2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70
71 /* Default input and output radixes, and output format letter. */
72
73 unsigned input_radix = 10;
74 unsigned output_radix = 10;
75 int output_format = 0;
76
77 /* Print repeat counts if there are more than this many repetitions of an
78 element in an array. Referenced by the low level language dependent
79 print routines. */
80
81 unsigned int repeat_count_threshold = 10;
82
83 /* If nonzero, stops printing of char arrays at first null. */
84
85 int stop_print_at_null;
86
87 /* Controls pretty printing of structures. */
88
89 int prettyprint_structs;
90
91 /* Controls pretty printing of arrays. */
92
93 int prettyprint_arrays;
94
95 /* If nonzero, causes unions inside structures or other unions to be
96 printed. */
97
98 int unionprint; /* Controls printing of nested unions. */
99
100 /* If nonzero, causes machine addresses to be printed in certain contexts. */
101
102 int addressprint; /* Controls printing of machine addresses */
103 \f
104
105 /* Print data of type TYPE located at VALADDR (within GDB), which came from
106 the inferior at address ADDRESS, onto stdio stream STREAM according to
107 FORMAT (a letter, or 0 for natural format using TYPE).
108
109 If DEREF_REF is nonzero, then dereference references, otherwise just print
110 them like pointers.
111
112 The PRETTY parameter controls prettyprinting.
113
114 If the data are a string pointer, returns the number of string characters
115 printed.
116
117 FIXME: The data at VALADDR is in target byte order. If gdb is ever
118 enhanced to be able to debug more than the single target it was compiled
119 for (specific CPU type and thus specific target byte ordering), then
120 either the print routines are going to have to take this into account,
121 or the data is going to have to be passed into here already converted
122 to the host byte ordering, whichever is more convenient. */
123
124
125 int
126 val_print (struct type *type, const bfd_byte *valaddr, int embedded_offset,
127 CORE_ADDR address, struct ui_file *stream, int format,
128 int deref_ref, int recurse, enum val_prettyprint pretty)
129 {
130 struct type *real_type = check_typedef (type);
131 if (pretty == Val_pretty_default)
132 {
133 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
134 }
135
136 QUIT;
137
138 /* Ensure that the type is complete and not just a stub. If the type is
139 only a stub and we can't find and substitute its complete type, then
140 print appropriate string and return. */
141
142 if (TYPE_STUB (real_type))
143 {
144 fprintf_filtered (stream, "<incomplete type>");
145 gdb_flush (stream);
146 return (0);
147 }
148
149 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
150 stream, format, deref_ref, recurse, pretty));
151 }
152
153 /* Print the value VAL in C-ish syntax on stream STREAM.
154 FORMAT is a format-letter, or 0 for print in natural format of data type.
155 If the object printed is a string pointer, returns
156 the number of string bytes printed. */
157
158 int
159 value_print (struct value *val, struct ui_file *stream, int format,
160 enum val_prettyprint pretty)
161 {
162 if (val == 0)
163 {
164 printf_filtered (_("<address of value unknown>"));
165 return 0;
166 }
167 if (value_optimized_out (val))
168 {
169 printf_filtered (_("<value optimized out>"));
170 return 0;
171 }
172 return LA_VALUE_PRINT (val, stream, format, pretty);
173 }
174
175 /* Called by various <lang>_val_print routines to print
176 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
177 value. STREAM is where to print the value. */
178
179 void
180 val_print_type_code_int (struct type *type, const bfd_byte *valaddr,
181 struct ui_file *stream)
182 {
183 if (TYPE_LENGTH (type) > sizeof (LONGEST))
184 {
185 LONGEST val;
186
187 if (TYPE_UNSIGNED (type)
188 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
189 &val))
190 {
191 print_longest (stream, 'u', 0, val);
192 }
193 else
194 {
195 /* Signed, or we couldn't turn an unsigned value into a
196 LONGEST. For signed values, one could assume two's
197 complement (a reasonable assumption, I think) and do
198 better than this. */
199 print_hex_chars (stream, (unsigned char *) valaddr,
200 TYPE_LENGTH (type));
201 }
202 }
203 else
204 {
205 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
206 unpack_long (type, valaddr));
207 }
208 }
209
210 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
211 The raison d'etre of this function is to consolidate printing of
212 LONG_LONG's into this one function. The format chars b,h,w,g are
213 from print_scalar_formatted(). Numbers are printed using C
214 format.
