2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
123 value);
124 }
125
126
127 /* Default input and output radixes, and output format letter. */
128
129 unsigned input_radix = 10;
130 static void
131 show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
136 value);
137 }
138
139 unsigned output_radix = 10;
140 static void
141 show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
146 value);
147 }
148
149 /* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
152 static void
153 show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157 }
158
159 /* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
163 static void
164 show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169 }
170
171 /* If nonzero, stops printing of char arrays at first null. */
172
173 static void
174 show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
180 value);
181 }
182
183 /* Controls pretty printing of structures. */
184
185 static void
186 show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 }
191
192 /* Controls pretty printing of arrays. */
193
194 static void
195 show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 }
200
201 /* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
204 static void
205 show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, causes machine addresses to be printed in certain contexts. */
214
215 static void
216 show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220 }
221 \f
222
223 /* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227 static int
228 scalar_type_p (struct type *type)
229 {
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248 }
249
250 /* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260 static int
261 valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int offset,
264 const struct value *val)
265 {
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 fprintf_filtered (stream, _("<value optimized out>"));
276 return 0;
277 }
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
285 }
286
287 return 1;
288 }
289
290 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
291 (within GDB), which came from the inferior at address ADDRESS, onto
292 stdio stream STREAM according to OPTIONS.
293
294 If the data are a string pointer, returns the number of string characters
295 printed.
296
297 FIXME: The data at VALADDR is in target byte order. If gdb is ever
298 enhanced to be able to debug more than the single target it was compiled
299 for (specific CPU type and thus specific target byte ordering), then
300 either the print routines are going to have to take this into account,
301 or the data is going to have to be passed into here already converted
302 to the host byte ordering, whichever is more convenient. */
303
304
305 int
306 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
307 CORE_ADDR address, struct ui_file *stream, int recurse,
308 const struct value *val,
309 const struct value_print_options *options,
310 const struct language_defn *language)
311 {
312 volatile struct gdb_exception except;
313 int ret = 0;
314 struct value_print_options local_opts = *options;
315 struct type *real_type = check_typedef (type);
316
317 if (local_opts.pretty == Val_pretty_default)
318 local_opts.pretty = (local_opts.prettyprint_structs
319 ? Val_prettyprint : Val_no_prettyprint);
320
321 QUIT;
322
323 /* Ensure that the type is complete and not just a stub. If the type is
324 only a stub and we can't find and substitute its complete type, then
325 print appropriate string and return. */
326
327 if (TYPE_STUB (real_type))
328 {
329 fprintf_filtered (stream, _("<incomplete type>"));
330 gdb_flush (stream);
331 return (0);
332 }
333
334 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
335 return 0;
336
337 if (!options->raw)
338 {
339 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
340 address, stream, recurse,
341 val, options, language);
342 if (ret)
343 return ret;
344 }
345
346 /* Handle summary mode. If the value is a scalar, print it;
347 otherwise, print an ellipsis. */
348 if (options->summary && !scalar_type_p (type))
349 {
350 fprintf_filtered (stream, "...");
351 return 0;
352 }
353
354 TRY_CATCH (except, RETURN_MASK_ERROR)
355 {
356 ret = language->la_val_print (type, valaddr, embedded_offset, address,
357 stream, recurse, val,
358 &local_opts);
359 }
360 if (except.reason < 0)
361 fprintf_filtered (stream, _("<error reading variable>"));
362
363 return ret;
364 }
365
366 /* Check whether the value VAL is printable. Return 1 if it is;
367 return 0 and print an appropriate error message to STREAM if it
368 is not. */
369
370 static int
371 value_check_printable (struct value *val, struct ui_file *stream)
372 {
373 if (val == 0)
374 {
375 fprintf_filtered (stream, _("<address of value unknown>"));
376 return 0;
377 }
378
379 if (value_entirely_optimized_out (val))
380 {
381 fprintf_filtered (stream, _("<value optimized out>"));
382 return 0;
383 }
384
385 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
386 {
387 fprintf_filtered (stream, _("<internal function %s>"),
388 value_internal_function_name (val));
389 return 0;
390 }
391
392 return 1;
393 }
394
395 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
396 to OPTIONS.
397
398 If the data are a string pointer, returns the number of string characters
399 printed.
400
401 This is a preferable interface to val_print, above, because it uses
402 GDB's value mechanism. */
403
404 int
405 common_val_print (struct value *val, struct ui_file *stream, int recurse,
406 const struct value_print_options *options,
407 const struct language_defn *language)
408 {
409 if (!value_check_printable (val, stream))
410 return 0;
411
412 if (language->la_language == language_ada)
413 /* The value might have a dynamic type, which would cause trouble
414 below when trying to extract the value contents (since the value
415 size is determined from the type size which is unknown). So
416 get a fixed representation of our value. */
417 val = ada_to_fixed_value (val);
418
419 return val_print (value_type (val), value_contents_for_printing (val),
420 value_embedded_offset (val), value_address (val),
421 stream, recurse,
422 val, options, language);
423 }
424
425 /* Print on stream STREAM the value VAL according to OPTIONS. The value
426 is printed using the current_language syntax.
