Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45 #include "inferior.h"
46 #include "gdbsupport/selftest.h"
47 #include "selftest-arch.h"
48
49 /* Maximum number of wchars returned from wchar_iterate. */
50 #define MAX_WCHARS 4
51
52 /* A convenience macro to compute the size of a wchar_t buffer containing X
53 characters. */
54 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
55
56 /* Character buffer size saved while iterating over wchars. */
57 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
58
59 /* A structure to encapsulate state information from iterated
60 character conversions. */
61 struct converted_character
62 {
63 /* The number of characters converted. */
64 int num_chars;
65
66 /* The result of the conversion. See charset.h for more. */
67 enum wchar_iterate_result result;
68
69 /* The (saved) converted character(s). */
70 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
71
72 /* The first converted target byte. */
73 const gdb_byte *buf;
74
75 /* The number of bytes converted. */
76 size_t buflen;
77
78 /* How many times this character(s) is repeated. */
79 int repeat_count;
80 };
81
82 /* Command lists for set/show print raw. */
83 struct cmd_list_element *setprintrawlist;
84 struct cmd_list_element *showprintrawlist;
85
86 /* Prototypes for local functions */
87
88 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
89 int len, int *errptr);
90
91 static void set_input_radix_1 (int, unsigned);
92
93 static void set_output_radix_1 (int, unsigned);
94
95 static void val_print_type_code_flags (struct type *type,
96 struct value *original_value,
97 int embedded_offset,
98 struct ui_file *stream);
99
100 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
101 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
102
103 struct value_print_options user_print_options =
104 {
105 Val_prettyformat_default, /* prettyformat */
106 0, /* prettyformat_arrays */
107 0, /* prettyformat_structs */
108 0, /* vtblprint */
109 1, /* unionprint */
110 1, /* addressprint */
111 0, /* objectprint */
112 PRINT_MAX_DEFAULT, /* print_max */
113 10, /* repeat_count_threshold */
114 0, /* output_format */
115 0, /* format */
116 1, /* memory_tag_violations */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1, /* symbol_print */
125 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
126 1 /* finish_print */
127 };
128
129 /* Initialize *OPTS to be a copy of the user print options. */
130 void
131 get_user_print_options (struct value_print_options *opts)
132 {
133 *opts = user_print_options;
134 }
135
136 /* Initialize *OPTS to be a copy of the user print options, but with
137 pretty-formatting disabled. */
138 void
139 get_no_prettyformat_print_options (struct value_print_options *opts)
140 {
141 *opts = user_print_options;
142 opts->prettyformat = Val_no_prettyformat;
143 }
144
145 /* Initialize *OPTS to be a copy of the user print options, but using
146 FORMAT as the formatting option. */
147 void
148 get_formatted_print_options (struct value_print_options *opts,
149 char format)
150 {
151 *opts = user_print_options;
152 opts->format = format;
153 }
154
155 static void
156 show_print_max (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file,
160 _("Limit on string chars or array "
161 "elements to print is %s.\n"),
162 value);
163 }
164
165
166 /* Default input and output radixes, and output format letter. */
167
168 unsigned input_radix = 10;
169 static void
170 show_input_radix (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file,
174 _("Default input radix for entering numbers is %s.\n"),
175 value);
176 }
177
178 unsigned output_radix = 10;
179 static void
180 show_output_radix (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file,
184 _("Default output radix for printing of values is %s.\n"),
185 value);
186 }
187
188 /* By default we print arrays without printing the index of each element in
189 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
190
191 static void
192 show_print_array_indexes (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
196 }
197
198 /* Print repeat counts if there are more than this many repetitions of an
199 element in an array. Referenced by the low level language dependent
200 print routines. */
201
202 static void
203 show_repeat_count_threshold (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
207 value);
208 }
209
210 /* If nonzero, prints memory tag violations for pointers. */
211
212 static void
213 show_memory_tag_violations (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215 {
216 fprintf_filtered (file,
217 _("Printing of memory tag violations is %s.\n"),
218 value);
219 }
220
221 /* If nonzero, stops printing of char arrays at first null. */
222
223 static void
224 show_stop_print_at_null (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file,
228 _("Printing of char arrays to stop "
229 "at first null char is %s.\n"),
230 value);
231 }
232
233 /* Controls pretty printing of structures. */
234
235 static void
236 show_prettyformat_structs (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
240 }
241
242 /* Controls pretty printing of arrays. */
243
244 static void
245 show_prettyformat_arrays (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247 {
248 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
249 }
250
251 /* If nonzero, causes unions inside structures or other unions to be
252 printed. */
253
254 static void
255 show_unionprint (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of unions interior to structures is %s.\n"),
260 value);
261 }
262
263 /* If nonzero, causes machine addresses to be printed in certain contexts. */
264
265 static void
266 show_addressprint (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268 {
269 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
270 }
271
272 static void
273 show_symbol_print (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file,
277 _("Printing of symbols when printing pointers is %s.\n"),
278 value);
279 }
280
281 \f
282
283 /* A helper function for val_print. When printing in "summary" mode,
284 we want to print scalar arguments, but not aggregate arguments.
285 This function distinguishes between the two. */
286
287 int
288 val_print_scalar_type_p (struct type *type)
289 {
290 type = check_typedef (type);
291 while (TYPE_IS_REFERENCE (type))
292 {
293 type = TYPE_TARGET_TYPE (type);
294 type = check_typedef (type);
295 }
296 switch (type->code ())
297 {
298 case TYPE_CODE_ARRAY:
299 case TYPE_CODE_STRUCT:
300 case TYPE_CODE_UNION:
301 case TYPE_CODE_SET:
302 case TYPE_CODE_STRING:
303 return 0;
304 default:
305 return 1;
306 }
307 }
308
309 /* A helper function for val_print. When printing with limited depth we
310 want to print string and scalar arguments, but not aggregate arguments.
311 This function distinguishes between the two. */
312
313 static bool
314 val_print_scalar_or_string_type_p (struct type *type,
315 const struct language_defn *language)
316 {
317 return (val_print_scalar_type_p (type)
318 || language->is_string_type_p (type));
319 }
320
321 /* See valprint.h. */
322
323 int
324 valprint_check_validity (struct ui_file *stream,
325 struct type *type,
326 LONGEST embedded_offset,
327 const struct value *val)
328 {
329 type = check_typedef (type);
330
331 if (type_not_associated (type))
332 {
333 val_print_not_associated (stream);
334 return 0;
335 }
336
337 if (type_not_allocated (type))
338 {
339 val_print_not_allocated (stream);
340 return 0;
341 }
342
343 if (type->code () != TYPE_CODE_UNION
344 && type->code () != TYPE_CODE_STRUCT
345 && type->code () != TYPE_CODE_ARRAY)
346 {
347 if (value_bits_any_optimized_out (val,
348 TARGET_CHAR_BIT * embedded_offset,
349 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
350 {
351 val_print_optimized_out (val, stream);
352 return 0;
353 }
354
355 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
356 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
357 {
358 const int is_ref = type->code () == TYPE_CODE_REF;
359 int ref_is_addressable = 0;
360
361 if (is_ref)
362 {
363 const struct value *deref_val = coerce_ref_if_computed (val);
364
365 if (deref_val != NULL)
366 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
367 }
368
369 if (!is_ref || !ref_is_addressable)
370 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
371 stream);
372
373 /* C++ references should be valid even if they're synthetic. */
374 return is_ref;
375 }
376
377 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
378 {
379 val_print_unavailable (stream);
380 return 0;
381 }
382 }
383
384 return 1;
385 }
386
387 void
388 val_print_optimized_out (const struct value *val, struct ui_file *stream)
389 {
390 if (val != NULL && value_lval_const (val) == lval_register)
391 val_print_not_saved (stream);
392 else
393 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
394 }
395
396 void
397 val_print_not_saved (struct ui_file *stream)
398 {
399 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
400 }
401
402 void
403 val_print_unavailable (struct ui_file *stream)
404 {
405 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
406 }
407
408 void
409 val_print_invalid_address (struct ui_file *stream)
410 {
411 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
412 }
413
414 /* Print a pointer based on the type of its target.
415
416 Arguments to this functions are roughly the same as those in
417 generic_val_print. A difference is that ADDRESS is the address to print,
418 with embedded_offset already added. ELTTYPE represents
419 the pointed type after check_typedef. */
420
421 static void
422 print_unpacked_pointer (struct type *type, struct type *elttype,
423 CORE_ADDR address, struct ui_file *stream,
424 const struct value_print_options *options)
425 {
426 struct gdbarch *gdbarch = type->arch ();
427
428 if (elttype->code () == TYPE_CODE_FUNC)
429 {
430 /* Try to print what function it points to. */
431 print_function_pointer_address (options, gdbarch, address, stream);
432 return;
433 }
434
435 if (options->symbol_print)
436 print_address_demangle (options, gdbarch, address, stream, demangle);
437 else if (options->addressprint)
438 fputs_filtered (paddress (gdbarch, address), stream);
439 }
440
441 /* generic_val_print helper for TYPE_CODE_ARRAY. */
442
443 static void
444 generic_val_print_array (struct value *val,
445 struct ui_file *stream, int recurse,
446 const struct value_print_options *options,
447 const struct
448 generic_val_print_decorations *decorations)
449 {
450 struct type *type = check_typedef (value_type (val));
451 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
452 struct type *elttype = check_typedef (unresolved_elttype);
453
454 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
455 {
456 LONGEST low_bound, high_bound;
457
458 if (!get_array_bounds (type, &low_bound, &high_bound))
459 error (_("Could not determine the array high bound"));
460
461 fputs_filtered (decorations->array_start, stream);
462 value_print_array_elements (val, stream, recurse, options, 0);
463 fputs_filtered (decorations->array_end, stream);
464 }
465 else
466 {
467 /* Array of unspecified length: treat like pointer to first elt. */
468 print_unpacked_pointer (type, elttype, value_address (val),
469 stream, options);
470 }
471
472 }
473
474 /* generic_value_print helper for TYPE_CODE_PTR. */
475
476 static void
477 generic_value_print_ptr (struct value *val, struct ui_file *stream,
478 const struct value_print_options *options)
479 {
480
481 if (options->format && options->format != 's')
482 value_print_scalar_formatted (val, options, 0, stream);
483 else
484 {
485 struct type *type = check_typedef (value_type (val));
486 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
487 const gdb_byte *valaddr = value_contents_for_printing (val);
488 CORE_ADDR addr = unpack_pointer (type, valaddr);
489
490 print_unpacked_pointer (type, elttype, addr, stream, options);
491 }
492 }
493
494
495 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
496
497 static void
498 print_ref_address (struct type *type, const gdb_byte *address_buffer,
499 int embedded_offset, struct ui_file *stream)
500 {
501 struct gdbarch *gdbarch = type->arch ();
502
503 if (address_buffer != NULL)
504 {
505 CORE_ADDR address
506 = extract_typed_address (address_buffer + embedded_offset, type);
507
508 fprintf_filtered (stream, "@");
509 fputs_filtered (paddress (gdbarch, address), stream);
510 }
511 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
512 }
513
514 /* If VAL is addressable, return the value contents buffer of a value that
515 represents a pointer to VAL. Otherwise return NULL. */
516
517 static const gdb_byte *
518 get_value_addr_contents (struct value *deref_val)
519 {
520 gdb_assert (deref_val != NULL);
521
522 if (value_lval_const (deref_val) == lval_memory)
523 return value_contents_for_printing_const (value_addr (deref_val));
524 else
525 {
526 /* We have a non-addressable value, such as a DW_AT_const_value. */
527 return NULL;
528 }
529 }
530
531 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
532
533 static void
534 generic_val_print_ref (struct type *type,
535 int embedded_offset, struct ui_file *stream, int recurse,
536 struct value *original_value,
537 const struct value_print_options *options)
538 {
539 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
540 struct value *deref_val = NULL;
541 const int value_is_synthetic
542 = value_bits_synthetic_pointer (original_value,
543 TARGET_CHAR_BIT * embedded_offset,
544 TARGET_CHAR_BIT * TYPE_LENGTH (type));
545 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
546 || options->deref_ref);
547 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
548 const gdb_byte *valaddr = value_contents_for_printing (original_value);
549
550 if (must_coerce_ref && type_is_defined)
551 {
552 deref_val = coerce_ref_if_computed (original_value);
553
554 if (deref_val != NULL)
555 {
556 /* More complicated computed references are not supported. */
557 gdb_assert (embedded_offset == 0);
558 }
559 else
560 deref_val = value_at (TYPE_TARGET_TYPE (type),
561 unpack_pointer (type, valaddr + embedded_offset));
562 }
563 /* Else, original_value isn't a synthetic reference or we don't have to print
564 the reference's contents.