215
216 USE_C_FORMAT means to use C format in all cases. Without it,
217 'o' and 'x' format do not include the standard C radix prefix
218 (leading 0 or 0x).
219
220 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
221 and was intended to request formating according to the current
222 language and would be used for most integers that GDB prints. The
223 exceptional cases were things like protocols where the format of
224 the integer is a protocol thing, not a user-visible thing). The
225 parameter remains to preserve the information of what things might
226 be printed with language-specific format, should we ever resurrect
227 that capability. */
228
229 void
230 print_longest (struct ui_file *stream, int format, int use_c_format,
231 LONGEST val_long)
232 {
233 const char *val;
234
235 switch (format)
236 {
237 case 'd':
238 val = int_string (val_long, 10, 1, 0, 1); break;
239 case 'u':
240 val = int_string (val_long, 10, 0, 0, 1); break;
241 case 'x':
242 val = int_string (val_long, 16, 0, 0, use_c_format); break;
243 case 'b':
244 val = int_string (val_long, 16, 0, 2, 1); break;
245 case 'h':
246 val = int_string (val_long, 16, 0, 4, 1); break;
247 case 'w':
248 val = int_string (val_long, 16, 0, 8, 1); break;
249 case 'g':
250 val = int_string (val_long, 16, 0, 16, 1); break;
251 break;
252 case 'o':
253 val = int_string (val_long, 8, 0, 0, use_c_format); break;
254 default:
255 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
256 }
257 fputs_filtered (val, stream);
258 }
259
260 /* This used to be a macro, but I don't think it is called often enough
261 to merit such treatment. */
262 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
263 arguments to a function, number in a value history, register number, etc.)
264 where the value must not be larger than can fit in an int. */
265
266 int
267 longest_to_int (LONGEST arg)
268 {
269 /* Let the compiler do the work */
270 int rtnval = (int) arg;
271
272 /* Check for overflows or underflows */
273 if (sizeof (LONGEST) > sizeof (int))
274 {
275 if (rtnval != arg)
276 {
277 error (_("Value out of range."));
278 }
279 }
280 return (rtnval);
281 }
282
283 /* Print a floating point value of type TYPE (not always a
284 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
285
286 void
287 print_floating (const bfd_byte *valaddr, struct type *type,
288 struct ui_file *stream)
289 {
290 DOUBLEST doub;
291 int inv;
292 const struct floatformat *fmt = NULL;
293 unsigned len = TYPE_LENGTH (type);
294
295 /* If it is a floating-point, check for obvious problems. */
296 if (TYPE_CODE (type) == TYPE_CODE_FLT)
297 fmt = floatformat_from_type (type);
298 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
299 {
300 if (floatformat_is_negative (fmt, valaddr))
301 fprintf_filtered (stream, "-");
302 fprintf_filtered (stream, "nan(");
303 fputs_filtered ("0x", stream);
304 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
305 fprintf_filtered (stream, ")");
306 return;
307 }
308
309 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
310 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
311 needs to be used as that takes care of any necessary type
312 conversions. Such conversions are of course direct to DOUBLEST
313 and disregard any possible target floating point limitations.
314 For instance, a u64 would be converted and displayed exactly on a
315 host with 80 bit DOUBLEST but with loss of information on a host
316 with 64 bit DOUBLEST. */
317
318 doub = unpack_double (type, valaddr, &inv);
319 if (inv)
320 {
321 fprintf_filtered (stream, "<invalid float value>");
322 return;
323 }
324
325 /* FIXME: kettenis/2001-01-20: The following code makes too much
326 assumptions about the host and target floating point format. */
327
328 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
329 not necessarially be a TYPE_CODE_FLT, the below ignores that and
330 instead uses the type's length to determine the precision of the
331 floating-point value being printed. */
332
333 if (len < sizeof (double))
334 fprintf_filtered (stream, "%.9g", (double) doub);
335 else if (len == sizeof (double))
336 fprintf_filtered (stream, "%.17g", (double) doub);
337 else
338 #ifdef PRINTF_HAS_LONG_DOUBLE
339 fprintf_filtered (stream, "%.35Lg", doub);
340 #else
341 /* This at least wins with values that are representable as
342 doubles. */
343 fprintf_filtered (stream, "%.17g", (double) doub);
344 #endif
345 }
346
347 void
348 print_binary_chars (struct ui_file *stream, const bfd_byte *valaddr,
349 unsigned len)
350 {
351
352 #define BITS_IN_BYTES 8
353
354 const bfd_byte *p;
355 unsigned int i;
356 int b;
357
358 /* Declared "int" so it will be signed.
