL)
2713 {
2714 *symp = fsym;
2715 do_cleanups (all_cleanups);
2716 return 0;
2717 }
2718
2719 func_oload_champ = find_oload_champ_namespace (args, nargs,
2720 func_name,
2721 qualified_name,
2722 &oload_syms,
2723 &func_badness,
2724 no_adl);
2725
2726 if (func_oload_champ >= 0)
2727 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2728
2729 make_cleanup (xfree, oload_syms);
2730 make_cleanup (xfree, func_badness);
2731 }
2732
2733 /* Did we find a match ? */
2734 if (method_oload_champ == -1 && func_oload_champ == -1)
2735 throw_error (NOT_FOUND_ERROR,
2736 _("No symbol \"%s\" in current context."),
2737 name);
2738
2739 /* If we have found both a method match and a function
2740 match, find out which one is better, and calculate match
2741 quality. */
2742 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2743 {
2744 switch (compare_badness (func_badness, method_badness))
2745 {
2746 case 0: /* Top two contenders are equally good. */
2747 /* FIXME: GDB does not support the general ambiguous case.
2748 All candidates should be collected and presented the
2749 user. */
2750 error (_("Ambiguous overload resolution"));
2751 break;
2752 case 1: /* Incomparable top contenders. */
2753 /* This is an error incompatible candidates
2754 should not have been proposed. */
2755 error (_("Internal error: incompatible "
2756 "overload candidates proposed"));
2757 break;
2758 case 2: /* Function champion. */
2759 method_oload_champ = -1;
2760 match_quality = func_match_quality;
2761 break;
2762 case 3: /* Method champion. */
2763 func_oload_champ = -1;
2764 match_quality = method_match_quality;
2765 break;
2766 default:
2767 error (_("Internal error: unexpected overload comparison result"));
2768 break;
2769 }
2770 }
2771 else
2772 {
2773 /* We have either a method match or a function match. */
2774 if (method_oload_champ >= 0)
2775 match_quality = method_match_quality;
2776 else
2777 match_quality = func_match_quality;
2778 }
2779
2780 if (match_quality == INCOMPATIBLE)
2781 {
2782 if (method == METHOD)
2783 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2784 obj_type_name,
2785 (obj_type_name && *obj_type_name) ? "::" : "",
2786 name);
2787 else
2788 error (_("Cannot resolve function %s to any overloaded instance"),
2789 func_name);
2790 }
2791 else if (match_quality == NON_STANDARD)
2792 {
2793 if (method == METHOD)
2794 warning (_("Using non-standard conversion to match "
2795 "method %s%s%s to supplied arguments"),
2796 obj_type_name,
2797 (obj_type_name && *obj_type_name) ? "::" : "",
2798 name);
2799 else
2800 warning (_("Using non-standard conversion to match "
2801 "function %s to supplied arguments"),
2802 func_name);
2803 }
2804
2805 if (staticp != NULL)
2806 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2807
2808 if (method_oload_champ >= 0)
2809 {
2810 if (src_method_oload_champ >= 0)
2811 {
2812 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2813 && noside != EVAL_AVOID_SIDE_EFFECTS)
2814 {
2815 *valp = value_virtual_fn_field (&temp, fns_ptr,
2816 method_oload_champ, basetype,
2817 boffset);
2818 }
2819 else
2820 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2821 basetype, boffset);
2822 }
2823 else
2824 *valp = value_from_xmethod
2825 (std::move (xm_worker_vec[ext_method_oload_champ]));
2826 }
2827 else
2828 *symp = oload_syms[func_oload_champ];
2829
2830 if (objp)
2831 {
2832 struct type *temp_type = check_typedef (value_type (temp));
2833 struct type *objtype = check_typedef (obj_type);
2834
2835 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2836 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2837 || TYPE_IS_REFERENCE (objtype)))
2838 {
2839 temp = value_addr (temp);
2840 }
2841 *objp = temp;
2842 }
2843
2844 do_cleanups (all_cleanups);
2845
2846 switch (match_quality)
2847 {
2848 case INCOMPATIBLE:
2849 return 100;
2850 case NON_STANDARD:
2851 return 10;
2852 default: /* STANDARD */
2853 return 0;
2854 }
2855 }
2856
2857 /* Find the best overload match, searching for FUNC_NAME in namespaces
2858 contained in QUALIFIED_NAME until it either finds a good match or
2859 runs out of namespaces. It stores the overloaded functions in
2860 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2861 calling function is responsible for freeing *OLOAD_SYMS and
2862 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2863 performned. */
2864
2865 static int
2866 find_oload_champ_namespace (struct value **args, int nargs,
2867 const char *func_name,
2868 const char *qualified_name,
2869 struct symbol ***oload_syms,
2870 struct badness_vector **oload_champ_bv,
2871 const int no_adl)
2872 {
2873 int oload_champ;
2874