565
566 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
567 cause original_value to be a not_lval instead of an lval_computed,
568 which will make value_bits_synthetic_pointer return false.
569 This happens because if options->objectprint is true, c_value_print will
570 overwrite original_value's contents with the result of coercing
571 the reference through value_addr, and then set its type back to
572 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
573 we can simply treat it as non-synthetic and move on. */
574
575 if (options->addressprint)
576 {
577 const gdb_byte *address = (value_is_synthetic && type_is_defined
578 ? get_value_addr_contents (deref_val)
579 : valaddr);
580
581 print_ref_address (type, address, embedded_offset, stream);
582
583 if (options->deref_ref)
584 fputs_filtered (": ", stream);
585 }
586
587 if (options->deref_ref)
588 {
589 if (type_is_defined)
590 common_val_print (deref_val, stream, recurse, options,
591 current_language);
592 else
593 fputs_filtered ("???", stream);
594 }
595 }
596
597 /* Helper function for generic_val_print_enum.
598 This is also used to print enums in TYPE_CODE_FLAGS values. */
599
600 static void
601 generic_val_print_enum_1 (struct type *type, LONGEST val,
602 struct ui_file *stream)
603 {
604 unsigned int i;
605 unsigned int len;
606
607 len = type->num_fields ();
608 for (i = 0; i < len; i++)
609 {
610 QUIT;
611 if (val == TYPE_FIELD_ENUMVAL (type, i))
612 {
613 break;
614 }
615 }
616 if (i < len)
617 {
618 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
619 stream);
620 }
621 else if (type->is_flag_enum ())
622 {
623 int first = 1;
624
625 /* We have a "flag" enum, so we try to decompose it into pieces as
626 appropriate. The enum may have multiple enumerators representing
627 the same bit, in which case we choose to only print the first one
628 we find. */
629 for (i = 0; i < len; ++i)
630 {
631 QUIT;
632
633 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
634 int nbits = count_one_bits_ll (enumval);
635
636 gdb_assert (nbits == 0 || nbits == 1);
637
638 if ((val & enumval) != 0)
639 {
640 if (first)
641 {
642 fputs_filtered ("(", stream);
643 first = 0;
644 }
645 else
646 fputs_filtered (" | ", stream);
647
648 val &= ~TYPE_FIELD_ENUMVAL (type, i);
649 fputs_styled (TYPE_FIELD_NAME (type, i),
650 variable_name_style.style (), stream);
651 }
652 }
653
654 if (val != 0)
655 {
656 /* There are leftover bits, print them. */
657 if (first)
658 fputs_filtered ("(", stream);
659 else
660 fputs_filtered (" | ", stream);
661
662 fputs_filtered ("unknown: 0x", stream);
663 print_longest (stream, 'x', 0, val);
664 fputs_filtered (")", stream);
665 }
666 else if (first)
667 {
668 /* Nothing has been printed and the value is 0, the enum value must
669 have been 0. */
670 fputs_filtered ("0", stream);
671 }
672 else
673 {
674 /* Something has been printed, close the parenthesis. */
675 fputs_filtered (")", stream);
676 }
677 }
678 else
679 print_longest (stream, 'd', 0, val);
680 }
681
682 /* generic_val_print helper for TYPE_CODE_ENUM. */
683
684 static void
685 generic_val_print_enum (struct type *type,
686 int embedded_offset, struct ui_file *stream,
687 struct value *original_value,
688 const struct value_print_options *options)
689 {
690 LONGEST val;
691 struct gdbarch *gdbarch = type->arch ();
692 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
693
694 gdb_assert (!options->format);
695
696 const gdb_byte *valaddr = value_contents_for_printing (original_value);
697
698 val = unpack_long (type, valaddr + embedded_offset * unit_size);
699
700 generic_val_print_enum_1 (type, val, stream);
701 }
702
703 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
704
705 static void
706 generic_val_print_func (struct type *type,
707 int embedded_offset, CORE_ADDR address,
708 struct ui_file *stream,
709 struct value *original_value,
710 const struct value_print_options *options)
711 {
712 struct gdbarch *gdbarch = type->arch ();
713
714 gdb_assert (!options->format);
715
716 /* FIXME, we should consider, at least for ANSI C language,
717 eliminating the distinction made between FUNCs and POINTERs to
718 FUNCs. */
719 fprintf_filtered (stream, "{");
720 type_print (type, "", stream, -1);
721 fprintf_filtered (stream, "} ");
722 /* Try to print what function it points to, and its address. */
723 print_address_demangle (options, gdbarch, address, stream, demangle);
724 }
725
726 /* generic_value_print helper for TYPE_CODE_BOOL. */
727
728 static void
729 generic_value_print_bool
730 (struct value *value, struct ui_file *stream,
731 const struct value_print_options *options,
732 const struct generic_val_print_decorations *decorations)
733 {
734 if (options->format || options->output_format)
735 {
736 struct value_print_options opts = *options;
737 opts.format = (options->format ? options->format
738 : options->output_format);
739 value_print_scalar_formatted (value, &opts, 0, stream);
740 }
741 else
742 {
743 const gdb_byte *valaddr = value_contents_for_printing (value);
744 struct type *type = check_typedef (value_type (value));
745 LONGEST val = unpack_long (type, valaddr);
746 if (val == 0)
747 fputs_filtered (decorations->false_name, stream);
748 else if (val == 1)
749 fputs_filtered (decorations->true_name, stream);
750 else
751 print_longest (stream, 'd', 0, val);
752 }
753 }
754
755 /* generic_value_print helper for TYPE_CODE_INT. */
756
757 static void
758 generic_value_print_int (struct value *val, struct ui_file *stream,
759 const struct value_print_options *options)
760 {
761 struct value_print_options opts = *options;
762
763 opts.format = (options->format ? options->format
764 : options->output_format);
765 value_print_scalar_formatted (val, &opts, 0, stream);
766 }
767
768 /* generic_value_print helper for TYPE_CODE_CHAR. */
769
770 static void
771 generic_value_print_char (struct value *value, struct ui_file *stream,
772 const struct value_print_options *options)
773 {
774 if (options->format || options->output_format)
775 {
776 struct value_print_options opts = *options;
777
778 opts.format = (options->format ? options->format
779 : options->output_format);
780 value_print_scalar_formatted (value, &opts, 0, stream);
781 }
782 else
783 {
784 struct type *unresolved_type = value_type (value);
785 struct type *type = check_typedef (unresolved_type);
786 const gdb_byte *valaddr = value_contents_for_printing (value);
787
788 LONGEST val = unpack_long (type, valaddr);
789 if (type->is_unsigned ())
790 fprintf_filtered (stream, "%u", (unsigned int) val);
791 else
792 fprintf_filtered (stream, "%d", (int) val);
793 fputs_filtered (" ", stream);
794 LA_PRINT_CHAR (val, unresolved_type, stream);
795 }
796 }
797
798 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
799
800 static void
801 generic_val_print_float (struct type *type, struct ui_file *stream,
802 struct value *original_value,
803 const struct value_print_options *options)
804 {
805 gdb_assert (!options->format);
806
807 const gdb_byte *valaddr = value_contents_for_printing (original_value);
808
809 print_floating (valaddr, type, stream);
810 }
811
812 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
813
814 static void
815 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
816 const struct value_print_options *options)
817 {
818 if (options->format)
819 value_print_scalar_formatted (val, options, 0, stream);
820 else
821 {
822 struct type *type = value_type (val);
823
824 const gdb_byte *valaddr = value_contents_for_printing (val);
825 gdb_mpf f;
826
827 f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
828 type_byte_order (type), type->is_unsigned (),
829 type->fixed_point_scaling_factor ());
830
831 const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
832 std::string str = gmp_string_printf (fmt, f.val);
833 fprintf_filtered (stream, "%s", str.c_str ());
834 }
835 }
836
837 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
838
839 static void
840 generic_value_print_complex (struct value *val, struct ui_file *stream,
841 const struct value_print_options *options,
842 const struct generic_val_print_decorations
843 *decorations)
844 {
845 fprintf_filtered (stream, "%s", decorations->complex_prefix);
846
847 struct value *real_part = value_real_part (val);
848 value_print_scalar_formatted (real_part, options, 0, stream);
849 fprintf_filtered (stream, "%s", decorations->complex_infix);
850
851 struct value *imag_part = value_imaginary_part (val);
852 value_print_scalar_formatted (imag_part, options, 0, stream);
853 fprintf_filtered (stream, "%s", decorations->complex_suffix);
854 }
855
856 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
857
858 static void
859 generic_value_print_memberptr
860 (struct value *val, struct ui_file *stream,
861 int recurse,
862 const struct value_print_options *options,
863 const struct generic_val_print_decorations *decorations)
864 {
865 if (!options->format)
866 {
867 /* Member pointers are essentially specific to C++, and so if we
868 encounter one, we should print it according to C++ rules. */
869 struct type *type = check_typedef (value_type (val));
870 const gdb_byte *valaddr = value_contents_for_printing (val);
871 cp_print_class_member (valaddr, type, stream, "&");
872 }
873 else
874 generic_value_print (val, stream, recurse, options, decorations);
875 }
876
877 /* See valprint.h. */
878
879 void
880 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
881 const struct value_print_options *options,
882 const struct generic_val_print_decorations *decorations)
883 {
884 struct type *type = value_type (val);
885
886 type = check_typedef (type);
887
888 if (is_fixed_point_type (type))
889 type = type->fixed_point_type_base_type ();
890
891 switch (type->code ())
892 {
893 case TYPE_CODE_ARRAY:
894 generic_val_print_array (val, stream, recurse, options, decorations);
895 break;
896
897 case TYPE_CODE_MEMBERPTR:
898 generic_value_print_memberptr (val, stream, recurse, options,
899 decorations);
900 break;
901
902 case TYPE_CODE_PTR:
903 generic_value_print_ptr (val, stream, options);
904 break;
905
906 case TYPE_CODE_REF:
907 case TYPE_CODE_RVALUE_REF:
908 generic_val_print_ref (type, 0, stream, recurse,
909 val, options);
910 break;
911
912 case TYPE_CODE_ENUM:
913 if (options->format)
914 value_print_scalar_formatted (val, options, 0, stream);
915 else
916 generic_val_print_enum (type, 0, stream, val, options);
917 break;
918
919 case TYPE_CODE_FLAGS:
920 if (options->format)
921 value_print_scalar_formatted (val, options, 0, stream);
922 else
923 val_print_type_code_flags (type, val, 0, stream);
924 break;
925
926 case TYPE_CODE_FUNC:
927 case TYPE_CODE_METHOD:
928 if (options->format)
929 value_print_scalar_formatted (val, options, 0, stream);
930 else
931 generic_val_print_func (type, 0, value_address (val), stream,
932 val, options);
933 break;
934
935 case TYPE_CODE_BOOL:
936 generic_value_print_bool (val, stream, options, decorations);
937 break;
938
939 case TYPE_CODE_RANGE:
940 case TYPE_CODE_INT:
941 generic_value_print_int (val, stream, options);
942 break;
943
944 case TYPE_CODE_CHAR:
945 generic_value_print_char (val, stream, options);
946 break;
947
948 case TYPE_CODE_FLT:
949 case TYPE_CODE_DECFLOAT:
950 if (options->format)
951 value_print_scalar_formatted (val, options, 0, stream);
952 else
953 generic_val_print_float (type, stream, val, options);
954 break;
955
956 case TYPE_CODE_FIXED_POINT:
957 generic_val_print_fixed_point (val, stream, options);
958 break;
959
960 case TYPE_CODE_VOID:
961 fputs_filtered (decorations->void_name, stream);
962 break;
963
964 case TYPE_CODE_ERROR:
965 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