359 * This ensures that right shift will shift in zeros.
360 */
361 const int mask = 0x080;
362
363 /* FIXME: We should be not printing leading zeroes in most cases. */
364
365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
366 {
367 for (p = valaddr;
368 p < valaddr + len;
369 p++)
370 {
371 /* Every byte has 8 binary characters; peel off
372 * and print from the MSB end.
373 */
374 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
375 {
376 if (*p & (mask >> i))
377 b = 1;
378 else
379 b = 0;
380
381 fprintf_filtered (stream, "%1d", b);
382 }
383 }
384 }
385 else
386 {
387 for (p = valaddr + len - 1;
388 p >= valaddr;
389 p--)
390 {
391 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
392 {
393 if (*p & (mask >> i))
394 b = 1;
395 else
396 b = 0;
397
398 fprintf_filtered (stream, "%1d", b);
399 }
400 }
401 }
402 }
403
404 /* VALADDR points to an integer of LEN bytes.
405 * Print it in octal on stream or format it in buf.
406 */
407 void
408 print_octal_chars (struct ui_file *stream, const bfd_byte *valaddr,
409 unsigned len)
410 {
411 const bfd_byte *p;
412 unsigned char octa1, octa2, octa3, carry;
413 int cycle;
414
415 /* FIXME: We should be not printing leading zeroes in most cases. */
416
417
418 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
419 * the extra bits, which cycle every three bytes:
420 *
421 * Byte side: 0 1 2 3
422 * | | | |
423 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
424 *
425 * Octal side: 0 1 carry 3 4 carry ...
426 *
427 * Cycle number: 0 1 2
428 *
429 * But of course we are printing from the high side, so we have to
430 * figure out where in the cycle we are so that we end up with no
431 * left over bits at the end.
432 */
433 #define BITS_IN_OCTAL 3
434 #define HIGH_ZERO 0340
435 #define LOW_ZERO 0016
436 #define CARRY_ZERO 0003
437 #define HIGH_ONE 0200
438 #define MID_ONE 0160
439 #define LOW_ONE 0016
440 #define CARRY_ONE 0001
441 #define HIGH_TWO 0300
442 #define MID_TWO 0070
443 #define LOW_TWO 0007
444
445 /* For 32 we start in cycle 2, with two bits and one bit carry;
446 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
447 */
448 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
449 carry = 0;
450
451 fputs_filtered ("0", stream);
452 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
453 {
454 for (p = valaddr;
455 p < valaddr + len;
456 p++)
457 {
458 switch (cycle)
459 {
460 case 0:
461 /* No carry in, carry out two bits.
462 */
463 octa1 = (HIGH_ZERO & *p) >> 5;
464 octa2 = (LOW_ZERO & *p) >> 2;
465 carry = (CARRY_ZERO & *p);
466 fprintf_filtered (stream, "%o", octa1);
467 fprintf_filtered (stream, "%o", octa2);
468 break;
469
470 case 1:
471 /* Carry in two bits, carry out one bit.
472 */
473 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
474 octa2 = (MID_ONE & *p) >> 4;
475 octa3 = (LOW_ONE & *p) >> 1;
476 carry = (CARRY_ONE & *p);
477 fprintf_filtered (stream, "%o", octa1);
478 fprintf_filtered (stream, "%o", octa2);
479 fprintf_filtered (stream, "%o", octa3);
480 break;
481
482 case 2:
483 /* Carry in one bit, no carry out.