427
428 If the object printed is a string pointer, return the number of string
429 bytes printed. */
430
431 int
432 value_print (struct value *val, struct ui_file *stream,
433 const struct value_print_options *options)
434 {
435 if (!value_check_printable (val, stream))
436 return 0;
437
438 if (!options->raw)
439 {
440 int r = apply_val_pretty_printer (value_type (val),
441 value_contents_for_printing (val),
442 value_embedded_offset (val),
443 value_address (val),
444 stream, 0,
445 val, options, current_language);
446
447 if (r)
448 return r;
449 }
450
451 return LA_VALUE_PRINT (val, stream, options);
452 }
453
454 /* Called by various <lang>_val_print routines to print
455 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
456 value. STREAM is where to print the value. */
457
458 void
459 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
460 struct ui_file *stream)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
463
464 if (TYPE_LENGTH (type) > sizeof (LONGEST))
465 {
466 LONGEST val;
467
468 if (TYPE_UNSIGNED (type)
469 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
470 byte_order, &val))
471 {
472 print_longest (stream, 'u', 0, val);
473 }
474 else
475 {
476 /* Signed, or we couldn't turn an unsigned value into a
477 LONGEST. For signed values, one could assume two's
478 complement (a reasonable assumption, I think) and do
479 better than this. */
480 print_hex_chars (stream, (unsigned char *) valaddr,
481 TYPE_LENGTH (type), byte_order);
482 }
483 }
484 else
485 {
486 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
487 unpack_long (type, valaddr));
488 }
489 }
490
491 void
492 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
493 struct ui_file *stream)
494 {
495 ULONGEST val = unpack_long (type, valaddr);
496 int bitpos, nfields = TYPE_NFIELDS (type);
497
498 fputs_filtered ("[ ", stream);
499 for (bitpos = 0; bitpos < nfields; bitpos++)
500 {
501 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
502 && (val & ((ULONGEST)1 << bitpos)))
503 {
504 if (TYPE_FIELD_NAME (type, bitpos))
505 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
506 else
507 fprintf_filtered (stream, "#%d ", bitpos);
508 }
509 }
510 fputs_filtered ("]", stream);
511 }
512
513 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
514 The raison d'etre of this function is to consolidate printing of
515 LONG_LONG's into this one function. The format chars b,h,w,g are
516 from print_scalar_formatted(). Numbers are printed using C
517 format.
518
519 USE_C_FORMAT means to use C format in all cases. Without it,
520 'o' and 'x' format do not include the standard C radix prefix
521 (leading 0 or 0x).
522
523 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
524 and was intended to request formating according to the current
525 language and would be used for most integers that GDB prints. The
526 exceptional cases were things like protocols where the format of
527 the integer is a protocol thing, not a user-visible thing). The
528 parameter remains to preserve the information of what things might
529 be printed with language-specific format, should we ever resurrect
530 that capability. */
531
532 void
533 print_longest (struct ui_file *stream, int format, int use_c_format,
534 LONGEST val_long)
535 {
536 const char *val;
537
538 switch (format)
539 {
540 case 'd':
541 val = int_string (val_long, 10, 1, 0, 1); break;
542 case 'u':
543 val = int_string (val_long, 10, 0, 0, 1); break;
544 case 'x':
545 val = int_string (val_long, 16, 0, 0, use_c_format); break;
546 case 'b':
547 val = int_string (val_long, 16, 0, 2, 1); break;
548 case 'h':
549 val = int_string (val_long, 16, 0, 4, 1); break;
550 case 'w':
551 val = int_string (val_long, 16, 0, 8, 1); break;
552 case 'g':
553 val = int_string (val_long, 16, 0, 16, 1); break;
554 break;
555 case 'o':
556 val = int_string (val_long, 8, 0, 0, use_c_format); break;
557 default:
558 internal_error (__FILE__, __LINE__,
559 _("failed internal consistency check"));
560 }
561 fputs_filtered (val, stream);
562 }
563
564 /* This used to be a macro, but I don't think it is called often enough
565 to merit such treatment. */
566 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
567 arguments to a function, number in a value history, register number, etc.)
568 where the value must not be larger than can fit in an int. */
569
570 int
571 longest_to_int (LONGEST arg)
572 {
573 /* Let the compiler do the work */
574 int rtnval = (int) arg;
575
576 /* Check for overflows or underflows */
577 if (sizeof (LONGEST) > sizeof (int))
578 {
579 if (rtnval != arg)
580 {
581 error (_("Value out of range."));
582 }
583 }
584 return (rtnval);
585 }
586
587 /* Print a floating point value of type TYPE (not always a
588 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
589
590 void
591 print_floating (const gdb_byte *valaddr, struct type *type,
592 struct ui_file *stream)
593 {
594 DOUBLEST doub;
595 int inv;
596 const struct floatformat *fmt = NULL;
597 unsigned len = TYPE_LENGTH (type);
598 enum float_kind kind;
599
600 /* If it is a floating-point, check for obvious problems. */
601 if (TYPE_CODE (type) == TYPE_CODE_FLT)
602 fmt = floatformat_from_type (type);
603 if (fmt != NULL)
604 {
605 kind = floatformat_classify (fmt, valaddr);
606 if (kind == float_nan)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fprintf_filtered (stream, "-");
610 fprintf_filtered (stream, "nan(");
611 fputs_filtered ("0x", stream);
612 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
613 fprintf_filtered (stream, ")");
614 return;
615 }
616 else if (kind == float_infinite)
617 {
618 if (floatformat_is_negative (fmt, valaddr))
619 fputs_filtered ("-", stream);
620 fputs_filtered ("inf", stream);
621 return;
622 }
623 }
624
625 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
626 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
627 needs to be used as that takes care of any necessary type
628 conversions. Such conversions are of course direct to DOUBLEST
629 and disregard any possible target floating point limitations.