966 break;
967
968 case TYPE_CODE_UNDEF:
969 /* This happens (without TYPE_STUB set) on systems which don't use
970 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
971 and no complete type for struct foo in that file. */
972 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
973 break;
974
975 case TYPE_CODE_COMPLEX:
976 generic_value_print_complex (val, stream, options, decorations);
977 break;
978
979 case TYPE_CODE_METHODPTR:
980 cplus_print_method_ptr (value_contents_for_printing (val), type,
981 stream);
982 break;
983
984 case TYPE_CODE_UNION:
985 case TYPE_CODE_STRUCT:
986 default:
987 error (_("Unhandled type code %d in symbol table."),
988 type->code ());
989 }
990 }
991
992 /* Helper function for val_print and common_val_print that does the
993 work. Arguments are as to val_print, but FULL_VALUE, if given, is
994 the value to be printed. */
995
996 static void
997 do_val_print (struct value *value, struct ui_file *stream, int recurse,
998 const struct value_print_options *options,
999 const struct language_defn *language)
1000 {
1001 int ret = 0;
1002 struct value_print_options local_opts = *options;
1003 struct type *type = value_type (value);
1004 struct type *real_type = check_typedef (type);
1005
1006 if (local_opts.prettyformat == Val_prettyformat_default)
1007 local_opts.prettyformat = (local_opts.prettyformat_structs
1008 ? Val_prettyformat : Val_no_prettyformat);
1009
1010 QUIT;
1011
1012 /* Ensure that the type is complete and not just a stub. If the type is
1013 only a stub and we can't find and substitute its complete type, then
1014 print appropriate string and return. */
1015
1016 if (real_type->is_stub ())
1017 {
1018 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1019 return;
1020 }
1021
1022 if (!valprint_check_validity (stream, real_type, 0, value))
1023 return;
1024
1025 if (!options->raw)
1026 {
1027 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1028 language);
1029 if (ret)
1030 return;
1031 }
1032
1033 /* Handle summary mode. If the value is a scalar, print it;
1034 otherwise, print an ellipsis. */
1035 if (options->summary && !val_print_scalar_type_p (type))
1036 {
1037 fprintf_filtered (stream, "...");
1038 return;
1039 }
1040
1041 /* If this value is too deep then don't print it. */
1042 if (!val_print_scalar_or_string_type_p (type, language)
1043 && val_print_check_max_depth (stream, recurse, options, language))
1044 return;
1045
1046 try
1047 {
1048 language->value_print_inner (value, stream, recurse, &local_opts);
1049 }
1050 catch (const gdb_exception_error &except)
1051 {
1052 fprintf_styled (stream, metadata_style.style (),
1053 _("<error reading variable>"));
1054 }
1055 }
1056
1057 /* See valprint.h. */
1058
1059 bool
1060 val_print_check_max_depth (struct ui_file *stream, int recurse,
1061 const struct value_print_options *options,
1062 const struct language_defn *language)
1063 {
1064 if (options->max_depth > -1 && recurse >= options->max_depth)
1065 {
1066 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1067 fputs_filtered (language->struct_too_deep_ellipsis (), stream);
1068 return true;
1069 }
1070
1071 return false;
1072 }
1073
1074 /* Check whether the value VAL is printable. Return 1 if it is;
1075 return 0 and print an appropriate error message to STREAM according to
1076 OPTIONS if it is not. */
1077
1078 static int
1079 value_check_printable (struct value *val, struct ui_file *stream,
1080 const struct value_print_options *options)
1081 {
1082 if (val == 0)
1083 {
1084 fprintf_styled (stream, metadata_style.style (),
1085 _("<address of value unknown>"));
1086 return 0;
1087 }
1088
1089 if (value_entirely_optimized_out (val))
1090 {
1091 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1092 fprintf_filtered (stream, "...");
1093 else
1094 val_print_optimized_out (val, stream);
1095 return 0;
1096 }
1097
1098 if (value_entirely_unavailable (val))
1099 {
1100 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1101 fprintf_filtered (stream, "...");
1102 else
1103 val_print_unavailable (stream);
1104 return 0;
1105 }
1106
1107 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1108 {
1109 fprintf_styled (stream, metadata_style.style (),
1110 _("<internal function %s>"),
1111 value_internal_function_name (val));
1112 return 0;
1113 }
1114
1115 if (type_not_associated (value_type (val)))
1116 {
1117 val_print_not_associated (stream);
1118 return 0;
1119 }
1120
1121 if (type_not_allocated (value_type (val)))
1122 {
1123 val_print_not_allocated (stream);
1124 return 0;
1125 }
1126
1127 return 1;
1128 }
1129
1130 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1131 to OPTIONS.
1132
1133 This is a preferable interface to val_print, above, because it uses
1134 GDB's value mechanism. */
1135
1136 void
1137 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1138 const struct value_print_options *options,
1139 const struct language_defn *language)
1140 {
1141 if (language->la_language == language_ada)
1142 /* The value might have a dynamic type, which would cause trouble
1143 below when trying to extract the value contents (since the value
1144 size is determined from the type size which is unknown). So
1145 get a fixed representation of our value. */
1146 val = ada_to_fixed_value (val);
1147
1148 if (value_lazy (val))
1149 value_fetch_lazy (val);
1150
1151 do_val_print (val, stream, recurse, options, language);
1152 }
1153
1154 /* See valprint.h. */
1155
1156 void
1157 common_val_print_checked (struct value *val, struct ui_file *stream,
1158 int recurse,
1159 const struct value_print_options *options,
1160 const struct language_defn *language)
1161 {
1162 if (!value_check_printable (val, stream, options))
1163 return;
1164 common_val_print (val, stream, recurse, options, language);
1165 }
1166
1167 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1168 is printed using the current_language syntax. */
1169
1170 void
1171 value_print (struct value *val, struct ui_file *stream,
1172 const struct value_print_options *options)
1173 {
1174 scoped_value_mark free_values;
1175
1176 if (!value_check_printable (val, stream, options))
1177 return;
1178
1179 if (!options->raw)
1180 {
1181 int r
1182 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1183 current_language);
1184
1185 if (r)
1186 return;
1187 }
1188
1189 current_language->value_print (val, stream, options);
1190 }
1191
1192 static void
1193 val_print_type_code_flags (struct type *type, struct value *original_value,
1194 int embedded_offset, struct ui_file *stream)
1195 {
1196 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1197 + embedded_offset);
1198 ULONGEST val = unpack_long (type, valaddr);
1199 int field, nfields = type->num_fields ();
1200 struct gdbarch *gdbarch = type->arch ();
1201 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1202
1203 fputs_filtered ("[", stream);
1204 for (field = 0; field < nfields; field++)
1205 {
1206 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1207 {
1208 struct type *field_type = type->field (field).type ();
1209
1210 if (field_type == bool_type
1211 /* We require boolean types here to be one bit wide. This is a
1212 problematic place to notify the user of an internal error
1213 though. Instead just fall through and print the field as an
1214 int. */
1215 && TYPE_FIELD_BITSIZE (type, field) == 1)
1216 {
1217 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1218 fprintf_filtered
1219 (stream, " %ps",
1220 styled_string (variable_name_style.style (),
1221 TYPE_FIELD_NAME (type, field)));
1222 }
1223 else
1224 {
1225 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1226 ULONGEST field_val = val >> TYPE_FIELD_BITPOS (type, field);
1227
1228 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1229 field_val &= ((ULONGEST) 1 << field_len) - 1;
1230 fprintf_filtered (stream, " %ps=",
1231 styled_string (variable_name_style.style (),
1232 TYPE_FIELD_NAME (type, field)));
1233 if (field_type->code () == TYPE_CODE_ENUM)
1234 generic_val_print_enum_1 (field_type, field_val, stream);
1235 else
1236 print_longest (stream, 'd', 0, field_val);
1237 }
1238 }
1239 }
1240 fputs_filtered (" ]", stream);
1241 }
1242
1243 /* See valprint.h. */
1244
1245 void
1246 value_print_scalar_formatted (struct value *val,
1247 const struct value_print_options *options,
1248 int size,
1249 struct ui_file *stream)
1250 {
1251 struct type *type = check_typedef (value_type (val));
1252
1253 gdb_assert (val != NULL);
1254
1255 /* If we get here with a string format, try again without it. Go
1256 all the way back to the language printers, which may call us
1257 again. */
1258 if (options->format == 's')
1259 {
1260 struct value_print_options opts = *options;
1261 opts.format = 0;
1262 opts.deref_ref = 0;
1263 common_val_print (val, stream, 0, &opts, current_language);
1264 return;
1265 }
1266
1267 /* value_contents_for_printing fetches all VAL's contents. They are
1268 needed to check whether VAL is optimized-out or unavailable
1269 below. */
1270 const gdb_byte *valaddr = value_contents_for_printing (val);
1271
1272 /* A scalar object that does not have all bits available can't be
1273 printed, because all bits contribute to its representation. */
1274 if (value_bits_any_optimized_out (val, 0,
1275 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1276 val_print_optimized_out (val, stream);
1277 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1278 val_print_unavailable (stream);
1279 else
1280 print_scalar_formatted (valaddr, type, options, size, stream);
1281 }
1282
1283 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1284 The raison d'etre of this function is to consolidate printing of
1285 LONG_LONG's into this one function. The format chars b,h,w,g are
1286 from print_scalar_formatted(). Numbers are printed using C
1287 format.
1288
1289 USE_C_FORMAT means to use C format in all cases. Without it,
1290 'o' and 'x' format do not include the standard C radix prefix
1291 (leading 0 or 0x).
1292
1293 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1294 and was intended to request formatting according to the current
1295 language and would be used for most integers that GDB prints. The
1296 exceptional cases were things like protocols where the format of
1297 the integer is a protocol thing, not a user-visible thing). The
1298 parameter remains to preserve the information of what things might
1299 be printed with language-specific format, should we ever resurrect
1300 that capability. */
1301
1302 void
1303 print_longest (struct ui_file *stream, int format, int use_c_format,
1304 LONGEST val_long)
1305 {
1306 const char *val;
1307
1308 switch (format)
1309 {
1310 case 'd':
1311 val = int_string (val_long, 10, 1, 0, 1); break;
1312 case 'u':
1313 val = int_string (val_long, 10, 0, 0, 1); break;
1314 case 'x':
1315 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1316 case 'b':
1317 val = int_string (val_long, 16, 0, 2, 1); break;
1318 case 'h':
1319 val = int_string (val_long, 16, 0, 4, 1); break;
1320 case 'w':
1321 val = int_string (val_long, 16, 0, 8, 1); break;
1322 case 'g':
1323 val = int_string (val_long, 16, 0, 16, 1); break;
1324 break;
1325 case 'o':
1326 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1327 default:
1328 internal_error (__FILE__, __LINE__,
1329 _("failed internal consistency check"));
1330 }
1331 fputs_filtered (val, stream);
1332 }
1333
1334 /* This used to be a macro, but I don't think it is called often enough
1335 to merit such treatment. */
1336 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1337 arguments to a function, number in a value history, register number, etc.)