484 */
485 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
486 octa2 = (MID_TWO & *p) >> 3;
487 octa3 = (LOW_TWO & *p);
488 carry = 0;
489 fprintf_filtered (stream, "%o", octa1);
490 fprintf_filtered (stream, "%o", octa2);
491 fprintf_filtered (stream, "%o", octa3);
492 break;
493
494 default:
495 error (_("Internal error in octal conversion;"));
496 }
497
498 cycle++;
499 cycle = cycle % BITS_IN_OCTAL;
500 }
501 }
502 else
503 {
504 for (p = valaddr + len - 1;
505 p >= valaddr;
506 p--)
507 {
508 switch (cycle)
509 {
510 case 0:
511 /* Carry out, no carry in */
512 octa1 = (HIGH_ZERO & *p) >> 5;
513 octa2 = (LOW_ZERO & *p) >> 2;
514 carry = (CARRY_ZERO & *p);
515 fprintf_filtered (stream, "%o", octa1);
516 fprintf_filtered (stream, "%o", octa2);
517 break;
518
519 case 1:
520 /* Carry in, carry out */
521 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
522 octa2 = (MID_ONE & *p) >> 4;
523 octa3 = (LOW_ONE & *p) >> 1;
524 carry = (CARRY_ONE & *p);
525 fprintf_filtered (stream, "%o", octa1);
526 fprintf_filtered (stream, "%o", octa2);
527 fprintf_filtered (stream, "%o", octa3);
528 break;
529
530 case 2:
531 /* Carry in, no carry out */
532 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
533 octa2 = (MID_TWO & *p) >> 3;
534 octa3 = (LOW_TWO & *p);
535 carry = 0;
536 fprintf_filtered (stream, "%o", octa1);
537 fprintf_filtered (stream, "%o", octa2);
538 fprintf_filtered (stream, "%o", octa3);
539 break;
540
541 default:
542 error (_("Internal error in octal conversion;"));
543 }
544
545 cycle++;
546 cycle = cycle % BITS_IN_OCTAL;
547 }
548 }
549
550 }
551
552 /* VALADDR points to an integer of LEN bytes.
553 * Print it in decimal on stream or format it in buf.
554 */
555 void
556 print_decimal_chars (struct ui_file *stream, const bfd_byte *valaddr,
557 unsigned len)
558 {
559 #define TEN 10
560 #define TWO_TO_FOURTH 16
561 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
562 #define CARRY_LEFT( x ) ((x) % TEN)
563 #define SHIFT( x ) ((x) << 4)
564 #define START_P \
565 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
566 #define NOT_END_P \
567 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
568 #define NEXT_P \
569 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
570 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
571 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
572
573 const bfd_byte *p;
574 unsigned char *digits;
575 int carry;
576 int decimal_len;
577 int i, j, decimal_digits;
578 int dummy;
579 int flip;
580
581 /* Base-ten number is less than twice as many digits
582 * as the base 16 number, which is 2 digits per byte.
583 */
584 decimal_len = len * 2 * 2;
585 digits = xmalloc (decimal_len);
586
587 for (i = 0; i < decimal_len; i++)
588 {
589 digits[i] = 0;
590 }
591
592 /* Ok, we have an unknown number of bytes of data to be printed in
593 * decimal.
594 *
595 * Given a hex number (in nibbles) as XYZ, we start by taking X and
596 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
597 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
598 *
599 * The trick is that "digits" holds a base-10 number, but sometimes
600 * the individual digits are > 10.
601 *
602 * Outer loop is per nibble (hex digit) of input, from MSD end to
603 * LSD end.
604 */
605 decimal_digits = 0; /* Number of decimal digits so far */
606 p = START_P;
607 flip = 0;
608 while (NOT_END_P)
609 {
610 /*
611 * Multiply current base-ten number by 16 in place.
612 * Each digit was between 0 and 9, now is between
613 * 0 and 144.
614 */
615 for (j = 0; j < decimal_digits; j++)
616 {
617 digits[j] = SHIFT (digits[j]);
618 }
619
620 /* Take the next nibble off the input and add it to what
621 * we've got in the LSB position. Bottom 'digit' is now
622 * between 0 and 159.
623 *
624 * "flip" is used to run this loop twice for each byte.
625 */
626 if (flip == 0)
627 {
628 /* Take top nibble.
629 */
630 digits[0] += HIGH_NIBBLE (*p);
631 flip = 1;
632 }
633 else
634 {
635 /* Take low nibble and bump our pointer "p".
