gdb: Handle ICC's unexpected void return type
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "common/byte-vector.h"
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 /* Command lists for set/show print raw. */
74 struct cmd_list_element *setprintrawlist;
75 struct cmd_list_element *showprintrawlist;
76
77 /* Prototypes for local functions */
78
79 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
80 int len, int *errptr);
81
82 static void set_input_radix_1 (int, unsigned);
83
84 static void set_output_radix_1 (int, unsigned);
85
86 static void val_print_type_code_flags (struct type *type,
87 const gdb_byte *valaddr,
88 struct ui_file *stream);
89
90 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
91
92 struct value_print_options user_print_options =
93 {
94 Val_prettyformat_default, /* prettyformat */
95 0, /* prettyformat_arrays */
96 0, /* prettyformat_structs */
97 0, /* vtblprint */
98 1, /* unionprint */
99 1, /* addressprint */
100 0, /* objectprint */
101 PRINT_MAX_DEFAULT, /* print_max */
102 10, /* repeat_count_threshold */
103 0, /* output_format */
104 0, /* format */
105 0, /* stop_print_at_null */
106 0, /* print_array_indexes */
107 0, /* deref_ref */
108 1, /* static_field_print */
109 1, /* pascal_static_field_print */
110 0, /* raw */
111 0, /* summary */
112 1 /* symbol_print */
113 };
114
115 /* Initialize *OPTS to be a copy of the user print options. */
116 void
117 get_user_print_options (struct value_print_options *opts)
118 {
119 *opts = user_print_options;
120 }
121
122 /* Initialize *OPTS to be a copy of the user print options, but with
123 pretty-formatting disabled. */
124 void
125 get_no_prettyformat_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 opts->prettyformat = Val_no_prettyformat;
129 }
130
131 /* Initialize *OPTS to be a copy of the user print options, but using
132 FORMAT as the formatting option. */
133 void
134 get_formatted_print_options (struct value_print_options *opts,
135 char format)
136 {
137 *opts = user_print_options;
138 opts->format = format;
139 }
140
141 static void
142 show_print_max (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file,
146 _("Limit on string chars or array "
147 "elements to print is %s.\n"),
148 value);
149 }
150
151
152 /* Default input and output radixes, and output format letter. */
153
154 unsigned input_radix = 10;
155 static void
156 show_input_radix (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file,
160 _("Default input radix for entering numbers is %s.\n"),
161 value);
162 }
163
164 unsigned output_radix = 10;
165 static void
166 show_output_radix (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file,
170 _("Default output radix for printing of values is %s.\n"),
171 value);
172 }
173
174 /* By default we print arrays without printing the index of each element in
175 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
176
177 static void
178 show_print_array_indexes (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
182 }
183
184 /* Print repeat counts if there are more than this many repetitions of an
185 element in an array. Referenced by the low level language dependent
186 print routines. */
187
188 static void
189 show_repeat_count_threshold (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
193 value);
194 }
195
196 /* If nonzero, stops printing of char arrays at first null. */
197
198 static void
199 show_stop_print_at_null (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file,
203 _("Printing of char arrays to stop "
204 "at first null char is %s.\n"),
205 value);
206 }
207
208 /* Controls pretty printing of structures. */
209
210 static void
211 show_prettyformat_structs (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
215 }
216
217 /* Controls pretty printing of arrays. */
218
219 static void
220 show_prettyformat_arrays (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
224 }
225
226 /* If nonzero, causes unions inside structures or other unions to be
227 printed. */
228
229 static void
230 show_unionprint (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file,
234 _("Printing of unions interior to structures is %s.\n"),
235 value);
236 }
237
238 /* If nonzero, causes machine addresses to be printed in certain contexts. */
239
240 static void
241 show_addressprint (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
245 }
246
247 static void
248 show_symbol_print (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file,
252 _("Printing of symbols when printing pointers is %s.\n"),
253 value);
254 }
255
256 \f
257
258 /* A helper function for val_print. When printing in "summary" mode,
259 we want to print scalar arguments, but not aggregate arguments.
260 This function distinguishes between the two. */
261
262 int
263 val_print_scalar_type_p (struct type *type)
264 {
265 type = check_typedef (type);
266 while (TYPE_IS_REFERENCE (type))
267 {
268 type = TYPE_TARGET_TYPE (type);
269 type = check_typedef (type);
270 }
271 switch (TYPE_CODE (type))
272 {
273 case TYPE_CODE_ARRAY:
274 case TYPE_CODE_STRUCT:
275 case TYPE_CODE_UNION:
276 case TYPE_CODE_SET:
277 case TYPE_CODE_STRING:
278 return 0;
279 default:
280 return 1;
281 }
282 }
283
284 /* See its definition in value.h. */
285
286 int
287 valprint_check_validity (struct ui_file *stream,
288 struct type *type,
289 LONGEST embedded_offset,
290 const struct value *val)
291 {
292 type = check_typedef (type);
293
294 if (type_not_associated (type))
295 {
296 val_print_not_associated (stream);
297 return 0;
298 }
299
300 if (type_not_allocated (type))
301 {
302 val_print_not_allocated (stream);
303 return 0;
304 }
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
322 int ref_is_addressable = 0;
323
324 if (is_ref)
325 {
326 const struct value *deref_val = coerce_ref_if_computed (val);
327
328 if (deref_val != NULL)
329 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
330 }
331
332 if (!is_ref || !ref_is_addressable)
333 fputs_filtered (_("<synthetic pointer>"), stream);
334
335 /* C++ references should be valid even if they're synthetic. */
336 return is_ref;
337 }
338
339 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
340 {
341 val_print_unavailable (stream);
342 return 0;
343 }
344 }
345
346 return 1;
347 }
348
349 void
350 val_print_optimized_out (const struct value *val, struct ui_file *stream)
351 {
352 if (val != NULL && value_lval_const (val) == lval_register)
353 val_print_not_saved (stream);
354 else
355 fprintf_filtered (stream, _("<optimized out>"));
356 }
357
358 void
359 val_print_not_saved (struct ui_file *stream)
360 {
361 fprintf_filtered (stream, _("<not saved>"));
362 }
363
364 void
365 val_print_unavailable (struct ui_file *stream)
366 {
367 fprintf_filtered (stream, _("<unavailable>"));
368 }
369
370 void
371 val_print_invalid_address (struct ui_file *stream)
372 {
373 fprintf_filtered (stream, _("<invalid address>"));
374 }
375
376 /* Print a pointer based on the type of its target.
377
378 Arguments to this functions are roughly the same as those in
379 generic_val_print. A difference is that ADDRESS is the address to print,
380 with embedded_offset already added. ELTTYPE represents
381 the pointed type after check_typedef. */
382
383 static void
384 print_unpacked_pointer (struct type *type, struct type *elttype,
385 CORE_ADDR address, struct ui_file *stream,
386 const struct value_print_options *options)
387 {
388 struct gdbarch *gdbarch = get_type_arch (type);
389
390 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
391 {
392 /* Try to print what function it points to. */
393 print_function_pointer_address (options, gdbarch, address, stream);
394 return;
395 }
396
397 if (options->symbol_print)
398 print_address_demangle (options, gdbarch, address, stream, demangle);
399 else if (options->addressprint)
400 fputs_filtered (paddress (gdbarch, address), stream);
401 }
402
403 /* generic_val_print helper for TYPE_CODE_ARRAY. */
404
405 static void
406 generic_val_print_array (struct type *type,
407 int embedded_offset, CORE_ADDR address,
408 struct ui_file *stream, int recurse,
409 struct value *original_value,
410 const struct value_print_options *options,
411 const struct
412 generic_val_print_decorations *decorations)
413 {
414 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
415 struct type *elttype = check_typedef (unresolved_elttype);
416
417 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
418 {
419 LONGEST low_bound, high_bound;
420
421 if (!get_array_bounds (type, &low_bound, &high_bound))
422 error (_("Could not determine the array high bound"));
423
424 if (options->prettyformat_arrays)
425 {
426 print_spaces_filtered (2 + 2 * recurse, stream);
427 }
428
429 fputs_filtered (decorations->array_start, stream);
430 val_print_array_elements (type, embedded_offset,
431 address, stream,
432 recurse, original_value, options, 0);
433 fputs_filtered (decorations->array_end, stream);
434 }
435 else
436 {
437 /* Array of unspecified length: treat like pointer to first elt. */
438 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
439 options);
440 }
441
442 }
443
444 /* generic_val_print helper for TYPE_CODE_PTR. */
445
446 static void
447 generic_val_print_ptr (struct type *type,
448 int embedded_offset, struct ui_file *stream,
449 struct value *original_value,
450 const struct value_print_options *options)
451 {
452 struct gdbarch *gdbarch = get_type_arch (type);
453 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
454
455 if (options->format && options->format != 's')
456 {
457 val_print_scalar_formatted (type, embedded_offset,
458 original_value, options, 0, stream);
459 }
460 else
461 {
462 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
463 struct type *elttype = check_typedef (unresolved_elttype);
464 const gdb_byte *valaddr = value_contents_for_printing (original_value);
465 CORE_ADDR addr = unpack_pointer (type,
466 valaddr + embedded_offset * unit_size);
467
468 print_unpacked_pointer (type, elttype, addr, stream, options);
469 }
470 }
471
472
473 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
474
475 static void
476 generic_val_print_memberptr (struct type *type,
477 int embedded_offset, struct ui_file *stream,
478 struct value *original_value,
479 const struct value_print_options *options)
480 {
481 val_print_scalar_formatted (type, embedded_offset,
482 original_value, options, 0, stream);
483 }
484
485 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
486
487 static void
488 print_ref_address (struct type *type, const gdb_byte *address_buffer,
489 int embedded_offset, struct ui_file *stream)
490 {
491 struct gdbarch *gdbarch = get_type_arch (type);
492
493 if (address_buffer != NULL)
494 {
495 CORE_ADDR address
496 = extract_typed_address (address_buffer + embedded_offset, type);
497
498 fprintf_filtered (stream, "@");
499 fputs_filtered (paddress (gdbarch, address), stream);
500 }
501 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
502 }
503
504 /* If VAL is addressable, return the value contents buffer of a value that
505 represents a pointer to VAL. Otherwise return NULL. */
506
507 static const gdb_byte *
508 get_value_addr_contents (struct value *deref_val)
509 {
510 gdb_assert (deref_val != NULL);
511
512 if (value_lval_const (deref_val) == lval_memory)
513 return value_contents_for_printing_const (value_addr (deref_val));
514 else
515 {
516 /* We have a non-addressable value, such as a DW_AT_const_value. */
517 return NULL;
518 }
519 }
520
521 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
522
523 static void
524 generic_val_print_ref (struct type *type,
525 int embedded_offset, struct ui_file *stream, int recurse,
526 struct value *original_value,
527 const struct value_print_options *options)
528 {
529 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
530 struct value *deref_val = NULL;
531 const int value_is_synthetic
532 = value_bits_synthetic_pointer (original_value,
533 TARGET_CHAR_BIT * embedded_offset,
534 TARGET_CHAR_BIT * TYPE_LENGTH (type));
535 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
536 || options->deref_ref);
537 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
538 const gdb_byte *valaddr = value_contents_for_printing (original_value);
539
540 if (must_coerce_ref && type_is_defined)
541 {
542 deref_val = coerce_ref_if_computed (original_value);
543
544 if (deref_val != NULL)
545 {
546 /* More complicated computed references are not supported. */
547 gdb_assert (embedded_offset == 0);
548 }
549 else
550 deref_val = value_at (TYPE_TARGET_TYPE (type),
551 unpack_pointer (type, valaddr + embedded_offset));
552 }
553 /* Else, original_value isn't a synthetic reference or we don't have to print
554 the reference's contents.