630 For instance, a u64 would be converted and displayed exactly on a
631 host with 80 bit DOUBLEST but with loss of information on a host
632 with 64 bit DOUBLEST. */
633
634 doub = unpack_double (type, valaddr, &inv);
635 if (inv)
636 {
637 fprintf_filtered (stream, "<invalid float value>");
638 return;
639 }
640
641 /* FIXME: kettenis/2001-01-20: The following code makes too much
642 assumptions about the host and target floating point format. */
643
644 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
645 not necessarily be a TYPE_CODE_FLT, the below ignores that and
646 instead uses the type's length to determine the precision of the
647 floating-point value being printed. */
648
649 if (len < sizeof (double))
650 fprintf_filtered (stream, "%.9g", (double) doub);
651 else if (len == sizeof (double))
652 fprintf_filtered (stream, "%.17g", (double) doub);
653 else
654 #ifdef PRINTF_HAS_LONG_DOUBLE
655 fprintf_filtered (stream, "%.35Lg", doub);
656 #else
657 /* This at least wins with values that are representable as
658 doubles. */
659 fprintf_filtered (stream, "%.17g", (double) doub);
660 #endif
661 }
662
663 void
664 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
665 struct ui_file *stream)
666 {
667 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
668 char decstr[MAX_DECIMAL_STRING];
669 unsigned len = TYPE_LENGTH (type);
670
671 decimal_to_string (valaddr, len, byte_order, decstr);
672 fputs_filtered (decstr, stream);
673 return;
674 }
675
676 void
677 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
678 unsigned len, enum bfd_endian byte_order)
679 {
680
681 #define BITS_IN_BYTES 8
682
683 const gdb_byte *p;
684 unsigned int i;
685 int b;
686
687 /* Declared "int" so it will be signed.
688 * This ensures that right shift will shift in zeros.
689 */
690 const int mask = 0x080;
691
692 /* FIXME: We should be not printing leading zeroes in most cases. */
693
694 if (byte_order == BFD_ENDIAN_BIG)
695 {
696 for (p = valaddr;
697 p < valaddr + len;
698 p++)
699 {
700 /* Every byte has 8 binary characters; peel off
701 * and print from the MSB end.
702 */
703 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
704 {
705 if (*p & (mask >> i))
706 b = 1;
707 else
708 b = 0;
709
710 fprintf_filtered (stream, "%1d", b);
711 }
712 }
713 }
714 else
715 {
716 for (p = valaddr + len - 1;
717 p >= valaddr;
718 p--)
719 {
720 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
721 {
722 if (*p & (mask >> i))
723 b = 1;
724 else
725 b = 0;
726
727 fprintf_filtered (stream, "%1d", b);
728 }
729 }
730 }
731 }
732
733 /* VALADDR points to an integer of LEN bytes.
734 * Print it in octal on stream or format it in buf.
735 */
736 void
737 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
738 unsigned len, enum bfd_endian byte_order)
739 {
740 const gdb_byte *p;
741 unsigned char octa1, octa2, octa3, carry;
742 int cycle;
743
744 /* FIXME: We should be not printing leading zeroes in most cases. */
745
746
747 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
748 * the extra bits, which cycle every three bytes:
749 *
750 * Byte side: 0 1 2 3
751 * | | | |
752 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
753 *
754 * Octal side: 0 1 carry 3 4 carry ...
755 *
756 * Cycle number: 0 1 2
757 *
758 * But of course we are printing from the high side, so we have to
759 * figure out where in the cycle we are so that we end up with no
760 * left over bits at the end.
761 */
762 #define BITS_IN_OCTAL 3
763 #define HIGH_ZERO 0340
764 #define LOW_ZERO 0016
765 #define CARRY_ZERO 0003
766 #define HIGH_ONE 0200
767 #define MID_ONE 0160
768 #define LOW_ONE 0016
769 #define CARRY_ONE 0001
770 #define HIGH_TWO 0300
771 #define MID_TWO 0070
772 #define LOW_TWO 0007
773
774 /* For 32 we start in cycle 2, with two bits and one bit carry;
775 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
776 */
777 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
778 carry = 0;
779
780 fputs_filtered ("0", stream);
781 if (byte_order == BFD_ENDIAN_BIG)
782 {
783 for (p = valaddr;
784 p < valaddr + len;
785 p++)
786 {
787 switch (cycle)
788 {
789 case 0:
790 /* No carry in, carry out two bits.
791 */
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in two bits, carry out one bit.
801 */
802 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
803 octa2 = (MID_ONE & *p) >> 4;
804 octa3 = (LOW_ONE & *p) >> 1;
805 carry = (CARRY_ONE & *p);
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 fprintf_filtered (stream, "%o", octa3);
809 break;
810
811 case 2:
812 /* Carry in one bit, no carry out.
813 */
814 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
815 octa2 = (MID_TWO & *p) >> 3;
816 octa3 = (LOW_TWO & *p);
817 carry = 0;
818 fprintf_filtered (stream, "%o", octa1);
819 fprintf_filtered (stream, "%o", octa2);
820 fprintf_filtered (stream, "%o", octa3);
821 break;
822
823 default:
824 error (_("Internal error in octal conversion;"));
825 }
826
827 cycle++;
828 cycle = cycle % BITS_IN_OCTAL;
829 }
830 }
831 else
832 {
833 for (p = valaddr + len - 1;
834 p >= valaddr;
835 p--)
836 {
837 switch (cycle)
838 {
839 case 0:
840 /* Carry out, no carry in */
841 octa1 = (HIGH_ZERO & *p) >> 5;
842 octa2 = (LOW_ZERO & *p) >> 2;
843 carry = (CARRY_ZERO & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 break;
847
848 case 1:
849 /* Carry in, carry out */
850 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
851 octa2 = (MID_ONE & *p) >> 4;
852 octa3 = (LOW_ONE & *p) >> 1;
853 carry = (CARRY_ONE & *p);
854 fprintf_filtered (stream, "%o", octa1);
855 fprintf_filtered (stream, "%o", octa2);
856 fprintf_filtered (stream, "%o", octa3);
857 break;
858
859 case 2:
860 /* Carry in, no carry out */
861 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
862 octa2 = (MID_TWO & *p) >> 3;
863 octa3 = (LOW_TWO & *p);
864 carry = 0;
865 fprintf_filtered (stream, "%o", octa1);
866 fprintf_filtered (stream, "%o", octa2);
867 fprintf_filtered (stream, "%o", octa3);
868 break;
869
870 default:
871 error (_("Internal error in octal conversion;"));
872 }
873
874 cycle++;
875 cycle = cycle % BITS_IN_OCTAL;
876 }
877 }
878
879 }
880
881 /* VALADDR points to an integer of LEN bytes.