636 */
637 digits[0] += LOW_NIBBLE (*p);
638 NEXT_P;
639 flip = 0;
640 }
641
642 /* Re-decimalize. We have to do this often enough
643 * that we don't overflow, but once per nibble is
644 * overkill. Easier this way, though. Note that the
645 * carry is often larger than 10 (e.g. max initial
646 * carry out of lowest nibble is 15, could bubble all
647 * the way up greater than 10). So we have to do
648 * the carrying beyond the last current digit.
649 */
650 carry = 0;
651 for (j = 0; j < decimal_len - 1; j++)
652 {
653 digits[j] += carry;
654
655 /* "/" won't handle an unsigned char with
656 * a value that if signed would be negative.
657 * So extend to longword int via "dummy".
658 */
659 dummy = digits[j];
660 carry = CARRY_OUT (dummy);
661 digits[j] = CARRY_LEFT (dummy);
662
663 if (j >= decimal_digits && carry == 0)
664 {
665 /*
666 * All higher digits are 0 and we
667 * no longer have a carry.
668 *
669 * Note: "j" is 0-based, "decimal_digits" is
670 * 1-based.
671 */
672 decimal_digits = j + 1;
673 break;
674 }
675 }
676 }
677
678 /* Ok, now "digits" is the decimal representation, with
679 * the "decimal_digits" actual digits. Print!
680 */
681 for (i = decimal_digits - 1; i >= 0; i--)
682 {
683 fprintf_filtered (stream, "%1d", digits[i]);
684 }
685 xfree (digits);
686 }
687
688 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
689
690 void
691 print_hex_chars (struct ui_file *stream, const bfd_byte *valaddr,
692 unsigned len)
693 {
694 const bfd_byte *p;
695
696 /* FIXME: We should be not printing leading zeroes in most cases. */
697
698 fputs_filtered ("0x", stream);
699 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
700 {
701 for (p = valaddr;
702 p < valaddr + len;
703 p++)
704 {
705 fprintf_filtered (stream, "%02x", *p);
706 }
707 }
708 else
709 {
710 for (p = valaddr + len - 1;
711 p >= valaddr;
712 p--)
713 {
714 fprintf_filtered (stream, "%02x", *p);
715 }
716 }
717 }
718
719 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
720 Omit any leading zero chars. */
721
722 void
723 print_char_chars (struct ui_file *stream, const bfd_byte *valaddr,
724 unsigned len)
725 {
726 const bfd_byte *p;
727
728 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
729 {
730 p = valaddr;
731 while (p < valaddr + len - 1 && *p == 0)
732 ++p;
733
734 while (p < valaddr + len)
735 {
736 LA_EMIT_CHAR (*p, stream, '\'');
737 ++p;
738 }
739 }
740 else
741 {
742 p = valaddr + len - 1;
743 while (p > valaddr && *p == 0)
744 --p;
745
746 while (p >= valaddr)
747 {
748 LA_EMIT_CHAR (*p, stream, '\'');
749 --p;
750 }
751 }
752 }
753
754 /* Called by various <lang>_val_print routines to print elements of an
755 array in the form "<elem1>, <elem2>, <elem3>, ...".
756
757 (FIXME?) Assumes array element separator is a comma, which is correct
758 for all languages currently handled.
759 (FIXME?) Some languages have a notation for repeated array elements,
760 perhaps we should try to use that notation when appropriate.