2875 find_oload_champ_namespace_loop (args, nargs,
2876 func_name,
2877 qualified_name, 0,
2878 oload_syms, oload_champ_bv,
2879 &oload_champ,
2880 no_adl);
2881
2882 return oload_champ;
2883 }
2884
2885 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2886 how deep we've looked for namespaces, and the champ is stored in
2887 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2888 if it isn't. Other arguments are the same as in
2889 find_oload_champ_namespace
2890
2891 It is the caller's responsibility to free *OLOAD_SYMS and
2892 *OLOAD_CHAMP_BV. */
2893
2894 static int
2895 find_oload_champ_namespace_loop (struct value **args, int nargs,
2896 const char *func_name,
2897 const char *qualified_name,
2898 int namespace_len,
2899 struct symbol ***oload_syms,
2900 struct badness_vector **oload_champ_bv,
2901 int *oload_champ,
2902 const int no_adl)
2903 {
2904 int next_namespace_len = namespace_len;
2905 int searched_deeper = 0;
2906 int num_fns = 0;
2907 struct cleanup *old_cleanups;
2908 int new_oload_champ;
2909 struct symbol **new_oload_syms;
2910 struct badness_vector *new_oload_champ_bv;
2911 char *new_namespace;
2912
2913 if (next_namespace_len != 0)
2914 {
2915 gdb_assert (qualified_name[next_namespace_len] == ':');
2916 next_namespace_len += 2;
2917 }
2918 next_namespace_len +=
2919 cp_find_first_component (qualified_name + next_namespace_len);
2920
2921 /* Initialize these to values that can safely be xfree'd. */
2922 *oload_syms = NULL;
2923 *oload_champ_bv = NULL;
2924
2925 /* First, see if we have a deeper namespace we can search in.
2926 If we get a good match there, use it. */
2927
2928 if (qualified_name[next_namespace_len] == ':')
2929 {
2930 searched_deeper = 1;
2931
2932 if (find_oload_champ_namespace_loop (args, nargs,
2933 func_name, qualified_name,
2934 next_namespace_len,
2935 oload_syms, oload_champ_bv,
2936 oload_champ, no_adl))
2937 {
2938 return 1;
2939 }
2940 };
2941
2942 /* If we reach here, either we're in the deepest namespace or we
2943 didn't find a good match in a deeper namespace. But, in the
2944 latter case, we still have a bad match in a deeper namespace;
2945 note that we might not find any match at all in the current
2946 namespace. (There's always a match in the deepest namespace,
2947 because this overload mechanism only gets called if there's a
2948 function symbol to start off with.) */
2949
2950 old_cleanups = make_cleanup (xfree, *oload_syms);
2951 make_cleanup (xfree, *oload_champ_bv);
2952 new_namespace = (char *) alloca (namespace_len + 1);
2953 strncpy (new_namespace, qualified_name, namespace_len);
2954 new_namespace[namespace_len] = '\0';
2955 new_oload_syms = make_symbol_overload_list (func_name,
2956 new_namespace);
2957
2958 /* If we have reached the deepest level perform argument
2959 determined lookup. */
2960 if (!searched_deeper && !no_adl)
2961 {
2962 int ix;
2963 struct type **arg_types;
2964
2965 /* Prepare list of argument types for overload resolution. */
2966 arg_types = (struct type **)
2967 alloca (nargs * (sizeof (struct type *)));
2968 for (ix = 0; ix < nargs; ix++)
2969 arg_types[ix] = value_type (args[ix]);
2970 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2971 }
2972
2973 while (new_oload_syms[num_fns])
2974 ++num_fns;
2975
2976 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2977 NULL, NULL, new_oload_syms,
2978 &new_oload_champ_bv);
2979
2980 /* Case 1: We found a good match. Free earlier matches (if any),
2981 and return it. Case 2: We didn't find a good match, but we're
2982 not the deepest function. Then go with the bad match that the
2983 deeper function found. Case 3: We found a bad match, and we're
2984 the deepest function. Then return what we found, even though
2985 it's a bad match. */
2986
2987 if (new_oload_champ != -1
2988 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2989 {
2990 *oload_syms = new_oload_syms;
2991 *oload_champ = new_oload_champ;
2992 *oload_champ_bv = new_oload_champ_bv;
2993 do_cleanups (old_cleanups);
2994 return 1;
2995 }
2996 else if (searched_deeper)
2997 {
2998 xfree (new_oload_syms);
2999 xfree (new_oload_champ_bv);
3000 discard_cleanups (old_cleanups);
3001 return 0;
3002 }
3003 else
3004 {
3005 *oload_syms = new_oload_syms;
3006 *oload_champ = new_oload_champ;
3007 *oload_champ_bv = new_oload_champ_bv;
3008 do_cleanups (old_cleanups);
3009 return 0;
3010 }
3011 }
3012
3013 /* Look for a function to take NARGS args of ARGS. Find
3014 the best match from among the overloaded methods or functions
3015 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
3016 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
3017 non-NULL.