882 * Print it in decimal on stream or format it in buf.
883 */
884 void
885 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
886 unsigned len, enum bfd_endian byte_order)
887 {
888 #define TEN 10
889 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
890 #define CARRY_LEFT( x ) ((x) % TEN)
891 #define SHIFT( x ) ((x) << 4)
892 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
893 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
894
895 const gdb_byte *p;
896 unsigned char *digits;
897 int carry;
898 int decimal_len;
899 int i, j, decimal_digits;
900 int dummy;
901 int flip;
902
903 /* Base-ten number is less than twice as many digits
904 * as the base 16 number, which is 2 digits per byte.
905 */
906 decimal_len = len * 2 * 2;
907 digits = xmalloc (decimal_len);
908
909 for (i = 0; i < decimal_len; i++)
910 {
911 digits[i] = 0;
912 }
913
914 /* Ok, we have an unknown number of bytes of data to be printed in
915 * decimal.
916 *
917 * Given a hex number (in nibbles) as XYZ, we start by taking X and
918 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
919 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
920 *
921 * The trick is that "digits" holds a base-10 number, but sometimes
922 * the individual digits are > 10.
923 *
924 * Outer loop is per nibble (hex digit) of input, from MSD end to
925 * LSD end.
926 */
927 decimal_digits = 0; /* Number of decimal digits so far */
928 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
929 flip = 0;
930 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
931 {
932 /*
933 * Multiply current base-ten number by 16 in place.
934 * Each digit was between 0 and 9, now is between
935 * 0 and 144.
936 */
937 for (j = 0; j < decimal_digits; j++)
938 {
939 digits[j] = SHIFT (digits[j]);
940 }
941
942 /* Take the next nibble off the input and add it to what
943 * we've got in the LSB position. Bottom 'digit' is now
944 * between 0 and 159.
945 *
946 * "flip" is used to run this loop twice for each byte.
947 */
948 if (flip == 0)
949 {
950 /* Take top nibble.
951 */
952 digits[0] += HIGH_NIBBLE (*p);
953 flip = 1;
954 }
955 else
956 {
957 /* Take low nibble and bump our pointer "p".
958 */
959 digits[0] += LOW_NIBBLE (*p);
960 if (byte_order == BFD_ENDIAN_BIG)
961 p++;
962 else
963 p--;
964 flip = 0;
965 }
966
967 /* Re-decimalize. We have to do this often enough
968 * that we don't overflow, but once per nibble is
969 * overkill. Easier this way, though. Note that the
970 * carry is often larger than 10 (e.g. max initial
971 * carry out of lowest nibble is 15, could bubble all
972 * the way up greater than 10). So we have to do
973 * the carrying beyond the last current digit.
974 */
975 carry = 0;
976 for (j = 0; j < decimal_len - 1; j++)
977 {
978 digits[j] += carry;
979
980 /* "/" won't handle an unsigned char with
981 * a value that if signed would be negative.
982 * So extend to longword int via "dummy".
983 */
984 dummy = digits[j];
985 carry = CARRY_OUT (dummy);
986 digits[j] = CARRY_LEFT (dummy);
987
988 if (j >= decimal_digits && carry == 0)
989 {
990 /*
991 * All higher digits are 0 and we
992 * no longer have a carry.
993 *
994 * Note: "j" is 0-based, "decimal_digits" is
995 * 1-based.
996 */
997 decimal_digits = j + 1;
998 break;
999 }
1000 }
1001 }
1002
1003 /* Ok, now "digits" is the decimal representation, with
1004 * the "decimal_digits" actual digits. Print!
1005 */
1006 for (i = decimal_digits - 1; i >= 0; i--)
1007 {
1008 fprintf_filtered (stream, "%1d", digits[i]);
1009 }
1010 xfree (digits);
1011 }
1012
1013 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1014
1015 void
1016 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1017 unsigned len, enum bfd_endian byte_order)
1018 {
1019 const gdb_byte *p;
1020
1021 /* FIXME: We should be not printing leading zeroes in most cases. */
1022
1023 fputs_filtered ("0x", stream);
1024 if (byte_order == BFD_ENDIAN_BIG)
1025 {
1026 for (p = valaddr;
1027 p < valaddr + len;
1028 p++)
1029 {
1030 fprintf_filtered (stream, "%02x", *p);
1031 }
1032 }
1033 else
1034 {
1035 for (p = valaddr + len - 1;
1036 p >= valaddr;
1037 p--)
1038 {
1039 fprintf_filtered (stream, "%02x", *p);
1040 }
1041 }
1042 }
1043
1044 /* VALADDR points to a char integer of LEN bytes.