555
556 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
557 cause original_value to be a not_lval instead of an lval_computed,
558 which will make value_bits_synthetic_pointer return false.
559 This happens because if options->objectprint is true, c_value_print will
560 overwrite original_value's contents with the result of coercing
561 the reference through value_addr, and then set its type back to
562 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
563 we can simply treat it as non-synthetic and move on. */
564
565 if (options->addressprint)
566 {
567 const gdb_byte *address = (value_is_synthetic && type_is_defined
568 ? get_value_addr_contents (deref_val)
569 : valaddr);
570
571 print_ref_address (type, address, embedded_offset, stream);
572
573 if (options->deref_ref)
574 fputs_filtered (": ", stream);
575 }
576
577 if (options->deref_ref)
578 {
579 if (type_is_defined)
580 common_val_print (deref_val, stream, recurse, options,
581 current_language);
582 else
583 fputs_filtered ("???", stream);
584 }
585 }
586
587 /* Helper function for generic_val_print_enum.
588 This is also used to print enums in TYPE_CODE_FLAGS values. */
589
590 static void
591 generic_val_print_enum_1 (struct type *type, LONGEST val,
592 struct ui_file *stream)
593 {
594 unsigned int i;
595 unsigned int len;
596
597 len = TYPE_NFIELDS (type);
598 for (i = 0; i < len; i++)
599 {
600 QUIT;
601 if (val == TYPE_FIELD_ENUMVAL (type, i))
602 {
603 break;
604 }
605 }
606 if (i < len)
607 {
608 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
609 }
610 else if (TYPE_FLAG_ENUM (type))
611 {
612 int first = 1;
613
614 /* We have a "flag" enum, so we try to decompose it into
615 pieces as appropriate. A flag enum has disjoint
616 constants by definition. */
617 fputs_filtered ("(", stream);
618 for (i = 0; i < len; ++i)
619 {
620 QUIT;
621
622 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
623 {
624 if (!first)
625 fputs_filtered (" | ", stream);
626 first = 0;
627
628 val &= ~TYPE_FIELD_ENUMVAL (type, i);
629 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
630 }
631 }
632
633 if (first || val != 0)
634 {
635 if (!first)
636 fputs_filtered (" | ", stream);
637 fputs_filtered ("unknown: ", stream);
638 print_longest (stream, 'd', 0, val);
639 }
640
641 fputs_filtered (")", stream);
642 }
643 else
644 print_longest (stream, 'd', 0, val);
645 }
646
647 /* generic_val_print helper for TYPE_CODE_ENUM. */
648
649 static void
650 generic_val_print_enum (struct type *type,
651 int embedded_offset, struct ui_file *stream,
652 struct value *original_value,
653 const struct value_print_options *options)
654 {
655 LONGEST val;
656 struct gdbarch *gdbarch = get_type_arch (type);
657 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
658
659 if (options->format)
660 {
661 val_print_scalar_formatted (type, embedded_offset,
662 original_value, options, 0, stream);
663 }
664 else
665 {
666 const gdb_byte *valaddr = value_contents_for_printing (original_value);
667
668 val = unpack_long (type, valaddr + embedded_offset * unit_size);
669
670 generic_val_print_enum_1 (type, val, stream);
671 }
672 }
673
674 /* generic_val_print helper for TYPE_CODE_FLAGS. */
675
676 static void
677 generic_val_print_flags (struct type *type,
678 int embedded_offset, struct ui_file *stream,
679 struct value *original_value,
680 const struct value_print_options *options)
681
682 {
683 if (options->format)
684 val_print_scalar_formatted (type, embedded_offset, original_value,
685 options, 0, stream);
686 else
687 {
688 const gdb_byte *valaddr = value_contents_for_printing (original_value);
689
690 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
691 }
692 }
693
694 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
695
696 static void
697 generic_val_print_func (struct type *type,
698 int embedded_offset, CORE_ADDR address,
699 struct ui_file *stream,
700 struct value *original_value,
701 const struct value_print_options *options)
702 {
703 struct gdbarch *gdbarch = get_type_arch (type);
704
705 if (options->format)
706 {
707 val_print_scalar_formatted (type, embedded_offset,
708 original_value, options, 0, stream);
709 }
710 else
711 {
712 /* FIXME, we should consider, at least for ANSI C language,
713 eliminating the distinction made between FUNCs and POINTERs
714 to FUNCs. */
715 fprintf_filtered (stream, "{");
716 type_print (type, "", stream, -1);
717 fprintf_filtered (stream, "} ");
718 /* Try to print what function it points to, and its address. */
719 print_address_demangle (options, gdbarch, address, stream, demangle);
720 }
721 }
722
723 /* generic_val_print helper for TYPE_CODE_BOOL. */
724
725 static void
726 generic_val_print_bool (struct type *type,
727 int embedded_offset, struct ui_file *stream,
728 struct value *original_value,
729 const struct value_print_options *options,
730 const struct generic_val_print_decorations *decorations)
731 {
732 LONGEST val;
733 struct gdbarch *gdbarch = get_type_arch (type);
734 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
735
736 if (options->format || options->output_format)
737 {
738 struct value_print_options opts = *options;
739 opts.format = (options->format ? options->format
740 : options->output_format);
741 val_print_scalar_formatted (type, embedded_offset,
742 original_value, &opts, 0, stream);
743 }
744 else
745 {
746 const gdb_byte *valaddr = value_contents_for_printing (original_value);
747
748 val = unpack_long (type, valaddr + embedded_offset * unit_size);
749 if (val == 0)
750 fputs_filtered (decorations->false_name, stream);
751 else if (val == 1)
752 fputs_filtered (decorations->true_name, stream);
753 else
754 print_longest (stream, 'd', 0, val);
755 }
756 }
757
758 /* generic_val_print helper for TYPE_CODE_INT. */
759
760 static void
761 generic_val_print_int (struct type *type,
762 int embedded_offset, struct ui_file *stream,
763 struct value *original_value,
764 const struct value_print_options *options)
765 {
766 struct value_print_options opts = *options;
767
768 opts.format = (options->format ? options->format
769 : options->output_format);
770 val_print_scalar_formatted (type, embedded_offset,
771 original_value, &opts, 0, stream);
772 }
773
774 /* generic_val_print helper for TYPE_CODE_CHAR. */
775
776 static void
777 generic_val_print_char (struct type *type, struct type *unresolved_type,
778 int embedded_offset,
779 struct ui_file *stream,
780 struct value *original_value,
781 const struct value_print_options *options)
782 {
783 LONGEST val;
784 struct gdbarch *gdbarch = get_type_arch (type);
785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
786
787 if (options->format || options->output_format)
788 {
789 struct value_print_options opts = *options;
790
791 opts.format = (options->format ? options->format
792 : options->output_format);
793 val_print_scalar_formatted (type, embedded_offset,
794 original_value, &opts, 0, stream);
795 }
796 else
797 {
798 const gdb_byte *valaddr = value_contents_for_printing (original_value);
799
800 val = unpack_long (type, valaddr + embedded_offset * unit_size);
801 if (TYPE_UNSIGNED (type))
802 fprintf_filtered (stream, "%u", (unsigned int) val);
803 else
804 fprintf_filtered (stream, "%d", (int) val);
805 fputs_filtered (" ", stream);
806 LA_PRINT_CHAR (val, unresolved_type, stream);
807 }
808 }
809
810 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
811
812 static void
813 generic_val_print_float (struct type *type,
814 int embedded_offset, struct ui_file *stream,
815 struct value *original_value,
816 const struct value_print_options *options)
817 {
818 struct gdbarch *gdbarch = get_type_arch (type);
819 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
820
821 if (options->format)
822 {
823 val_print_scalar_formatted (type, embedded_offset,
824 original_value, options, 0, stream);
825 }
826 else
827 {
828 const gdb_byte *valaddr = value_contents_for_printing (original_value);
829
830 print_floating (valaddr + embedded_offset * unit_size, type, stream);
831 }
832 }
833
834 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
835
836 static void
837 generic_val_print_complex (struct type *type,
838 int embedded_offset, struct ui_file *stream,
839 struct value *original_value,
840 const struct value_print_options *options,
841 const struct generic_val_print_decorations
842 *decorations)
843 {
844 struct gdbarch *gdbarch = get_type_arch (type);
845 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
846 const gdb_byte *valaddr = value_contents_for_printing (original_value);
847
848 fprintf_filtered (stream, "%s", decorations->complex_prefix);
849 if (options->format)
850 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
851 embedded_offset, original_value, options, 0,
852 stream);
853 else
854 print_floating (valaddr + embedded_offset * unit_size,
855 TYPE_TARGET_TYPE (type), stream);
856 fprintf_filtered (stream, "%s", decorations->complex_infix);
857 if (options->format)
858 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
859 embedded_offset
860 + type_length_units (TYPE_TARGET_TYPE (type)),
861 original_value, options, 0, stream);
862 else
863 print_floating (valaddr + embedded_offset * unit_size
864 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
865 TYPE_TARGET_TYPE (type), stream);
866 fprintf_filtered (stream, "%s", decorations->complex_suffix);
867 }
868
869 /* A generic val_print that is suitable for use by language
870 implementations of the la_val_print method. This function can
871 handle most type codes, though not all, notably exception
872 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
873 the caller.