761 */
762
763 void
764 val_print_array_elements (struct type *type, const bfd_byte *valaddr,
765 CORE_ADDR address, struct ui_file *stream,
766 int format, int deref_ref,
767 int recurse, enum val_prettyprint pretty,
768 unsigned int i)
769 {
770 unsigned int things_printed = 0;
771 unsigned len;
772 struct type *elttype;
773 unsigned eltlen;
774 /* Position of the array element we are examining to see
775 whether it is repeated. */
776 unsigned int rep1;
777 /* Number of repetitions we have detected so far. */
778 unsigned int reps;
779
780 elttype = TYPE_TARGET_TYPE (type);
781 eltlen = TYPE_LENGTH (check_typedef (elttype));
782 len = TYPE_LENGTH (type) / eltlen;
783
784 annotate_array_section_begin (i, elttype);
785
786 for (; i < len && things_printed < print_max; i++)
787 {
788 if (i != 0)
789 {
790 if (prettyprint_arrays)
791 {
792 fprintf_filtered (stream, ",\n");
793 print_spaces_filtered (2 + 2 * recurse, stream);
794 }
795 else
796 {
797 fprintf_filtered (stream, ", ");
798 }
799 }
800 wrap_here (n_spaces (2 + 2 * recurse));
801
802 rep1 = i + 1;
803 reps = 1;
804 while ((rep1 < len) &&
805 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
806 {
807 ++reps;
808 ++rep1;
809 }
810
811 if (reps > repeat_count_threshold)
812 {
813 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
814 deref_ref, recurse + 1, pretty);
815 annotate_elt_rep (reps);
816 fprintf_filtered (stream, " <repeats %u times>", reps);
817 annotate_elt_rep_end ();
818
819 i = rep1 - 1;
820 things_printed += repeat_count_threshold;
821 }
822 else
823 {
824 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
825 deref_ref, recurse + 1, pretty);
826 annotate_elt ();
827 things_printed++;
828 }
829 }
830 annotate_array_section_end ();
831 if (i < len)
832 {
833 fprintf_filtered (stream, "...");
834 }
835 }
836
837 /* Read LEN bytes of target memory at address MEMADDR, placing the
838 results in GDB's memory at MYADDR. Returns a count of the bytes
839 actually read, and optionally an errno value in the location
840 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
841
842 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
843 function be eliminated. */
844
845 static int
846 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
847 {
848 int nread; /* Number of bytes actually read. */
849 int errcode; /* Error from last read. */
850
851 /* First try a complete read. */
852 errcode = target_read_memory (memaddr, myaddr, len);
853 if (errcode == 0)
854 {
855 /* Got it all. */
856 nread = len;
857 }
858 else
859 {
860 /* Loop, reading one byte at a time until we get as much as we can. */
861 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
862 {
863 errcode = target_read_memory (memaddr++, myaddr++, 1);
864 }
865 /* If an error, the last read was unsuccessful, so adjust count. */
866 if (errcode != 0)
867 {
868 nread--;
869 }
870 }
871 if (errnoptr != NULL)
872 {
873 *errnoptr = errcode;
874 }
875 return (nread);
876 }
877
878 /* Print a string from the inferior, starting at ADDR and printing up to LEN
879 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
880 stops at the first null byte, otherwise printing proceeds (including null
881 bytes) until either print_max or LEN characters have been printed,
882 whichever is smaller. */
883
884 /* FIXME: Use target_read_string. */
885
886 int
887 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
888 {
889 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
890 int errcode; /* Errno returned from bad reads. */
891 unsigned int fetchlimit; /* Maximum number of chars to print. */
892 unsigned int nfetch; /* Chars to fetch / chars fetched. */
893 unsigned int chunksize; /* Size of each fetch, in chars. */
894 char *buffer = NULL; /* Dynamically growable fetch buffer. */
895 char *bufptr; /* Pointer to next available byte in buffer. */
896 char *limit; /* First location past end of fetch buffer. */
897 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
898 int found_nul; /* Non-zero if we found the nul char */
899
900 /* First we need to figure out the limit on the number of characters we are
901 going to attempt to fetch and print. This is actually pretty simple. If
902 LEN >= zero, then the limit is the minimum of LEN and print_max. If
903 LEN is -1, then the limit is print_max. This is true regardless of
904 whether print_max is zero, UINT_MAX (unlimited), or something in between,
905 because finding the null byte (or available memory) is what actually
906 limits the fetch. */
907
908 fetchlimit = (len == -1 ? print_max : min (len, print_max));
909
910 /* Now decide how large of chunks to try to read in one operation. This
911 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
912 so we might as well read them all in one operation. If LEN is -1, we
913 are looking for a null terminator to end the fetching, so we might as
914 well read in blocks that are large enough to be efficient, but not so