1045 Print it out in appropriate language form on stream.
1046 Omit any leading zero chars. */
1047
1048 void
1049 print_char_chars (struct ui_file *stream, struct type *type,
1050 const gdb_byte *valaddr,
1051 unsigned len, enum bfd_endian byte_order)
1052 {
1053 const gdb_byte *p;
1054
1055 if (byte_order == BFD_ENDIAN_BIG)
1056 {
1057 p = valaddr;
1058 while (p < valaddr + len - 1 && *p == 0)
1059 ++p;
1060
1061 while (p < valaddr + len)
1062 {
1063 LA_EMIT_CHAR (*p, type, stream, '\'');
1064 ++p;
1065 }
1066 }
1067 else
1068 {
1069 p = valaddr + len - 1;
1070 while (p > valaddr && *p == 0)
1071 --p;
1072
1073 while (p >= valaddr)
1074 {
1075 LA_EMIT_CHAR (*p, type, stream, '\'');
1076 --p;
1077 }
1078 }
1079 }
1080
1081 /* Print on STREAM using the given OPTIONS the index for the element
1082 at INDEX of an array whose index type is INDEX_TYPE. */
1083
1084 void
1085 maybe_print_array_index (struct type *index_type, LONGEST index,
1086 struct ui_file *stream,
1087 const struct value_print_options *options)
1088 {
1089 struct value *index_value;
1090
1091 if (!options->print_array_indexes)
1092 return;
1093
1094 index_value = value_from_longest (index_type, index);
1095
1096 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1097 }
1098
1099 /* Called by various <lang>_val_print routines to print elements of an
1100 array in the form "<elem1>, <elem2>, <elem3>, ...".
1101
1102 (FIXME?) Assumes array element separator is a comma, which is correct
1103 for all languages currently handled.
1104 (FIXME?) Some languages have a notation for repeated array elements,
1105 perhaps we should try to use that notation when appropriate.
1106 */
1107
1108 void
1109 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1110 CORE_ADDR address, struct ui_file *stream,
1111 int recurse,
1112 const struct value *val,
1113 const struct value_print_options *options,
1114 unsigned int i)
1115 {
1116 unsigned int things_printed = 0;
1117 unsigned len;
1118 struct type *elttype, *index_type;
1119 unsigned eltlen;
1120 /* Position of the array element we are examining to see
1121 whether it is repeated. */
1122 unsigned int rep1;
1123 /* Number of repetitions we have detected so far. */
1124 unsigned int reps;
1125 LONGEST low_bound, high_bound;
1126
1127 elttype = TYPE_TARGET_TYPE (type);
1128 eltlen = TYPE_LENGTH (check_typedef (elttype));
1129 index_type = TYPE_INDEX_TYPE (type);
1130
1131 if (get_array_bounds (type, &low_bound, &high_bound))
1132 {
1133 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1134 But we have to be a little extra careful, because some languages
1135 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1136 empty arrays. In that situation, the array length is just zero,
1137 not negative! */
1138 if (low_bound > high_bound)
1139 len = 0;
1140 else
1141 len = high_bound - low_bound + 1;
1142 }
1143 else
1144 {
1145 warning (_("unable to get bounds of array, assuming null array"));
1146 low_bound = 0;
1147 len = 0;
1148 }
1149
1150 annotate_array_section_begin (i, elttype);
1151
1152 for (; i < len && things_printed < options->print_max; i++)
1153 {
1154 if (i != 0)
1155 {
1156 if (options->prettyprint_arrays)
1157 {
1158 fprintf_filtered (stream, ",\n");
1159 print_spaces_filtered (2 + 2 * recurse, stream);
1160 }
1161 else
1162 {
1163 fprintf_filtered (stream, ", ");
1164 }
1165 }
1166 wrap_here (n_spaces (2 + 2 * recurse));
1167 maybe_print_array_index (index_type, i + low_bound,
1168 stream, options);
1169
1170 rep1 = i + 1;
1171 reps = 1;
1172 while ((rep1 < len) &&
1173 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1174 {
1175 ++reps;
1176 ++rep1;
1177 }
1178
1179 if (reps > options->repeat_count_threshold)
1180 {
1181 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1182 stream, recurse + 1, val, options, current_language);
1183 annotate_elt_rep (reps);
1184 fprintf_filtered (stream, " <repeats %u times>", reps);
1185 annotate_elt_rep_end ();
1186
1187 i = rep1 - 1;
1188 things_printed += options->repeat_count_threshold;
1189 }
1190 else
1191 {
1192 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1193 stream, recurse + 1, val, options, current_language);
1194 annotate_elt ();
1195 things_printed++;
1196 }
1197 }
1198 annotate_array_section_end ();
1199 if (i < len)
1200 {
1201 fprintf_filtered (stream, "...");
1202 }
1203 }
1204
1205 /* Read LEN bytes of target memory at address MEMADDR, placing the
1206 results in GDB's memory at MYADDR. Returns a count of the bytes
1207 actually read, and optionally an errno value in the location
1208 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1209
1210 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1211 function be eliminated. */
1212
1213 static int
1214 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1215 int len, int *errnoptr)
1216 {
1217 int nread; /* Number of bytes actually read. */
1218 int errcode; /* Error from last read. */
1219
1220 /* First try a complete read. */
1221 errcode = target_read_memory (memaddr, myaddr, len);
1222 if (errcode == 0)
1223 {
1224 /* Got it all. */
1225 nread = len;
1226 }
1227 else
1228 {
1229 /* Loop, reading one byte at a time until we get as much as we can. */
1230 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1231 {
1232 errcode = target_read_memory (memaddr++, myaddr++, 1);
1233 }
1234 /* If an error, the last read was unsuccessful, so adjust count. */
1235 if (errcode != 0)
1236 {
1237 nread--;
1238 }
1239 }
1240 if (errnoptr != NULL)
1241 {
1242 *errnoptr = errcode;
1243 }
1244 return (nread);
1245 }
1246
1247 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1248 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1249 allocated buffer containing the string, which the caller is responsible to
1250 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1251 success, or errno on failure.
