windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 CHECK_TYPEDEF (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 CHECK_TYPEDEF (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 CHECK_TYPEDEF (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* A generic val_print that is suitable for use by language
363 implementations of the la_val_print method. This function can
364 handle most type codes, though not all, notably exception
365 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
366 the caller.
367
368 Most arguments are as to val_print.
369
370 The additional DECORATIONS argument can be used to customize the
371 output in some small, language-specific ways. */
372
373 void
374 generic_val_print (struct type *type, const gdb_byte *valaddr,
375 int embedded_offset, CORE_ADDR address,
376 struct ui_file *stream, int recurse,
377 const struct value *original_value,
378 const struct value_print_options *options,
379 const struct generic_val_print_decorations *decorations)
380 {
381 struct gdbarch *gdbarch = get_type_arch (type);
382 unsigned int i = 0; /* Number of characters printed. */
383 unsigned len;
384 struct type *elttype, *unresolved_elttype;
385 struct type *unresolved_type = type;
386 LONGEST val;
387 CORE_ADDR addr;
388
389 CHECK_TYPEDEF (type);
390 switch (TYPE_CODE (type))
391 {
392 case TYPE_CODE_ARRAY:
393 unresolved_elttype = TYPE_TARGET_TYPE (type);
394 elttype = check_typedef (unresolved_elttype);
395 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
396 {
397 LONGEST low_bound, high_bound;
398
399 if (!get_array_bounds (type, &low_bound, &high_bound))
400 error (_("Could not determine the array high bound"));
401
402 if (options->prettyformat_arrays)
403 {
404 print_spaces_filtered (2 + 2 * recurse, stream);
405 }
406
407 fprintf_filtered (stream, "{");
408 val_print_array_elements (type, valaddr, embedded_offset,
409 address, stream,
410 recurse, original_value, options, 0);
411 fprintf_filtered (stream, "}");
412 break;
413 }
414 /* Array of unspecified length: treat like pointer to first
415 elt. */
416 addr = address + embedded_offset;
417 goto print_unpacked_pointer;
418
419 case TYPE_CODE_MEMBERPTR:
420 val_print_scalar_formatted (type, valaddr, embedded_offset,
421 original_value, options, 0, stream);
422 break;
423
424 case TYPE_CODE_PTR:
425 if (options->format && options->format != 's')
426 {
427 val_print_scalar_formatted (type, valaddr, embedded_offset,
428 original_value, options, 0, stream);
429 break;
430 }
431 unresolved_elttype = TYPE_TARGET_TYPE (type);
432 elttype = check_typedef (unresolved_elttype);
433 {
434 addr = unpack_pointer (type, valaddr + embedded_offset);
435 print_unpacked_pointer:
436
437 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
438 {
439 /* Try to print what function it points to. */
440 print_function_pointer_address (options, gdbarch, addr, stream);
441 return;
442 }
443
444 if (options->symbol_print)
445 print_address_demangle (options, gdbarch, addr, stream, demangle);
446 else if (options->addressprint)
447 fputs_filtered (paddress (gdbarch, addr), stream);
448 }
449 break;
450
451 case TYPE_CODE_REF:
452 elttype = check_typedef (TYPE_TARGET_TYPE (type));
453 if (options->addressprint)
454 {
455 CORE_ADDR addr
456 = extract_typed_address (valaddr + embedded_offset, type);
457
458 fprintf_filtered (stream, "@");
459 fputs_filtered (paddress (gdbarch, addr), stream);
460 if (options->deref_ref)
461 fputs_filtered (": ", stream);
462 }
463 /* De-reference the reference. */
464 if (options->deref_ref)
465 {
466 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
467 {
468 struct value *deref_val;
469
470 deref_val = coerce_ref_if_computed (original_value);
471 if (deref_val != NULL)
472 {
473 /* More complicated computed references are not supported. */
474 gdb_assert (embedded_offset == 0);
475 }
476 else
477 deref_val = value_at (TYPE_TARGET_TYPE (type),
478 unpack_pointer (type,
479 (valaddr
480 + embedded_offset)));
481
482 common_val_print (deref_val, stream, recurse, options,
483 current_language);
484 }
485 else
486 fputs_filtered ("???", stream);
487 }
488 break;
489
490 case TYPE_CODE_ENUM:
491 if (options->format)
492 {
493 val_print_scalar_formatted (type, valaddr, embedded_offset,
494 original_value, options, 0, stream);
495 break;
496 }
497 len = TYPE_NFIELDS (type);
498 val = unpack_long (type, valaddr + embedded_offset);
499 for (i = 0; i < len; i++)
500 {
501 QUIT;
502 if (val == TYPE_FIELD_ENUMVAL (type, i))
503 {
504 break;
505 }
506 }
507 if (i < len)
508 {
509 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
510 }
511 else if (TYPE_FLAG_ENUM (type))
512 {
513 int first = 1;
514
515 /* We have a "flag" enum, so we try to decompose it into
516 pieces as appropriate. A flag enum has disjoint
517 constants by definition. */
518 fputs_filtered ("(", stream);
519 for (i = 0; i < len; ++i)
520 {
521 QUIT;
522
523 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
524 {
525 if (!first)
526 fputs_filtered (" | ", stream);
527 first = 0;
528
529 val &= ~TYPE_FIELD_ENUMVAL (type, i);
530 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
531 }
532 }
533
534 if (first || val != 0)
535 {
536 if (!first)
537 fputs_filtered (" | ", stream);
538 fputs_filtered ("unknown: ", stream);
539 print_longest (stream, 'd', 0, val);
540 }
541
542 fputs_filtered (")", stream);
543 }
544 else
545 print_longest (stream, 'd', 0, val);
546 break;
547
548 case TYPE_CODE_FLAGS:
549 if (options->format)
550 val_print_scalar_formatted (type, valaddr, embedded_offset,
551 original_value, options, 0, stream);
552 else
553 val_print_type_code_flags (type, valaddr + embedded_offset,
554 stream);
555 break;
556
557 case TYPE_CODE_FUNC:
558 case TYPE_CODE_METHOD:
559 if (options->format)
560 {
561 val_print_scalar_formatted (type, valaddr, embedded_offset,
562 original_value, options, 0, stream);
563 break;
564 }
565 /* FIXME, we should consider, at least for ANSI C language,
566 eliminating the distinction made between FUNCs and POINTERs
567 to FUNCs. */
568 fprintf_filtered (stream, "{");
569 type_print (type, "", stream, -1);
570 fprintf_filtered (stream, "} ");
571 /* Try to print what function it points to, and its address. */
572 print_address_demangle (options, gdbarch, address, stream, demangle);
573 break;
574
575 case TYPE_CODE_BOOL:
576 if (options->format || options->output_format)
577 {
578 struct value_print_options opts = *options;
579 opts.format = (options->format ? options->format
580 : options->output_format);
581 val_print_scalar_formatted (type, valaddr, embedded_offset,
582 original_value, &opts, 0, stream);
583 }
584 else
585 {
586 val = unpack_long (type, valaddr + embedded_offset);
587 if (val == 0)
588 fputs_filtered (decorations->false_name, stream);
589 else if (val == 1)
590 fputs_filtered (decorations->true_name, stream);
591 else
592 print_longest (stream, 'd', 0, val);
593 }
594 break;
595
596 case TYPE_CODE_RANGE:
597 /* FIXME: create_static_range_type does not set the unsigned bit in a
598 range type (I think it probably should copy it from the
599 target type), so we won't print values which are too large to
600 fit in a signed integer correctly. */
601 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
602 print with the target type, though, because the size of our
603 type and the target type might differ). */
604
605 /* FALLTHROUGH */
606
607 case TYPE_CODE_INT:
608 if (options->format || options->output_format)
609 {
610 struct value_print_options opts = *options;
611
612 opts.format = (options->format ? options->format
613 : options->output_format);
614 val_print_scalar_formatted (type, valaddr, embedded_offset,
615 original_value, &opts, 0, stream);
616 }
617 else
618 val_print_type_code_int (type, valaddr + embedded_offset, stream);
619 break;
620
621 case TYPE_CODE_CHAR:
622 if (options->format || options->output_format)
623 {
624 struct value_print_options opts = *options;
625
626 opts.format = (options->format ? options->format
627 : options->output_format);
628 val_print_scalar_formatted (type, valaddr, embedded_offset,
629 original_value, &opts, 0, stream);
630 }
631 else
632 {
633 val = unpack_long (type, valaddr + embedded_offset);
634 if (TYPE_UNSIGNED (type))
635 fprintf_filtered (stream, "%u", (unsigned int) val);
636 else
637 fprintf_filtered (stream, "%d", (int) val);
638 fputs_filtered (" ", stream);
639 LA_PRINT_CHAR (val, unresolved_type, stream);
640 }
641 break;
642
643 case TYPE_CODE_FLT:
644 if (options->format)
645 {
646 val_print_scalar_formatted (type, valaddr, embedded_offset,
647 original_value, options, 0, stream);
648 }
649 else
650 {
651 print_floating (valaddr + embedded_offset, type, stream);
652 }
653 break;
654
655 case TYPE_CODE_DECFLOAT:
656 if (options->format)
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 else
660 print_decimal_floating (valaddr + embedded_offset,
661 type, stream);
662 break;
663
664 case TYPE_CODE_VOID:
665 fputs_filtered (decorations->void_name, stream);
666 break;
667
668 case TYPE_CODE_ERROR:
669 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
670 break;
671
672 case TYPE_CODE_UNDEF:
673 /* This happens (without TYPE_FLAG_STUB set) on systems which
674 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
675 "struct foo *bar" and no complete type for struct foo in that
676 file. */
677 fprintf_filtered (stream, _("<incomplete type>"));
678 break;
679
680 case TYPE_CODE_COMPLEX:
681 fprintf_filtered (stream, "%s", decorations->complex_prefix);
682 if (options->format)
683 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 valaddr, embedded_offset,
685 original_value, options, 0, stream);
686 else
687 print_floating (valaddr + embedded_offset,
688 TYPE_TARGET_TYPE (type),
689 stream);
690 fprintf_filtered (stream, "%s", decorations->complex_infix);
691 if (options->format)
692 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
693 valaddr,
694 embedded_offset
695 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
696 original_value,
697 options, 0, stream);
698 else
699 print_floating (valaddr + embedded_offset
700 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
701 TYPE_TARGET_TYPE (type),
702 stream);
703 fprintf_filtered (stream, "%s", decorations->complex_suffix);
704 break;
705
706 case TYPE_CODE_UNION:
707 case TYPE_CODE_STRUCT:
708 case TYPE_CODE_METHODPTR:
709 default:
710 error (_("Unhandled type code %d in symbol table."),
711 TYPE_CODE (type));
712 }
713 gdb_flush (stream);
714 }
715
716 /* Print using the given LANGUAGE the data of type TYPE located at
717 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
718 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
719 STREAM according to OPTIONS. VAL is the whole object that came
720 from ADDRESS. VALADDR must point to the head of VAL's contents
721 buffer.