1338 where the value must not be larger than can fit in an int. */
1339
1340 int
1341 longest_to_int (LONGEST arg)
1342 {
1343 /* Let the compiler do the work. */
1344 int rtnval = (int) arg;
1345
1346 /* Check for overflows or underflows. */
1347 if (sizeof (LONGEST) > sizeof (int))
1348 {
1349 if (rtnval != arg)
1350 {
1351 error (_("Value out of range."));
1352 }
1353 }
1354 return (rtnval);
1355 }
1356
1357 /* Print a floating point value of floating-point type TYPE,
1358 pointed to in GDB by VALADDR, on STREAM. */
1359
1360 void
1361 print_floating (const gdb_byte *valaddr, struct type *type,
1362 struct ui_file *stream)
1363 {
1364 std::string str = target_float_to_string (valaddr, type);
1365 fputs_filtered (str.c_str (), stream);
1366 }
1367
1368 void
1369 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1370 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1371 {
1372 const gdb_byte *p;
1373 unsigned int i;
1374 int b;
1375 bool seen_a_one = false;
1376
1377 /* Declared "int" so it will be signed.
1378 This ensures that right shift will shift in zeros. */
1379
1380 const int mask = 0x080;
1381
1382 if (byte_order == BFD_ENDIAN_BIG)
1383 {
1384 for (p = valaddr;
1385 p < valaddr + len;
1386 p++)
1387 {
1388 /* Every byte has 8 binary characters; peel off
1389 and print from the MSB end. */
1390
1391 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1392 {
1393 if (*p & (mask >> i))
1394 b = '1';
1395 else
1396 b = '0';
1397
1398 if (zero_pad || seen_a_one || b == '1')
1399 fputc_filtered (b, stream);
1400 if (b == '1')
1401 seen_a_one = true;
1402 }
1403 }
1404 }
1405 else
1406 {
1407 for (p = valaddr + len - 1;
1408 p >= valaddr;
1409 p--)
1410 {
1411 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1412 {
1413 if (*p & (mask >> i))
1414 b = '1';
1415 else
1416 b = '0';
1417
1418 if (zero_pad || seen_a_one || b == '1')
1419 fputc_filtered (b, stream);
1420 if (b == '1')
1421 seen_a_one = true;
1422 }
1423 }
1424 }
1425
1426 /* When not zero-padding, ensure that something is printed when the
1427 input is 0. */
1428 if (!zero_pad && !seen_a_one)
1429 fputc_filtered ('0', stream);
1430 }
1431
1432 /* A helper for print_octal_chars that emits a single octal digit,
1433 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1434
1435 static void
1436 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1437 {
1438 if (*seen_a_one || digit != 0)
1439 fprintf_filtered (stream, "%o", digit);
1440 if (digit != 0)
1441 *seen_a_one = true;
1442 }
1443
1444 /* VALADDR points to an integer of LEN bytes.
1445 Print it in octal on stream or format it in buf. */
1446
1447 void
1448 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1449 unsigned len, enum bfd_endian byte_order)
1450 {
1451 const gdb_byte *p;
1452 unsigned char octa1, octa2, octa3, carry;
1453 int cycle;
1454
1455 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1456 * the extra bits, which cycle every three bytes:
1457 *
1458 * Byte side: 0 1 2 3
1459 * | | | |
1460 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1461 *
1462 * Octal side: 0 1 carry 3 4 carry ...
1463 *
1464 * Cycle number: 0 1 2
1465 *
1466 * But of course we are printing from the high side, so we have to
1467 * figure out where in the cycle we are so that we end up with no
1468 * left over bits at the end.
1469 */
1470 #define BITS_IN_OCTAL 3
1471 #define HIGH_ZERO 0340
1472 #define LOW_ZERO 0034
1473 #define CARRY_ZERO 0003
1474 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1475 "cycle zero constants are wrong");
1476 #define HIGH_ONE 0200
1477 #define MID_ONE 0160
1478 #define LOW_ONE 0016
1479 #define CARRY_ONE 0001
1480 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1481 "cycle one constants are wrong");
1482 #define HIGH_TWO 0300
1483 #define MID_TWO 0070
1484 #define LOW_TWO 0007
1485 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1486 "cycle two constants are wrong");
1487
1488 /* For 32 we start in cycle 2, with two bits and one bit carry;
1489 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1490
1491 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1492 carry = 0;
1493
1494 fputs_filtered ("0", stream);
1495 bool seen_a_one = false;
1496 if (byte_order == BFD_ENDIAN_BIG)
1497 {
1498 for (p = valaddr;
1499 p < valaddr + len;
1500 p++)
1501 {
1502 switch (cycle)
1503 {
1504 case 0:
1505 /* No carry in, carry out two bits. */
1506
1507 octa1 = (HIGH_ZERO & *p) >> 5;
1508 octa2 = (LOW_ZERO & *p) >> 2;
1509 carry = (CARRY_ZERO & *p);
1510 emit_octal_digit (stream, &seen_a_one, octa1);
1511 emit_octal_digit (stream, &seen_a_one, octa2);
1512 break;
1513
1514 case 1:
1515 /* Carry in two bits, carry out one bit. */
1516
1517 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1518 octa2 = (MID_ONE & *p) >> 4;
1519 octa3 = (LOW_ONE & *p) >> 1;
1520 carry = (CARRY_ONE & *p);
1521 emit_octal_digit (stream, &seen_a_one, octa1);
1522 emit_octal_digit (stream, &seen_a_one, octa2);
1523 emit_octal_digit (stream, &seen_a_one, octa3);
1524 break;
1525
1526 case 2:
1527 /* Carry in one bit, no carry out. */
1528
1529 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1530 octa2 = (MID_TWO & *p) >> 3;
1531 octa3 = (LOW_TWO & *p);
1532 carry = 0;
1533 emit_octal_digit (stream, &seen_a_one, octa1);
1534 emit_octal_digit (stream, &seen_a_one, octa2);
1535 emit_octal_digit (stream, &seen_a_one, octa3);
1536 break;
1537
1538 default:
1539 error (_("Internal error in octal conversion;"));
1540 }
1541
1542 cycle++;
1543 cycle = cycle % BITS_IN_OCTAL;
1544 }
1545 }
1546 else
1547 {
1548 for (p = valaddr + len - 1;
1549 p >= valaddr;
1550 p--)
1551 {
1552 switch (cycle)
1553 {
1554 case 0:
1555 /* Carry out, no carry in */
1556
1557 octa1 = (HIGH_ZERO & *p) >> 5;
1558 octa2 = (LOW_ZERO & *p) >> 2;
1559 carry = (CARRY_ZERO & *p);
1560 emit_octal_digit (stream, &seen_a_one, octa1);
1561 emit_octal_digit (stream, &seen_a_one, octa2);
1562 break;
1563
1564 case 1:
1565 /* Carry in, carry out */
1566
1567 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1568 octa2 = (MID_ONE & *p) >> 4;
1569 octa3 = (LOW_ONE & *p) >> 1;
1570 carry = (CARRY_ONE & *p);
1571 emit_octal_digit (stream, &seen_a_one, octa1);
1572 emit_octal_digit (stream, &seen_a_one, octa2);
1573 emit_octal_digit (stream, &seen_a_one, octa3);
1574 break;
1575
1576 case 2:
1577 /* Carry in, no carry out */
1578
1579 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1580 octa2 = (MID_TWO & *p) >> 3;
1581 octa3 = (LOW_TWO & *p);
1582 carry = 0;
1583 emit_octal_digit (stream, &seen_a_one, octa1);
1584 emit_octal_digit (stream, &seen_a_one, octa2);
1585 emit_octal_digit (stream, &seen_a_one, octa3);
1586 break;
1587
1588 default:
1589 error (_("Internal error in octal conversion;"));
1590 }
1591
1592 cycle++;
1593 cycle = cycle % BITS_IN_OCTAL;
1594 }
1595 }
1596
1597 }
1598
1599 /* Possibly negate the integer represented by BYTES. It contains LEN
1600 bytes in the specified byte order. If the integer is negative,
1601 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1602 nothing and return false. */
1603
1604 static bool
1605 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1606 enum bfd_endian byte_order,
1607 gdb::byte_vector *out_vec)
1608 {
1609 gdb_byte sign_byte;
1610 gdb_assert (len > 0);
1611 if (byte_order == BFD_ENDIAN_BIG)
1612 sign_byte = bytes[0];
1613 else
1614 sign_byte = bytes[len - 1];
1615 if ((sign_byte & 0x80) == 0)
1616 return false;
1617
1618 out_vec->resize (len);
1619
1620 /* Compute -x == 1 + ~x. */
1621 if (byte_order == BFD_ENDIAN_LITTLE)
1622 {
1623 unsigned carry = 1;
1624 for (unsigned i = 0; i < len; ++i)
1625 {
1626 unsigned tem = (0xff & ~bytes[i]) + carry;
1627 (*out_vec)[i] = tem & 0xff;
1628 carry = tem / 256;
1629 }
1630 }
1631 else
1632 {
1633 unsigned carry = 1;
1634 for (unsigned i = len; i > 0; --i)
1635 {
1636 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1637 (*out_vec)[i - 1] = tem & 0xff;
1638 carry = tem / 256;
1639 }
1640 }
1641
1642 return true;
1643 }
1644
1645 /* VALADDR points to an integer of LEN bytes.
1646 Print it in decimal on stream or format it in buf. */
1647
1648 void
1649 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1650 unsigned len, bool is_signed,
1651 enum bfd_endian byte_order)
1652 {
1653 #define TEN 10
1654 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1655 #define CARRY_LEFT( x ) ((x) % TEN)
1656 #define SHIFT( x ) ((x) << 4)
1657 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1658 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1659
1660 const gdb_byte *p;
1661 int carry;
1662 int decimal_len;
1663 int i, j, decimal_digits;
1664 int dummy;
1665 int flip;
1666
1667 gdb::byte_vector negated_bytes;
1668 if (is_signed
1669 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1670 {
1671 fputs_filtered ("-", stream);
1672 valaddr = negated_bytes.data ();
1673 }
1674
1675 /* Base-ten number is less than twice as many digits
1676 as the base 16 number, which is 2 digits per byte. */
1677
1678 decimal_len = len * 2 * 2;
1679 std::vector<unsigned char> digits (decimal_len, 0);
1680
1681 /* Ok, we have an unknown number of bytes of data to be printed in
1682 * decimal.
1683 *
1684 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1685 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1686 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1687 *
1688 * The trick is that "digits" holds a base-10 number, but sometimes
1689 * the individual digits are > 10.
1690 *
1691 * Outer loop is per nibble (hex digit) of input, from MSD end to
1692 * LSD end.
1693 */
1694 decimal_digits = 0; /* Number of decimal digits so far */
1695 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1696 flip = 0;
1697 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1698 {
1699 /*
1700 * Multiply current base-ten number by 16 in place.
1701 * Each digit was between 0 and 9, now is between
1702 * 0 and 144.
1703 */
1704 for (j = 0; j < decimal_digits; j++)
1705 {
1706 digits[j] = SHIFT (digits[j]);
1707 }
1708
1709 /* Take the next nibble off the input and add it to what
1710 * we've got in the LSB position. Bottom 'digit' is now
1711 * between 0 and 159.
1712 *
1713 * "flip" is used to run this loop twice for each byte.
1714 */
1715 if (flip == 0)
1716 {
1717 /* Take top nibble. */
1718
1719 digits[0] += HIGH_NIBBLE (*p);
1720 flip = 1;
1721 }
1722 else
1723 {
1724 /* Take low nibble and bump our pointer "p". */
1725
1726 digits[0] += LOW_NIBBLE (*p);
1727 if (byte_order == BFD_ENDIAN_BIG)
1728 p++;
1729 else
1730 p--;
1731 flip = 0;
1732 }
1733
1734 /* Re-decimalize. We have to do this often enough
1735 * that we don't overflow, but once per nibble is
1736 * overkill. Easier this way, though. Note that the
1737 * carry is often larger than 10 (e.g. max initial
1738 * carry out of lowest nibble is 15, could bubble all
1739 * the way up greater than 10). So we have to do
1740 * the carrying beyond the last current digit.