1252
1253 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1254 the middle or end of the string). If LEN is -1, stops at the first
1255 null character (not necessarily the first null byte) up to a maximum
1256 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1257 characters as possible from the string.
1258
1259 Unless an exception is thrown, BUFFER will always be allocated, even on
1260 failure. In this case, some characters might have been read before the
1261 failure happened. Check BYTES_READ to recognize this situation.
1262
1263 Note: There was a FIXME asking to make this code use target_read_string,
1264 but this function is more general (can read past null characters, up to
1265 given LEN). Besides, it is used much more often than target_read_string
1266 so it is more tested. Perhaps callers of target_read_string should use
1267 this function instead? */
1268
1269 int
1270 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1271 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1272 {
1273 int found_nul; /* Non-zero if we found the nul char. */
1274 int errcode; /* Errno returned from bad reads. */
1275 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1276 unsigned int chunksize; /* Size of each fetch, in chars. */
1277 gdb_byte *bufptr; /* Pointer to next available byte in
1278 buffer. */
1279 gdb_byte *limit; /* First location past end of fetch buffer. */
1280 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1281
1282 /* Decide how large of chunks to try to read in one operation. This
1283 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1284 so we might as well read them all in one operation. If LEN is -1, we
1285 are looking for a NUL terminator to end the fetching, so we might as
1286 well read in blocks that are large enough to be efficient, but not so
1287 large as to be slow if fetchlimit happens to be large. So we choose the
1288 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1289 200 is way too big for remote debugging over a serial line. */
1290
1291 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1292
1293 /* Loop until we either have all the characters, or we encounter
1294 some error, such as bumping into the end of the address space. */
1295
1296 found_nul = 0;
1297 *buffer = NULL;
1298
1299 old_chain = make_cleanup (free_current_contents, buffer);
1300
1301 if (len > 0)
1302 {
1303 *buffer = (gdb_byte *) xmalloc (len * width);
1304 bufptr = *buffer;
1305
1306 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1307 / width;
1308 addr += nfetch * width;
1309 bufptr += nfetch * width;
1310 }
1311 else if (len == -1)
1312 {
1313 unsigned long bufsize = 0;
1314
1315 do
1316 {
1317 QUIT;
1318 nfetch = min (chunksize, fetchlimit - bufsize);
1319
1320 if (*buffer == NULL)
1321 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1322 else
1323 *buffer = (gdb_byte *) xrealloc (*buffer,
1324 (nfetch + bufsize) * width);
1325
1326 bufptr = *buffer + bufsize * width;
1327 bufsize += nfetch;
1328
1329 /* Read as much as we can. */
1330 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1331 / width;
1332
1333 /* Scan this chunk for the null character that terminates the string
1334 to print. If found, we don't need to fetch any more. Note
1335 that bufptr is explicitly left pointing at the next character
1336 after the null character, or at the next character after the end
1337 of the buffer. */
1338
1339 limit = bufptr + nfetch * width;
1340 while (bufptr < limit)
1341 {
1342 unsigned long c;
1343
1344 c = extract_unsigned_integer (bufptr, width, byte_order);
1345 addr += width;
1346 bufptr += width;
1347 if (c == 0)
1348 {
1349 /* We don't care about any error which happened after
1350 the NUL terminator. */
1351 errcode = 0;
1352 found_nul = 1;
1353 break;
1354 }
1355 }
1356 }
1357 while (errcode == 0 /* no error */
1358 && bufptr - *buffer < fetchlimit * width /* no overrun */
1359 && !found_nul); /* haven't found NUL yet */
1360 }
1361 else
1362 { /* Length of string is really 0! */
1363 /* We always allocate *buffer. */
1364 *buffer = bufptr = xmalloc (1);
1365 errcode = 0;
1366 }
1367
1368 /* bufptr and addr now point immediately beyond the last byte which we
1369 consider part of the string (including a '\0' which ends the string). */
1370 *bytes_read = bufptr - *buffer;
1371
1372 QUIT;
1373
1374 discard_cleanups (old_chain);
1375
1376 return errcode;
1377 }
1378
1379 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1380 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1381 stops at the first null byte, otherwise printing proceeds (including null
1382 bytes) until either print_max or LEN characters have been printed,
1383 whichever is smaller. ENCODING is the name of the string's
1384 encoding. It can be NULL, in which case the target encoding is
1385 assumed. */
1386
1387 int
1388 val_print_string (struct type *elttype, const char *encoding,
1389 CORE_ADDR addr, int len,
1390 struct ui_file *stream,
1391 const struct value_print_options *options)
1392 {
1393 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1394 int errcode; /* Errno returned from bad reads. */
1395 int found_nul; /* Non-zero if we found the nul char */
1396 unsigned int fetchlimit; /* Maximum number of chars to print. */
1397 int bytes_read;
1398 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1399 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1400 struct gdbarch *gdbarch = get_type_arch (elttype);
1401 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1402 int width = TYPE_LENGTH (elttype);
1403
1404 /* First we need to figure out the limit on the number of characters we are
1405 going to attempt to fetch and print. This is actually pretty simple. If
1406 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1407 LEN is -1, then the limit is print_max. This is true regardless of
1408 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1409 because finding the null byte (or available memory) is what actually
1410 limits the fetch. */
1411
1412 fetchlimit = (len == -1 ? options->print_max : min (len,
1413 options->print_max));
1414
1415 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1416 &buffer, &bytes_read);
1417 old_chain = make_cleanup (xfree, buffer);
1418
1419 addr += bytes_read;
1420
1421 /* We now have either successfully filled the buffer to fetchlimit,
1422 or terminated early due to an error or finding a null char when
1423 LEN is -1. */
1424
1425 /* Determine found_nul by looking at the last character read. */
1426 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1427 byte_order) == 0;
1428 if (len == -1 && !found_nul)
1429 {
1430 gdb_byte *peekbuf;
1431
1432 /* We didn't find a NUL terminator we were looking for. Attempt
1433 to peek at the next character. If not successful, or it is not
1434 a null byte, then force ellipsis to be printed. */
1435
1436 peekbuf = (gdb_byte *) alloca (width);
1437
1438 if (target_read_memory (addr, peekbuf, width) == 0
1439 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1440 force_ellipsis = 1;
1441 }
1442 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1443 {
1444 /* Getting an error when we have a requested length, or fetching less
1445 than the number of characters actually requested, always make us
1446 print ellipsis. */
1447 force_ellipsis = 1;
1448 }
1449
1450 /* If we get an error before fetching anything, don't print a string.