722
723 The language printers will pass down an adjusted EMBEDDED_OFFSET to
724 further helper subroutines as subfields of TYPE are printed. In
725 such cases, VALADDR is passed down unadjusted, as well as VAL, so
726 that VAL can be queried for metadata about the contents data being
727 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
728 buffer. For example: "has this field been optimized out", or "I'm
729 printing an object while inspecting a traceframe; has this
730 particular piece of data been collected?".
731
732 RECURSE indicates the amount of indentation to supply before
733 continuation lines; this amount is roughly twice the value of
734 RECURSE. */
735
736 void
737 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
738 CORE_ADDR address, struct ui_file *stream, int recurse,
739 const struct value *val,
740 const struct value_print_options *options,
741 const struct language_defn *language)
742 {
743 int ret = 0;
744 struct value_print_options local_opts = *options;
745 struct type *real_type = check_typedef (type);
746
747 if (local_opts.prettyformat == Val_prettyformat_default)
748 local_opts.prettyformat = (local_opts.prettyformat_structs
749 ? Val_prettyformat : Val_no_prettyformat);
750
751 QUIT;
752
753 /* Ensure that the type is complete and not just a stub. If the type is
754 only a stub and we can't find and substitute its complete type, then
755 print appropriate string and return. */
756
757 if (TYPE_STUB (real_type))
758 {
759 fprintf_filtered (stream, _("<incomplete type>"));
760 gdb_flush (stream);
761 return;
762 }
763
764 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
765 return;
766
767 if (!options->raw)
768 {
769 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
770 address, stream, recurse,
771 val, options, language);
772 if (ret)
773 return;
774 }
775
776 /* Handle summary mode. If the value is a scalar, print it;
777 otherwise, print an ellipsis. */
778 if (options->summary && !val_print_scalar_type_p (type))
779 {
780 fprintf_filtered (stream, "...");
781 return;
782 }
783
784 TRY
785 {
786 language->la_val_print (type, valaddr, embedded_offset, address,
787 stream, recurse, val,
788 &local_opts);
789 }
790 CATCH (except, RETURN_MASK_ERROR)
791 {
792 fprintf_filtered (stream, _("<error reading variable>"));
793 }
794 END_CATCH
795 }
796
797 /* Check whether the value VAL is printable. Return 1 if it is;
798 return 0 and print an appropriate error message to STREAM according to
799 OPTIONS if it is not. */
800
801 static int
802 value_check_printable (struct value *val, struct ui_file *stream,
803 const struct value_print_options *options)
804 {
805 if (val == 0)
806 {
807 fprintf_filtered (stream, _("<address of value unknown>"));
808 return 0;
809 }
810
811 if (value_entirely_optimized_out (val))
812 {
813 if (options->summary && !val_print_scalar_type_p (value_type (val)))
814 fprintf_filtered (stream, "...");
815 else
816 val_print_optimized_out (val, stream);
817 return 0;
818 }
819
820 if (value_entirely_unavailable (val))
821 {
822 if (options->summary && !val_print_scalar_type_p (value_type (val)))
823 fprintf_filtered (stream, "...");
824 else
825 val_print_unavailable (stream);
826 return 0;
827 }
828
829 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
830 {
831 fprintf_filtered (stream, _("<internal function %s>"),
832 value_internal_function_name (val));
833 return 0;
834 }
835
836 return 1;
837 }
838
839 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
840 to OPTIONS.
841
842 This is a preferable interface to val_print, above, because it uses
843 GDB's value mechanism. */
844
845 void
846 common_val_print (struct value *val, struct ui_file *stream, int recurse,
847 const struct value_print_options *options,
848 const struct language_defn *language)
849 {
850 if (!value_check_printable (val, stream, options))
851 return;
852
853 if (language->la_language == language_ada)
854 /* The value might have a dynamic type, which would cause trouble
855 below when trying to extract the value contents (since the value
856 size is determined from the type size which is unknown). So
857 get a fixed representation of our value. */
858 val = ada_to_fixed_value (val);
859
860 val_print (value_type (val), value_contents_for_printing (val),
861 value_embedded_offset (val), value_address (val),
862 stream, recurse,
863 val, options, language);
864 }
865
866 /* Print on stream STREAM the value VAL according to OPTIONS. The value
867 is printed using the current_language syntax. */
868
869 void
870 value_print (struct value *val, struct ui_file *stream,
871 const struct value_print_options *options)
872 {
873 if (!value_check_printable (val, stream, options))
874 return;
875
876 if (!options->raw)
877 {
878 int r
879 = apply_ext_lang_val_pretty_printer (value_type (val),
880 value_contents_for_printing (val),
881 value_embedded_offset (val),
882 value_address (val),
883 stream, 0,
884 val, options, current_language);
885
886 if (r)
887 return;
888 }
889
890 LA_VALUE_PRINT (val, stream, options);
891 }
892
893 /* Called by various <lang>_val_print routines to print
894 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
895 value. STREAM is where to print the value. */
896
897 void
898 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
899 struct ui_file *stream)
900 {
901 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
902
903 if (TYPE_LENGTH (type) > sizeof (LONGEST))
904 {
905 LONGEST val;
906
907 if (TYPE_UNSIGNED (type)
908 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
909 byte_order, &val))
910 {
911 print_longest (stream, 'u', 0, val);
912 }
913 else
914 {
915 /* Signed, or we couldn't turn an unsigned value into a
916 LONGEST. For signed values, one could assume two's
917 complement (a reasonable assumption, I think) and do
918 better than this. */
919 print_hex_chars (stream, (unsigned char *) valaddr,
920 TYPE_LENGTH (type), byte_order);
921 }
922 }
923 else
924 {
925 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
926 unpack_long (type, valaddr));
927 }
928 }
929
930 void
931 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
932 struct ui_file *stream)
933 {
934 ULONGEST val = unpack_long (type, valaddr);
935 int bitpos, nfields = TYPE_NFIELDS (type);
936
937 fputs_filtered ("[ ", stream);
938 for (bitpos = 0; bitpos < nfields; bitpos++)
939 {
940 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
941 && (val & ((ULONGEST)1 << bitpos)))
942 {
943 if (TYPE_FIELD_NAME (type, bitpos))
944 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
945 else
946 fprintf_filtered (stream, "#%d ", bitpos);
947 }
948 }
949 fputs_filtered ("]", stream);
950 }
951
952 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
953 according to OPTIONS and SIZE on STREAM. Format i is not supported
954 at this level.
955
956 This is how the elements of an array or structure are printed
957 with a format. */
958
959 void
960 val_print_scalar_formatted (struct type *type,
961 const gdb_byte *valaddr, int embedded_offset,
962 const struct value *val,
963 const struct value_print_options *options,
964 int size,
965 struct ui_file *stream)
966 {
967 gdb_assert (val != NULL);
968 gdb_assert (valaddr == value_contents_for_printing_const (val));
969
970 /* If we get here with a string format, try again without it. Go
971 all the way back to the language printers, which may call us
972 again. */
973 if (options->format == 's')
974 {
975 struct value_print_options opts = *options;
976 opts.format = 0;
977 opts.deref_ref = 0;
978 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
979 current_language);
980 return;
981 }
982
983 /* A scalar object that does not have all bits available can't be
984 printed, because all bits contribute to its representation. */
985 if (value_bits_any_optimized_out (val,
986 TARGET_CHAR_BIT * embedded_offset,
987 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
988 val_print_optimized_out (val, stream);
989 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
990 val_print_unavailable (stream);
991 else
992 print_scalar_formatted (valaddr + embedded_offset, type,
993 options, size, stream);
994 }
995
996 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
997 The raison d'etre of this function is to consolidate printing of
998 LONG_LONG's into this one function. The format chars b,h,w,g are
999 from print_scalar_formatted(). Numbers are printed using C
1000 format.
1001
1002 USE_C_FORMAT means to use C format in all cases. Without it,
1003 'o' and 'x' format do not include the standard C radix prefix
1004 (leading 0 or 0x).