1741 */
1742 carry = 0;
1743 for (j = 0; j < decimal_len - 1; j++)
1744 {
1745 digits[j] += carry;
1746
1747 /* "/" won't handle an unsigned char with
1748 * a value that if signed would be negative.
1749 * So extend to longword int via "dummy".
1750 */
1751 dummy = digits[j];
1752 carry = CARRY_OUT (dummy);
1753 digits[j] = CARRY_LEFT (dummy);
1754
1755 if (j >= decimal_digits && carry == 0)
1756 {
1757 /*
1758 * All higher digits are 0 and we
1759 * no longer have a carry.
1760 *
1761 * Note: "j" is 0-based, "decimal_digits" is
1762 * 1-based.
1763 */
1764 decimal_digits = j + 1;
1765 break;
1766 }
1767 }
1768 }
1769
1770 /* Ok, now "digits" is the decimal representation, with
1771 the "decimal_digits" actual digits. Print! */
1772
1773 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1774 ;
1775
1776 for (; i >= 0; i--)
1777 {
1778 fprintf_filtered (stream, "%1d", digits[i]);
1779 }
1780 }
1781
1782 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1783
1784 void
1785 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1786 unsigned len, enum bfd_endian byte_order,
1787 bool zero_pad)
1788 {
1789 const gdb_byte *p;
1790
1791 fputs_filtered ("0x", stream);
1792 if (byte_order == BFD_ENDIAN_BIG)
1793 {
1794 p = valaddr;
1795
1796 if (!zero_pad)
1797 {
1798 /* Strip leading 0 bytes, but be sure to leave at least a
1799 single byte at the end. */
1800 for (; p < valaddr + len - 1 && !*p; ++p)
1801 ;
1802 }
1803
1804 const gdb_byte *first = p;
1805 for (;
1806 p < valaddr + len;
1807 p++)
1808 {
1809 /* When not zero-padding, use a different format for the
1810 very first byte printed. */
1811 if (!zero_pad && p == first)
1812 fprintf_filtered (stream, "%x", *p);
1813 else
1814 fprintf_filtered (stream, "%02x", *p);
1815 }
1816 }
1817 else
1818 {
1819 p = valaddr + len - 1;
1820
1821 if (!zero_pad)
1822 {
1823 /* Strip leading 0 bytes, but be sure to leave at least a
1824 single byte at the end. */
1825 for (; p >= valaddr + 1 && !*p; --p)
1826 ;
1827 }
1828
1829 const gdb_byte *first = p;
1830 for (;
1831 p >= valaddr;
1832 p--)
1833 {
1834 /* When not zero-padding, use a different format for the
1835 very first byte printed. */
1836 if (!zero_pad && p == first)
1837 fprintf_filtered (stream, "%x", *p);
1838 else
1839 fprintf_filtered (stream, "%02x", *p);
1840 }
1841 }
1842 }
1843
1844 /* Print function pointer with inferior address ADDRESS onto stdio
1845 stream STREAM. */
1846
1847 void
1848 print_function_pointer_address (const struct value_print_options *options,
1849 struct gdbarch *gdbarch,
1850 CORE_ADDR address,
1851 struct ui_file *stream)
1852 {
1853 CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
1854 (gdbarch, address, current_inferior ()->top_target ());
1855
1856 /* If the function pointer is represented by a description, print
1857 the address of the description. */
1858 if (options->addressprint && func_addr != address)
1859 {
1860 fputs_filtered ("@", stream);
1861 fputs_filtered (paddress (gdbarch, address), stream);
1862 fputs_filtered (": ", stream);
1863 }
1864 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1865 }
1866
1867
1868 /* Print on STREAM using the given OPTIONS the index for the element
1869 at INDEX of an array whose index type is INDEX_TYPE. */
1870
1871 void
1872 maybe_print_array_index (struct type *index_type, LONGEST index,
1873 struct ui_file *stream,
1874 const struct value_print_options *options)
1875 {
1876 if (!options->print_array_indexes)
1877 return;
1878
1879 current_language->print_array_index (index_type, index, stream, options);
1880 }
1881
1882 /* See valprint.h. */
1883
1884 void
1885 value_print_array_elements (struct value *val, struct ui_file *stream,
1886 int recurse,
1887 const struct value_print_options *options,
1888 unsigned int i)
1889 {
1890 unsigned int things_printed = 0;
1891 unsigned len;
1892 struct type *elttype, *index_type;
1893 unsigned eltlen;
1894 /* Position of the array element we are examining to see
1895 whether it is repeated. */
1896 unsigned int rep1;
1897 /* Number of repetitions we have detected so far. */
1898 unsigned int reps;
1899 LONGEST low_bound, high_bound;
1900
1901 struct type *type = check_typedef (value_type (val));
1902
1903 elttype = TYPE_TARGET_TYPE (type);
1904 eltlen = type_length_units (check_typedef (elttype));
1905 index_type = type->index_type ();
1906 if (index_type->code () == TYPE_CODE_RANGE)
1907 index_type = TYPE_TARGET_TYPE (index_type);
1908
1909 if (get_array_bounds (type, &low_bound, &high_bound))
1910 {
1911 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1912 1. But we have to be a little extra careful, because some
1913 languages such as Ada allow LOW_BOUND to be greater than
1914 HIGH_BOUND for empty arrays. In that situation, the array
1915 length is just zero, not negative! */
1916 if (low_bound > high_bound)
1917 len = 0;
1918 else
1919 len = high_bound - low_bound + 1;
1920 }
1921 else
1922 {
1923 warning (_("unable to get bounds of array, assuming null array"));
1924 low_bound = 0;
1925 len = 0;
1926 }
1927
1928 annotate_array_section_begin (i, elttype);
1929
1930 for (; i < len && things_printed < options->print_max; i++)
1931 {
1932 scoped_value_mark free_values;
1933
1934 if (i != 0)
1935 {
1936 if (options->prettyformat_arrays)
1937 {
1938 fprintf_filtered (stream, ",\n");
1939 print_spaces_filtered (2 + 2 * recurse, stream);
1940 }
1941 else
1942 fprintf_filtered (stream, ", ");
1943 }
1944 else if (options->prettyformat_arrays)
1945 {
1946 fprintf_filtered (stream, "\n");
1947 print_spaces_filtered (2 + 2 * recurse, stream);
1948 }
1949 wrap_here (n_spaces (2 + 2 * recurse));
1950 maybe_print_array_index (index_type, i + low_bound,
1951 stream, options);
1952
1953 rep1 = i + 1;
1954 reps = 1;
1955 /* Only check for reps if repeat_count_threshold is not set to
1956 UINT_MAX (unlimited). */
1957 if (options->repeat_count_threshold < UINT_MAX)
1958 {
1959 while (rep1 < len
1960 && value_contents_eq (val, i * eltlen,
1961 val, rep1 * eltlen,
1962 eltlen))
1963 {
1964 ++reps;
1965 ++rep1;
1966 }
1967 }
1968
1969 struct value *element = value_from_component (val, elttype, eltlen * i);
1970 common_val_print (element, stream, recurse + 1, options,
1971 current_language);
1972
1973 if (reps > options->repeat_count_threshold)
1974 {
1975 annotate_elt_rep (reps);
1976 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1977 metadata_style.style ().ptr (), reps, nullptr);
1978 annotate_elt_rep_end ();
1979
1980 i = rep1 - 1;
1981 things_printed += options->repeat_count_threshold;
1982 }
1983 else
1984 {
1985 annotate_elt ();
1986 things_printed++;
1987 }
1988 }
1989 annotate_array_section_end ();
1990 if (i < len)
1991 fprintf_filtered (stream, "...");
1992 if (options->prettyformat_arrays)
1993 {
1994 fprintf_filtered (stream, "\n");
1995 print_spaces_filtered (2 * recurse, stream);
1996 }
1997 }
1998
1999 /* Read LEN bytes of target memory at address MEMADDR, placing the
2000 results in GDB's memory at MYADDR. Returns a count of the bytes
2001 actually read, and optionally a target_xfer_status value in the
2002 location pointed to by ERRPTR if ERRPTR is non-null. */
2003
2004 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2005 function be eliminated. */
2006
2007 static int
2008 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2009 int len, int *errptr)
2010 {
2011 int nread; /* Number of bytes actually read. */
2012 int errcode; /* Error from last read. */
2013
2014 /* First try a complete read. */
2015 errcode = target_read_memory (memaddr, myaddr, len);
2016 if (errcode == 0)
2017 {
2018 /* Got it all. */
2019 nread = len;
2020 }
2021 else
2022 {
2023 /* Loop, reading one byte at a time until we get as much as we can. */
2024 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2025 {
2026 errcode = target_read_memory (memaddr++, myaddr++, 1);
2027 }
2028 /* If an error, the last read was unsuccessful, so adjust count. */
2029 if (errcode != 0)
2030 {
2031 nread--;
2032 }
2033 }
2034 if (errptr != NULL)
2035 {
2036 *errptr = errcode;
2037 }
2038 return (nread);
2039 }
2040
2041 /* Read a string from the inferior, at ADDR, with LEN characters of
2042 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2043 will be set to a newly allocated buffer containing the string, and
2044 BYTES_READ will be set to the number of bytes read. Returns 0 on
2045 success, or a target_xfer_status on failure.
2046
2047 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2048 (including eventual NULs in the middle or end of the string).
2049
2050 If LEN is -1, stops at the first null character (not necessarily
2051 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2052 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2053 the string.
2054
2055 Unless an exception is thrown, BUFFER will always be allocated, even on
2056 failure. In this case, some characters might have been read before the
2057 failure happened. Check BYTES_READ to recognize this situation. */
2058
2059 int
2060 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2061 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2062 int *bytes_read)
2063 {
2064 int errcode; /* Errno returned from bad reads. */
2065 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2066 gdb_byte *bufptr; /* Pointer to next available byte in
2067 buffer. */
2068
2069 /* Loop until we either have all the characters, or we encounter
2070 some error, such as bumping into the end of the address space. */
2071
2072 buffer->reset (nullptr);
2073
2074 if (len > 0)
2075 {
2076 /* We want fetchlimit chars, so we might as well read them all in
2077 one operation. */
2078 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2079
2080 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2081 bufptr = buffer->get ();
2082
2083 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2084 / width;
2085 addr += nfetch * width;
2086 bufptr += nfetch * width;
2087 }
2088 else if (len == -1)
2089 {
2090 unsigned long bufsize = 0;
2091 unsigned int chunksize; /* Size of each fetch, in chars. */
2092 int found_nul; /* Non-zero if we found the nul char. */
2093 gdb_byte *limit; /* First location past end of fetch buffer. */
2094
2095 found_nul = 0;
2096 /* We are looking for a NUL terminator to end the fetching, so we
2097 might as well read in blocks that are large enough to be efficient,
2098 but not so large as to be slow if fetchlimit happens to be large.