1451 But if we fetch something and then get an error, print the string
1452 and then the error message. */
1453 if (errcode == 0 || bytes_read > 0)
1454 {
1455 if (options->addressprint)
1456 {
1457 fputs_filtered (" ", stream);
1458 }
1459 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1460 encoding, force_ellipsis, options);
1461 }
1462
1463 if (errcode != 0)
1464 {
1465 if (errcode == EIO)
1466 {
1467 fprintf_filtered (stream, " <Address ");
1468 fputs_filtered (paddress (gdbarch, addr), stream);
1469 fprintf_filtered (stream, " out of bounds>");
1470 }
1471 else
1472 {
1473 fprintf_filtered (stream, " <Error reading address ");
1474 fputs_filtered (paddress (gdbarch, addr), stream);
1475 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1476 }
1477 }
1478
1479 gdb_flush (stream);
1480 do_cleanups (old_chain);
1481
1482 return (bytes_read / width);
1483 }
1484 \f
1485
1486 /* The 'set input-radix' command writes to this auxiliary variable.
1487 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1488 it is left unchanged. */
1489
1490 static unsigned input_radix_1 = 10;
1491
1492 /* Validate an input or output radix setting, and make sure the user
1493 knows what they really did here. Radix setting is confusing, e.g.
1494 setting the input radix to "10" never changes it! */
1495
1496 static void
1497 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1498 {
1499 set_input_radix_1 (from_tty, input_radix_1);
1500 }
1501
1502 static void
1503 set_input_radix_1 (int from_tty, unsigned radix)
1504 {
1505 /* We don't currently disallow any input radix except 0 or 1, which don't
1506 make any mathematical sense. In theory, we can deal with any input
1507 radix greater than 1, even if we don't have unique digits for every
1508 value from 0 to radix-1, but in practice we lose on large radix values.
1509 We should either fix the lossage or restrict the radix range more.
1510 (FIXME). */
1511
1512 if (radix < 2)
1513 {
1514 input_radix_1 = input_radix;
1515 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1516 radix);
1517 }
1518 input_radix_1 = input_radix = radix;
1519 if (from_tty)
1520 {
1521 printf_filtered (_("Input radix now set to "
1522 "decimal %u, hex %x, octal %o.\n"),
1523 radix, radix, radix);
1524 }
1525 }
1526
1527 /* The 'set output-radix' command writes to this auxiliary variable.
1528 If the requested radix is valid, OUTPUT_RADIX is updated,
1529 otherwise, it is left unchanged. */
1530
1531 static unsigned output_radix_1 = 10;
1532
1533 static void
1534 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1535 {
1536 set_output_radix_1 (from_tty, output_radix_1);
1537 }
1538
1539 static void
1540 set_output_radix_1 (int from_tty, unsigned radix)
1541 {
1542 /* Validate the radix and disallow ones that we aren't prepared to
1543 handle correctly, leaving the radix unchanged. */
1544 switch (radix)
1545 {
1546 case 16:
1547 user_print_options.output_format = 'x'; /* hex */
1548 break;
1549 case 10:
1550 user_print_options.output_format = 0; /* decimal */
1551 break;
1552 case 8:
1553 user_print_options.output_format = 'o'; /* octal */
1554 break;
1555 default:
1556 output_radix_1 = output_radix;
1557 error (_("Unsupported output radix ``decimal %u''; "
1558 "output radix unchanged."),
1559 radix);
1560 }
1561 output_radix_1 = output_radix = radix;
1562 if (from_tty)
1563 {
1564 printf_filtered (_("Output radix now set to "
1565 "decimal %u, hex %x, octal %o.\n"),
1566 radix, radix, radix);
1567 }
1568 }
1569
1570 /* Set both the input and output radix at once. Try to set the output radix
1571 first, since it has the most restrictive range. An radix that is valid as
1572 an output radix is also valid as an input radix.