1005
1006 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1007 and was intended to request formating according to the current
1008 language and would be used for most integers that GDB prints. The
1009 exceptional cases were things like protocols where the format of
1010 the integer is a protocol thing, not a user-visible thing). The
1011 parameter remains to preserve the information of what things might
1012 be printed with language-specific format, should we ever resurrect
1013 that capability. */
1014
1015 void
1016 print_longest (struct ui_file *stream, int format, int use_c_format,
1017 LONGEST val_long)
1018 {
1019 const char *val;
1020
1021 switch (format)
1022 {
1023 case 'd':
1024 val = int_string (val_long, 10, 1, 0, 1); break;
1025 case 'u':
1026 val = int_string (val_long, 10, 0, 0, 1); break;
1027 case 'x':
1028 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1029 case 'b':
1030 val = int_string (val_long, 16, 0, 2, 1); break;
1031 case 'h':
1032 val = int_string (val_long, 16, 0, 4, 1); break;
1033 case 'w':
1034 val = int_string (val_long, 16, 0, 8, 1); break;
1035 case 'g':
1036 val = int_string (val_long, 16, 0, 16, 1); break;
1037 break;
1038 case 'o':
1039 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1040 default:
1041 internal_error (__FILE__, __LINE__,
1042 _("failed internal consistency check"));
1043 }
1044 fputs_filtered (val, stream);
1045 }
1046
1047 /* This used to be a macro, but I don't think it is called often enough
1048 to merit such treatment. */
1049 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1050 arguments to a function, number in a value history, register number, etc.)
1051 where the value must not be larger than can fit in an int. */
1052
1053 int
1054 longest_to_int (LONGEST arg)
1055 {
1056 /* Let the compiler do the work. */
1057 int rtnval = (int) arg;
1058
1059 /* Check for overflows or underflows. */
1060 if (sizeof (LONGEST) > sizeof (int))
1061 {
1062 if (rtnval != arg)
1063 {
1064 error (_("Value out of range."));
1065 }
1066 }
1067 return (rtnval);
1068 }
1069
1070 /* Print a floating point value of type TYPE (not always a
1071 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1072
1073 void
1074 print_floating (const gdb_byte *valaddr, struct type *type,
1075 struct ui_file *stream)
1076 {
1077 DOUBLEST doub;
1078 int inv;
1079 const struct floatformat *fmt = NULL;
1080 unsigned len = TYPE_LENGTH (type);
1081 enum float_kind kind;
1082
1083 /* If it is a floating-point, check for obvious problems. */
1084 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1085 fmt = floatformat_from_type (type);
1086 if (fmt != NULL)
1087 {
1088 kind = floatformat_classify (fmt, valaddr);
1089 if (kind == float_nan)
1090 {
1091 if (floatformat_is_negative (fmt, valaddr))
1092 fprintf_filtered (stream, "-");
1093 fprintf_filtered (stream, "nan(");
1094 fputs_filtered ("0x", stream);
1095 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1096 fprintf_filtered (stream, ")");
1097 return;
1098 }
1099 else if (kind == float_infinite)
1100 {
1101 if (floatformat_is_negative (fmt, valaddr))
1102 fputs_filtered ("-", stream);
1103 fputs_filtered ("inf", stream);
1104 return;
1105 }
1106 }
1107
1108 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1109 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1110 needs to be used as that takes care of any necessary type
1111 conversions. Such conversions are of course direct to DOUBLEST
1112 and disregard any possible target floating point limitations.
1113 For instance, a u64 would be converted and displayed exactly on a
1114 host with 80 bit DOUBLEST but with loss of information on a host
1115 with 64 bit DOUBLEST. */
1116
1117 doub = unpack_double (type, valaddr, &inv);
1118 if (inv)
1119 {
1120 fprintf_filtered (stream, "<invalid float value>");
1121 return;
1122 }
1123
1124 /* FIXME: kettenis/2001-01-20: The following code makes too much
1125 assumptions about the host and target floating point format. */
1126
1127 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1128 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1129 instead uses the type's length to determine the precision of the
1130 floating-point value being printed. */
1131
1132 if (len < sizeof (double))
1133 fprintf_filtered (stream, "%.9g", (double) doub);
1134 else if (len == sizeof (double))
1135 fprintf_filtered (stream, "%.17g", (double) doub);
1136 else
1137 #ifdef PRINTF_HAS_LONG_DOUBLE
1138 fprintf_filtered (stream, "%.35Lg", doub);
1139 #else
1140 /* This at least wins with values that are representable as
1141 doubles. */
1142 fprintf_filtered (stream, "%.17g", (double) doub);
1143 #endif
1144 }
1145
1146 void
1147 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1148 struct ui_file *stream)
1149 {
1150 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1151 char decstr[MAX_DECIMAL_STRING];
1152 unsigned len = TYPE_LENGTH (type);
1153
1154 decimal_to_string (valaddr, len, byte_order, decstr);
1155 fputs_filtered (decstr, stream);
1156 return;
1157 }
1158
1159 void
1160 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1161 unsigned len, enum bfd_endian byte_order)
1162 {
1163
1164 #define BITS_IN_BYTES 8
1165
1166 const gdb_byte *p;
1167 unsigned int i;
1168 int b;
1169
1170 /* Declared "int" so it will be signed.
1171 This ensures that right shift will shift in zeros. */
1172
1173 const int mask = 0x080;
1174
1175 /* FIXME: We should be not printing leading zeroes in most cases. */
1176
1177 if (byte_order == BFD_ENDIAN_BIG)
1178 {
1179 for (p = valaddr;
1180 p < valaddr + len;
1181 p++)
1182 {
1183 /* Every byte has 8 binary characters; peel off
1184 and print from the MSB end. */
1185
1186 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1187 {
1188 if (*p & (mask >> i))
1189 b = 1;
1190 else
1191 b = 0;
1192
1193 fprintf_filtered (stream, "%1d", b);
1194 }
1195 }
1196 }
1197 else
1198 {
1199 for (p = valaddr + len - 1;
1200 p >= valaddr;
1201 p--)
1202 {
1203 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1204 {
1205 if (*p & (mask >> i))
1206 b = 1;
1207 else
1208 b = 0;
1209
1210 fprintf_filtered (stream, "%1d", b);
1211 }
1212 }
1213 }
1214 }
1215
1216 /* VALADDR points to an integer of LEN bytes.
1217 Print it in octal on stream or format it in buf. */
1218
1219 void
1220 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1221 unsigned len, enum bfd_endian byte_order)
1222 {
1223 const gdb_byte *p;
1224 unsigned char octa1, octa2, octa3, carry;
1225 int cycle;
1226
1227 /* FIXME: We should be not printing leading zeroes in most cases. */
1228
1229
1230 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1231 * the extra bits, which cycle every three bytes:
1232 *
1233 * Byte side: 0 1 2 3
1234 * | | | |
1235 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1236 *
1237 * Octal side: 0 1 carry 3 4 carry ...
1238 *
1239 * Cycle number: 0 1 2
1240 *
1241 * But of course we are printing from the high side, so we have to
1242 * figure out where in the cycle we are so that we end up with no
1243 * left over bits at the end.
1244 */
1245 #define BITS_IN_OCTAL 3
1246 #define HIGH_ZERO 0340
1247 #define LOW_ZERO 0016
1248 #define CARRY_ZERO 0003
1249 #define HIGH_ONE 0200
1250 #define MID_ONE 0160
1251 #define LOW_ONE 0016
1252 #define CARRY_ONE 0001
1253 #define HIGH_TWO 0300
1254 #define MID_TWO 0070
1255 #define LOW_TWO 0007
1256
1257 /* For 32 we start in cycle 2, with two bits and one bit carry;
1258 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1259
1260 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1261 carry = 0;
1262
1263 fputs_filtered ("0", stream);
1264 if (byte_order == BFD_ENDIAN_BIG)
1265 {
1266 for (p = valaddr;
1267 p < valaddr + len;
1268 p++)
1269 {
1270 switch (cycle)
1271 {
1272 case 0:
1273 /* No carry in, carry out two bits. */
1274
1275 octa1 = (HIGH_ZERO & *p) >> 5;
1276 octa2 = (LOW_ZERO & *p) >> 2;
1277 carry = (CARRY_ZERO & *p);
1278 fprintf_filtered (stream, "%o", octa1);
1279 fprintf_filtered (stream, "%o", octa2);
1280 break;
1281
1282 case 1:
1283 /* Carry in two bits, carry out one bit. */
1284
1285 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1286 octa2 = (MID_ONE & *p) >> 4;
1287 octa3 = (LOW_ONE & *p) >> 1;
1288 carry = (CARRY_ONE & *p);
1289 fprintf_filtered (stream, "%o", octa1);
1290 fprintf_filtered (stream, "%o", octa2);
1291 fprintf_filtered (stream, "%o", octa3);
1292 break;
1293
1294 case 2:
1295 /* Carry in one bit, no carry out. */
1296
1297 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1298 octa2 = (MID_TWO & *p) >> 3;
1299 octa3 = (LOW_TWO & *p);
1300 carry = 0;
1301 fprintf_filtered (stream, "%o", octa1);
1302 fprintf_filtered (stream, "%o", octa2);
1303 fprintf_filtered (stream, "%o", octa3);
1304 break;
1305
1306 default:
1307 error (_("Internal error in octal conversion;"));
1308 }
1309
1310 cycle++;
1311 cycle = cycle % BITS_IN_OCTAL;
1312 }
1313 }
1314 else
1315 {
1316 for (p = valaddr + len - 1;
1317 p >= valaddr;
1318 p--)
1319 {
1320 switch (cycle)
1321 {
1322 case 0:
1323 /* Carry out, no carry in */
1324
1325 octa1 = (HIGH_ZERO & *p) >> 5;
1326 octa2 = (LOW_ZERO & *p) >> 2;
1327 carry = (CARRY_ZERO & *p);
1328 fprintf_filtered (stream, "%o", octa1);
1329 fprintf_filtered (stream, "%o", octa2);
1330 break;
1331
1332 case 1:
1333 /* Carry in, carry out */
1334
1335 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1336 octa2 = (MID_ONE & *p) >> 4;
1337 octa3 = (LOW_ONE & *p) >> 1;
1338 carry = (CARRY_ONE & *p);
1339 fprintf_filtered (stream, "%o", octa1);
1340 fprintf_filtered (stream, "%o", octa2);
1341 fprintf_filtered (stream, "%o", octa3);
1342 break;
1343
1344 case 2:
1345 /* Carry in, no carry out */
1346
1347 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1348 octa2 = (MID_TWO & *p) >> 3;
1349 octa3 = (LOW_TWO & *p);
1350 carry = 0;
1351 fprintf_filtered (stream, "%o", octa1);
1352 fprintf_filtered (stream, "%o", octa2);
1353 fprintf_filtered (stream, "%o", octa3);
1354 break;
1355
1356 default:
1357 error (_("Internal error in octal conversion;"));
1358 }
1359
1360 cycle++;
1361 cycle = cycle % BITS_IN_OCTAL;
1362 }
1363 }
1364
1365 }
1366
1367 /* VALADDR points to an integer of LEN bytes.