3018
3019 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
3020 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
3021
3022 Return the index of the best match; store an indication of the
3023 quality of the match in OLOAD_CHAMP_BV.
3024
3025 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3026
3027 static int
3028 find_oload_champ (struct value **args, int nargs,
3029 int num_fns, struct fn_field *fns_ptr,
3030 const std::vector<xmethod_worker_up> *xm_worker_vec,
3031 struct symbol **oload_syms,
3032 struct badness_vector **oload_champ_bv)
3033 {
3034 int ix;
3035 /* A measure of how good an overloaded instance is. */
3036 struct badness_vector *bv;
3037 /* Index of best overloaded function. */
3038 int oload_champ = -1;
3039 /* Current ambiguity state for overload resolution. */
3040 int oload_ambiguous = 0;
3041 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3042
3043 /* A champion can be found among methods alone, or among functions
3044 alone, or in xmethods alone, but not in more than one of these
3045 groups. */
3046 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3047 == 1);
3048
3049 *oload_champ_bv = NULL;
3050
3051 int fn_count = xm_worker_vec != NULL ? xm_worker_vec->size () : num_fns;
3052
3053 /* Consider each candidate in turn. */
3054 for (ix = 0; ix < fn_count; ix++)
3055 {
3056 int jj;
3057 int static_offset = 0;
3058 int nparms;
3059 struct type **parm_types;
3060
3061 if (xm_worker_vec != NULL)
3062 {
3063 xmethod_worker *worker = (*xm_worker_vec)[ix].get ();
3064 parm_types = worker->get_arg_types (&nparms);
3065 }
3066 else
3067 {
3068 if (fns_ptr != NULL)
3069 {
3070 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3071 static_offset = oload_method_static_p (fns_ptr, ix);
3072 }
3073 else
3074 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3075
3076 parm_types = XNEWVEC (struct type *, nparms);
3077 for (jj = 0; jj < nparms; jj++)
3078 parm_types[jj] = (fns_ptr != NULL
3079 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3080 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3081 jj));
3082 }
3083
3084 /* Compare parameter types to supplied argument types. Skip
3085 THIS for static methods. */
3086 bv = rank_function (parm_types, nparms,
3087 args + static_offset,
3088 nargs - static_offset);
3089
3090 if (!*oload_champ_bv)
3091 {
3092 *oload_champ_bv = bv;
3093 oload_champ = 0;
3094 }
3095 else /* See whether current candidate is better or worse than
3096 previous best. */
3097 switch (compare_badness (bv, *oload_champ_bv))
3098 {
3099 case 0: /* Top two contenders are equally good. */
3100 oload_ambiguous = 1;
3101 break;
3102 case 1: /* Incomparable top contenders. */
3103 oload_ambiguous = 2;
3104 break;
3105 case 2: /* New champion, record details. */
3106 *oload_champ_bv = bv;
3107 oload_ambiguous = 0;
3108 oload_champ = ix;
3109 break;
3110 case 3:
3111 default:
3112 break;
3113 }
3114 xfree (parm_types);
3115 if (overload_debug)
3116 {
3117 if (fns_ptr != NULL)
3118 fprintf_filtered (gdb_stderr,
3119 "Overloaded method instance %s, # of parms %d\n",
3120 fns_ptr[ix].physname, nparms);
3121 else if (xm_worker_vec != NULL)
3122 fprintf_filtered (gdb_stderr,
3123 "Xmethod worker, # of parms %d\n",
3124 nparms);
3125 else
3126 fprintf_filtered (gdb_stderr,
3127 "Overloaded function instance "
3128 "%s # of parms %d\n",
3129 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3130 nparms);
3131 for (jj = 0; jj < nargs - static_offset; jj++)
3132 fprintf_filtered (gdb_stderr,
3133 "...Badness @ %d : %d\n",
3134 jj, bv->rank[jj].rank);
3135 fprintf_filtered (gdb_stderr, "Overload resolution "
3136 "champion is %d, ambiguous? %d\n",
3137 oload_champ, oload_ambiguous);
3138 }
3139 }
3140
3141 return oload_champ;
3142 }
3143
3144 /* Return 1 if we're looking at a static method, 0 if we're looking at
3145 a non-static method or a function that isn't a method. */
3146
3147 static int
3148 oload_method_static_p (struct fn_field *fns_ptr, int index)
3149 {
3150 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3151 return 1;
3152 else
3153 return 0;
3154 }
3155
3156 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3157
3158 static enum oload_classification
3159 classify_oload_match (struct badness_vector *oload_champ_bv,