874
875 Most arguments are as to val_print.
876
877 The additional DECORATIONS argument can be used to customize the
878 output in some small, language-specific ways. */
879
880 void
881 generic_val_print (struct type *type,
882 int embedded_offset, CORE_ADDR address,
883 struct ui_file *stream, int recurse,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations *decorations)
887 {
888 struct type *unresolved_type = type;
889
890 type = check_typedef (type);
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_ARRAY:
894 generic_val_print_array (type, embedded_offset, address, stream,
895 recurse, original_value, options, decorations);
896 break;
897
898 case TYPE_CODE_MEMBERPTR:
899 generic_val_print_memberptr (type, embedded_offset, stream,
900 original_value, options);
901 break;
902
903 case TYPE_CODE_PTR:
904 generic_val_print_ptr (type, embedded_offset, stream,
905 original_value, options);
906 break;
907
908 case TYPE_CODE_REF:
909 case TYPE_CODE_RVALUE_REF:
910 generic_val_print_ref (type, embedded_offset, stream, recurse,
911 original_value, options);
912 break;
913
914 case TYPE_CODE_ENUM:
915 generic_val_print_enum (type, embedded_offset, stream,
916 original_value, options);
917 break;
918
919 case TYPE_CODE_FLAGS:
920 generic_val_print_flags (type, embedded_offset, stream,
921 original_value, options);
922 break;
923
924 case TYPE_CODE_FUNC:
925 case TYPE_CODE_METHOD:
926 generic_val_print_func (type, embedded_offset, address, stream,
927 original_value, options);
928 break;
929
930 case TYPE_CODE_BOOL:
931 generic_val_print_bool (type, embedded_offset, stream,
932 original_value, options, decorations);
933 break;
934
935 case TYPE_CODE_RANGE:
936 /* FIXME: create_static_range_type does not set the unsigned bit in a
937 range type (I think it probably should copy it from the
938 target type), so we won't print values which are too large to
939 fit in a signed integer correctly. */
940 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
941 print with the target type, though, because the size of our
942 type and the target type might differ). */
943
944 /* FALLTHROUGH */
945
946 case TYPE_CODE_INT:
947 generic_val_print_int (type, embedded_offset, stream,
948 original_value, options);
949 break;
950
951 case TYPE_CODE_CHAR:
952 generic_val_print_char (type, unresolved_type, embedded_offset,
953 stream, original_value, options);
954 break;
955
956 case TYPE_CODE_FLT:
957 case TYPE_CODE_DECFLOAT:
958 generic_val_print_float (type, embedded_offset, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_VOID:
963 fputs_filtered (decorations->void_name, stream);
964 break;
965
966 case TYPE_CODE_ERROR:
967 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
968 break;
969
970 case TYPE_CODE_UNDEF:
971 /* This happens (without TYPE_STUB set) on systems which don't use
972 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
973 and no complete type for struct foo in that file. */
974 fprintf_filtered (stream, _("<incomplete type>"));
975 break;
976
977 case TYPE_CODE_COMPLEX:
978 generic_val_print_complex (type, embedded_offset, stream,
979 original_value, options, decorations);
980 break;
981
982 case TYPE_CODE_UNION:
983 case TYPE_CODE_STRUCT:
984 case TYPE_CODE_METHODPTR:
985 default:
986 error (_("Unhandled type code %d in symbol table."),
987 TYPE_CODE (type));
988 }
989 gdb_flush (stream);
990 }
991
992 /* Print using the given LANGUAGE the data of type TYPE located at
993 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
994 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
995 stdio stream STREAM according to OPTIONS. VAL is the whole object
996 that came from ADDRESS.
997
998 The language printers will pass down an adjusted EMBEDDED_OFFSET to
999 further helper subroutines as subfields of TYPE are printed. In
1000 such cases, VAL is passed down unadjusted, so
1001 that VAL can be queried for metadata about the contents data being
1002 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1003 buffer. For example: "has this field been optimized out", or "I'm
1004 printing an object while inspecting a traceframe; has this
1005 particular piece of data been collected?".
1006
1007 RECURSE indicates the amount of indentation to supply before
1008 continuation lines; this amount is roughly twice the value of
1009 RECURSE. */
1010
1011 void
1012 val_print (struct type *type, LONGEST embedded_offset,
1013 CORE_ADDR address, struct ui_file *stream, int recurse,
1014 struct value *val,
1015 const struct value_print_options *options,
1016 const struct language_defn *language)
1017 {
1018 int ret = 0;
1019 struct value_print_options local_opts = *options;
1020 struct type *real_type = check_typedef (type);
1021
1022 if (local_opts.prettyformat == Val_prettyformat_default)
1023 local_opts.prettyformat = (local_opts.prettyformat_structs
1024 ? Val_prettyformat : Val_no_prettyformat);
1025
1026 QUIT;
1027
1028 /* Ensure that the type is complete and not just a stub. If the type is
1029 only a stub and we can't find and substitute its complete type, then
1030 print appropriate string and return. */
1031
1032 if (TYPE_STUB (real_type))
1033 {
1034 fprintf_filtered (stream, _("<incomplete type>"));
1035 gdb_flush (stream);
1036 return;
1037 }
1038
1039 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1040 return;
1041
1042 if (!options->raw)
1043 {
1044 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1045 address, stream, recurse,
1046 val, options, language);
1047 if (ret)
1048 return;
1049 }
1050
1051 /* Handle summary mode. If the value is a scalar, print it;
1052 otherwise, print an ellipsis. */
1053 if (options->summary && !val_print_scalar_type_p (type))
1054 {
1055 fprintf_filtered (stream, "...");
1056 return;
1057 }
1058
1059 TRY
1060 {
1061 language->la_val_print (type, embedded_offset, address,
1062 stream, recurse, val,
1063 &local_opts);
1064 }
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
1067 fprintf_filtered (stream, _("<error reading variable>"));
1068 }
1069 END_CATCH
1070 }
1071
1072 /* Check whether the value VAL is printable. Return 1 if it is;
1073 return 0 and print an appropriate error message to STREAM according to
1074 OPTIONS if it is not. */
1075
1076 static int
1077 value_check_printable (struct value *val, struct ui_file *stream,
1078 const struct value_print_options *options)
1079 {
1080 if (val == 0)
1081 {
1082 fprintf_filtered (stream, _("<address of value unknown>"));
1083 return 0;
1084 }
1085
1086 if (value_entirely_optimized_out (val))
1087 {
1088 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1089 fprintf_filtered (stream, "...");
1090 else
1091 val_print_optimized_out (val, stream);
1092 return 0;
1093 }
1094
1095 if (value_entirely_unavailable (val))
1096 {
1097 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1098 fprintf_filtered (stream, "...");
1099 else
1100 val_print_unavailable (stream);
1101 return 0;
1102 }
1103
1104 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1105 {
1106 fprintf_filtered (stream, _("<internal function %s>"),
1107 value_internal_function_name (val));
1108 return 0;
1109 }
1110
1111 if (type_not_associated (value_type (val)))
1112 {
1113 val_print_not_associated (stream);
1114 return 0;
1115 }
1116
1117 if (type_not_allocated (value_type (val)))
1118 {
1119 val_print_not_allocated (stream);
1120 return 0;
1121 }
1122
1123 return 1;
1124 }
1125
1126 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1127 to OPTIONS.
1128
1129 This is a preferable interface to val_print, above, because it uses
1130 GDB's value mechanism. */
1131
1132 void
1133 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1134 const struct value_print_options *options,
1135 const struct language_defn *language)
1136 {
1137 if (!value_check_printable (val, stream, options))
1138 return;
1139
1140 if (language->la_language == language_ada)
1141 /* The value might have a dynamic type, which would cause trouble
1142 below when trying to extract the value contents (since the value
1143 size is determined from the type size which is unknown). So
1144 get a fixed representation of our value. */
1145 val = ada_to_fixed_value (val);
1146
1147 if (value_lazy (val))
1148 value_fetch_lazy (val);
1149
1150 val_print (value_type (val),
1151 value_embedded_offset (val), value_address (val),
1152 stream, recurse,
1153 val, options, language);
1154 }
1155
1156 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1157 is printed using the current_language syntax. */
1158
1159 void
1160 value_print (struct value *val, struct ui_file *stream,
1161 const struct value_print_options *options)
1162 {
1163 if (!value_check_printable (val, stream, options))
1164 return;
1165
1166 if (!options->raw)
1167 {
1168 int r
1169 = apply_ext_lang_val_pretty_printer (value_type (val),
1170 value_embedded_offset (val),
1171 value_address (val),
1172 stream, 0,
1173 val, options, current_language);
1174
1175 if (r)
1176 return;
1177 }
1178
1179 LA_VALUE_PRINT (val, stream, options);
1180 }
1181
1182 static void
1183 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1184 struct ui_file *stream)
1185 {
1186 ULONGEST val = unpack_long (type, valaddr);
1187 int field, nfields = TYPE_NFIELDS (type);
1188 struct gdbarch *gdbarch = get_type_arch (type);
1189 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1190
1191 fputs_filtered ("[", stream);
1192 for (field = 0; field < nfields; field++)
1193 {
1194 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1195 {
1196 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1197
1198 if (field_type == bool_type
1199 /* We require boolean types here to be one bit wide. This is a
1200 problematic place to notify the user of an internal error
1201 though. Instead just fall through and print the field as an
1202 int. */
1203 && TYPE_FIELD_BITSIZE (type, field) == 1)
1204 {
1205 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1206 fprintf_filtered (stream, " %s",
1207 TYPE_FIELD_NAME (type, field));
1208 }
1209 else
1210 {
1211 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1212 ULONGEST field_val
1213 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1214
1215 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1216 field_val &= ((ULONGEST) 1 << field_len) - 1;
1217 fprintf_filtered (stream, " %s=",
1218 TYPE_FIELD_NAME (type, field));
1219 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1220 generic_val_print_enum_1 (field_type, field_val, stream);
1221 else
1222 print_longest (stream, 'd', 0, field_val);
1223 }
1224 }
1225 }
1226 fputs_filtered (" ]", stream);
1227 }
1228
1229 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1230 according to OPTIONS and SIZE on STREAM. Format i is not supported
1231 at this level.
1232
1233 This is how the elements of an array or structure are printed
1234 with a format. */
1235
1236 void
1237 val_print_scalar_formatted (struct type *type,
1238 LONGEST embedded_offset,
1239 struct value *val,
1240 const struct value_print_options *options,
1241 int size,
1242 struct ui_file *stream)
1243 {
1244 struct gdbarch *arch = get_type_arch (type);
1245 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1246
1247 gdb_assert (val != NULL);
1248
1249 /* If we get here with a string format, try again without it. Go
1250 all the way back to the language printers, which may call us
1251 again. */
1252 if (options->format == 's')
1253 {
1254 struct value_print_options opts = *options;
1255 opts.format = 0;
1256 opts.deref_ref = 0;
1257 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1258 current_language);
1259 return;
1260 }
1261
1262 /* value_contents_for_printing fetches all VAL's contents. They are
1263 needed to check whether VAL is optimized-out or unavailable
1264 below. */
1265 const gdb_byte *valaddr = value_contents_for_printing (val);
1266
1267 /* A scalar object that does not have all bits available can't be
1268 printed, because all bits contribute to its representation. */
1269 if (value_bits_any_optimized_out (val,
1270 TARGET_CHAR_BIT * embedded_offset,
1271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1272 val_print_optimized_out (val, stream);
1273 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1274 val_print_unavailable (stream);
1275 else
1276 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1277 options, size, stream);
1278 }
1279
1280 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1281 The raison d'etre of this function is to consolidate printing of
1282 LONG_LONG's into this one function. The format chars b,h,w,g are
1283 from print_scalar_formatted(). Numbers are printed using C
1284 format.
1285
1286 USE_C_FORMAT means to use C format in all cases. Without it,
1287 'o' and 'x' format do not include the standard C radix prefix
1288 (leading 0 or 0x).
1289
1290 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1291 and was intended to request formating according to the current
1292 language and would be used for most integers that GDB prints. The
1293 exceptional cases were things like protocols where the format of
1294 the integer is a protocol thing, not a user-visible thing). The
1295 parameter remains to preserve the information of what things might
1296 be printed with language-specific format, should we ever resurrect
1297 that capability. */
1298
1299 void
1300 print_longest (struct ui_file *stream, int format, int use_c_format,
1301 LONGEST val_long)
1302 {
1303 const char *val;
1304
1305 switch (format)
1306 {
1307 case 'd':
1308 val = int_string (val_long, 10, 1, 0, 1); break;
1309 case 'u':
1310 val = int_string (val_long, 10, 0, 0, 1); break;
1311 case 'x':
1312 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1313 case 'b':
1314 val = int_string (val_long, 16, 0, 2, 1); break;
1315 case 'h':
1316 val = int_string (val_long, 16, 0, 4, 1); break;
1317 case 'w':
1318 val = int_string (val_long, 16, 0, 8, 1); break;
1319 case 'g':
1320 val = int_string (val_long, 16, 0, 16, 1); break;
1321 break;
1322 case 'o':
1323 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1324 default:
1325 internal_error (__FILE__, __LINE__,
1326 _("failed internal consistency check"));
1327 }
1328 fputs_filtered (val, stream);
1329 }
1330
1331 /* This used to be a macro, but I don't think it is called often enough
1332 to merit such treatment. */
1333 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1334 arguments to a function, number in a value history, register number, etc.)