1368 Print it in decimal on stream or format it in buf. */
1369
1370 void
1371 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1372 unsigned len, enum bfd_endian byte_order)
1373 {
1374 #define TEN 10
1375 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1376 #define CARRY_LEFT( x ) ((x) % TEN)
1377 #define SHIFT( x ) ((x) << 4)
1378 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1379 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1380
1381 const gdb_byte *p;
1382 unsigned char *digits;
1383 int carry;
1384 int decimal_len;
1385 int i, j, decimal_digits;
1386 int dummy;
1387 int flip;
1388
1389 /* Base-ten number is less than twice as many digits
1390 as the base 16 number, which is 2 digits per byte. */
1391
1392 decimal_len = len * 2 * 2;
1393 digits = xmalloc (decimal_len);
1394
1395 for (i = 0; i < decimal_len; i++)
1396 {
1397 digits[i] = 0;
1398 }
1399
1400 /* Ok, we have an unknown number of bytes of data to be printed in
1401 * decimal.
1402 *
1403 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1404 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1405 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1406 *
1407 * The trick is that "digits" holds a base-10 number, but sometimes
1408 * the individual digits are > 10.
1409 *
1410 * Outer loop is per nibble (hex digit) of input, from MSD end to
1411 * LSD end.
1412 */
1413 decimal_digits = 0; /* Number of decimal digits so far */
1414 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1415 flip = 0;
1416 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1417 {
1418 /*
1419 * Multiply current base-ten number by 16 in place.
1420 * Each digit was between 0 and 9, now is between
1421 * 0 and 144.
1422 */
1423 for (j = 0; j < decimal_digits; j++)
1424 {
1425 digits[j] = SHIFT (digits[j]);
1426 }
1427
1428 /* Take the next nibble off the input and add it to what
1429 * we've got in the LSB position. Bottom 'digit' is now
1430 * between 0 and 159.
1431 *
1432 * "flip" is used to run this loop twice for each byte.
1433 */
1434 if (flip == 0)
1435 {
1436 /* Take top nibble. */
1437
1438 digits[0] += HIGH_NIBBLE (*p);
1439 flip = 1;
1440 }
1441 else
1442 {
1443 /* Take low nibble and bump our pointer "p". */
1444
1445 digits[0] += LOW_NIBBLE (*p);
1446 if (byte_order == BFD_ENDIAN_BIG)
1447 p++;
1448 else
1449 p--;
1450 flip = 0;
1451 }
1452
1453 /* Re-decimalize. We have to do this often enough
1454 * that we don't overflow, but once per nibble is
1455 * overkill. Easier this way, though. Note that the
1456 * carry is often larger than 10 (e.g. max initial
1457 * carry out of lowest nibble is 15, could bubble all
1458 * the way up greater than 10). So we have to do
1459 * the carrying beyond the last current digit.
1460 */
1461 carry = 0;
1462 for (j = 0; j < decimal_len - 1; j++)
1463 {
1464 digits[j] += carry;
1465
1466 /* "/" won't handle an unsigned char with
1467 * a value that if signed would be negative.
1468 * So extend to longword int via "dummy".
1469 */
1470 dummy = digits[j];
1471 carry = CARRY_OUT (dummy);
1472 digits[j] = CARRY_LEFT (dummy);
1473
1474 if (j >= decimal_digits && carry == 0)
1475 {
1476 /*
1477 * All higher digits are 0 and we
1478 * no longer have a carry.
1479 *
1480 * Note: "j" is 0-based, "decimal_digits" is
1481 * 1-based.
1482 */
1483 decimal_digits = j + 1;
1484 break;
1485 }
1486 }
1487 }
1488
1489 /* Ok, now "digits" is the decimal representation, with
1490 the "decimal_digits" actual digits. Print! */
1491
1492 for (i = decimal_digits - 1; i >= 0; i--)
1493 {
1494 fprintf_filtered (stream, "%1d", digits[i]);
1495 }
1496 xfree (digits);
1497 }
1498
1499 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1500
1501 void
1502 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1503 unsigned len, enum bfd_endian byte_order)
1504 {
1505 const gdb_byte *p;
1506
1507 /* FIXME: We should be not printing leading zeroes in most cases. */
1508
1509 fputs_filtered ("0x", stream);
1510 if (byte_order == BFD_ENDIAN_BIG)
1511 {
1512 for (p = valaddr;
1513 p < valaddr + len;
1514 p++)
1515 {
1516 fprintf_filtered (stream, "%02x", *p);
1517 }
1518 }
1519 else
1520 {
1521 for (p = valaddr + len - 1;
1522 p >= valaddr;
1523 p--)
1524 {
1525 fprintf_filtered (stream, "%02x", *p);
1526 }
1527 }
1528 }
1529
1530 /* VALADDR points to a char integer of LEN bytes.
1531 Print it out in appropriate language form on stream.
1532 Omit any leading zero chars. */
1533
1534 void
1535 print_char_chars (struct ui_file *stream, struct type *type,
1536 const gdb_byte *valaddr,
1537 unsigned len, enum bfd_endian byte_order)
1538 {
1539 const gdb_byte *p;
1540
1541 if (byte_order == BFD_ENDIAN_BIG)
1542 {
1543 p = valaddr;
1544 while (p < valaddr + len - 1 && *p == 0)
1545 ++p;
1546
1547 while (p < valaddr + len)
1548 {
1549 LA_EMIT_CHAR (*p, type, stream, '\'');
1550 ++p;
1551 }
1552 }
1553 else
1554 {
1555 p = valaddr + len - 1;
1556 while (p > valaddr && *p == 0)
1557 --p;
1558
1559 while (p >= valaddr)
1560 {
1561 LA_EMIT_CHAR (*p, type, stream, '\'');
1562 --p;
1563 }
1564 }
1565 }
1566
1567 /* Print function pointer with inferior address ADDRESS onto stdio
1568 stream STREAM. */
1569
1570 void
1571 print_function_pointer_address (const struct value_print_options *options,
1572 struct gdbarch *gdbarch,
1573 CORE_ADDR address,
1574 struct ui_file *stream)
1575 {
1576 CORE_ADDR func_addr
1577 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1578 &current_target);
1579
1580 /* If the function pointer is represented by a description, print
1581 the address of the description. */
1582 if (options->addressprint && func_addr != address)
1583 {
1584 fputs_filtered ("@", stream);
1585 fputs_filtered (paddress (gdbarch, address), stream);
1586 fputs_filtered (": ", stream);
1587 }
1588 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1589 }
1590
1591
1592 /* Print on STREAM using the given OPTIONS the index for the element
1593 at INDEX of an array whose index type is INDEX_TYPE. */
1594
1595 void
1596 maybe_print_array_index (struct type *index_type, LONGEST index,
1597 struct ui_file *stream,
1598 const struct value_print_options *options)
1599 {
1600 struct value *index_value;
1601
1602 if (!options->print_array_indexes)
1603 return;
1604
1605 index_value = value_from_longest (index_type, index);
1606
1607 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1608 }
1609
1610 /* Called by various <lang>_val_print routines to print elements of an
1611 array in the form "<elem1>, <elem2>, <elem3>, ...".
1612
1613 (FIXME?) Assumes array element separator is a comma, which is correct
1614 for all languages currently handled.