3160 int nargs,
3161 int static_offset)
3162 {
3163 int ix;
3164 enum oload_classification worst = STANDARD;
3165
3166 for (ix = 1; ix <= nargs - static_offset; ix++)
3167 {
3168 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3169 or worse return INCOMPATIBLE. */
3170 if (compare_ranks (oload_champ_bv->rank[ix],
3171 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3172 return INCOMPATIBLE; /* Truly mismatched types. */
3173 /* Otherwise If this conversion is as bad as
3174 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3175 else if (compare_ranks (oload_champ_bv->rank[ix],
3176 NS_POINTER_CONVERSION_BADNESS) <= 0)
3177 worst = NON_STANDARD; /* Non-standard type conversions
3178 needed. */
3179 }
3180
3181 /* If no INCOMPATIBLE classification was found, return the worst one
3182 that was found (if any). */
3183 return worst;
3184 }
3185
3186 /* C++: return 1 is NAME is a legitimate name for the destructor of
3187 type TYPE. If TYPE does not have a destructor, or if NAME is
3188 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3189 have CHECK_TYPEDEF applied, this function will apply it itself. */
3190
3191 int
3192 destructor_name_p (const char *name, struct type *type)
3193 {
3194 if (name[0] == '~')
3195 {
3196 const char *dname = type_name_no_tag_or_error (type);
3197 const char *cp = strchr (dname, '<');
3198 unsigned int len;
3199
3200 /* Do not compare the template part for template classes. */
3201 if (cp == NULL)
3202 len = strlen (dname);
3203 else
3204 len = cp - dname;
3205 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3206 error (_("name of destructor must equal name of class"));
3207 else
3208 return 1;
3209 }
3210 return 0;
3211 }
3212
3213 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3214 class". If the name is found, return a value representing it;
3215 otherwise throw an exception. */
3216
3217 static struct value *
3218 enum_constant_from_type (struct type *type, const char *name)
3219 {
3220 int i;
3221 int name_len = strlen (name);
3222
3223 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3224 && TYPE_DECLARED_CLASS (type));
3225
3226 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3227 {
3228 const char *fname = TYPE_FIELD_NAME (type, i);
3229 int len;
3230
3231 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3232 || fname == NULL)
3233 continue;
3234
3235 /* Look for the trailing "::NAME", since enum class constant
3236 names are qualified here. */
3237 len = strlen (fname);
3238 if (len + 2 >= name_len
3239 && fname[len - name_len - 2] == ':'
3240 && fname[len - name_len - 1] == ':'
3241 && strcmp (&fname[len - name_len], name) == 0)
3242 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3243 }
3244
3245 error (_("no constant named \"%s\" in enum \"%s\""),
3246 name, TYPE_TAG_NAME (type));
3247 }
3248
3249 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3250 return the appropriate member (or the address of the member, if
3251 WANT_ADDRESS). This function is used to resolve user expressions
3252 of the form "DOMAIN::NAME". For more details on what happens, see
3253 the comment before value_struct_elt_for_reference. */
3254
3255 struct value *
3256 value_aggregate_elt (struct type *curtype, const char *name,
3257 struct type *expect_type, int want_address,
3258 enum noside noside)
3259 {
3260 switch (TYPE_CODE (curtype))
3261 {
3262 case TYPE_CODE_STRUCT:
3263 case TYPE_CODE_UNION:
3264 return value_struct_elt_for_reference (curtype, 0, curtype,
3265 name, expect_type,
3266 want_address, noside);
3267 case TYPE_CODE_NAMESPACE:
3268 return value_namespace_elt (curtype, name,
3269 want_address, noside);
3270
3271 case TYPE_CODE_ENUM:
3272 return enum_constant_from_type (curtype, name);
3273
3274 default:
3275 internal_error (__FILE__, __LINE__,
3276 _("non-aggregate type in value_aggregate_elt"));
3277 }
3278 }
3279
3280 /* Compares the two method/function types T1 and T2 for "equality"
3281 with respect to the methods' parameters. If the types of the
3282 two parameter lists are the same, returns 1; 0 otherwise. This
3283 comparison may ignore any artificial parameters in T1 if
3284 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3285 the first artificial parameter in T1, assumed to be a 'this' pointer.