2099 So we choose the minimum of 8 and fetchlimit. We used to use 200
2100 instead of 8 but 200 is way too big for remote debugging over a
2101 serial line. */
2102 chunksize = std::min (8u, fetchlimit);
2103
2104 do
2105 {
2106 QUIT;
2107 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2108
2109 if (*buffer == NULL)
2110 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2111 else
2112 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2113 (nfetch + bufsize) * width));
2114
2115 bufptr = buffer->get () + bufsize * width;
2116 bufsize += nfetch;
2117
2118 /* Read as much as we can. */
2119 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2120 / width;
2121
2122 /* Scan this chunk for the null character that terminates the string
2123 to print. If found, we don't need to fetch any more. Note
2124 that bufptr is explicitly left pointing at the next character
2125 after the null character, or at the next character after the end
2126 of the buffer. */
2127
2128 limit = bufptr + nfetch * width;
2129 while (bufptr < limit)
2130 {
2131 unsigned long c;
2132
2133 c = extract_unsigned_integer (bufptr, width, byte_order);
2134 addr += width;
2135 bufptr += width;
2136 if (c == 0)
2137 {
2138 /* We don't care about any error which happened after
2139 the NUL terminator. */
2140 errcode = 0;
2141 found_nul = 1;
2142 break;
2143 }
2144 }
2145 }
2146 while (errcode == 0 /* no error */
2147 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2148 && !found_nul); /* haven't found NUL yet */
2149 }
2150 else
2151 { /* Length of string is really 0! */
2152 /* We always allocate *buffer. */
2153 buffer->reset ((gdb_byte *) xmalloc (1));
2154 bufptr = buffer->get ();
2155 errcode = 0;
2156 }
2157
2158 /* bufptr and addr now point immediately beyond the last byte which we
2159 consider part of the string (including a '\0' which ends the string). */
2160 *bytes_read = bufptr - buffer->get ();
2161
2162 QUIT;
2163
2164 return errcode;
2165 }
2166
2167 /* Return true if print_wchar can display W without resorting to a
2168 numeric escape, false otherwise. */
2169
2170 static int
2171 wchar_printable (gdb_wchar_t w)
2172 {
2173 return (gdb_iswprint (w)
2174 || w == LCST ('\a') || w == LCST ('\b')
2175 || w == LCST ('\f') || w == LCST ('\n')
2176 || w == LCST ('\r') || w == LCST ('\t')
2177 || w == LCST ('\v'));
2178 }
2179
2180 /* A helper function that converts the contents of STRING to wide
2181 characters and then appends them to OUTPUT. */
2182
2183 static void
2184 append_string_as_wide (const char *string,
2185 struct obstack *output)
2186 {
2187 for (; *string; ++string)
2188 {
2189 gdb_wchar_t w = gdb_btowc (*string);
2190 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2191 }
2192 }
2193
2194 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2195 original (target) bytes representing the character, ORIG_LEN is the
2196 number of valid bytes. WIDTH is the number of bytes in a base
2197 characters of the type. OUTPUT is an obstack to which wide
2198 characters are emitted. QUOTER is a (narrow) character indicating
2199 the style of quotes surrounding the character to be printed.
2200 NEED_ESCAPE is an in/out flag which is used to track numeric
2201 escapes across calls. */
2202
2203 static void
2204 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2205 int orig_len, int width,
2206 enum bfd_endian byte_order,
2207 struct obstack *output,
2208 int quoter, int *need_escapep)
2209 {
2210 int need_escape = *need_escapep;
2211
2212 *need_escapep = 0;
2213
2214 /* iswprint implementation on Windows returns 1 for tab character.
2215 In order to avoid different printout on this host, we explicitly
2216 use wchar_printable function. */
2217 switch (w)
2218 {
2219 case LCST ('\a'):
2220 obstack_grow_wstr (output, LCST ("\\a"));
2221 break;
2222 case LCST ('\b'):
2223 obstack_grow_wstr (output, LCST ("\\b"));
2224 break;
2225 case LCST ('\f'):
2226 obstack_grow_wstr (output, LCST ("\\f"));
2227 break;
2228 case LCST ('\n'):
2229 obstack_grow_wstr (output, LCST ("\\n"));
2230 break;
2231 case LCST ('\r'):
2232 obstack_grow_wstr (output, LCST ("\\r"));
2233 break;
2234 case LCST ('\t'):
2235 obstack_grow_wstr (output, LCST ("\\t"));
2236 break;
2237 case LCST ('\v'):
2238 obstack_grow_wstr (output, LCST ("\\v"));
2239 break;
2240 default:
2241 {
2242 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2243 && w != LCST ('8')
2244 && w != LCST ('9'))))
2245 {
2246 gdb_wchar_t wchar = w;
2247
2248 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2249 obstack_grow_wstr (output, LCST ("\\"));
2250 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2251 }
2252 else
2253 {
2254 int i;
2255
2256 for (i = 0; i + width <= orig_len; i += width)
2257 {
2258 char octal[30];
2259 ULONGEST value;
2260
2261 value = extract_unsigned_integer (&orig[i], width,
2262 byte_order);
2263 /* If the value fits in 3 octal digits, print it that
2264 way. Otherwise, print it as a hex escape. */
2265 if (value <= 0777)
2266 xsnprintf (octal, sizeof (octal), "\\%.3o",
2267 (int) (value & 0777));
2268 else
2269 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2270 append_string_as_wide (octal, output);
2271 }
2272 /* If we somehow have extra bytes, print them now. */
2273 while (i < orig_len)
2274 {
2275 char octal[5];
2276
2277 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2278 append_string_as_wide (octal, output);
2279 ++i;
2280 }
2281
2282 *need_escapep = 1;
2283 }
2284 break;
2285 }
2286 }
2287 }
2288
2289 /* Print the character C on STREAM as part of the contents of a
2290 literal string whose delimiter is QUOTER. ENCODING names the
2291 encoding of C. */
2292
2293 void
2294 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2295 int quoter, const char *encoding)
2296 {
2297 enum bfd_endian byte_order
2298 = type_byte_order (type);
2299 gdb_byte *c_buf;
2300 int need_escape = 0;
2301
2302 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2303 pack_long (c_buf, type, c);
2304
2305 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2306
2307 /* This holds the printable form of the wchar_t data. */
2308 auto_obstack wchar_buf;
2309
2310 while (1)
2311 {
2312 int num_chars;
2313 gdb_wchar_t *chars;
2314 const gdb_byte *buf;
2315 size_t buflen;
2316 int print_escape = 1;
2317 enum wchar_iterate_result result;
2318
2319 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2320 if (num_chars < 0)
2321 break;
2322 if (num_chars > 0)
2323 {
2324 /* If all characters are printable, print them. Otherwise,
2325 we're going to have to print an escape sequence. We
2326 check all characters because we want to print the target
2327 bytes in the escape sequence, and we don't know character
2328 boundaries there. */
2329 int i;
2330
2331 print_escape = 0;
2332 for (i = 0; i < num_chars; ++i)
2333 if (!wchar_printable (chars[i]))
2334 {
2335 print_escape = 1;
2336 break;
2337 }
2338
2339 if (!print_escape)
2340 {
2341 for (i = 0; i < num_chars; ++i)
2342 print_wchar (chars[i], buf, buflen,
2343 TYPE_LENGTH (type), byte_order,
2344 &wchar_buf, quoter, &need_escape);
2345 }
2346 }
2347
2348 /* This handles the NUM_CHARS == 0 case as well. */
2349 if (print_escape)
2350 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2351 byte_order, &wchar_buf, quoter, &need_escape);
2352 }
2353
2354 /* The output in the host encoding. */
2355 auto_obstack output;
2356
2357 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2358 (gdb_byte *) obstack_base (&wchar_buf),
2359 obstack_object_size (&wchar_buf),
2360 sizeof (gdb_wchar_t), &output, translit_char);
2361 obstack_1grow (&output, '\0');
2362
2363 fputs_filtered ((const char *) obstack_base (&output), stream);
2364 }
2365
2366 /* Return the repeat count of the next character/byte in ITER,
2367 storing the result in VEC. */
2368
2369 static int
2370 count_next_character (wchar_iterator *iter,
2371 std::vector<converted_character> *vec)
2372 {
2373 struct converted_character *current;
2374
2375 if (vec->empty ())
2376 {
2377 struct converted_character tmp;
2378 gdb_wchar_t *chars;
2379
2380 tmp.num_chars
2381 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2382 if (tmp.num_chars > 0)
2383 {
2384 gdb_assert (tmp.num_chars < MAX_WCHARS);
2385 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2386 }
2387 vec->push_back (tmp);
2388 }
2389
2390 current = &vec->back ();
2391
2392 /* Count repeated characters or bytes. */
2393 current->repeat_count = 1;
2394 if (current->num_chars == -1)
2395 {
2396 /* EOF */
2397 return -1;
2398 }
2399 else
2400 {
2401 gdb_wchar_t *chars;
2402 struct converted_character d;
2403 int repeat;
2404
2405 d.repeat_count = 0;
2406
2407 while (1)
2408 {
2409 /* Get the next character. */
2410 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2411
2412 /* If a character was successfully converted, save the character
2413 into the converted character. */
2414 if (d.num_chars > 0)
2415 {
2416 gdb_assert (d.num_chars < MAX_WCHARS);
2417 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2418 }
2419
2420 /* Determine if the current character is the same as this
2421 new character. */
2422 if (d.num_chars == current->num_chars && d.result == current->result)
2423 {
2424 /* There are two cases to consider:
2425
2426 1) Equality of converted character (num_chars > 0)
2427 2) Equality of non-converted character (num_chars == 0) */
2428 if ((current->num_chars > 0
2429 && memcmp (current->chars, d.chars,
2430 WCHAR_BUFLEN (current->num_chars)) == 0)
2431 || (current->num_chars == 0
2432 && current->buflen == d.buflen
2433 && memcmp (current->buf, d.buf, current->buflen) == 0))
2434 ++current->repeat_count;
2435 else
2436 break;
2437 }
2438 else
2439 break;
2440 }
2441
2442 /* Push this next converted character onto the result vector. */
2443 repeat = current->repeat_count;
2444 vec->push_back (d);
2445 return repeat;
2446 }
2447 }
2448
2449 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2450 character to use with string output. WIDTH is the size of the output
2451 character type. BYTE_ORDER is the target byte order. OPTIONS
2452 is the user's print options. */
2453
2454 static void
2455 print_converted_chars_to_obstack (struct obstack *obstack,
2456 const std::vector<converted_character> &chars,
2457 int quote_char, int width,
2458 enum bfd_endian byte_order,
2459 const struct value_print_options *options)
2460 {
2461 unsigned int idx;
2462 const converted_character *elem;
2463 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2464 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2465 int need_escape = 0;
2466
2467 /* Set the start state. */
2468 idx = 0;
2469 last = state = START;
2470 elem = NULL;
2471
2472 while (1)
2473 {
2474 switch (state)
2475 {
2476 case START:
2477 /* Nothing to do. */
2478 break;
2479
2480 case SINGLE:
2481 {
2482 int j;
2483
2484 /* We are outputting a single character
2485 (< options->repeat_count_threshold). */
2486
2487 if (last != SINGLE)
2488 {
2489 /* We were outputting some other type of content, so we
2490 must output and a comma and a quote. */
2491 if (last != START)
2492 obstack_grow_wstr (obstack, LCST (", "));
2493 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2494 }
2495 /* Output the character. */
2496 for (j = 0; j < elem->repeat_count; ++j)
2497 {
2498 if (elem->result == wchar_iterate_ok)
2499 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2500 byte_order, obstack, quote_char, &need_escape);
2501 else
2502 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2503 byte_order, obstack, quote_char, &need_escape);
2504 }
2505 }
2506 break;
2507
2508 case REPEAT:
2509 {
2510 int j;
2511
2512 /* We are outputting a character with a repeat count
2513 greater than options->repeat_count_threshold. */
2514
2515 if (last == SINGLE)
2516 {
2517 /* We were outputting a single string. Terminate the
2518 string. */
2519 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2520 }
2521 if (last != START)
2522 obstack_grow_wstr (obstack, LCST (", "));
2523
2524 /* Output the character and repeat string. */
2525 obstack_grow_wstr (obstack, LCST ("'"));
2526 if (elem->result == wchar_iterate_ok)