1615 (FIXME?) Some languages have a notation for repeated array elements,
1616 perhaps we should try to use that notation when appropriate. */
1617
1618 void
1619 val_print_array_elements (struct type *type,
1620 const gdb_byte *valaddr, int embedded_offset,
1621 CORE_ADDR address, struct ui_file *stream,
1622 int recurse,
1623 const struct value *val,
1624 const struct value_print_options *options,
1625 unsigned int i)
1626 {
1627 unsigned int things_printed = 0;
1628 unsigned len;
1629 struct type *elttype, *index_type;
1630 unsigned eltlen;
1631 /* Position of the array element we are examining to see
1632 whether it is repeated. */
1633 unsigned int rep1;
1634 /* Number of repetitions we have detected so far. */
1635 unsigned int reps;
1636 LONGEST low_bound, high_bound;
1637
1638 elttype = TYPE_TARGET_TYPE (type);
1639 eltlen = TYPE_LENGTH (check_typedef (elttype));
1640 index_type = TYPE_INDEX_TYPE (type);
1641
1642 if (get_array_bounds (type, &low_bound, &high_bound))
1643 {
1644 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1645 But we have to be a little extra careful, because some languages
1646 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1647 empty arrays. In that situation, the array length is just zero,
1648 not negative! */
1649 if (low_bound > high_bound)
1650 len = 0;
1651 else
1652 len = high_bound - low_bound + 1;
1653 }
1654 else
1655 {
1656 warning (_("unable to get bounds of array, assuming null array"));
1657 low_bound = 0;
1658 len = 0;
1659 }
1660
1661 annotate_array_section_begin (i, elttype);
1662
1663 for (; i < len && things_printed < options->print_max; i++)
1664 {
1665 if (i != 0)
1666 {
1667 if (options->prettyformat_arrays)
1668 {
1669 fprintf_filtered (stream, ",\n");
1670 print_spaces_filtered (2 + 2 * recurse, stream);
1671 }
1672 else
1673 {
1674 fprintf_filtered (stream, ", ");
1675 }
1676 }
1677 wrap_here (n_spaces (2 + 2 * recurse));
1678 maybe_print_array_index (index_type, i + low_bound,
1679 stream, options);
1680
1681 rep1 = i + 1;
1682 reps = 1;
1683 /* Only check for reps if repeat_count_threshold is not set to
1684 UINT_MAX (unlimited). */
1685 if (options->repeat_count_threshold < UINT_MAX)
1686 {
1687 while (rep1 < len
1688 && value_contents_eq (val,
1689 embedded_offset + i * eltlen,
1690 val,
1691 (embedded_offset
1692 + rep1 * eltlen),
1693 eltlen))
1694 {
1695 ++reps;
1696 ++rep1;
1697 }
1698 }
1699
1700 if (reps > options->repeat_count_threshold)
1701 {
1702 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1703 address, stream, recurse + 1, val, options,
1704 current_language);
1705 annotate_elt_rep (reps);
1706 fprintf_filtered (stream, " <repeats %u times>", reps);
1707 annotate_elt_rep_end ();
1708
1709 i = rep1 - 1;
1710 things_printed += options->repeat_count_threshold;
1711 }
1712 else
1713 {
1714 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1715 address,
1716 stream, recurse + 1, val, options, current_language);
1717 annotate_elt ();
1718 things_printed++;
1719 }
1720 }
1721 annotate_array_section_end ();
1722 if (i < len)
1723 {
1724 fprintf_filtered (stream, "...");
1725 }
1726 }
1727
1728 /* Read LEN bytes of target memory at address MEMADDR, placing the
1729 results in GDB's memory at MYADDR. Returns a count of the bytes
1730 actually read, and optionally a target_xfer_status value in the
1731 location pointed to by ERRPTR if ERRPTR is non-null. */
1732
1733 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1734 function be eliminated. */
1735
1736 static int
1737 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1738 int len, int *errptr)
1739 {
1740 int nread; /* Number of bytes actually read. */
1741 int errcode; /* Error from last read. */
1742
1743 /* First try a complete read. */
1744 errcode = target_read_memory (memaddr, myaddr, len);
1745 if (errcode == 0)
1746 {
1747 /* Got it all. */
1748 nread = len;
1749 }
1750 else
1751 {
1752 /* Loop, reading one byte at a time until we get as much as we can. */
1753 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1754 {
1755 errcode = target_read_memory (memaddr++, myaddr++, 1);
1756 }
1757 /* If an error, the last read was unsuccessful, so adjust count. */
1758 if (errcode != 0)
1759 {
1760 nread--;
1761 }
1762 }
1763 if (errptr != NULL)
1764 {
1765 *errptr = errcode;
1766 }
1767 return (nread);
1768 }
1769
1770 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1771 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1772 allocated buffer containing the string, which the caller is responsible to
1773 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1774 success, or a target_xfer_status on failure.
1775
1776 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1777 (including eventual NULs in the middle or end of the string).
1778
1779 If LEN is -1, stops at the first null character (not necessarily
1780 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1781 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1782 the string.
1783
1784 Unless an exception is thrown, BUFFER will always be allocated, even on
1785 failure. In this case, some characters might have been read before the
1786 failure happened. Check BYTES_READ to recognize this situation.
1787
1788 Note: There was a FIXME asking to make this code use target_read_string,
1789 but this function is more general (can read past null characters, up to
1790 given LEN). Besides, it is used much more often than target_read_string
1791 so it is more tested. Perhaps callers of target_read_string should use
1792 this function instead? */
1793
1794 int
1795 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1796 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1797 {
1798 int errcode; /* Errno returned from bad reads. */
1799 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1800 gdb_byte *bufptr; /* Pointer to next available byte in
1801 buffer. */
1802 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1803
1804 /* Loop until we either have all the characters, or we encounter
1805 some error, such as bumping into the end of the address space. */
1806
1807 *buffer = NULL;
1808
1809 old_chain = make_cleanup (free_current_contents, buffer);
1810
1811 if (len > 0)
1812 {
1813 /* We want fetchlimit chars, so we might as well read them all in
1814 one operation. */
1815 unsigned int fetchlen = min (len, fetchlimit);
1816
1817 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1818 bufptr = *buffer;
1819
1820 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1821 / width;
1822 addr += nfetch * width;
1823 bufptr += nfetch * width;
1824 }
1825 else if (len == -1)
1826 {
1827 unsigned long bufsize = 0;
1828 unsigned int chunksize; /* Size of each fetch, in chars. */
1829 int found_nul; /* Non-zero if we found the nul char. */
1830 gdb_byte *limit; /* First location past end of fetch buffer. */
1831
1832 found_nul = 0;
1833 /* We are looking for a NUL terminator to end the fetching, so we
1834 might as well read in blocks that are large enough to be efficient,
1835 but not so large as to be slow if fetchlimit happens to be large.
1836 So we choose the minimum of 8 and fetchlimit. We used to use 200
1837 instead of 8 but 200 is way too big for remote debugging over a
1838 serial line. */
1839 chunksize = min (8, fetchlimit);
1840
1841 do
1842 {
1843 QUIT;
1844 nfetch = min (chunksize, fetchlimit - bufsize);
1845
1846 if (*buffer == NULL)
1847 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1848 else
1849 *buffer = (gdb_byte *) xrealloc (*buffer,
1850 (nfetch + bufsize) * width);
1851
1852 bufptr = *buffer + bufsize * width;
1853 bufsize += nfetch;
1854
1855 /* Read as much as we can. */
1856 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1857 / width;
1858
1859 /* Scan this chunk for the null character that terminates the string
1860 to print. If found, we don't need to fetch any more. Note
1861 that bufptr is explicitly left pointing at the next character
1862 after the null character, or at the next character after the end
1863 of the buffer. */
1864
1865 limit = bufptr + nfetch * width;
1866 while (bufptr < limit)
1867 {
1868 unsigned long c;
1869
1870 c = extract_unsigned_integer (bufptr, width, byte_order);
1871 addr += width;
1872 bufptr += width;
1873 if (c == 0)
1874 {
1875 /* We don't care about any error which happened after
1876 the NUL terminator. */
1877 errcode = 0;
1878 found_nul = 1;
1879 break;
1880 }
1881 }
1882 }
1883 while (errcode == 0 /* no error */
1884 && bufptr - *buffer < fetchlimit * width /* no overrun */
1885 && !found_nul); /* haven't found NUL yet */
1886 }
1887 else
1888 { /* Length of string is really 0! */
1889 /* We always allocate *buffer. */
1890 *buffer = bufptr = xmalloc (1);
1891 errcode = 0;
1892 }
1893
1894 /* bufptr and addr now point immediately beyond the last byte which we
1895 consider part of the string (including a '\0' which ends the string). */
1896 *bytes_read = bufptr - *buffer;
1897
1898 QUIT;
1899
1900 discard_cleanups (old_chain);
1901
1902 return errcode;
1903 }
1904
1905 /* Return true if print_wchar can display W without resorting to a
1906 numeric escape, false otherwise. */
1907
1908 static int
1909 wchar_printable (gdb_wchar_t w)
1910 {
1911 return (gdb_iswprint (w)
1912 || w == LCST ('\a') || w == LCST ('\b')
1913 || w == LCST ('\f') || w == LCST ('\n')
1914 || w == LCST ('\r') || w == LCST ('\t')
1915 || w == LCST ('\v'));
1916 }
1917
1918 /* A helper function that converts the contents of STRING to wide
1919 characters and then appends them to OUTPUT. */
1920
1921 static void
1922 append_string_as_wide (const char *string,
1923 struct obstack *output)
1924 {
1925 for (; *string; ++string)
1926 {
1927 gdb_wchar_t w = gdb_btowc (*string);
1928 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1929 }
1930 }
1931
1932 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1933 original (target) bytes representing the character, ORIG_LEN is the
1934 number of valid bytes. WIDTH is the number of bytes in a base
1935 characters of the type. OUTPUT is an obstack to which wide
1936 characters are emitted. QUOTER is a (narrow) character indicating
1937 the style of quotes surrounding the character to be printed.
1938 NEED_ESCAPE is an in/out flag which is used to track numeric
1939 escapes across calls. */
1940
1941 static void
1942 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1943 int orig_len, int width,
1944 enum bfd_endian byte_order,
1945 struct obstack *output,
1946 int quoter, int *need_escapep)
1947 {
1948 int need_escape = *need_escapep;
1949
1950 *need_escapep = 0;
1951
1952 /* iswprint implementation on Windows returns 1 for tab character.