3286
3287 The type T2 is expected to have come from make_params (in eval.c). */
3288
3289 static int
3290 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3291 {
3292 int start = 0;
3293
3294 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3295 ++start;
3296
3297 /* If skipping artificial fields, find the first real field
3298 in T1. */
3299 if (skip_artificial)
3300 {
3301 while (start < TYPE_NFIELDS (t1)
3302 && TYPE_FIELD_ARTIFICIAL (t1, start))
3303 ++start;
3304 }
3305
3306 /* Now compare parameters. */
3307
3308 /* Special case: a method taking void. T1 will contain no
3309 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3310 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3311 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3312 return 1;
3313
3314 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3315 {
3316 int i;
3317
3318 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3319 {
3320 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3321 TYPE_FIELD_TYPE (t2, i), NULL),
3322 EXACT_MATCH_BADNESS) != 0)
3323 return 0;
3324 }
3325
3326 return 1;
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3333 return the address of this member as a "pointer to member" type.
3334 If INTYPE is non-null, then it will be the type of the member we
3335 are looking for. This will help us resolve "pointers to member
3336 functions". This function is used to resolve user expressions of
3337 the form "DOMAIN::NAME". */
3338
3339 static struct value *
3340 value_struct_elt_for_reference (struct type *domain, int offset,
3341 struct type *curtype, const char *name,
3342 struct type *intype,
3343 int want_address,
3344 enum noside noside)
3345 {
3346 struct type *t = curtype;
3347 int i;
3348 struct value *v, *result;
3349
3350 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3351 && TYPE_CODE (t) != TYPE_CODE_UNION)
3352 error (_("Internal error: non-aggregate type "
3353 "to value_struct_elt_for_reference"));
3354
3355 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3356 {
3357 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3358
3359 if (t_field_name && strcmp (t_field_name, name) == 0)
3360 {
3361 if (field_is_static (&TYPE_FIELD (t, i)))
3362 {
3363 v = value_static_field (t, i);
3364 if (want_address)
3365 v = value_addr (v);
3366 return v;
3367 }
3368 if (TYPE_FIELD_PACKED (t, i))
3369 error (_("pointers to bitfield members not allowed"));
3370
3371 if (want_address)
3372 return value_from_longest
3373 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3374 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3375 else if (noside != EVAL_NORMAL)
3376 return allocate_value (TYPE_FIELD_TYPE (t, i));
3377 else
3378 {
3379 /* Try to evaluate NAME as a qualified name with implicit
3380 this pointer. In this case, attempt to return the
3381 equivalent to `this->*(&TYPE::NAME)'. */
3382 v = value_of_this_silent (current_language);
3383 if (v != NULL)
3384 {
3385 struct value *ptr;
3386 long mem_offset;
3387 struct type *type, *tmp;
3388
3389 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3390 type = check_typedef (value_type (ptr));
3391 gdb_assert (type != NULL
3392 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3393 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3394 v = value_cast_pointers (tmp, v, 1);
3395 mem_offset = value_as_long (ptr);
3396 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3397 result = value_from_pointer (tmp,
3398 value_as_long (v) + mem_offset);
3399 return value_ind (result);
3400 }
3401
3402 error (_("Cannot reference non-static field \"%s\""), name);
3403 }
3404 }
3405 }
3406
3407 /* C++: If it was not found as a data field, then try to return it
3408 as a pointer to a method. */
3409
3410 /* Perform all necessary dereferencing. */
3411 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3412 intype = TYPE_TARGET_TYPE (intype);
3413
3414 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3415 {
3416 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3417 char dem_opname[64];
3418
3419 if (startswith (t_field_name, "__")
3420 || startswith (t_field_name, "op")
3421 || startswith (t_field_name, "type"))
3422 {
3423 if (cplus_demangle_opname (t_field_name,
3424 dem_opname, DMGL_ANSI))
3425 t_field_name = dem_opname;
3426 else if (cplus_demangle_opname (t_field_name,
3427 dem_opname, 0))
3428 t_field_name = dem_opname;
3429 }
3430 if (t_field_name && strcmp (t_field_name, name) == 0)
3431 {
3432 int j;
3433 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3434 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3435
3436 check_stub_method_group (t, i);
3437
3438 if (intype)
3439 {
3440 for (j = 0; j < len; ++j)
3441 {
3442 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3443 continue;
3444 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3445 continue;
3446
3447 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3448 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3449 intype, 1))
3450 break;
3451 }
3452
3453 if (j == len)
3454 error (_("no member function matches "
3455 "that type instantiation"));
3456 }
3457 else
3458 {
3459 int ii;
3460
3461 j = -1;
3462 for (ii = 0; ii < len; ++ii)
3463 {
3464 /* Skip artificial methods. This is necessary if,
3465 for example, the user wants to "print
3466 subclass::subclass" with only one user-defined
3467 constructor. There is no ambiguity in this case.