2527 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2528 byte_order, obstack, quote_char, &need_escape);
2529 else
2530 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2531 byte_order, obstack, quote_char, &need_escape);
2532 obstack_grow_wstr (obstack, LCST ("'"));
2533 std::string s = string_printf (_(" <repeats %u times>"),
2534 elem->repeat_count);
2535 for (j = 0; s[j]; ++j)
2536 {
2537 gdb_wchar_t w = gdb_btowc (s[j]);
2538 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2539 }
2540 }
2541 break;
2542
2543 case INCOMPLETE:
2544 /* We are outputting an incomplete sequence. */
2545 if (last == SINGLE)
2546 {
2547 /* If we were outputting a string of SINGLE characters,
2548 terminate the quote. */
2549 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2550 }
2551 if (last != START)
2552 obstack_grow_wstr (obstack, LCST (", "));
2553
2554 /* Output the incomplete sequence string. */
2555 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2556 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2557 obstack, 0, &need_escape);
2558 obstack_grow_wstr (obstack, LCST (">"));
2559
2560 /* We do not attempt to output anything after this. */
2561 state = FINISH;
2562 break;
2563
2564 case FINISH:
2565 /* All done. If we were outputting a string of SINGLE
2566 characters, the string must be terminated. Otherwise,
2567 REPEAT and INCOMPLETE are always left properly terminated. */
2568 if (last == SINGLE)
2569 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2570
2571 return;
2572 }
2573
2574 /* Get the next element and state. */
2575 last = state;
2576 if (state != FINISH)
2577 {
2578 elem = &chars[idx++];
2579 switch (elem->result)
2580 {
2581 case wchar_iterate_ok:
2582 case wchar_iterate_invalid:
2583 if (elem->repeat_count > options->repeat_count_threshold)
2584 state = REPEAT;
2585 else
2586 state = SINGLE;
2587 break;
2588
2589 case wchar_iterate_incomplete:
2590 state = INCOMPLETE;
2591 break;
2592
2593 case wchar_iterate_eof:
2594 state = FINISH;
2595 break;
2596 }
2597 }
2598 }
2599 }
2600
2601 /* Print the character string STRING, printing at most LENGTH
2602 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2603 the type of each character. OPTIONS holds the printing options;
2604 printing stops early if the number hits print_max; repeat counts
2605 are printed as appropriate. Print ellipses at the end if we had to
2606 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2607 QUOTE_CHAR is the character to print at each end of the string. If
2608 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2609 omitted. */
2610
2611 void
2612 generic_printstr (struct ui_file *stream, struct type *type,
2613 const gdb_byte *string, unsigned int length,
2614 const char *encoding, int force_ellipses,
2615 int quote_char, int c_style_terminator,
2616 const struct value_print_options *options)
2617 {
2618 enum bfd_endian byte_order = type_byte_order (type);
2619 unsigned int i;
2620 int width = TYPE_LENGTH (type);
2621 int finished = 0;
2622 struct converted_character *last;
2623
2624 if (length == -1)
2625 {
2626 unsigned long current_char = 1;
2627
2628 for (i = 0; current_char; ++i)
2629 {
2630 QUIT;
2631 current_char = extract_unsigned_integer (string + i * width,
2632 width, byte_order);
2633 }
2634 length = i;
2635 }
2636
2637 /* If the string was not truncated due to `set print elements', and
2638 the last byte of it is a null, we don't print that, in
2639 traditional C style. */
2640 if (c_style_terminator
2641 && !force_ellipses
2642 && length > 0
2643 && (extract_unsigned_integer (string + (length - 1) * width,
2644 width, byte_order) == 0))
2645 length--;
2646
2647 if (length == 0)
2648 {
2649 fputs_filtered ("\"\"", stream);
2650 return;
2651 }
2652
2653 /* Arrange to iterate over the characters, in wchar_t form. */
2654 wchar_iterator iter (string, length * width, encoding, width);
2655 std::vector<converted_character> converted_chars;
2656
2657 /* Convert characters until the string is over or the maximum
2658 number of printed characters has been reached. */
2659 i = 0;
2660 while (i < options->print_max)
2661 {
2662 int r;
2663
2664 QUIT;
2665
2666 /* Grab the next character and repeat count. */
2667 r = count_next_character (&iter, &converted_chars);
2668
2669 /* If less than zero, the end of the input string was reached. */
2670 if (r < 0)
2671 break;
2672
2673 /* Otherwise, add the count to the total print count and get
2674 the next character. */
2675 i += r;
2676 }
2677
2678 /* Get the last element and determine if the entire string was
2679 processed. */
2680 last = &converted_chars.back ();
2681 finished = (last->result == wchar_iterate_eof);
2682
2683 /* Ensure that CONVERTED_CHARS is terminated. */
2684 last->result = wchar_iterate_eof;
2685
2686 /* WCHAR_BUF is the obstack we use to represent the string in
2687 wchar_t form. */
2688 auto_obstack wchar_buf;
2689
2690 /* Print the output string to the obstack. */
2691 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2692 width, byte_order, options);
2693
2694 if (force_ellipses || !finished)
2695 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2696
2697 /* OUTPUT is where we collect `char's for printing. */
2698 auto_obstack output;
2699
2700 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2701 (gdb_byte *) obstack_base (&wchar_buf),
2702 obstack_object_size (&wchar_buf),
2703 sizeof (gdb_wchar_t), &output, translit_char);
2704 obstack_1grow (&output, '\0');
2705
2706 fputs_filtered ((const char *) obstack_base (&output), stream);
2707 }
2708
2709 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2710 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2711 stops at the first null byte, otherwise printing proceeds (including null
2712 bytes) until either print_max or LEN characters have been printed,
2713 whichever is smaller. ENCODING is the name of the string's
2714 encoding. It can be NULL, in which case the target encoding is
2715 assumed. */
2716
2717 int
2718 val_print_string (struct type *elttype, const char *encoding,
2719 CORE_ADDR addr, int len,
2720 struct ui_file *stream,
2721 const struct value_print_options *options)
2722 {
2723 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2724 int err; /* Non-zero if we got a bad read. */
2725 int found_nul; /* Non-zero if we found the nul char. */
2726 unsigned int fetchlimit; /* Maximum number of chars to print. */
2727 int bytes_read;
2728 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2729 struct gdbarch *gdbarch = elttype->arch ();
2730 enum bfd_endian byte_order = type_byte_order (elttype);
2731 int width = TYPE_LENGTH (elttype);
2732
2733 /* First we need to figure out the limit on the number of characters we are
2734 going to attempt to fetch and print. This is actually pretty simple. If
2735 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2736 LEN is -1, then the limit is print_max. This is true regardless of
2737 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2738 because finding the null byte (or available memory) is what actually
2739 limits the fetch. */
2740
2741 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2742 options->print_max));
2743
2744 err = read_string (addr, len, width, fetchlimit, byte_order,
2745 &buffer, &bytes_read);
2746
2747 addr += bytes_read;
2748
2749 /* We now have either successfully filled the buffer to fetchlimit,
2750 or terminated early due to an error or finding a null char when
2751 LEN is -1. */
2752
2753 /* Determine found_nul by looking at the last character read. */
2754 found_nul = 0;
2755 if (bytes_read >= width)
2756 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2757 width, byte_order) == 0;
2758 if (len == -1 && !found_nul)
2759 {
2760 gdb_byte *peekbuf;
2761
2762 /* We didn't find a NUL terminator we were looking for. Attempt
2763 to peek at the next character. If not successful, or it is not
2764 a null byte, then force ellipsis to be printed. */
2765
2766 peekbuf = (gdb_byte *) alloca (width);
2767
2768 if (target_read_memory (addr, peekbuf, width) == 0
2769 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2770 force_ellipsis = 1;
2771 }
2772 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2773 {
2774 /* Getting an error when we have a requested length, or fetching less
2775 than the number of characters actually requested, always make us
2776 print ellipsis. */
2777 force_ellipsis = 1;
2778 }
2779
2780 /* If we get an error before fetching anything, don't print a string.
2781 But if we fetch something and then get an error, print the string
2782 and then the error message. */
2783 if (err == 0 || bytes_read > 0)
2784 {
2785 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2786 encoding, force_ellipsis, options);
2787 }
2788
2789 if (err != 0)
2790 {
2791 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2792
2793 fprintf_filtered (stream, _("<error: %ps>"),
2794 styled_string (metadata_style.style (),
2795 str.c_str ()));
2796 }
2797
2798 return (bytes_read / width);
2799 }
2800
2801 /* Handle 'show print max-depth'. */
2802
2803 static void
2804 show_print_max_depth (struct ui_file *file, int from_tty,
2805 struct cmd_list_element *c, const char *value)
2806 {
2807 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2808 }
2809 \f
2810
2811 /* The 'set input-radix' command writes to this auxiliary variable.
2812 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2813 it is left unchanged. */
2814
2815 static unsigned input_radix_1 = 10;
2816
2817 /* Validate an input or output radix setting, and make sure the user
2818 knows what they really did here. Radix setting is confusing, e.g.
2819 setting the input radix to "10" never changes it! */
2820
2821 static void
2822 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2823 {
2824 set_input_radix_1 (from_tty, input_radix_1);
2825 }
2826
2827 static void
2828 set_input_radix_1 (int from_tty, unsigned radix)
2829 {
2830 /* We don't currently disallow any input radix except 0 or 1, which don't
2831 make any mathematical sense. In theory, we can deal with any input
2832 radix greater than 1, even if we don't have unique digits for every
2833 value from 0 to radix-1, but in practice we lose on large radix values.
2834 We should either fix the lossage or restrict the radix range more.
2835 (FIXME). */
2836
2837 if (radix < 2)
2838 {
2839 input_radix_1 = input_radix;
2840 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2841 radix);
2842 }
2843 input_radix_1 = input_radix = radix;
2844 if (from_tty)
2845 {
2846 printf_filtered (_("Input radix now set to "
2847 "decimal %u, hex %x, octal %o.\n"),
2848 radix, radix, radix);
2849 }
2850 }
2851
2852 /* The 'set output-radix' command writes to this auxiliary variable.
2853 If the requested radix is valid, OUTPUT_RADIX is updated,
2854 otherwise, it is left unchanged. */
2855
2856 static unsigned output_radix_1 = 10;
2857
2858 static void
2859 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2860 {
2861 set_output_radix_1 (from_tty, output_radix_1);
2862 }
2863
2864 static void
2865 set_output_radix_1 (int from_tty, unsigned radix)
2866 {
2867 /* Validate the radix and disallow ones that we aren't prepared to
2868 handle correctly, leaving the radix unchanged. */
2869 switch (radix)
2870 {
2871 case 16:
2872 user_print_options.output_format = 'x'; /* hex */
2873 break;
2874 case 10:
2875 user_print_options.output_format = 0; /* decimal */
2876 break;
2877 case 8:
2878 user_print_options.output_format = 'o'; /* octal */
2879 break;
2880 default:
2881 output_radix_1 = output_radix;
2882 error (_("Unsupported output radix ``decimal %u''; "
2883 "output radix unchanged."),
2884 radix);
2885 }
2886 output_radix_1 = output_radix = radix;
2887 if (from_tty)
2888 {
2889 printf_filtered (_("Output radix now set to "
2890 "decimal %u, hex %x, octal %o.\n"),
2891 radix, radix, radix);
2892 }
2893 }
2894
2895 /* Set both the input and output radix at once. Try to set the output radix
2896 first, since it has the most restrictive range. An radix that is valid as
2897 an output radix is also valid as an input radix.