1953 In order to avoid different printout on this host, we explicitly
1954 use wchar_printable function. */
1955 switch (w)
1956 {
1957 case LCST ('\a'):
1958 obstack_grow_wstr (output, LCST ("\\a"));
1959 break;
1960 case LCST ('\b'):
1961 obstack_grow_wstr (output, LCST ("\\b"));
1962 break;
1963 case LCST ('\f'):
1964 obstack_grow_wstr (output, LCST ("\\f"));
1965 break;
1966 case LCST ('\n'):
1967 obstack_grow_wstr (output, LCST ("\\n"));
1968 break;
1969 case LCST ('\r'):
1970 obstack_grow_wstr (output, LCST ("\\r"));
1971 break;
1972 case LCST ('\t'):
1973 obstack_grow_wstr (output, LCST ("\\t"));
1974 break;
1975 case LCST ('\v'):
1976 obstack_grow_wstr (output, LCST ("\\v"));
1977 break;
1978 default:
1979 {
1980 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
1981 && w != LCST ('8')
1982 && w != LCST ('9'))))
1983 {
1984 gdb_wchar_t wchar = w;
1985
1986 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1987 obstack_grow_wstr (output, LCST ("\\"));
1988 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1989 }
1990 else
1991 {
1992 int i;
1993
1994 for (i = 0; i + width <= orig_len; i += width)
1995 {
1996 char octal[30];
1997 ULONGEST value;
1998
1999 value = extract_unsigned_integer (&orig[i], width,
2000 byte_order);
2001 /* If the value fits in 3 octal digits, print it that
2002 way. Otherwise, print it as a hex escape. */
2003 if (value <= 0777)
2004 xsnprintf (octal, sizeof (octal), "\\%.3o",
2005 (int) (value & 0777));
2006 else
2007 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2008 append_string_as_wide (octal, output);
2009 }
2010 /* If we somehow have extra bytes, print them now. */
2011 while (i < orig_len)
2012 {
2013 char octal[5];
2014
2015 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2016 append_string_as_wide (octal, output);
2017 ++i;
2018 }
2019
2020 *need_escapep = 1;
2021 }
2022 break;
2023 }
2024 }
2025 }
2026
2027 /* Print the character C on STREAM as part of the contents of a
2028 literal string whose delimiter is QUOTER. ENCODING names the
2029 encoding of C. */
2030
2031 void
2032 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2033 int quoter, const char *encoding)
2034 {
2035 enum bfd_endian byte_order
2036 = gdbarch_byte_order (get_type_arch (type));
2037 struct obstack wchar_buf, output;
2038 struct cleanup *cleanups;
2039 gdb_byte *buf;
2040 struct wchar_iterator *iter;
2041 int need_escape = 0;
2042
2043 buf = alloca (TYPE_LENGTH (type));
2044 pack_long (buf, type, c);
2045
2046 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2047 encoding, TYPE_LENGTH (type));
2048 cleanups = make_cleanup_wchar_iterator (iter);
2049
2050 /* This holds the printable form of the wchar_t data. */
2051 obstack_init (&wchar_buf);
2052 make_cleanup_obstack_free (&wchar_buf);
2053
2054 while (1)
2055 {
2056 int num_chars;
2057 gdb_wchar_t *chars;
2058 const gdb_byte *buf;
2059 size_t buflen;
2060 int print_escape = 1;
2061 enum wchar_iterate_result result;
2062
2063 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2064 if (num_chars < 0)
2065 break;
2066 if (num_chars > 0)
2067 {
2068 /* If all characters are printable, print them. Otherwise,
2069 we're going to have to print an escape sequence. We
2070 check all characters because we want to print the target
2071 bytes in the escape sequence, and we don't know character
2072 boundaries there. */
2073 int i;
2074
2075 print_escape = 0;
2076 for (i = 0; i < num_chars; ++i)
2077 if (!wchar_printable (chars[i]))
2078 {
2079 print_escape = 1;
2080 break;
2081 }
2082
2083 if (!print_escape)
2084 {
2085 for (i = 0; i < num_chars; ++i)
2086 print_wchar (chars[i], buf, buflen,
2087 TYPE_LENGTH (type), byte_order,
2088 &wchar_buf, quoter, &need_escape);
2089 }
2090 }
2091
2092 /* This handles the NUM_CHARS == 0 case as well. */
2093 if (print_escape)
2094 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2095 byte_order, &wchar_buf, quoter, &need_escape);
2096 }
2097
2098 /* The output in the host encoding. */
2099 obstack_init (&output);
2100 make_cleanup_obstack_free (&output);
2101
2102 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2103 (gdb_byte *) obstack_base (&wchar_buf),
2104 obstack_object_size (&wchar_buf),
2105 sizeof (gdb_wchar_t), &output, translit_char);
2106 obstack_1grow (&output, '\0');
2107
2108 fputs_filtered (obstack_base (&output), stream);
2109
2110 do_cleanups (cleanups);
2111 }
2112
2113 /* Return the repeat count of the next character/byte in ITER,
2114 storing the result in VEC. */
2115
2116 static int
2117 count_next_character (struct wchar_iterator *iter,
2118 VEC (converted_character_d) **vec)
2119 {
2120 struct converted_character *current;
2121
2122 if (VEC_empty (converted_character_d, *vec))
2123 {
2124 struct converted_character tmp;
2125 gdb_wchar_t *chars;
2126
2127 tmp.num_chars
2128 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2129 if (tmp.num_chars > 0)
2130 {
2131 gdb_assert (tmp.num_chars < MAX_WCHARS);
2132 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2133 }
2134 VEC_safe_push (converted_character_d, *vec, &tmp);
2135 }
2136
2137 current = VEC_last (converted_character_d, *vec);
2138
2139 /* Count repeated characters or bytes. */
2140 current->repeat_count = 1;
2141 if (current->num_chars == -1)
2142 {
2143 /* EOF */
2144 return -1;
2145 }
2146 else
2147 {
2148 gdb_wchar_t *chars;
2149 struct converted_character d;
2150 int repeat;
2151
2152 d.repeat_count = 0;
2153
2154 while (1)
2155 {
2156 /* Get the next character. */
2157 d.num_chars
2158 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2159
2160 /* If a character was successfully converted, save the character
2161 into the converted character. */
2162 if (d.num_chars > 0)
2163 {
2164 gdb_assert (d.num_chars < MAX_WCHARS);
2165 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2166 }
2167
2168 /* Determine if the current character is the same as this
2169 new character. */
2170 if (d.num_chars == current->num_chars && d.result == current->result)
2171 {
2172 /* There are two cases to consider:
2173
2174 1) Equality of converted character (num_chars > 0)
2175 2) Equality of non-converted character (num_chars == 0) */
2176 if ((current->num_chars > 0
2177 && memcmp (current->chars, d.chars,
2178 WCHAR_BUFLEN (current->num_chars)) == 0)
2179 || (current->num_chars == 0
2180 && current->buflen == d.buflen
2181 && memcmp (current->buf, d.buf, current->buflen) == 0))
2182 ++current->repeat_count;
2183 else
2184 break;
2185 }
2186 else
2187 break;
2188 }
2189
2190 /* Push this next converted character onto the result vector. */
2191 repeat = current->repeat_count;
2192 VEC_safe_push (converted_character_d, *vec, &d);
2193 return repeat;
2194 }
2195 }
2196
2197 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2198 character to use with string output. WIDTH is the size of the output
2199 character type. BYTE_ORDER is the the target byte order. OPTIONS
2200 is the user's print options. */
2201
2202 static void
2203 print_converted_chars_to_obstack (struct obstack *obstack,
2204 VEC (converted_character_d) *chars,
2205 int quote_char, int width,
2206 enum bfd_endian byte_order,
2207 const struct value_print_options *options)
2208 {
2209 unsigned int idx;
2210 struct converted_character *elem;
2211 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2212 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2213 int need_escape = 0;
2214
2215 /* Set the start state. */
2216 idx = 0;
2217 last = state = START;
2218 elem = NULL;
2219
2220 while (1)
2221 {
2222 switch (state)
2223 {
2224 case START:
2225 /* Nothing to do. */
2226 break;
2227
2228 case SINGLE:
2229 {
2230 int j;
2231
2232 /* We are outputting a single character
2233 (< options->repeat_count_threshold). */
2234
2235 if (last != SINGLE)
2236 {
2237 /* We were outputting some other type of content, so we
2238 must output and a comma and a quote. */
2239 if (last != START)
2240 obstack_grow_wstr (obstack, LCST (", "));
2241 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2242 }
2243 /* Output the character. */
2244 for (j = 0; j < elem->repeat_count; ++j)
2245 {
2246 if (elem->result == wchar_iterate_ok)
2247 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2248 byte_order, obstack, quote_char, &need_escape);
2249 else
2250 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2251 byte_order, obstack, quote_char, &need_escape);
2252 }
2253 }
2254 break;
2255
2256 case REPEAT:
2257 {
2258 int j;
2259 char *s;
2260
2261 /* We are outputting a character with a repeat count
2262 greater than options->repeat_count_threshold. */
2263
2264 if (last == SINGLE)
2265 {
2266 /* We were outputting a single string. Terminate the
2267 string. */
2268 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2269 }
2270 if (last != START)
2271 obstack_grow_wstr (obstack, LCST (", "));
2272
2273 /* Output the character and repeat string. */
2274 obstack_grow_wstr (obstack, LCST ("'"));
2275 if (elem->result == wchar_iterate_ok)
2276 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2277 byte_order, obstack, quote_char, &need_escape);
2278 else
2279 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2280 byte_order, obstack, quote_char, &need_escape);
2281 obstack_grow_wstr (obstack, LCST ("'"));
2282 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2283 for (j = 0; s[j]; ++j)
2284 {
2285 gdb_wchar_t w = gdb_btowc (s[j]);
2286 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2287 }
2288 xfree (s);
2289 }
2290 break;
2291
2292 case INCOMPLETE:
2293 /* We are outputting an incomplete sequence. */
2294 if (last == SINGLE)
2295 {
2296 /* If we were outputting a string of SINGLE characters,
2297 terminate the quote. */
2298 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2299 }
2300 if (last != START)