1335 where the value must not be larger than can fit in an int. */
1336
1337 int
1338 longest_to_int (LONGEST arg)
1339 {
1340 /* Let the compiler do the work. */
1341 int rtnval = (int) arg;
1342
1343 /* Check for overflows or underflows. */
1344 if (sizeof (LONGEST) > sizeof (int))
1345 {
1346 if (rtnval != arg)
1347 {
1348 error (_("Value out of range."));
1349 }
1350 }
1351 return (rtnval);
1352 }
1353
1354 /* Print a floating point value of floating-point type TYPE,
1355 pointed to in GDB by VALADDR, on STREAM. */
1356
1357 void
1358 print_floating (const gdb_byte *valaddr, struct type *type,
1359 struct ui_file *stream)
1360 {
1361 std::string str = target_float_to_string (valaddr, type);
1362 fputs_filtered (str.c_str (), stream);
1363 }
1364
1365 void
1366 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1367 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1368 {
1369 const gdb_byte *p;
1370 unsigned int i;
1371 int b;
1372 bool seen_a_one = false;
1373
1374 /* Declared "int" so it will be signed.
1375 This ensures that right shift will shift in zeros. */
1376
1377 const int mask = 0x080;
1378
1379 if (byte_order == BFD_ENDIAN_BIG)
1380 {
1381 for (p = valaddr;
1382 p < valaddr + len;
1383 p++)
1384 {
1385 /* Every byte has 8 binary characters; peel off
1386 and print from the MSB end. */
1387
1388 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1389 {
1390 if (*p & (mask >> i))
1391 b = '1';
1392 else
1393 b = '0';
1394
1395 if (zero_pad || seen_a_one || b == '1')
1396 fputc_filtered (b, stream);
1397 if (b == '1')
1398 seen_a_one = true;
1399 }
1400 }
1401 }
1402 else
1403 {
1404 for (p = valaddr + len - 1;
1405 p >= valaddr;
1406 p--)
1407 {
1408 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1409 {
1410 if (*p & (mask >> i))
1411 b = '1';
1412 else
1413 b = '0';
1414
1415 if (zero_pad || seen_a_one || b == '1')
1416 fputc_filtered (b, stream);
1417 if (b == '1')
1418 seen_a_one = true;
1419 }
1420 }
1421 }
1422
1423 /* When not zero-padding, ensure that something is printed when the
1424 input is 0. */
1425 if (!zero_pad && !seen_a_one)
1426 fputc_filtered ('0', stream);
1427 }
1428
1429 /* A helper for print_octal_chars that emits a single octal digit,
1430 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1431
1432 static void
1433 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1434 {
1435 if (*seen_a_one || digit != 0)
1436 fprintf_filtered (stream, "%o", digit);
1437 if (digit != 0)
1438 *seen_a_one = true;
1439 }
1440
1441 /* VALADDR points to an integer of LEN bytes.
1442 Print it in octal on stream or format it in buf. */
1443
1444 void
1445 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1446 unsigned len, enum bfd_endian byte_order)
1447 {
1448 const gdb_byte *p;
1449 unsigned char octa1, octa2, octa3, carry;
1450 int cycle;
1451
1452 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1453 * the extra bits, which cycle every three bytes:
1454 *
1455 * Byte side: 0 1 2 3
1456 * | | | |
1457 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1458 *
1459 * Octal side: 0 1 carry 3 4 carry ...
1460 *
1461 * Cycle number: 0 1 2
1462 *
1463 * But of course we are printing from the high side, so we have to
1464 * figure out where in the cycle we are so that we end up with no
1465 * left over bits at the end.
1466 */
1467 #define BITS_IN_OCTAL 3
1468 #define HIGH_ZERO 0340
1469 #define LOW_ZERO 0034
1470 #define CARRY_ZERO 0003
1471 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1472 "cycle zero constants are wrong");
1473 #define HIGH_ONE 0200
1474 #define MID_ONE 0160
1475 #define LOW_ONE 0016
1476 #define CARRY_ONE 0001
1477 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1478 "cycle one constants are wrong");
1479 #define HIGH_TWO 0300
1480 #define MID_TWO 0070
1481 #define LOW_TWO 0007
1482 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1483 "cycle two constants are wrong");
1484
1485 /* For 32 we start in cycle 2, with two bits and one bit carry;
1486 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1487
1488 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1489 carry = 0;
1490
1491 fputs_filtered ("0", stream);
1492 bool seen_a_one = false;
1493 if (byte_order == BFD_ENDIAN_BIG)
1494 {
1495 for (p = valaddr;
1496 p < valaddr + len;
1497 p++)
1498 {
1499 switch (cycle)
1500 {
1501 case 0:
1502 /* No carry in, carry out two bits. */
1503
1504 octa1 = (HIGH_ZERO & *p) >> 5;
1505 octa2 = (LOW_ZERO & *p) >> 2;
1506 carry = (CARRY_ZERO & *p);
1507 emit_octal_digit (stream, &seen_a_one, octa1);
1508 emit_octal_digit (stream, &seen_a_one, octa2);
1509 break;
1510
1511 case 1:
1512 /* Carry in two bits, carry out one bit. */
1513
1514 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1515 octa2 = (MID_ONE & *p) >> 4;
1516 octa3 = (LOW_ONE & *p) >> 1;
1517 carry = (CARRY_ONE & *p);
1518 emit_octal_digit (stream, &seen_a_one, octa1);
1519 emit_octal_digit (stream, &seen_a_one, octa2);
1520 emit_octal_digit (stream, &seen_a_one, octa3);
1521 break;
1522
1523 case 2:
1524 /* Carry in one bit, no carry out. */
1525
1526 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1527 octa2 = (MID_TWO & *p) >> 3;
1528 octa3 = (LOW_TWO & *p);
1529 carry = 0;
1530 emit_octal_digit (stream, &seen_a_one, octa1);
1531 emit_octal_digit (stream, &seen_a_one, octa2);
1532 emit_octal_digit (stream, &seen_a_one, octa3);
1533 break;
1534
1535 default:
1536 error (_("Internal error in octal conversion;"));
1537 }
1538
1539 cycle++;
1540 cycle = cycle % BITS_IN_OCTAL;
1541 }
1542 }
1543 else
1544 {
1545 for (p = valaddr + len - 1;
1546 p >= valaddr;
1547 p--)
1548 {
1549 switch (cycle)
1550 {
1551 case 0:
1552 /* Carry out, no carry in */
1553
1554 octa1 = (HIGH_ZERO & *p) >> 5;
1555 octa2 = (LOW_ZERO & *p) >> 2;
1556 carry = (CARRY_ZERO & *p);
1557 emit_octal_digit (stream, &seen_a_one, octa1);
1558 emit_octal_digit (stream, &seen_a_one, octa2);
1559 break;
1560
1561 case 1:
1562 /* Carry in, carry out */
1563
1564 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1565 octa2 = (MID_ONE & *p) >> 4;
1566 octa3 = (LOW_ONE & *p) >> 1;
1567 carry = (CARRY_ONE & *p);
1568 emit_octal_digit (stream, &seen_a_one, octa1);
1569 emit_octal_digit (stream, &seen_a_one, octa2);
1570 emit_octal_digit (stream, &seen_a_one, octa3);
1571 break;
1572
1573 case 2:
1574 /* Carry in, no carry out */
1575
1576 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1577 octa2 = (MID_TWO & *p) >> 3;
1578 octa3 = (LOW_TWO & *p);
1579 carry = 0;
1580 emit_octal_digit (stream, &seen_a_one, octa1);
1581 emit_octal_digit (stream, &seen_a_one, octa2);
1582 emit_octal_digit (stream, &seen_a_one, octa3);
1583 break;
1584
1585 default:
1586 error (_("Internal error in octal conversion;"));
1587 }
1588
1589 cycle++;
1590 cycle = cycle % BITS_IN_OCTAL;
1591 }
1592 }
1593
1594 }
1595
1596 /* Possibly negate the integer represented by BYTES. It contains LEN
1597 bytes in the specified byte order. If the integer is negative,
1598 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1599 nothing and return false. */
1600
1601 static bool
1602 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1603 enum bfd_endian byte_order,
1604 gdb::byte_vector *out_vec)
1605 {
1606 gdb_byte sign_byte;
1607 gdb_assert (len > 0);
1608 if (byte_order == BFD_ENDIAN_BIG)
1609 sign_byte = bytes[0];
1610 else
1611 sign_byte = bytes[len - 1];
1612 if ((sign_byte & 0x80) == 0)
1613 return false;
1614
1615 out_vec->resize (len);
1616
1617 /* Compute -x == 1 + ~x. */
1618 if (byte_order == BFD_ENDIAN_LITTLE)
1619 {
1620 unsigned carry = 1;
1621 for (unsigned i = 0; i < len; ++i)
1622 {
1623 unsigned tem = (0xff & ~bytes[i]) + carry;
1624 (*out_vec)[i] = tem & 0xff;
1625 carry = tem / 256;
1626 }
1627 }
1628 else
1629 {
1630 unsigned carry = 1;
1631 for (unsigned i = len; i > 0; --i)
1632 {
1633 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1634 (*out_vec)[i - 1] = tem & 0xff;
1635 carry = tem / 256;
1636 }
1637 }
1638
1639 return true;
1640 }
1641
1642 /* VALADDR points to an integer of LEN bytes.
1643 Print it in decimal on stream or format it in buf. */
1644
1645 void
1646 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1647 unsigned len, bool is_signed,
1648 enum bfd_endian byte_order)
1649 {
1650 #define TEN 10
1651 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1652 #define CARRY_LEFT( x ) ((x) % TEN)
1653 #define SHIFT( x ) ((x) << 4)
1654 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1655 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1656
1657 const gdb_byte *p;
1658 int carry;
1659 int decimal_len;
1660 int i, j, decimal_digits;
1661 int dummy;
1662 int flip;
1663
1664 gdb::byte_vector negated_bytes;
1665 if (is_signed
1666 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1667 {
1668 fputs_filtered ("-", stream);
1669 valaddr = negated_bytes.data ();
1670 }
1671
1672 /* Base-ten number is less than twice as many digits
1673 as the base 16 number, which is 2 digits per byte. */
1674
1675 decimal_len = len * 2 * 2;
1676 std::vector<unsigned char> digits (decimal_len, 0);
1677
1678 /* Ok, we have an unknown number of bytes of data to be printed in
1679 * decimal.
1680 *
1681 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1682 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1683 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1684 *
1685 * The trick is that "digits" holds a base-10 number, but sometimes
1686 * the individual digits are > 10.
1687 *
1688 * Outer loop is per nibble (hex digit) of input, from MSD end to
1689 * LSD end.
1690 */
1691 decimal_digits = 0; /* Number of decimal digits so far */
1692 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1693 flip = 0;
1694 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1695 {
1696 /*
1697 * Multiply current base-ten number by 16 in place.