2898
2899 It may be useful to have an unusual input radix. If the user wishes to
2900 set an input radix that is not valid as an output radix, he needs to use
2901 the 'set input-radix' command. */
2902
2903 static void
2904 set_radix (const char *arg, int from_tty)
2905 {
2906 unsigned radix;
2907
2908 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2909 set_output_radix_1 (0, radix);
2910 set_input_radix_1 (0, radix);
2911 if (from_tty)
2912 {
2913 printf_filtered (_("Input and output radices now set to "
2914 "decimal %u, hex %x, octal %o.\n"),
2915 radix, radix, radix);
2916 }
2917 }
2918
2919 /* Show both the input and output radices. */
2920
2921 static void
2922 show_radix (const char *arg, int from_tty)
2923 {
2924 if (from_tty)
2925 {
2926 if (input_radix == output_radix)
2927 {
2928 printf_filtered (_("Input and output radices set to "
2929 "decimal %u, hex %x, octal %o.\n"),
2930 input_radix, input_radix, input_radix);
2931 }
2932 else
2933 {
2934 printf_filtered (_("Input radix set to decimal "
2935 "%u, hex %x, octal %o.\n"),
2936 input_radix, input_radix, input_radix);
2937 printf_filtered (_("Output radix set to decimal "
2938 "%u, hex %x, octal %o.\n"),
2939 output_radix, output_radix, output_radix);
2940 }
2941 }
2942 }
2943 \f
2944
2945 /* Controls printing of vtbl's. */
2946 static void
2947 show_vtblprint (struct ui_file *file, int from_tty,
2948 struct cmd_list_element *c, const char *value)
2949 {
2950 fprintf_filtered (file, _("\
2951 Printing of C++ virtual function tables is %s.\n"),
2952 value);
2953 }
2954
2955 /* Controls looking up an object's derived type using what we find in
2956 its vtables. */
2957 static void
2958 show_objectprint (struct ui_file *file, int from_tty,
2959 struct cmd_list_element *c,
2960 const char *value)
2961 {
2962 fprintf_filtered (file, _("\
2963 Printing of object's derived type based on vtable info is %s.\n"),
2964 value);
2965 }
2966
2967 static void
2968 show_static_field_print (struct ui_file *file, int from_tty,
2969 struct cmd_list_element *c,
2970 const char *value)
2971 {
2972 fprintf_filtered (file,
2973 _("Printing of C++ static members is %s.\n"),
2974 value);
2975 }
2976
2977 \f
2978
2979 /* A couple typedefs to make writing the options a bit more
2980 convenient. */
2981 using boolean_option_def
2982 = gdb::option::boolean_option_def<value_print_options>;
2983 using uinteger_option_def
2984 = gdb::option::uinteger_option_def<value_print_options>;
2985 using zuinteger_unlimited_option_def
2986 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2987
2988 /* Definitions of options for the "print" and "compile print"
2989 commands. */
2990 static const gdb::option::option_def value_print_option_defs[] = {
2991
2992 boolean_option_def {
2993 "address",
2994 [] (value_print_options *opt) { return &opt->addressprint; },
2995 show_addressprint, /* show_cmd_cb */
2996 N_("Set printing of addresses."),
2997 N_("Show printing of addresses."),
2998 NULL, /* help_doc */
2999 },
3000
3001 boolean_option_def {
3002 "array",
3003 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3004 show_prettyformat_arrays, /* show_cmd_cb */
3005 N_("Set pretty formatting of arrays."),
3006 N_("Show pretty formatting of arrays."),
3007 NULL, /* help_doc */
3008 },
3009
3010 boolean_option_def {
3011 "array-indexes",
3012 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3013 show_print_array_indexes, /* show_cmd_cb */
3014 N_("Set printing of array indexes."),
3015 N_("Show printing of array indexes."),
3016 NULL, /* help_doc */
3017 },
3018
3019 uinteger_option_def {
3020 "elements",
3021 [] (value_print_options *opt) { return &opt->print_max; },
3022 show_print_max, /* show_cmd_cb */
3023 N_("Set limit on string chars or array elements to print."),
3024 N_("Show limit on string chars or array elements to print."),
3025 N_("\"unlimited\" causes there to be no limit."),
3026 },
3027
3028 zuinteger_unlimited_option_def {
3029 "max-depth",
3030 [] (value_print_options *opt) { return &opt->max_depth; },
3031 show_print_max_depth, /* show_cmd_cb */
3032 N_("Set maximum print depth for nested structures, unions and arrays."),
3033 N_("Show maximum print depth for nested structures, unions, and arrays."),
3034 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3035 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3036 Use \"unlimited\" to print the complete structure.")
3037 },
3038
3039 boolean_option_def {
3040 "memory-tag-violations",
3041 [] (value_print_options *opt) { return &opt->memory_tag_violations; },
3042 show_memory_tag_violations, /* show_cmd_cb */
3043 N_("Set printing of memory tag violations for pointers."),
3044 N_("Show printing of memory tag violations for pointers."),
3045 N_("Issue a warning when the printed value is a pointer\n\
3046 whose logical tag doesn't match the allocation tag of the memory\n\
3047 location it points to."),
3048 },
3049
3050 boolean_option_def {
3051 "null-stop",
3052 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3053 show_stop_print_at_null, /* show_cmd_cb */
3054 N_("Set printing of char arrays to stop at first null char."),
3055 N_("Show printing of char arrays to stop at first null char."),
3056 NULL, /* help_doc */
3057 },
3058
3059 boolean_option_def {
3060 "object",
3061 [] (value_print_options *opt) { return &opt->objectprint; },
3062 show_objectprint, /* show_cmd_cb */
3063 _("Set printing of C++ virtual function tables."),
3064 _("Show printing of C++ virtual function tables."),
3065 NULL, /* help_doc */
3066 },
3067
3068 boolean_option_def {
3069 "pretty",
3070 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3071 show_prettyformat_structs, /* show_cmd_cb */
3072 N_("Set pretty formatting of structures."),
3073 N_("Show pretty formatting of structures."),
3074 NULL, /* help_doc */
3075 },
3076
3077 boolean_option_def {
3078 "raw-values",
3079 [] (value_print_options *opt) { return &opt->raw; },
3080 NULL, /* show_cmd_cb */
3081 N_("Set whether to print values in raw form."),
3082 N_("Show whether to print values in raw form."),
3083 N_("If set, values are printed in raw form, bypassing any\n\
3084 pretty-printers for that value.")
3085 },
3086
3087 uinteger_option_def {
3088 "repeats",
3089 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3090 show_repeat_count_threshold, /* show_cmd_cb */
3091 N_("Set threshold for repeated print elements."),
3092 N_("Show threshold for repeated print elements."),
3093 N_("\"unlimited\" causes all elements to be individually printed."),
3094 },
3095
3096 boolean_option_def {
3097 "static-members",
3098 [] (value_print_options *opt) { return &opt->static_field_print; },
3099 show_static_field_print, /* show_cmd_cb */
3100 N_("Set printing of C++ static members."),
3101 N_("Show printing of C++ static members."),
3102 NULL, /* help_doc */
3103 },
3104
3105 boolean_option_def {
3106 "symbol",
3107 [] (value_print_options *opt) { return &opt->symbol_print; },
3108 show_symbol_print, /* show_cmd_cb */
3109 N_("Set printing of symbol names when printing pointers."),
3110 N_("Show printing of symbol names when printing pointers."),
3111 NULL, /* help_doc */
3112 },
3113
3114 boolean_option_def {
3115 "union",
3116 [] (value_print_options *opt) { return &opt->unionprint; },
3117 show_unionprint, /* show_cmd_cb */
3118 N_("Set printing of unions interior to structures."),
3119 N_("Show printing of unions interior to structures."),
3120 NULL, /* help_doc */
3121 },
3122
3123 boolean_option_def {
3124 "vtbl",
3125 [] (value_print_options *opt) { return &opt->vtblprint; },
3126 show_vtblprint, /* show_cmd_cb */
3127 N_("Set printing of C++ virtual function tables."),
3128 N_("Show printing of C++ virtual function tables."),
3129 NULL, /* help_doc */
3130 },
3131 };
3132
3133 /* See valprint.h. */
3134
3135 gdb::option::option_def_group
3136 make_value_print_options_def_group (value_print_options *opts)
3137 {
3138 return {{value_print_option_defs}, opts};
3139 }
3140
3141 #if GDB_SELF_TEST
3142
3143 /* Test printing of TYPE_CODE_FLAGS values. */
3144
3145 static void
3146 test_print_flags (gdbarch *arch)
3147 {
3148 type *flags_type = arch_flags_type (arch, "test_type", 32);
3149 type *field_type = builtin_type (arch)->builtin_uint32;
3150
3151 /* Value: 1010 1010
3152 Fields: CCCB BAAA */
3153 append_flags_type_field (flags_type, 0, 3, field_type, "A");
3154 append_flags_type_field (flags_type, 3, 2, field_type, "B");
3155 append_flags_type_field (flags_type, 5, 3, field_type, "C");
3156
3157 value *val = allocate_value (flags_type);
3158 gdb_byte *contents = value_contents_writeable (val);
3159 store_unsigned_integer (contents, 4, gdbarch_byte_order (arch), 0xaa);
3160
3161 string_file out;
3162 val_print_type_code_flags (flags_type, val, 0, &out);
3163 SELF_CHECK (out.string () == "[ A=2 B=1 C=5 ]");
3164 }
3165
3166 #endif
3167
3168 void _initialize_valprint ();
3169 void
3170 _initialize_valprint ()
3171 {
3172 #if GDB_SELF_TEST
3173 selftests::register_test_foreach_arch ("print-flags", test_print_flags);
3174 #endif
3175
3176 cmd_list_element *cmd;
3177
3178 cmd_list_element *set_print_cmd
3179 = add_basic_prefix_cmd ("print", no_class,
3180 _("Generic command for setting how things print."),
3181 &setprintlist, 0, &setlist);
3182 add_alias_cmd ("p", set_print_cmd, no_class, 1, &setlist);
3183 /* Prefer set print to set prompt. */
3184 add_alias_cmd ("pr", set_print_cmd, no_class, 1, &setlist);
3185
3186 cmd_list_element *show_print_cmd
3187 = add_show_prefix_cmd ("print", no_class,
3188 _("Generic command for showing print settings."),
3189 &showprintlist, 0, &showlist);
3190 add_alias_cmd ("p", show_print_cmd, no_class, 1, &showlist);
3191 add_alias_cmd ("pr", show_print_cmd, no_class, 1, &showlist);
3192
3193 cmd = add_basic_prefix_cmd ("raw", no_class,
3194 _("\
3195 Generic command for setting what things to print in \"raw\" mode."),
3196 &setprintrawlist, 0, &setprintlist);
3197 deprecate_cmd (cmd, nullptr);
3198
3199 cmd = add_show_prefix_cmd ("raw", no_class,
3200 _("Generic command for showing \"print raw\" settings."),
3201 &showprintrawlist, 0, &showprintlist);
3202 deprecate_cmd (cmd, nullptr);
3203
3204 gdb::option::add_setshow_cmds_for_options
3205 (class_support, &user_print_options, value_print_option_defs,
3206 &setprintlist, &showprintlist);
3207
3208 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3209 _("\
3210 Set default input radix for entering numbers."), _("\
3211 Show default input radix for entering numbers."), NULL,
3212 set_input_radix,
3213 show_input_radix,
3214 &setlist, &showlist);
3215
3216 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3217 _("\
3218 Set default output radix for printing of values."), _("\
3219 Show default output radix for printing of values."), NULL,
3220 set_output_radix,
3221 show_output_radix,
3222 &setlist, &showlist);
3223
3224 /* The "set radix" and "show radix" commands are special in that
3225 they are like normal set and show commands but allow two normally
3226 independent variables to be either set or shown with a single
3227 command. So the usual deprecated_add_set_cmd() and [deleted]
3228 add_show_from_set() commands aren't really appropriate. */
3229 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3230 longer true - show can display anything. */
3231 add_cmd ("radix", class_support, set_radix, _("\
3232 Set default input and output number radices.\n\
3233 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3234 Without an argument, sets both radices back to the default value of 10."),
3235 &setlist);
3236 add_cmd ("radix", class_support, show_radix, _("\
3237 Show the default input and output number radices.\n\
3238 Use 'show input-radix' or 'show output-radix' to independently show each."),
3239 &showlist);
3240 }
This page took 0.109594 seconds and 4 git commands to generate.