2301 obstack_grow_wstr (obstack, LCST (", "));
2302
2303 /* Output the incomplete sequence string. */
2304 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2305 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2306 obstack, 0, &need_escape);
2307 obstack_grow_wstr (obstack, LCST (">"));
2308
2309 /* We do not attempt to outupt anything after this. */
2310 state = FINISH;
2311 break;
2312
2313 case FINISH:
2314 /* All done. If we were outputting a string of SINGLE
2315 characters, the string must be terminated. Otherwise,
2316 REPEAT and INCOMPLETE are always left properly terminated. */
2317 if (last == SINGLE)
2318 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2319
2320 return;
2321 }
2322
2323 /* Get the next element and state. */
2324 last = state;
2325 if (state != FINISH)
2326 {
2327 elem = VEC_index (converted_character_d, chars, idx++);
2328 switch (elem->result)
2329 {
2330 case wchar_iterate_ok:
2331 case wchar_iterate_invalid:
2332 if (elem->repeat_count > options->repeat_count_threshold)
2333 state = REPEAT;
2334 else
2335 state = SINGLE;
2336 break;
2337
2338 case wchar_iterate_incomplete:
2339 state = INCOMPLETE;
2340 break;
2341
2342 case wchar_iterate_eof:
2343 state = FINISH;
2344 break;
2345 }
2346 }
2347 }
2348 }
2349
2350 /* Print the character string STRING, printing at most LENGTH
2351 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2352 the type of each character. OPTIONS holds the printing options;
2353 printing stops early if the number hits print_max; repeat counts
2354 are printed as appropriate. Print ellipses at the end if we had to
2355 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2356 QUOTE_CHAR is the character to print at each end of the string. If
2357 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2358 omitted. */
2359
2360 void
2361 generic_printstr (struct ui_file *stream, struct type *type,
2362 const gdb_byte *string, unsigned int length,
2363 const char *encoding, int force_ellipses,
2364 int quote_char, int c_style_terminator,
2365 const struct value_print_options *options)
2366 {
2367 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2368 unsigned int i;
2369 int width = TYPE_LENGTH (type);
2370 struct obstack wchar_buf, output;
2371 struct cleanup *cleanup;
2372 struct wchar_iterator *iter;
2373 int finished = 0;
2374 struct converted_character *last;
2375 VEC (converted_character_d) *converted_chars;
2376
2377 if (length == -1)
2378 {
2379 unsigned long current_char = 1;
2380
2381 for (i = 0; current_char; ++i)
2382 {
2383 QUIT;
2384 current_char = extract_unsigned_integer (string + i * width,
2385 width, byte_order);
2386 }
2387 length = i;
2388 }
2389
2390 /* If the string was not truncated due to `set print elements', and
2391 the last byte of it is a null, we don't print that, in
2392 traditional C style. */
2393 if (c_style_terminator
2394 && !force_ellipses
2395 && length > 0
2396 && (extract_unsigned_integer (string + (length - 1) * width,
2397 width, byte_order) == 0))
2398 length--;
2399
2400 if (length == 0)
2401 {
2402 fputs_filtered ("\"\"", stream);
2403 return;
2404 }
2405
2406 /* Arrange to iterate over the characters, in wchar_t form. */
2407 iter = make_wchar_iterator (string, length * width, encoding, width);
2408 cleanup = make_cleanup_wchar_iterator (iter);
2409 converted_chars = NULL;
2410 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2411
2412 /* Convert characters until the string is over or the maximum
2413 number of printed characters has been reached. */
2414 i = 0;
2415 while (i < options->print_max)
2416 {
2417 int r;
2418
2419 QUIT;
2420
2421 /* Grab the next character and repeat count. */
2422 r = count_next_character (iter, &converted_chars);
2423
2424 /* If less than zero, the end of the input string was reached. */
2425 if (r < 0)
2426 break;
2427
2428 /* Otherwise, add the count to the total print count and get
2429 the next character. */
2430 i += r;
2431 }
2432
2433 /* Get the last element and determine if the entire string was
2434 processed. */
2435 last = VEC_last (converted_character_d, converted_chars);
2436 finished = (last->result == wchar_iterate_eof);
2437
2438 /* Ensure that CONVERTED_CHARS is terminated. */
2439 last->result = wchar_iterate_eof;
2440
2441 /* WCHAR_BUF is the obstack we use to represent the string in
2442 wchar_t form. */
2443 obstack_init (&wchar_buf);
2444 make_cleanup_obstack_free (&wchar_buf);
2445
2446 /* Print the output string to the obstack. */
2447 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2448 width, byte_order, options);
2449
2450 if (force_ellipses || !finished)
2451 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2452
2453 /* OUTPUT is where we collect `char's for printing. */
2454 obstack_init (&output);
2455 make_cleanup_obstack_free (&output);
2456
2457 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2458 (gdb_byte *) obstack_base (&wchar_buf),
2459 obstack_object_size (&wchar_buf),
2460 sizeof (gdb_wchar_t), &output, translit_char);
2461 obstack_1grow (&output, '\0');
2462
2463 fputs_filtered (obstack_base (&output), stream);
2464
2465 do_cleanups (cleanup);
2466 }
2467
2468 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2469 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2470 stops at the first null byte, otherwise printing proceeds (including null
2471 bytes) until either print_max or LEN characters have been printed,
2472 whichever is smaller. ENCODING is the name of the string's
2473 encoding. It can be NULL, in which case the target encoding is
2474 assumed. */
2475
2476 int
2477 val_print_string (struct type *elttype, const char *encoding,
2478 CORE_ADDR addr, int len,
2479 struct ui_file *stream,
2480 const struct value_print_options *options)
2481 {
2482 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2483 int errcode; /* Errno returned from bad reads. */
2484 int found_nul; /* Non-zero if we found the nul char. */
2485 unsigned int fetchlimit; /* Maximum number of chars to print. */
2486 int bytes_read;
2487 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2488 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2489 struct gdbarch *gdbarch = get_type_arch (elttype);
2490 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2491 int width = TYPE_LENGTH (elttype);
2492
2493 /* First we need to figure out the limit on the number of characters we are
2494 going to attempt to fetch and print. This is actually pretty simple. If
2495 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2496 LEN is -1, then the limit is print_max. This is true regardless of
2497 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2498 because finding the null byte (or available memory) is what actually
2499 limits the fetch. */
2500
2501 fetchlimit = (len == -1 ? options->print_max : min (len,
2502 options->print_max));
2503
2504 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2505 &buffer, &bytes_read);
2506 old_chain = make_cleanup (xfree, buffer);
2507
2508 addr += bytes_read;
2509
2510 /* We now have either successfully filled the buffer to fetchlimit,
2511 or terminated early due to an error or finding a null char when
2512 LEN is -1. */
2513
2514 /* Determine found_nul by looking at the last character read. */
2515 found_nul = 0;
2516 if (bytes_read >= width)
2517 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2518 byte_order) == 0;
2519 if (len == -1 && !found_nul)
2520 {
2521 gdb_byte *peekbuf;
2522
2523 /* We didn't find a NUL terminator we were looking for. Attempt
2524 to peek at the next character. If not successful, or it is not
2525 a null byte, then force ellipsis to be printed. */
2526
2527 peekbuf = (gdb_byte *) alloca (width);
2528
2529 if (target_read_memory (addr, peekbuf, width) == 0
2530 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2531 force_ellipsis = 1;
2532 }
2533 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2534 {
2535 /* Getting an error when we have a requested length, or fetching less
2536 than the number of characters actually requested, always make us
2537 print ellipsis. */
2538 force_ellipsis = 1;
2539 }
2540
2541 /* If we get an error before fetching anything, don't print a string.
2542 But if we fetch something and then get an error, print the string
2543 and then the error message. */
2544 if (errcode == 0 || bytes_read > 0)
2545 {
2546 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2547 encoding, force_ellipsis, options);
2548 }
2549
2550 if (errcode != 0)
2551 {
2552 char *str;
2553
2554 str = memory_error_message (errcode, gdbarch, addr);
2555 make_cleanup (xfree, str);
2556
2557 fprintf_filtered (stream, "<error: ");
2558 fputs_filtered (str, stream);
2559 fprintf_filtered (stream, ">");
2560 }
2561
2562 gdb_flush (stream);
2563 do_cleanups (old_chain);
2564
2565 return (bytes_read / width);
2566 }
2567 \f
2568
2569 /* The 'set input-radix' command writes to this auxiliary variable.
2570 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2571 it is left unchanged. */
2572
2573 static unsigned input_radix_1 = 10;
2574
2575 /* Validate an input or output radix setting, and make sure the user
2576 knows what they really did here. Radix setting is confusing, e.g.
2577 setting the input radix to "10" never changes it! */
2578
2579 static void
2580 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2581 {
2582 set_input_radix_1 (from_tty, input_radix_1);
2583 }
2584
2585 static void
2586 set_input_radix_1 (int from_tty, unsigned radix)
2587 {
2588 /* We don't currently disallow any input radix except 0 or 1, which don't
2589 make any mathematical sense. In theory, we can deal with any input
2590 radix greater than 1, even if we don't have unique digits for every
2591 value from 0 to radix-1, but in practice we lose on large radix values.