1698 * Each digit was between 0 and 9, now is between
1699 * 0 and 144.
1700 */
1701 for (j = 0; j < decimal_digits; j++)
1702 {
1703 digits[j] = SHIFT (digits[j]);
1704 }
1705
1706 /* Take the next nibble off the input and add it to what
1707 * we've got in the LSB position. Bottom 'digit' is now
1708 * between 0 and 159.
1709 *
1710 * "flip" is used to run this loop twice for each byte.
1711 */
1712 if (flip == 0)
1713 {
1714 /* Take top nibble. */
1715
1716 digits[0] += HIGH_NIBBLE (*p);
1717 flip = 1;
1718 }
1719 else
1720 {
1721 /* Take low nibble and bump our pointer "p". */
1722
1723 digits[0] += LOW_NIBBLE (*p);
1724 if (byte_order == BFD_ENDIAN_BIG)
1725 p++;
1726 else
1727 p--;
1728 flip = 0;
1729 }
1730
1731 /* Re-decimalize. We have to do this often enough
1732 * that we don't overflow, but once per nibble is
1733 * overkill. Easier this way, though. Note that the
1734 * carry is often larger than 10 (e.g. max initial
1735 * carry out of lowest nibble is 15, could bubble all
1736 * the way up greater than 10). So we have to do
1737 * the carrying beyond the last current digit.
1738 */
1739 carry = 0;
1740 for (j = 0; j < decimal_len - 1; j++)
1741 {
1742 digits[j] += carry;
1743
1744 /* "/" won't handle an unsigned char with
1745 * a value that if signed would be negative.
1746 * So extend to longword int via "dummy".
1747 */
1748 dummy = digits[j];
1749 carry = CARRY_OUT (dummy);
1750 digits[j] = CARRY_LEFT (dummy);
1751
1752 if (j >= decimal_digits && carry == 0)
1753 {
1754 /*
1755 * All higher digits are 0 and we
1756 * no longer have a carry.
1757 *
1758 * Note: "j" is 0-based, "decimal_digits" is
1759 * 1-based.
1760 */
1761 decimal_digits = j + 1;
1762 break;
1763 }
1764 }
1765 }
1766
1767 /* Ok, now "digits" is the decimal representation, with
1768 the "decimal_digits" actual digits. Print! */
1769
1770 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1771 ;
1772
1773 for (; i >= 0; i--)
1774 {
1775 fprintf_filtered (stream, "%1d", digits[i]);
1776 }
1777 }
1778
1779 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1780
1781 void
1782 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1783 unsigned len, enum bfd_endian byte_order,
1784 bool zero_pad)
1785 {
1786 const gdb_byte *p;
1787
1788 fputs_filtered ("0x", stream);
1789 if (byte_order == BFD_ENDIAN_BIG)
1790 {
1791 p = valaddr;
1792
1793 if (!zero_pad)
1794 {
1795 /* Strip leading 0 bytes, but be sure to leave at least a
1796 single byte at the end. */
1797 for (; p < valaddr + len - 1 && !*p; ++p)
1798 ;
1799 }
1800
1801 const gdb_byte *first = p;
1802 for (;
1803 p < valaddr + len;
1804 p++)
1805 {
1806 /* When not zero-padding, use a different format for the
1807 very first byte printed. */
1808 if (!zero_pad && p == first)
1809 fprintf_filtered (stream, "%x", *p);
1810 else
1811 fprintf_filtered (stream, "%02x", *p);
1812 }
1813 }
1814 else
1815 {
1816 p = valaddr + len - 1;
1817
1818 if (!zero_pad)
1819 {
1820 /* Strip leading 0 bytes, but be sure to leave at least a
1821 single byte at the end. */
1822 for (; p >= valaddr + 1 && !*p; --p)
1823 ;
1824 }
1825
1826 const gdb_byte *first = p;
1827 for (;
1828 p >= valaddr;
1829 p--)
1830 {
1831 /* When not zero-padding, use a different format for the
1832 very first byte printed. */
1833 if (!zero_pad && p == first)
1834 fprintf_filtered (stream, "%x", *p);
1835 else
1836 fprintf_filtered (stream, "%02x", *p);
1837 }
1838 }
1839 }
1840
1841 /* VALADDR points to a char integer of LEN bytes.
1842 Print it out in appropriate language form on stream.
1843 Omit any leading zero chars. */
1844
1845 void
1846 print_char_chars (struct ui_file *stream, struct type *type,
1847 const gdb_byte *valaddr,
1848 unsigned len, enum bfd_endian byte_order)
1849 {
1850 const gdb_byte *p;
1851
1852 if (byte_order == BFD_ENDIAN_BIG)
1853 {
1854 p = valaddr;
1855 while (p < valaddr + len - 1 && *p == 0)
1856 ++p;
1857
1858 while (p < valaddr + len)
1859 {
1860 LA_EMIT_CHAR (*p, type, stream, '\'');
1861 ++p;
1862 }
1863 }
1864 else
1865 {
1866 p = valaddr + len - 1;
1867 while (p > valaddr && *p == 0)
1868 --p;
1869
1870 while (p >= valaddr)
1871 {
1872 LA_EMIT_CHAR (*p, type, stream, '\'');
1873 --p;
1874 }
1875 }
1876 }
1877
1878 /* Print function pointer with inferior address ADDRESS onto stdio
1879 stream STREAM. */
1880
1881 void
1882 print_function_pointer_address (const struct value_print_options *options,
1883 struct gdbarch *gdbarch,
1884 CORE_ADDR address,
1885 struct ui_file *stream)
1886 {
1887 CORE_ADDR func_addr
1888 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1889 current_top_target ());
1890
1891 /* If the function pointer is represented by a description, print
1892 the address of the description. */
1893 if (options->addressprint && func_addr != address)
1894 {
1895 fputs_filtered ("@", stream);
1896 fputs_filtered (paddress (gdbarch, address), stream);
1897 fputs_filtered (": ", stream);
1898 }
1899 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1900 }
1901
1902
1903 /* Print on STREAM using the given OPTIONS the index for the element
1904 at INDEX of an array whose index type is INDEX_TYPE. */
1905
1906 void
1907 maybe_print_array_index (struct type *index_type, LONGEST index,
1908 struct ui_file *stream,
1909 const struct value_print_options *options)
1910 {
1911 struct value *index_value;
1912
1913 if (!options->print_array_indexes)
1914 return;
1915
1916 index_value = value_from_longest (index_type, index);
1917
1918 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1919 }
1920
1921 /* Called by various <lang>_val_print routines to print elements of an
1922 array in the form "<elem1>, <elem2>, <elem3>, ...".
1923
1924 (FIXME?) Assumes array element separator is a comma, which is correct
1925 for all languages currently handled.
1926 (FIXME?) Some languages have a notation for repeated array elements,
1927 perhaps we should try to use that notation when appropriate. */
1928
1929 void
1930 val_print_array_elements (struct type *type,
1931 LONGEST embedded_offset,
1932 CORE_ADDR address, struct ui_file *stream,
1933 int recurse,
1934 struct value *val,
1935 const struct value_print_options *options,
1936 unsigned int i)
1937 {
1938 unsigned int things_printed = 0;
1939 unsigned len;
1940 struct type *elttype, *index_type, *base_index_type;
1941 unsigned eltlen;
1942 /* Position of the array element we are examining to see
1943 whether it is repeated. */
1944 unsigned int rep1;
1945 /* Number of repetitions we have detected so far. */
1946 unsigned int reps;
1947 LONGEST low_bound, high_bound;
1948 LONGEST low_pos, high_pos;
1949
1950 elttype = TYPE_TARGET_TYPE (type);
1951 eltlen = type_length_units (check_typedef (elttype));
1952 index_type = TYPE_INDEX_TYPE (type);
1953
1954 if (get_array_bounds (type, &low_bound, &high_bound))
1955 {
1956 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1957 base_index_type = TYPE_TARGET_TYPE (index_type);
1958 else
1959 base_index_type = index_type;
1960
1961 /* Non-contiguous enumerations types can by used as index types
1962 in some languages (e.g. Ada). In this case, the array length
1963 shall be computed from the positions of the first and last
1964 literal in the enumeration type, and not from the values
1965 of these literals. */
1966 if (!discrete_position (base_index_type, low_bound, &low_pos)
1967 || !discrete_position (base_index_type, high_bound, &high_pos))
1968 {
1969 warning (_("unable to get positions in array, use bounds instead"));
1970 low_pos = low_bound;
1971 high_pos = high_bound;
1972 }
1973
1974 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1975 But we have to be a little extra careful, because some languages
1976 such as Ada allow LOW_POS to be greater than HIGH_POS for
1977 empty arrays. In that situation, the array length is just zero,
1978 not negative! */
1979 if (low_pos > high_pos)
1980 len = 0;
1981 else
1982 len = high_pos - low_pos + 1;
1983 }
1984 else
1985 {
1986 warning (_("unable to get bounds of array, assuming null array"));
1987 low_bound = 0;
1988 len = 0;
1989 }
1990
1991 annotate_array_section_begin (i, elttype);
1992
1993 for (; i < len && things_printed < options->print_max; i++)
1994 {
1995 if (i != 0)
1996 {
1997 if (options->prettyformat_arrays)
1998 {
1999 fprintf_filtered (stream, ",\n");
2000 print_spaces_filtered (2 + 2 * recurse, stream);
2001 }
2002 else
2003 {
2004 fprintf_filtered (stream, ", ");
2005 }
2006 }
2007 wrap_here (n_spaces (2 + 2 * recurse));
2008 maybe_print_array_index (index_type, i + low_bound,
2009 stream, options);
2010
2011 rep1 = i + 1;
2012 reps = 1;
2013 /* Only check for reps if repeat_count_threshold is not set to
2014 UINT_MAX (unlimited). */
2015 if (options->repeat_count_threshold < UINT_MAX)
2016 {
2017 while (rep1 < len
2018 && value_contents_eq (val,
2019 embedded_offset + i * eltlen,
2020 val,
2021 (embedded_offset
2022 + rep1 * eltlen),
2023 eltlen))
2024 {
2025 ++reps;
2026 ++rep1;
2027 }
2028 }
2029
2030 if (reps > options->repeat_count_threshold)
2031 {
2032 val_print (elttype, embedded_offset + i * eltlen,
2033 address, stream, recurse + 1, val, options,
2034 current_language);
2035 annotate_elt_rep (reps);
2036 fprintf_filtered (stream, " <repeats %u times>", reps);
2037 annotate_elt_rep_end ();
2038
2039 i = rep1 - 1;
2040 things_printed += options->repeat_count_threshold;
2041 }
2042 else
2043 {
2044 val_print (elttype, embedded_offset + i * eltlen,
2045 address,
2046 stream, recurse + 1, val, options, current_language);
2047 annotate_elt ();
2048 things_printed++;
2049 }
2050 }
2051 annotate_array_section_end ();
2052 if (i < len)
2053 {
2054 fprintf_filtered (stream, "...");
2055 }
2056 }
2057
2058 /* Read LEN bytes of target memory at address MEMADDR, placing the
2059 results in GDB's memory at MYADDR. Returns a count of the bytes
2060 actually read, and optionally a target_xfer_status value in the
2061 location pointed to by ERRPTR if ERRPTR is non-null. */
2062
2063 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2064 function be eliminated. */
2065
2066 static int
2067 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2068 int len, int *errptr)
2069 {
2070 int nread; /* Number of bytes actually read. */
2071 int errcode; /* Error from last read. */
2072
2073 /* First try a complete read. */
2074 errcode = target_read_memory (memaddr, myaddr, len);
2075 if (errcode == 0)
2076 {
2077 /* Got it all. */
2078 nread = len;
2079 }
2080 else
2081 {
2082 /* Loop, reading one byte at a time until we get as much as we can. */
2083 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2084 {
2085 errcode = target_read_memory (memaddr++, myaddr++, 1);
2086 }
2087 /* If an error, the last read was unsuccessful, so adjust count. */
2088 if (errcode != 0)
2089 {
2090 nread--;
2091 }
2092 }
2093 if (errptr != NULL)
2094 {
2095 *errptr = errcode;
2096 }
2097 return (nread);
2098 }
2099
2100 /* Read a string from the inferior, at ADDR, with LEN characters of
2101 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2102 will be set to a newly allocated buffer containing the string, and
2103 BYTES_READ will be set to the number of bytes read. Returns 0 on
2104 success, or a target_xfer_status on failure.