915 large as to be slow if fetchlimit happens to be large. So we choose the
916 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
917 200 is way too big for remote debugging over a serial line. */
918
919 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
920
921 /* Loop until we either have all the characters to print, or we encounter
922 some error, such as bumping into the end of the address space. */
923
924 found_nul = 0;
925 old_chain = make_cleanup (null_cleanup, 0);
926
927 if (len > 0)
928 {
929 buffer = (char *) xmalloc (len * width);
930 bufptr = buffer;
931 old_chain = make_cleanup (xfree, buffer);
932
933 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
934 / width;
935 addr += nfetch * width;
936 bufptr += nfetch * width;
937 }
938 else if (len == -1)
939 {
940 unsigned long bufsize = 0;
941 do
942 {
943 QUIT;
944 nfetch = min (chunksize, fetchlimit - bufsize);
945
946 if (buffer == NULL)
947 buffer = (char *) xmalloc (nfetch * width);
948 else
949 {
950 discard_cleanups (old_chain);
951 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
952 }
953
954 old_chain = make_cleanup (xfree, buffer);
955 bufptr = buffer + bufsize * width;
956 bufsize += nfetch;
957
958 /* Read as much as we can. */
959 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
960 / width;
961
962 /* Scan this chunk for the null byte that terminates the string
963 to print. If found, we don't need to fetch any more. Note
964 that bufptr is explicitly left pointing at the next character
965 after the null byte, or at the next character after the end of
966 the buffer. */
967
968 limit = bufptr + nfetch * width;
969 while (bufptr < limit)
970 {
971 unsigned long c;
972
973 c = extract_unsigned_integer (bufptr, width);
974 addr += width;
975 bufptr += width;
976 if (c == 0)
977 {
978 /* We don't care about any error which happened after
979 the NULL terminator. */
980 errcode = 0;
981 found_nul = 1;
982 break;
983 }
984 }
985 }
986 while (errcode == 0 /* no error */
987 && bufptr - buffer < fetchlimit * width /* no overrun */
988 && !found_nul); /* haven't found nul yet */
989 }
990 else
991 { /* length of string is really 0! */
992 buffer = bufptr = NULL;
993 errcode = 0;
994 }
995
996 /* bufptr and addr now point immediately beyond the last byte which we
997 consider part of the string (including a '\0' which ends the string). */
998
999 /* We now have either successfully filled the buffer to fetchlimit, or
1000 terminated early due to an error or finding a null char when LEN is -1. */
1001
1002 if (len == -1 && !found_nul)
1003 {
1004 char *peekbuf;
1005
1006 /* We didn't find a null terminator we were looking for. Attempt
1007 to peek at the next character. If not successful, or it is not
1008 a null byte, then force ellipsis to be printed. */
1009
1010 peekbuf = (char *) alloca (width);
1011
1012 if (target_read_memory (addr, peekbuf, width) == 0
1013 && extract_unsigned_integer (peekbuf, width) != 0)
1014 force_ellipsis = 1;
1015 }
1016 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1017 {
1018 /* Getting an error when we have a requested length, or fetching less
1019 than the number of characters actually requested, always make us
1020 print ellipsis. */
1021 force_ellipsis = 1;
1022 }
1023
1024 QUIT;
1025
1026 /* If we get an error before fetching anything, don't print a string.
1027 But if we fetch something and then get an error, print the string
1028 and then the error message. */
1029 if (errcode == 0 || bufptr > buffer)
1030 {
1031 if (addressprint)
1032 {
1033 fputs_filtered (" ", stream);
1034 }
1035 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1036 }
1037
1038 if (errcode != 0)
1039 {
1040 if (errcode == EIO)
1041 {
1042 fprintf_filtered (stream, " <Address ");
1043 print_address_numeric (addr, 1, stream);
1044 fprintf_filtered (stream, " out of bounds>");
1045 }
1046 else
1047 {
1048 fprintf_filtered (stream, " <Error reading address ");
1049 print_address_numeric (addr, 1, stream);
1050 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1051 }
1052 }
1053 gdb_flush (stream);
1054 do_cleanups (old_chain);
1055 return ((bufptr - buffer) / width);
1056 }
1057 \f
1058
1059 /* Validate an input or output radix setting, and make sure the user
1060 knows what they really did here. Radix setting is confusing, e.g.
1061 setting the input radix to "10" never changes it! */
1062
1063 static void
1064 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1065 {
1066 set_input_radix_1 (from_tty, input_radix);
1067 }
1068
1069 static void
1070 set_input_radix_1 (int from_tty, unsigned radix)
1071 {
1072 /* We don't currently disallow any input radix except 0 or 1, which don't
1073 make any mathematical sense. In theory, we can deal with any input
1074 radix greater than 1, even if we don't have unique digits for every
1075 value from 0 to radix-1, but in practice we lose on large radix values.