3468 We are careful here to allow artificial methods
3469 if they are the unique result. */
3470 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3471 {
3472 if (j == -1)
3473 j = ii;
3474 continue;
3475 }
3476
3477 /* Desired method is ambiguous if more than one
3478 method is defined. */
3479 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3480 error (_("non-unique member `%s' requires "
3481 "type instantiation"), name);
3482
3483 j = ii;
3484 }
3485
3486 if (j == -1)
3487 error (_("no matching member function"));
3488 }
3489
3490 if (TYPE_FN_FIELD_STATIC_P (f, j))
3491 {
3492 struct symbol *s =
3493 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3494 0, VAR_DOMAIN, 0).symbol;
3495
3496 if (s == NULL)
3497 return NULL;
3498
3499 if (want_address)
3500 return value_addr (read_var_value (s, 0, 0));
3501 else
3502 return read_var_value (s, 0, 0);
3503 }
3504
3505 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3506 {
3507 if (want_address)
3508 {
3509 result = allocate_value
3510 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3511 cplus_make_method_ptr (value_type (result),
3512 value_contents_writeable (result),
3513 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3514 }
3515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3516 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3517 else
3518 error (_("Cannot reference virtual member function \"%s\""),
3519 name);
3520 }
3521 else
3522 {
3523 struct symbol *s =
3524 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3525 0, VAR_DOMAIN, 0).symbol;
3526
3527 if (s == NULL)
3528 return NULL;
3529
3530 v = read_var_value (s, 0, 0);
3531 if (!want_address)
3532 result = v;
3533 else
3534 {
3535 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3536 cplus_make_method_ptr (value_type (result),
3537 value_contents_writeable (result),
3538 value_address (v), 0);
3539 }
3540 }
3541 return result;
3542 }
3543 }
3544 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3545 {
3546 struct value *v;
3547 int base_offset;
3548
3549 if (BASETYPE_VIA_VIRTUAL (t, i))
3550 base_offset = 0;
3551 else
3552 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3553 v = value_struct_elt_for_reference (domain,
3554 offset + base_offset,
3555 TYPE_BASECLASS (t, i),
3556 name, intype,
3557 want_address, noside);
3558 if (v)
3559 return v;
3560 }
3561
3562 /* As a last chance, pretend that CURTYPE is a namespace, and look
3563 it up that way; this (frequently) works for types nested inside
3564 classes. */
3565
3566 return value_maybe_namespace_elt (curtype, name,
3567 want_address, noside);
3568 }
3569
3570 /* C++: Return the member NAME of the namespace given by the type
3571 CURTYPE. */
3572
3573 static struct value *
3574 value_namespace_elt (const struct type *curtype,
3575 const char *name, int want_address,
3576 enum noside noside)
3577 {
3578 struct value *retval = value_maybe_namespace_elt (curtype, name,
3579 want_address,
3580 noside);
3581
3582 if (retval == NULL)
3583 error (_("No symbol \"%s\" in namespace \"%s\"."),
3584 name, TYPE_TAG_NAME (curtype));
3585
3586 return retval;
3587 }
3588
3589 /* A helper function used by value_namespace_elt and
3590 value_struct_elt_for_reference. It looks up NAME inside the
3591 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3592 is a class and NAME refers to a type in CURTYPE itself (as opposed
3593 to, say, some base class of CURTYPE). */
3594
3595 static struct value *
3596 value_maybe_namespace_elt (const struct type *curtype,
3597 const char *name, int want_address,
3598 enum noside noside)
3599 {
3600 const char *namespace_name = TYPE_TAG_NAME (curtype);
3601 struct block_symbol sym;
3602 struct value *result;
3603
3604 sym = cp_lookup_symbol_namespace (namespace_name, name,
3605 get_selected_block (0), VAR_DOMAIN);
3606
3607 if (sym.symbol == NULL)
3608 return NULL;
3609 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3610 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3611 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3612 else
3613 result = value_of_variable (sym.symbol, sym.block);
3614
3615 if (want_address)
3616 result = value_addr (result);
3617
3618 return result;
3619 }
3620
3621 /* Given a pointer or a reference value V, find its real (RTTI) type.