2105
2106 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2107 (including eventual NULs in the middle or end of the string).
2108
2109 If LEN is -1, stops at the first null character (not necessarily
2110 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2111 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2112 the string.
2113
2114 Unless an exception is thrown, BUFFER will always be allocated, even on
2115 failure. In this case, some characters might have been read before the
2116 failure happened. Check BYTES_READ to recognize this situation.
2117
2118 Note: There was a FIXME asking to make this code use target_read_string,
2119 but this function is more general (can read past null characters, up to
2120 given LEN). Besides, it is used much more often than target_read_string
2121 so it is more tested. Perhaps callers of target_read_string should use
2122 this function instead? */
2123
2124 int
2125 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2126 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2127 int *bytes_read)
2128 {
2129 int errcode; /* Errno returned from bad reads. */
2130 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2131 gdb_byte *bufptr; /* Pointer to next available byte in
2132 buffer. */
2133
2134 /* Loop until we either have all the characters, or we encounter
2135 some error, such as bumping into the end of the address space. */
2136
2137 buffer->reset (nullptr);
2138
2139 if (len > 0)
2140 {
2141 /* We want fetchlimit chars, so we might as well read them all in
2142 one operation. */
2143 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2144
2145 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2146 bufptr = buffer->get ();
2147
2148 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2149 / width;
2150 addr += nfetch * width;
2151 bufptr += nfetch * width;
2152 }
2153 else if (len == -1)
2154 {
2155 unsigned long bufsize = 0;
2156 unsigned int chunksize; /* Size of each fetch, in chars. */
2157 int found_nul; /* Non-zero if we found the nul char. */
2158 gdb_byte *limit; /* First location past end of fetch buffer. */
2159
2160 found_nul = 0;
2161 /* We are looking for a NUL terminator to end the fetching, so we
2162 might as well read in blocks that are large enough to be efficient,
2163 but not so large as to be slow if fetchlimit happens to be large.
2164 So we choose the minimum of 8 and fetchlimit. We used to use 200
2165 instead of 8 but 200 is way too big for remote debugging over a
2166 serial line. */
2167 chunksize = std::min (8u, fetchlimit);
2168
2169 do
2170 {
2171 QUIT;
2172 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2173
2174 if (*buffer == NULL)
2175 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2176 else
2177 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2178 (nfetch + bufsize) * width));
2179
2180 bufptr = buffer->get () + bufsize * width;
2181 bufsize += nfetch;
2182
2183 /* Read as much as we can. */
2184 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2185 / width;
2186
2187 /* Scan this chunk for the null character that terminates the string
2188 to print. If found, we don't need to fetch any more. Note
2189 that bufptr is explicitly left pointing at the next character
2190 after the null character, or at the next character after the end
2191 of the buffer. */
2192
2193 limit = bufptr + nfetch * width;
2194 while (bufptr < limit)
2195 {
2196 unsigned long c;
2197
2198 c = extract_unsigned_integer (bufptr, width, byte_order);
2199 addr += width;
2200 bufptr += width;
2201 if (c == 0)
2202 {
2203 /* We don't care about any error which happened after
2204 the NUL terminator. */
2205 errcode = 0;
2206 found_nul = 1;
2207 break;
2208 }
2209 }
2210 }
2211 while (errcode == 0 /* no error */
2212 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2213 && !found_nul); /* haven't found NUL yet */
2214 }
2215 else
2216 { /* Length of string is really 0! */
2217 /* We always allocate *buffer. */
2218 buffer->reset ((gdb_byte *) xmalloc (1));
2219 bufptr = buffer->get ();
2220 errcode = 0;
2221 }
2222
2223 /* bufptr and addr now point immediately beyond the last byte which we
2224 consider part of the string (including a '\0' which ends the string). */
2225 *bytes_read = bufptr - buffer->get ();
2226
2227 QUIT;
2228
2229 return errcode;
2230 }
2231
2232 /* Return true if print_wchar can display W without resorting to a
2233 numeric escape, false otherwise. */
2234
2235 static int
2236 wchar_printable (gdb_wchar_t w)
2237 {
2238 return (gdb_iswprint (w)
2239 || w == LCST ('\a') || w == LCST ('\b')
2240 || w == LCST ('\f') || w == LCST ('\n')
2241 || w == LCST ('\r') || w == LCST ('\t')
2242 || w == LCST ('\v'));
2243 }
2244
2245 /* A helper function that converts the contents of STRING to wide
2246 characters and then appends them to OUTPUT. */
2247
2248 static void
2249 append_string_as_wide (const char *string,
2250 struct obstack *output)
2251 {
2252 for (; *string; ++string)
2253 {
2254 gdb_wchar_t w = gdb_btowc (*string);
2255 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2256 }
2257 }
2258
2259 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2260 original (target) bytes representing the character, ORIG_LEN is the
2261 number of valid bytes. WIDTH is the number of bytes in a base
2262 characters of the type. OUTPUT is an obstack to which wide
2263 characters are emitted. QUOTER is a (narrow) character indicating
2264 the style of quotes surrounding the character to be printed.
2265 NEED_ESCAPE is an in/out flag which is used to track numeric
2266 escapes across calls. */
2267
2268 static void
2269 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2270 int orig_len, int width,
2271 enum bfd_endian byte_order,
2272 struct obstack *output,
2273 int quoter, int *need_escapep)
2274 {
2275 int need_escape = *need_escapep;
2276
2277 *need_escapep = 0;
2278
2279 /* iswprint implementation on Windows returns 1 for tab character.
2280 In order to avoid different printout on this host, we explicitly
2281 use wchar_printable function. */
2282 switch (w)
2283 {
2284 case LCST ('\a'):
2285 obstack_grow_wstr (output, LCST ("\\a"));
2286 break;
2287 case LCST ('\b'):
2288 obstack_grow_wstr (output, LCST ("\\b"));
2289 break;
2290 case LCST ('\f'):
2291 obstack_grow_wstr (output, LCST ("\\f"));
2292 break;
2293 case LCST ('\n'):
2294 obstack_grow_wstr (output, LCST ("\\n"));
2295 break;
2296 case LCST ('\r'):
2297 obstack_grow_wstr (output, LCST ("\\r"));
2298 break;
2299 case LCST ('\t'):
2300 obstack_grow_wstr (output, LCST ("\\t"));
2301 break;
2302 case LCST ('\v'):
2303 obstack_grow_wstr (output, LCST ("\\v"));
2304 break;
2305 default:
2306 {
2307 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2308 && w != LCST ('8')
2309 && w != LCST ('9'))))
2310 {
2311 gdb_wchar_t wchar = w;
2312
2313 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2314 obstack_grow_wstr (output, LCST ("\\"));
2315 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2316 }
2317 else
2318 {
2319 int i;
2320
2321 for (i = 0; i + width <= orig_len; i += width)
2322 {
2323 char octal[30];
2324 ULONGEST value;
2325
2326 value = extract_unsigned_integer (&orig[i], width,
2327 byte_order);
2328 /* If the value fits in 3 octal digits, print it that
2329 way. Otherwise, print it as a hex escape. */
2330 if (value <= 0777)
2331 xsnprintf (octal, sizeof (octal), "\\%.3o",
2332 (int) (value & 0777));
2333 else
2334 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2335 append_string_as_wide (octal, output);
2336 }
2337 /* If we somehow have extra bytes, print them now. */
2338 while (i < orig_len)
2339 {
2340 char octal[5];
2341
2342 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2343 append_string_as_wide (octal, output);
2344 ++i;
2345 }
2346
2347 *need_escapep = 1;
2348 }
2349 break;
2350 }
2351 }
2352 }
2353
2354 /* Print the character C on STREAM as part of the contents of a
2355 literal string whose delimiter is QUOTER. ENCODING names the
2356 encoding of C. */
2357
2358 void
2359 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2360 int quoter, const char *encoding)
2361 {
2362 enum bfd_endian byte_order
2363 = gdbarch_byte_order (get_type_arch (type));
2364 gdb_byte *c_buf;
2365 int need_escape = 0;
2366
2367 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2368 pack_long (c_buf, type, c);
2369
2370 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2371
2372 /* This holds the printable form of the wchar_t data. */
2373 auto_obstack wchar_buf;
2374
2375 while (1)
2376 {
2377 int num_chars;
2378 gdb_wchar_t *chars;
2379 const gdb_byte *buf;
2380 size_t buflen;
2381 int print_escape = 1;
2382 enum wchar_iterate_result result;
2383
2384 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2385 if (num_chars < 0)
2386 break;
2387 if (num_chars > 0)
2388 {
2389 /* If all characters are printable, print them. Otherwise,
2390 we're going to have to print an escape sequence. We
2391 check all characters because we want to print the target
2392 bytes in the escape sequence, and we don't know character
2393 boundaries there. */
2394 int i;
2395
2396 print_escape = 0;
2397 for (i = 0; i < num_chars; ++i)
2398 if (!wchar_printable (chars[i]))
2399 {
2400 print_escape = 1;
2401 break;
2402 }
2403
2404 if (!print_escape)
2405 {
2406 for (i = 0; i < num_chars; ++i)
2407 print_wchar (chars[i], buf, buflen,
2408 TYPE_LENGTH (type), byte_order,
2409 &wchar_buf, quoter, &need_escape);
2410 }
2411 }
2412
2413 /* This handles the NUM_CHARS == 0 case as well. */
2414 if (print_escape)
2415 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2416 byte_order, &wchar_buf, quoter, &need_escape);
2417 }
2418
2419 /* The output in the host encoding. */
2420 auto_obstack output;
2421
2422 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2423 (gdb_byte *) obstack_base (&wchar_buf),
2424 obstack_object_size (&wchar_buf),
2425 sizeof (gdb_wchar_t), &output, translit_char);
2426 obstack_1grow (&output, '\0');
2427
2428 fputs_filtered ((const char *) obstack_base (&output), stream);
2429 }
2430
2431 /* Return the repeat count of the next character/byte in ITER,
2432 storing the result in VEC. */
2433
2434 static int
2435 count_next_character (wchar_iterator *iter,
2436 std::vector<converted_character> *vec)
2437 {
2438 struct converted_character *current;
2439
2440 if (vec->empty ())
2441 {
2442 struct converted_character tmp;
2443 gdb_wchar_t *chars;
2444
2445 tmp.num_chars
2446 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2447 if (tmp.num_chars > 0)
2448 {
2449 gdb_assert (tmp.num_chars < MAX_WCHARS);
2450 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2451 }
2452 vec->push_back (tmp);
2453 }
2454
2455 current = &vec->back ();
2456
2457 /* Count repeated characters or bytes. */
2458 current->repeat_count = 1;
2459 if (current->num_chars == -1)
2460 {
2461 /* EOF */
2462 return -1;
2463 }
2464 else
2465 {
2466 gdb_wchar_t *chars;
2467 struct converted_character d;
2468 int repeat;
2469
2470 d.repeat_count = 0;
2471
2472 while (1)
2473 {
2474 /* Get the next character. */
2475 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2476
2477 /* If a character was successfully converted, save the character
2478 into the converted character. */
2479 if (d.num_chars > 0)
2480 {
2481 gdb_assert (d.num_chars < MAX_WCHARS);
2482 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2483 }
2484
2485 /* Determine if the current character is the same as this
2486 new character. */