2592 We should either fix the lossage or restrict the radix range more.
2593 (FIXME). */
2594
2595 if (radix < 2)
2596 {
2597 input_radix_1 = input_radix;
2598 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2599 radix);
2600 }
2601 input_radix_1 = input_radix = radix;
2602 if (from_tty)
2603 {
2604 printf_filtered (_("Input radix now set to "
2605 "decimal %u, hex %x, octal %o.\n"),
2606 radix, radix, radix);
2607 }
2608 }
2609
2610 /* The 'set output-radix' command writes to this auxiliary variable.
2611 If the requested radix is valid, OUTPUT_RADIX is updated,
2612 otherwise, it is left unchanged. */
2613
2614 static unsigned output_radix_1 = 10;
2615
2616 static void
2617 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2618 {
2619 set_output_radix_1 (from_tty, output_radix_1);
2620 }
2621
2622 static void
2623 set_output_radix_1 (int from_tty, unsigned radix)
2624 {
2625 /* Validate the radix and disallow ones that we aren't prepared to
2626 handle correctly, leaving the radix unchanged. */
2627 switch (radix)
2628 {
2629 case 16:
2630 user_print_options.output_format = 'x'; /* hex */
2631 break;
2632 case 10:
2633 user_print_options.output_format = 0; /* decimal */
2634 break;
2635 case 8:
2636 user_print_options.output_format = 'o'; /* octal */
2637 break;
2638 default:
2639 output_radix_1 = output_radix;
2640 error (_("Unsupported output radix ``decimal %u''; "
2641 "output radix unchanged."),
2642 radix);
2643 }
2644 output_radix_1 = output_radix = radix;
2645 if (from_tty)
2646 {
2647 printf_filtered (_("Output radix now set to "
2648 "decimal %u, hex %x, octal %o.\n"),
2649 radix, radix, radix);
2650 }
2651 }
2652
2653 /* Set both the input and output radix at once. Try to set the output radix
2654 first, since it has the most restrictive range. An radix that is valid as
2655 an output radix is also valid as an input radix.
2656
2657 It may be useful to have an unusual input radix. If the user wishes to
2658 set an input radix that is not valid as an output radix, he needs to use
2659 the 'set input-radix' command. */
2660
2661 static void
2662 set_radix (char *arg, int from_tty)
2663 {
2664 unsigned radix;
2665
2666 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2667 set_output_radix_1 (0, radix);
2668 set_input_radix_1 (0, radix);
2669 if (from_tty)
2670 {
2671 printf_filtered (_("Input and output radices now set to "
2672 "decimal %u, hex %x, octal %o.\n"),
2673 radix, radix, radix);
2674 }
2675 }
2676
2677 /* Show both the input and output radices. */
2678
2679 static void
2680 show_radix (char *arg, int from_tty)
2681 {
2682 if (from_tty)
2683 {
2684 if (input_radix == output_radix)
2685 {
2686 printf_filtered (_("Input and output radices set to "
2687 "decimal %u, hex %x, octal %o.\n"),
2688 input_radix, input_radix, input_radix);
2689 }
2690 else
2691 {
2692 printf_filtered (_("Input radix set to decimal "
2693 "%u, hex %x, octal %o.\n"),
2694 input_radix, input_radix, input_radix);
2695 printf_filtered (_("Output radix set to decimal "
2696 "%u, hex %x, octal %o.\n"),
2697 output_radix, output_radix, output_radix);
2698 }
2699 }
2700 }
2701 \f
2702
2703 static void
2704 set_print (char *arg, int from_tty)
2705 {
2706 printf_unfiltered (
2707 "\"set print\" must be followed by the name of a print subcommand.\n");
2708 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2709 }
2710
2711 static void
2712 show_print (char *args, int from_tty)
2713 {
2714 cmd_show_list (showprintlist, from_tty, "");
2715 }
2716
2717 static void
2718 set_print_raw (char *arg, int from_tty)
2719 {
2720 printf_unfiltered (
2721 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2722 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2723 }
2724
2725 static void
2726 show_print_raw (char *args, int from_tty)
2727 {
2728 cmd_show_list (showprintrawlist, from_tty, "");
2729 }
2730
2731 \f
2732 void
2733 _initialize_valprint (void)
2734 {
2735 add_prefix_cmd ("print", no_class, set_print,
2736 _("Generic command for setting how things print."),
2737 &setprintlist, "set print ", 0, &setlist);
2738 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2739 /* Prefer set print to set prompt. */
2740 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2741
2742 add_prefix_cmd ("print", no_class, show_print,
2743 _("Generic command for showing print settings."),
2744 &showprintlist, "show print ", 0, &showlist);
2745 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2746 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2747
2748 add_prefix_cmd ("raw", no_class, set_print_raw,
2749 _("\
2750 Generic command for setting what things to print in \"raw\" mode."),
2751 &setprintrawlist, "set print raw ", 0, &setprintlist);
2752 add_prefix_cmd ("raw", no_class, show_print_raw,
2753 _("Generic command for showing \"print raw\" settings."),
2754 &showprintrawlist, "show print raw ", 0, &showprintlist);
2755
2756 add_setshow_uinteger_cmd ("elements", no_class,
2757 &user_print_options.print_max, _("\
2758 Set limit on string chars or array elements to print."), _("\
2759 Show limit on string chars or array elements to print."), _("\
2760 \"set print elements unlimited\" causes there to be no limit."),
2761 NULL,
2762 show_print_max,
2763 &setprintlist, &showprintlist);
2764
2765 add_setshow_boolean_cmd ("null-stop", no_class,
2766 &user_print_options.stop_print_at_null, _("\
2767 Set printing of char arrays to stop at first null char."), _("\
2768 Show printing of char arrays to stop at first null char."), NULL,
2769 NULL,
2770 show_stop_print_at_null,
2771 &setprintlist, &showprintlist);
2772
2773 add_setshow_uinteger_cmd ("repeats", no_class,
2774 &user_print_options.repeat_count_threshold, _("\
2775 Set threshold for repeated print elements."), _("\
2776 Show threshold for repeated print elements."), _("\
2777 \"set print repeats unlimited\" causes all elements to be individually printed."),
2778 NULL,
2779 show_repeat_count_threshold,
2780 &setprintlist, &showprintlist);
2781
2782 add_setshow_boolean_cmd ("pretty", class_support,
2783 &user_print_options.prettyformat_structs, _("\
2784 Set pretty formatting of structures."), _("\
2785 Show pretty formatting of structures."), NULL,
2786 NULL,
2787 show_prettyformat_structs,
2788 &setprintlist, &showprintlist);
2789
2790 add_setshow_boolean_cmd ("union", class_support,
2791 &user_print_options.unionprint, _("\
2792 Set printing of unions interior to structures."), _("\
2793 Show printing of unions interior to structures."), NULL,
2794 NULL,
2795 show_unionprint,
2796 &setprintlist, &showprintlist);
2797
2798 add_setshow_boolean_cmd ("array", class_support,
2799 &user_print_options.prettyformat_arrays, _("\
2800 Set pretty formatting of arrays."), _("\
2801 Show pretty formatting of arrays."), NULL,
2802 NULL,
2803 show_prettyformat_arrays,
2804 &setprintlist, &showprintlist);
2805
2806 add_setshow_boolean_cmd ("address", class_support,
2807 &user_print_options.addressprint, _("\
2808 Set printing of addresses."), _("\
2809 Show printing of addresses."), NULL,
2810 NULL,
2811 show_addressprint,
2812 &setprintlist, &showprintlist);
2813
2814 add_setshow_boolean_cmd ("symbol", class_support,
2815 &user_print_options.symbol_print, _("\
2816 Set printing of symbol names when printing pointers."), _("\
2817 Show printing of symbol names when printing pointers."),
2818 NULL, NULL,
2819 show_symbol_print,
2820 &setprintlist, &showprintlist);
2821
2822 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2823 _("\
2824 Set default input radix for entering numbers."), _("\
2825 Show default input radix for entering numbers."), NULL,
2826 set_input_radix,
2827 show_input_radix,
2828 &setlist, &showlist);
2829
2830 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2831 _("\
2832 Set default output radix for printing of values."), _("\
2833 Show default output radix for printing of values."), NULL,
2834 set_output_radix,
2835 show_output_radix,
2836 &setlist, &showlist);
2837
2838 /* The "set radix" and "show radix" commands are special in that
2839 they are like normal set and show commands but allow two normally
2840 independent variables to be either set or shown with a single
2841 command. So the usual deprecated_add_set_cmd() and [deleted]
2842 add_show_from_set() commands aren't really appropriate. */
2843 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2844 longer true - show can display anything. */
2845 add_cmd ("radix", class_support, set_radix, _("\
2846 Set default input and output number radices.\n\
2847 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2848 Without an argument, sets both radices back to the default value of 10."),
2849 &setlist);
2850 add_cmd ("radix", class_support, show_radix, _("\
2851 Show the default input and output number radices.\n\
2852 Use 'show input-radix' or 'show output-radix' to independently show each."),
2853 &showlist);
2854
2855 add_setshow_boolean_cmd ("array-indexes", class_support,
2856 &user_print_options.print_array_indexes, _("\
2857 Set printing of array indexes."), _("\
2858 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2859 &setprintlist, &showprintlist);
2860 }
This page took 0.135941 seconds and 4 git commands to generate.