3622
3623 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3624 and refer to the values computed for the object pointed to. */
3625
3626 struct type *
3627 value_rtti_indirect_type (struct value *v, int *full,
3628 LONGEST *top, int *using_enc)
3629 {
3630 struct value *target = NULL;
3631 struct type *type, *real_type, *target_type;
3632
3633 type = value_type (v);
3634 type = check_typedef (type);
3635 if (TYPE_IS_REFERENCE (type))
3636 target = coerce_ref (v);
3637 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3638 {
3639
3640 TRY
3641 {
3642 target = value_ind (v);
3643 }
3644 CATCH (except, RETURN_MASK_ERROR)
3645 {
3646 if (except.error == MEMORY_ERROR)
3647 {
3648 /* value_ind threw a memory error. The pointer is NULL or
3649 contains an uninitialized value: we can't determine any
3650 type. */
3651 return NULL;
3652 }
3653 throw_exception (except);
3654 }
3655 END_CATCH
3656 }
3657 else
3658 return NULL;
3659
3660 real_type = value_rtti_type (target, full, top, using_enc);
3661
3662 if (real_type)
3663 {
3664 /* Copy qualifiers to the referenced object. */
3665 target_type = value_type (target);
3666 real_type = make_cv_type (TYPE_CONST (target_type),
3667 TYPE_VOLATILE (target_type), real_type, NULL);
3668 if (TYPE_IS_REFERENCE (type))
3669 real_type = lookup_reference_type (real_type, TYPE_CODE (type));
3670 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3671 real_type = lookup_pointer_type (real_type);
3672 else
3673 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3674
3675 /* Copy qualifiers to the pointer/reference. */
3676 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3677 real_type, NULL);
3678 }
3679
3680 return real_type;
3681 }
3682
3683 /* Given a value pointed to by ARGP, check its real run-time type, and
3684 if that is different from the enclosing type, create a new value
3685 using the real run-time type as the enclosing type (and of the same
3686 type as ARGP) and return it, with the embedded offset adjusted to
3687 be the correct offset to the enclosed object. RTYPE is the type,
3688 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3689 by value_rtti_type(). If these are available, they can be supplied
3690 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3691 NULL if they're not available. */
3692
3693 struct value *
3694 value_full_object (struct value *argp,
3695 struct type *rtype,
3696 int xfull, int xtop,
3697 int xusing_enc)
3698 {
3699 struct type *real_type;
3700 int full = 0;
3701 LONGEST top = -1;
3702 int using_enc = 0;
3703 struct value *new_val;
3704
3705 if (rtype)
3706 {
3707 real_type = rtype;
3708 full = xfull;
3709 top = xtop;
3710 using_enc = xusing_enc;
3711 }
3712 else
3713 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3714
3715 /* If no RTTI data, or if object is already complete, do nothing. */
3716 if (!real_type || real_type == value_enclosing_type (argp))
3717 return argp;
3718
3719 /* In a destructor we might see a real type that is a superclass of
3720 the object's type. In this case it is better to leave the object
3721 as-is. */
3722 if (full
3723 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3724 return argp;
3725
3726 /* If we have the full object, but for some reason the enclosing
3727 type is wrong, set it. */
3728 /* pai: FIXME -- sounds iffy */
3729 if (full)
3730 {
3731 argp = value_copy (argp);
3732 set_value_enclosing_type (argp, real_type);
3733 return argp;
3734 }
3735
3736 /* Check if object is in memory. */
3737 if (VALUE_LVAL (argp) != lval_memory)
3738 {
3739 warning (_("Couldn't retrieve complete object of RTTI "
3740 "type %s; object may be in register(s)."),
3741 TYPE_NAME (real_type));
3742
3743 return argp;
3744 }
3745
3746 /* All other cases -- retrieve the complete object. */
3747 /* Go back by the computed top_offset from the beginning of the
3748 object, adjusting for the embedded offset of argp if that's what
3749 value_rtti_type used for its computation. */
3750 new_val = value_at_lazy (real_type, value_address (argp) - top +
3751 (using_enc ? 0 : value_embedded_offset (argp)));
3752 deprecated_set_value_type (new_val, value_type (argp));
3753 set_value_embedded_offset (new_val, (using_enc
3754 ? top + value_embedded_offset (argp)
3755 : top));
3756 return new_val;
3757 }
3758
3759
3760 /* Return the value of the local variable, if one exists. Throw error
3761 otherwise, such as if the request is made in an inappropriate context. */
3762
3763 struct value *
3764 value_of_this (const struct language_defn *lang)
3765 {
3766 struct block_symbol sym;
3767 const struct block *b;
3768 struct frame_info *frame;
3769
3770 if (!lang->la_name_of_this)
3771 error (_("no `this' in current language"));
3772
3773 frame = get_selected_frame (_("no frame selected"));
3774
3775 b = get_frame_block (frame, NULL);
3776
3777 sym = lookup_language_this (lang, b);
3778 if (sym.symbol == NULL)