2487 if (d.num_chars == current->num_chars && d.result == current->result)
2488 {
2489 /* There are two cases to consider:
2490
2491 1) Equality of converted character (num_chars > 0)
2492 2) Equality of non-converted character (num_chars == 0) */
2493 if ((current->num_chars > 0
2494 && memcmp (current->chars, d.chars,
2495 WCHAR_BUFLEN (current->num_chars)) == 0)
2496 || (current->num_chars == 0
2497 && current->buflen == d.buflen
2498 && memcmp (current->buf, d.buf, current->buflen) == 0))
2499 ++current->repeat_count;
2500 else
2501 break;
2502 }
2503 else
2504 break;
2505 }
2506
2507 /* Push this next converted character onto the result vector. */
2508 repeat = current->repeat_count;
2509 vec->push_back (d);
2510 return repeat;
2511 }
2512 }
2513
2514 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2515 character to use with string output. WIDTH is the size of the output
2516 character type. BYTE_ORDER is the the target byte order. OPTIONS
2517 is the user's print options. */
2518
2519 static void
2520 print_converted_chars_to_obstack (struct obstack *obstack,
2521 const std::vector<converted_character> &chars,
2522 int quote_char, int width,
2523 enum bfd_endian byte_order,
2524 const struct value_print_options *options)
2525 {
2526 unsigned int idx;
2527 const converted_character *elem;
2528 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2529 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2530 int need_escape = 0;
2531
2532 /* Set the start state. */
2533 idx = 0;
2534 last = state = START;
2535 elem = NULL;
2536
2537 while (1)
2538 {
2539 switch (state)
2540 {
2541 case START:
2542 /* Nothing to do. */
2543 break;
2544
2545 case SINGLE:
2546 {
2547 int j;
2548
2549 /* We are outputting a single character
2550 (< options->repeat_count_threshold). */
2551
2552 if (last != SINGLE)
2553 {
2554 /* We were outputting some other type of content, so we
2555 must output and a comma and a quote. */
2556 if (last != START)
2557 obstack_grow_wstr (obstack, LCST (", "));
2558 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2559 }
2560 /* Output the character. */
2561 for (j = 0; j < elem->repeat_count; ++j)
2562 {
2563 if (elem->result == wchar_iterate_ok)
2564 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2565 byte_order, obstack, quote_char, &need_escape);
2566 else
2567 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2568 byte_order, obstack, quote_char, &need_escape);
2569 }
2570 }
2571 break;
2572
2573 case REPEAT:
2574 {
2575 int j;
2576
2577 /* We are outputting a character with a repeat count
2578 greater than options->repeat_count_threshold. */
2579
2580 if (last == SINGLE)
2581 {
2582 /* We were outputting a single string. Terminate the
2583 string. */
2584 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2585 }
2586 if (last != START)
2587 obstack_grow_wstr (obstack, LCST (", "));
2588
2589 /* Output the character and repeat string. */
2590 obstack_grow_wstr (obstack, LCST ("'"));
2591 if (elem->result == wchar_iterate_ok)
2592 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2593 byte_order, obstack, quote_char, &need_escape);
2594 else
2595 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2596 byte_order, obstack, quote_char, &need_escape);
2597 obstack_grow_wstr (obstack, LCST ("'"));
2598 std::string s = string_printf (_(" <repeats %u times>"),
2599 elem->repeat_count);
2600 for (j = 0; s[j]; ++j)
2601 {
2602 gdb_wchar_t w = gdb_btowc (s[j]);
2603 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2604 }
2605 }
2606 break;
2607
2608 case INCOMPLETE:
2609 /* We are outputting an incomplete sequence. */
2610 if (last == SINGLE)
2611 {
2612 /* If we were outputting a string of SINGLE characters,
2613 terminate the quote. */
2614 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2615 }
2616 if (last != START)
2617 obstack_grow_wstr (obstack, LCST (", "));
2618
2619 /* Output the incomplete sequence string. */
2620 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2621 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2622 obstack, 0, &need_escape);
2623 obstack_grow_wstr (obstack, LCST (">"));
2624
2625 /* We do not attempt to outupt anything after this. */
2626 state = FINISH;
2627 break;
2628
2629 case FINISH:
2630 /* All done. If we were outputting a string of SINGLE
2631 characters, the string must be terminated. Otherwise,
2632 REPEAT and INCOMPLETE are always left properly terminated. */
2633 if (last == SINGLE)
2634 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2635
2636 return;
2637 }
2638
2639 /* Get the next element and state. */
2640 last = state;
2641 if (state != FINISH)
2642 {
2643 elem = &chars[idx++];
2644 switch (elem->result)
2645 {
2646 case wchar_iterate_ok:
2647 case wchar_iterate_invalid:
2648 if (elem->repeat_count > options->repeat_count_threshold)
2649 state = REPEAT;
2650 else
2651 state = SINGLE;
2652 break;
2653
2654 case wchar_iterate_incomplete:
2655 state = INCOMPLETE;
2656 break;
2657
2658 case wchar_iterate_eof:
2659 state = FINISH;
2660 break;
2661 }
2662 }
2663 }
2664 }
2665
2666 /* Print the character string STRING, printing at most LENGTH
2667 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2668 the type of each character. OPTIONS holds the printing options;
2669 printing stops early if the number hits print_max; repeat counts
2670 are printed as appropriate. Print ellipses at the end if we had to
2671 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2672 QUOTE_CHAR is the character to print at each end of the string. If
2673 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2674 omitted. */
2675
2676 void
2677 generic_printstr (struct ui_file *stream, struct type *type,
2678 const gdb_byte *string, unsigned int length,
2679 const char *encoding, int force_ellipses,
2680 int quote_char, int c_style_terminator,
2681 const struct value_print_options *options)
2682 {
2683 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2684 unsigned int i;
2685 int width = TYPE_LENGTH (type);
2686 int finished = 0;
2687 struct converted_character *last;
2688
2689 if (length == -1)
2690 {
2691 unsigned long current_char = 1;
2692
2693 for (i = 0; current_char; ++i)
2694 {
2695 QUIT;
2696 current_char = extract_unsigned_integer (string + i * width,
2697 width, byte_order);
2698 }
2699 length = i;
2700 }
2701
2702 /* If the string was not truncated due to `set print elements', and
2703 the last byte of it is a null, we don't print that, in
2704 traditional C style. */
2705 if (c_style_terminator
2706 && !force_ellipses
2707 && length > 0
2708 && (extract_unsigned_integer (string + (length - 1) * width,
2709 width, byte_order) == 0))
2710 length--;
2711
2712 if (length == 0)
2713 {
2714 fputs_filtered ("\"\"", stream);
2715 return;
2716 }
2717
2718 /* Arrange to iterate over the characters, in wchar_t form. */
2719 wchar_iterator iter (string, length * width, encoding, width);
2720 std::vector<converted_character> converted_chars;
2721
2722 /* Convert characters until the string is over or the maximum
2723 number of printed characters has been reached. */
2724 i = 0;
2725 while (i < options->print_max)
2726 {
2727 int r;
2728
2729 QUIT;
2730
2731 /* Grab the next character and repeat count. */
2732 r = count_next_character (&iter, &converted_chars);
2733
2734 /* If less than zero, the end of the input string was reached. */
2735 if (r < 0)
2736 break;
2737
2738 /* Otherwise, add the count to the total print count and get
2739 the next character. */
2740 i += r;
2741 }
2742
2743 /* Get the last element and determine if the entire string was
2744 processed. */
2745 last = &converted_chars.back ();
2746 finished = (last->result == wchar_iterate_eof);
2747
2748 /* Ensure that CONVERTED_CHARS is terminated. */
2749 last->result = wchar_iterate_eof;
2750
2751 /* WCHAR_BUF is the obstack we use to represent the string in
2752 wchar_t form. */
2753 auto_obstack wchar_buf;
2754
2755 /* Print the output string to the obstack. */
2756 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2757 width, byte_order, options);
2758
2759 if (force_ellipses || !finished)
2760 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2761
2762 /* OUTPUT is where we collect `char's for printing. */
2763 auto_obstack output;
2764
2765 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2766 (gdb_byte *) obstack_base (&wchar_buf),
2767 obstack_object_size (&wchar_buf),
2768 sizeof (gdb_wchar_t), &output, translit_char);
2769 obstack_1grow (&output, '\0');
2770
2771 fputs_filtered ((const char *) obstack_base (&output), stream);
2772 }
2773
2774 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2775 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2776 stops at the first null byte, otherwise printing proceeds (including null
2777 bytes) until either print_max or LEN characters have been printed,
2778 whichever is smaller. ENCODING is the name of the string's
2779 encoding. It can be NULL, in which case the target encoding is
2780 assumed. */
2781
2782 int
2783 val_print_string (struct type *elttype, const char *encoding,
2784 CORE_ADDR addr, int len,
2785 struct ui_file *stream,
2786 const struct value_print_options *options)
2787 {
2788 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2789 int err; /* Non-zero if we got a bad read. */
2790 int found_nul; /* Non-zero if we found the nul char. */
2791 unsigned int fetchlimit; /* Maximum number of chars to print. */
2792 int bytes_read;
2793 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2794 struct gdbarch *gdbarch = get_type_arch (elttype);
2795 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2796 int width = TYPE_LENGTH (elttype);
2797
2798 /* First we need to figure out the limit on the number of characters we are
2799 going to attempt to fetch and print. This is actually pretty simple. If
2800 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2801 LEN is -1, then the limit is print_max. This is true regardless of
2802 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2803 because finding the null byte (or available memory) is what actually
2804 limits the fetch. */
2805
2806 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2807 options->print_max));
2808
2809 err = read_string (addr, len, width, fetchlimit, byte_order,
2810 &buffer, &bytes_read);
2811
2812 addr += bytes_read;
2813
2814 /* We now have either successfully filled the buffer to fetchlimit,
2815 or terminated early due to an error or finding a null char when
2816 LEN is -1. */
2817
2818 /* Determine found_nul by looking at the last character read. */
2819 found_nul = 0;
2820 if (bytes_read >= width)
2821 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2822 width, byte_order) == 0;
2823 if (len == -1 && !found_nul)
2824 {
2825 gdb_byte *peekbuf;
2826
2827 /* We didn't find a NUL terminator we were looking for. Attempt
2828 to peek at the next character. If not successful, or it is not
2829 a null byte, then force ellipsis to be printed. */
2830
2831 peekbuf = (gdb_byte *) alloca (width);
2832
2833 if (target_read_memory (addr, peekbuf, width) == 0
2834 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2835 force_ellipsis = 1;
2836 }
2837 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2838 {
2839 /* Getting an error when we have a requested length, or fetching less
2840 than the number of characters actually requested, always make us
2841 print ellipsis. */
2842 force_ellipsis = 1;
2843 }
2844
2845 /* If we get an error before fetching anything, don't print a string.