1573
1574 It may be useful to have an unusual input radix. If the user wishes to
1575 set an input radix that is not valid as an output radix, he needs to use
1576 the 'set input-radix' command. */
1577
1578 static void
1579 set_radix (char *arg, int from_tty)
1580 {
1581 unsigned radix;
1582
1583 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1584 set_output_radix_1 (0, radix);
1585 set_input_radix_1 (0, radix);
1586 if (from_tty)
1587 {
1588 printf_filtered (_("Input and output radices now set to "
1589 "decimal %u, hex %x, octal %o.\n"),
1590 radix, radix, radix);
1591 }
1592 }
1593
1594 /* Show both the input and output radices. */
1595
1596 static void
1597 show_radix (char *arg, int from_tty)
1598 {
1599 if (from_tty)
1600 {
1601 if (input_radix == output_radix)
1602 {
1603 printf_filtered (_("Input and output radices set to "
1604 "decimal %u, hex %x, octal %o.\n"),
1605 input_radix, input_radix, input_radix);
1606 }
1607 else
1608 {
1609 printf_filtered (_("Input radix set to decimal "
1610 "%u, hex %x, octal %o.\n"),
1611 input_radix, input_radix, input_radix);
1612 printf_filtered (_("Output radix set to decimal "
1613 "%u, hex %x, octal %o.\n"),
1614 output_radix, output_radix, output_radix);
1615 }
1616 }
1617 }
1618 \f
1619
1620 static void
1621 set_print (char *arg, int from_tty)
1622 {
1623 printf_unfiltered (
1624 "\"set print\" must be followed by the name of a print subcommand.\n");
1625 help_list (setprintlist, "set print ", -1, gdb_stdout);
1626 }
1627
1628 static void
1629 show_print (char *args, int from_tty)
1630 {
1631 cmd_show_list (showprintlist, from_tty, "");
1632 }
1633 \f
1634 void
1635 _initialize_valprint (void)
1636 {
1637 add_prefix_cmd ("print", no_class, set_print,
1638 _("Generic command for setting how things print."),
1639 &setprintlist, "set print ", 0, &setlist);
1640 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1641 /* prefer set print to set prompt */
1642 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1643
1644 add_prefix_cmd ("print", no_class, show_print,
1645 _("Generic command for showing print settings."),
1646 &showprintlist, "show print ", 0, &showlist);
1647 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1648 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1649
1650 add_setshow_uinteger_cmd ("elements", no_class,
1651 &user_print_options.print_max, _("\
1652 Set limit on string chars or array elements to print."), _("\
1653 Show limit on string chars or array elements to print."), _("\
1654 \"set print elements 0\" causes there to be no limit."),
1655 NULL,
1656 show_print_max,
1657 &setprintlist, &showprintlist);
1658
1659 add_setshow_boolean_cmd ("null-stop", no_class,
1660 &user_print_options.stop_print_at_null, _("\
1661 Set printing of char arrays to stop at first null char."), _("\
1662 Show printing of char arrays to stop at first null char."), NULL,
1663 NULL,
1664 show_stop_print_at_null,
1665 &setprintlist, &showprintlist);
1666
1667 add_setshow_uinteger_cmd ("repeats", no_class,
1668 &user_print_options.repeat_count_threshold, _("\
1669 Set threshold for repeated print elements."), _("\
1670 Show threshold for repeated print elements."), _("\
1671 \"set print repeats 0\" causes all elements to be individually printed."),
1672 NULL,
1673 show_repeat_count_threshold,
1674 &setprintlist, &showprintlist);
1675
1676 add_setshow_boolean_cmd ("pretty", class_support,
1677 &user_print_options.prettyprint_structs, _("\
1678 Set prettyprinting of structures."), _("\
1679 Show prettyprinting of structures."), NULL,
1680 NULL,
1681 show_prettyprint_structs,
1682 &setprintlist, &showprintlist);
1683
1684 add_setshow_boolean_cmd ("union", class_support,
1685 &user_print_options.unionprint, _("\
1686 Set printing of unions interior to structures."), _("\
1687 Show printing of unions interior to structures."), NULL,
1688 NULL,
1689 show_unionprint,
1690 &setprintlist, &showprintlist);
1691
1692 add_setshow_boolean_cmd ("array", class_support,
1693 &user_print_options.prettyprint_arrays, _("\
1694 Set prettyprinting of arrays."), _("\
1695 Show prettyprinting of arrays."), NULL,
1696 NULL,
1697 show_prettyprint_arrays,
1698 &setprintlist, &showprintlist);
1699
1700 add_setshow_boolean_cmd ("address", class_support,
1701 &user_print_options.addressprint, _("\
1702 Set printing of addresses."), _("\
1703 Show printing of addresses."), NULL,
1704 NULL,
1705 show_addressprint,
1706 &setprintlist, &showprintlist);
1707
1708 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1709 _("\
1710 Set default input radix for entering numbers."), _("\
1711 Show default input radix for entering numbers."), NULL,
1712 set_input_radix,
1713 show_input_radix,
1714 &setlist, &showlist);
1715
1716 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1717 _("\
1718 Set default output radix for printing of values."), _("\
1719 Show default output radix for printing of values."), NULL,
1720 set_output_radix,
1721 show_output_radix,
1722 &setlist, &showlist);
1723
1724 /* The "set radix" and "show radix" commands are special in that
1725 they are like normal set and show commands but allow two normally
1726 independent variables to be either set or shown with a single
1727 command. So the usual deprecated_add_set_cmd() and [deleted]
1728 add_show_from_set() commands aren't really appropriate. */
1729 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1730 longer true - show can display anything. */
1731 add_cmd ("radix", class_support, set_radix, _("\
1732 Set default input and output number radices.\n\
1733 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1734 Without an argument, sets both radices back to the default value of 10."),
1735 &setlist);
1736 add_cmd ("radix", class_support, show_radix, _("\
1737 Show the default input and output number radices.\n\
1738 Use 'show input-radix' or 'show output-radix' to independently show each."),
1739 &showlist);
1740
1741 add_setshow_boolean_cmd ("array-indexes", class_support,
1742 &user_print_options.print_array_indexes, _("\
1743 Set printing of array indexes."), _("\
1744 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1745 &setprintlist, &showprintlist);
1746 }
This page took 0.070652 seconds and 4 git commands to generate.