3779 error (_("current stack frame does not contain a variable named `%s'"),
3780 lang->la_name_of_this);
3781
3782 return read_var_value (sym.symbol, sym.block, frame);
3783 }
3784
3785 /* Return the value of the local variable, if one exists. Return NULL
3786 otherwise. Never throw error. */
3787
3788 struct value *
3789 value_of_this_silent (const struct language_defn *lang)
3790 {
3791 struct value *ret = NULL;
3792
3793 TRY
3794 {
3795 ret = value_of_this (lang);
3796 }
3797 CATCH (except, RETURN_MASK_ERROR)
3798 {
3799 }
3800 END_CATCH
3801
3802 return ret;
3803 }
3804
3805 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3806 elements long, starting at LOWBOUND. The result has the same lower
3807 bound as the original ARRAY. */
3808
3809 struct value *
3810 value_slice (struct value *array, int lowbound, int length)
3811 {
3812 struct type *slice_range_type, *slice_type, *range_type;
3813 LONGEST lowerbound, upperbound;
3814 struct value *slice;
3815 struct type *array_type;
3816
3817 array_type = check_typedef (value_type (array));
3818 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3819 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3820 error (_("cannot take slice of non-array"));
3821
3822 range_type = TYPE_INDEX_TYPE (array_type);
3823 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3824 error (_("slice from bad array or bitstring"));
3825
3826 if (lowbound < lowerbound || length < 0
3827 || lowbound + length - 1 > upperbound)
3828 error (_("slice out of range"));
3829
3830 /* FIXME-type-allocation: need a way to free this type when we are
3831 done with it. */
3832 slice_range_type = create_static_range_type ((struct type *) NULL,
3833 TYPE_TARGET_TYPE (range_type),
3834 lowbound,
3835 lowbound + length - 1);
3836
3837 {
3838 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3839 LONGEST offset
3840 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3841
3842 slice_type = create_array_type ((struct type *) NULL,
3843 element_type,
3844 slice_range_type);
3845 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3846
3847 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3848 slice = allocate_value_lazy (slice_type);
3849 else
3850 {
3851 slice = allocate_value (slice_type);
3852 value_contents_copy (slice, 0, array, offset,
3853 type_length_units (slice_type));
3854 }
3855
3856 set_value_component_location (slice, array);
3857 set_value_offset (slice, value_offset (array) + offset);
3858 }
3859
3860 return slice;
3861 }
3862
3863 /* Create a value for a FORTRAN complex number. Currently most of the
3864 time values are coerced to COMPLEX*16 (i.e. a complex number
3865 composed of 2 doubles. This really should be a smarter routine
3866 that figures out precision inteligently as opposed to assuming
3867 doubles. FIXME: fmb */
3868
3869 struct value *
3870 value_literal_complex (struct value *arg1,
3871 struct value *arg2,
3872 struct type *type)
3873 {
3874 struct value *val;
3875 struct type *real_type = TYPE_TARGET_TYPE (type);
3876
3877 val = allocate_value (type);
3878 arg1 = value_cast (real_type, arg1);
3879 arg2 = value_cast (real_type, arg2);
3880
3881 memcpy (value_contents_raw (val),
3882 value_contents (arg1), TYPE_LENGTH (real_type));
3883 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3884 value_contents (arg2), TYPE_LENGTH (real_type));
3885 return val;
3886 }
3887
3888 /* Cast a value into the appropriate complex data type. */
3889
3890 static struct value *
3891 cast_into_complex (struct type *type, struct value *val)
3892 {
3893 struct type *real_type = TYPE_TARGET_TYPE (type);
3894
3895 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3896 {
3897 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3898 struct value *re_val = allocate_value (val_real_type);
3899 struct value *im_val = allocate_value (val_real_type);
3900
3901 memcpy (value_contents_raw (re_val),
3902 value_contents (val), TYPE_LENGTH (val_real_type));
3903 memcpy (value_contents_raw (im_val),
3904 value_contents (val) + TYPE_LENGTH (val_real_type),
3905 TYPE_LENGTH (val_real_type));
3906
3907 return value_literal_complex (re_val, im_val, type);
3908 }
3909 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3910 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3911 return value_literal_complex (val,
3912 value_zero (real_type, not_lval),
3913 type);
3914 else
3915 error (_("cannot cast non-number to complex"));
3916 }
3917
3918 void
3919 _initialize_valops (void)
3920 {
3921 add_setshow_boolean_cmd ("overload-resolution", class_support,
3922 &overload_resolution, _("\
3923 Set overload resolution in evaluating C++ functions."), _("\
3924 Show overload resolution in evaluating C++ functions."),
3925 NULL, NULL,
3926 show_overload_resolution,
3927 &setlist, &showlist);
3928 overload_resolution = 1;
3929 }
This page took 0.11752 seconds and 5 git commands to generate.