2846 But if we fetch something and then get an error, print the string
2847 and then the error message. */
2848 if (err == 0 || bytes_read > 0)
2849 {
2850 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2851 encoding, force_ellipsis, options);
2852 }
2853
2854 if (err != 0)
2855 {
2856 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2857
2858 fprintf_filtered (stream, "<error: ");
2859 fputs_filtered (str.c_str (), stream);
2860 fprintf_filtered (stream, ">");
2861 }
2862
2863 gdb_flush (stream);
2864
2865 return (bytes_read / width);
2866 }
2867 \f
2868
2869 /* The 'set input-radix' command writes to this auxiliary variable.
2870 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2871 it is left unchanged. */
2872
2873 static unsigned input_radix_1 = 10;
2874
2875 /* Validate an input or output radix setting, and make sure the user
2876 knows what they really did here. Radix setting is confusing, e.g.
2877 setting the input radix to "10" never changes it! */
2878
2879 static void
2880 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2881 {
2882 set_input_radix_1 (from_tty, input_radix_1);
2883 }
2884
2885 static void
2886 set_input_radix_1 (int from_tty, unsigned radix)
2887 {
2888 /* We don't currently disallow any input radix except 0 or 1, which don't
2889 make any mathematical sense. In theory, we can deal with any input
2890 radix greater than 1, even if we don't have unique digits for every
2891 value from 0 to radix-1, but in practice we lose on large radix values.
2892 We should either fix the lossage or restrict the radix range more.
2893 (FIXME). */
2894
2895 if (radix < 2)
2896 {
2897 input_radix_1 = input_radix;
2898 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2899 radix);
2900 }
2901 input_radix_1 = input_radix = radix;
2902 if (from_tty)
2903 {
2904 printf_filtered (_("Input radix now set to "
2905 "decimal %u, hex %x, octal %o.\n"),
2906 radix, radix, radix);
2907 }
2908 }
2909
2910 /* The 'set output-radix' command writes to this auxiliary variable.
2911 If the requested radix is valid, OUTPUT_RADIX is updated,
2912 otherwise, it is left unchanged. */
2913
2914 static unsigned output_radix_1 = 10;
2915
2916 static void
2917 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2918 {
2919 set_output_radix_1 (from_tty, output_radix_1);
2920 }
2921
2922 static void
2923 set_output_radix_1 (int from_tty, unsigned radix)
2924 {
2925 /* Validate the radix and disallow ones that we aren't prepared to
2926 handle correctly, leaving the radix unchanged. */
2927 switch (radix)
2928 {
2929 case 16:
2930 user_print_options.output_format = 'x'; /* hex */
2931 break;
2932 case 10:
2933 user_print_options.output_format = 0; /* decimal */
2934 break;
2935 case 8:
2936 user_print_options.output_format = 'o'; /* octal */
2937 break;
2938 default:
2939 output_radix_1 = output_radix;
2940 error (_("Unsupported output radix ``decimal %u''; "
2941 "output radix unchanged."),
2942 radix);
2943 }
2944 output_radix_1 = output_radix = radix;
2945 if (from_tty)
2946 {
2947 printf_filtered (_("Output radix now set to "
2948 "decimal %u, hex %x, octal %o.\n"),
2949 radix, radix, radix);
2950 }
2951 }
2952
2953 /* Set both the input and output radix at once. Try to set the output radix
2954 first, since it has the most restrictive range. An radix that is valid as
2955 an output radix is also valid as an input radix.
2956
2957 It may be useful to have an unusual input radix. If the user wishes to
2958 set an input radix that is not valid as an output radix, he needs to use
2959 the 'set input-radix' command. */
2960
2961 static void
2962 set_radix (const char *arg, int from_tty)
2963 {
2964 unsigned radix;
2965
2966 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2967 set_output_radix_1 (0, radix);
2968 set_input_radix_1 (0, radix);
2969 if (from_tty)
2970 {
2971 printf_filtered (_("Input and output radices now set to "
2972 "decimal %u, hex %x, octal %o.\n"),
2973 radix, radix, radix);
2974 }
2975 }
2976
2977 /* Show both the input and output radices. */
2978
2979 static void
2980 show_radix (const char *arg, int from_tty)
2981 {
2982 if (from_tty)
2983 {
2984 if (input_radix == output_radix)
2985 {
2986 printf_filtered (_("Input and output radices set to "
2987 "decimal %u, hex %x, octal %o.\n"),
2988 input_radix, input_radix, input_radix);
2989 }
2990 else
2991 {
2992 printf_filtered (_("Input radix set to decimal "
2993 "%u, hex %x, octal %o.\n"),
2994 input_radix, input_radix, input_radix);
2995 printf_filtered (_("Output radix set to decimal "
2996 "%u, hex %x, octal %o.\n"),
2997 output_radix, output_radix, output_radix);
2998 }
2999 }
3000 }
3001 \f
3002
3003 static void
3004 set_print (const char *arg, int from_tty)
3005 {
3006 printf_unfiltered (
3007 "\"set print\" must be followed by the name of a print subcommand.\n");
3008 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3009 }
3010
3011 static void
3012 show_print (const char *args, int from_tty)
3013 {
3014 cmd_show_list (showprintlist, from_tty, "");
3015 }
3016
3017 static void
3018 set_print_raw (const char *arg, int from_tty)
3019 {
3020 printf_unfiltered (
3021 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3022 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3023 }
3024
3025 static void
3026 show_print_raw (const char *args, int from_tty)
3027 {
3028 cmd_show_list (showprintrawlist, from_tty, "");
3029 }
3030
3031 \f
3032 void
3033 _initialize_valprint (void)
3034 {
3035 add_prefix_cmd ("print", no_class, set_print,
3036 _("Generic command for setting how things print."),
3037 &setprintlist, "set print ", 0, &setlist);
3038 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3039 /* Prefer set print to set prompt. */
3040 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3041
3042 add_prefix_cmd ("print", no_class, show_print,
3043 _("Generic command for showing print settings."),
3044 &showprintlist, "show print ", 0, &showlist);
3045 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3046 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3047
3048 add_prefix_cmd ("raw", no_class, set_print_raw,
3049 _("\
3050 Generic command for setting what things to print in \"raw\" mode."),
3051 &setprintrawlist, "set print raw ", 0, &setprintlist);
3052 add_prefix_cmd ("raw", no_class, show_print_raw,
3053 _("Generic command for showing \"print raw\" settings."),
3054 &showprintrawlist, "show print raw ", 0, &showprintlist);
3055
3056 add_setshow_uinteger_cmd ("elements", no_class,
3057 &user_print_options.print_max, _("\
3058 Set limit on string chars or array elements to print."), _("\
3059 Show limit on string chars or array elements to print."), _("\
3060 \"set print elements unlimited\" causes there to be no limit."),
3061 NULL,
3062 show_print_max,
3063 &setprintlist, &showprintlist);
3064
3065 add_setshow_boolean_cmd ("null-stop", no_class,
3066 &user_print_options.stop_print_at_null, _("\
3067 Set printing of char arrays to stop at first null char."), _("\
3068 Show printing of char arrays to stop at first null char."), NULL,
3069 NULL,
3070 show_stop_print_at_null,
3071 &setprintlist, &showprintlist);
3072
3073 add_setshow_uinteger_cmd ("repeats", no_class,
3074 &user_print_options.repeat_count_threshold, _("\
3075 Set threshold for repeated print elements."), _("\
3076 Show threshold for repeated print elements."), _("\
3077 \"set print repeats unlimited\" causes all elements to be individually printed."),
3078 NULL,
3079 show_repeat_count_threshold,
3080 &setprintlist, &showprintlist);
3081
3082 add_setshow_boolean_cmd ("pretty", class_support,
3083 &user_print_options.prettyformat_structs, _("\
3084 Set pretty formatting of structures."), _("\
3085 Show pretty formatting of structures."), NULL,
3086 NULL,
3087 show_prettyformat_structs,
3088 &setprintlist, &showprintlist);
3089
3090 add_setshow_boolean_cmd ("union", class_support,
3091 &user_print_options.unionprint, _("\
3092 Set printing of unions interior to structures."), _("\
3093 Show printing of unions interior to structures."), NULL,
3094 NULL,
3095 show_unionprint,
3096 &setprintlist, &showprintlist);
3097
3098 add_setshow_boolean_cmd ("array", class_support,
3099 &user_print_options.prettyformat_arrays, _("\
3100 Set pretty formatting of arrays."), _("\
3101 Show pretty formatting of arrays."), NULL,
3102 NULL,
3103 show_prettyformat_arrays,
3104 &setprintlist, &showprintlist);
3105
3106 add_setshow_boolean_cmd ("address", class_support,
3107 &user_print_options.addressprint, _("\
3108 Set printing of addresses."), _("\
3109 Show printing of addresses."), NULL,
3110 NULL,
3111 show_addressprint,
3112 &setprintlist, &showprintlist);
3113
3114 add_setshow_boolean_cmd ("symbol", class_support,
3115 &user_print_options.symbol_print, _("\
3116 Set printing of symbol names when printing pointers."), _("\
3117 Show printing of symbol names when printing pointers."),
3118 NULL, NULL,
3119 show_symbol_print,
3120 &setprintlist, &showprintlist);
3121
3122 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3123 _("\
3124 Set default input radix for entering numbers."), _("\
3125 Show default input radix for entering numbers."), NULL,
3126 set_input_radix,
3127 show_input_radix,
3128 &setlist, &showlist);
3129
3130 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3131 _("\
3132 Set default output radix for printing of values."), _("\
3133 Show default output radix for printing of values."), NULL,
3134 set_output_radix,
3135 show_output_radix,
3136 &setlist, &showlist);
3137
3138 /* The "set radix" and "show radix" commands are special in that
3139 they are like normal set and show commands but allow two normally
3140 independent variables to be either set or shown with a single
3141 command. So the usual deprecated_add_set_cmd() and [deleted]
3142 add_show_from_set() commands aren't really appropriate. */
3143 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3144 longer true - show can display anything. */
3145 add_cmd ("radix", class_support, set_radix, _("\
3146 Set default input and output number radices.\n\
3147 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3148 Without an argument, sets both radices back to the default value of 10."),
3149 &setlist);
3150 add_cmd ("radix", class_support, show_radix, _("\
3151 Show the default input and output number radices.\n\
3152 Use 'show input-radix' or 'show output-radix' to independently show each."),
3153 &showlist);
3154
3155 add_setshow_boolean_cmd ("array-indexes", class_support,
3156 &user_print_options.print_array_indexes, _("\
3157 Set printing of array indexes."), _("\
3158 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3159 &setprintlist, &showprintlist);
3160 }
This page took 0.139037 seconds and 4 git commands to generate.