1076 We should either fix the lossage or restrict the radix range more.
1077 (FIXME). */
1078
1079 if (radix < 2)
1080 {
1081 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1082 value. */
1083 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1084 radix);
1085 }
1086 input_radix = radix;
1087 if (from_tty)
1088 {
1089 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1090 radix, radix, radix);
1091 }
1092 }
1093
1094 static void
1095 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1096 {
1097 set_output_radix_1 (from_tty, output_radix);
1098 }
1099
1100 static void
1101 set_output_radix_1 (int from_tty, unsigned radix)
1102 {
1103 /* Validate the radix and disallow ones that we aren't prepared to
1104 handle correctly, leaving the radix unchanged. */
1105 switch (radix)
1106 {
1107 case 16:
1108 output_format = 'x'; /* hex */
1109 break;
1110 case 10:
1111 output_format = 0; /* decimal */
1112 break;
1113 case 8:
1114 output_format = 'o'; /* octal */
1115 break;
1116 default:
1117 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1118 value. */
1119 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1120 radix);
1121 }
1122 output_radix = radix;
1123 if (from_tty)
1124 {
1125 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1126 radix, radix, radix);
1127 }
1128 }
1129
1130 /* Set both the input and output radix at once. Try to set the output radix
1131 first, since it has the most restrictive range. An radix that is valid as
1132 an output radix is also valid as an input radix.
1133
1134 It may be useful to have an unusual input radix. If the user wishes to
1135 set an input radix that is not valid as an output radix, he needs to use
1136 the 'set input-radix' command. */
1137
1138 static void
1139 set_radix (char *arg, int from_tty)
1140 {
1141 unsigned radix;
1142
1143 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1144 set_output_radix_1 (0, radix);
1145 set_input_radix_1 (0, radix);
1146 if (from_tty)
1147 {
1148 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1149 radix, radix, radix);
1150 }
1151 }
1152
1153 /* Show both the input and output radices. */
1154
1155 static void
1156 show_radix (char *arg, int from_tty)
1157 {
1158 if (from_tty)
1159 {
1160 if (input_radix == output_radix)
1161 {
1162 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1163 input_radix, input_radix, input_radix);
1164 }
1165 else
1166 {
1167 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1168 input_radix, input_radix, input_radix);
1169 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1170 output_radix, output_radix, output_radix);
1171 }
1172 }
1173 }
1174 \f
1175
1176 static void
1177 set_print (char *arg, int from_tty)
1178 {
1179 printf_unfiltered (
1180 "\"set print\" must be followed by the name of a print subcommand.\n");
1181 help_list (setprintlist, "set print ", -1, gdb_stdout);
1182 }
1183
1184 static void
1185 show_print (char *args, int from_tty)
1186 {
1187 cmd_show_list (showprintlist, from_tty, "");
1188 }
1189 \f
1190 void
1191 _initialize_valprint (void)
1192 {
1193 struct cmd_list_element *c;
1194
1195 add_prefix_cmd ("print", no_class, set_print,
1196 "Generic command for setting how things print.",
1197 &setprintlist, "set print ", 0, &setlist);
1198 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1199 /* prefer set print to set prompt */
1200 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1201
1202 add_prefix_cmd ("print", no_class, show_print,
1203 "Generic command for showing print settings.",
1204 &showprintlist, "show print ", 0, &showlist);
1205 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1206 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1207
1208 deprecated_add_show_from_set
1209 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1210 "Set limit on string chars or array elements to print.\n\
1211 \"set print elements 0\" causes there to be no limit.",
1212 &setprintlist),
1213 &showprintlist);
1214
1215 deprecated_add_show_from_set
1216 (add_set_cmd ("null-stop", no_class, var_boolean,
1217 (char *) &stop_print_at_null,
1218 "Set printing of char arrays to stop at first null char.",
1219 &setprintlist),
1220 &showprintlist);
1221
1222 deprecated_add_show_from_set
1223 (add_set_cmd ("repeats", no_class, var_uinteger,
1224 (char *) &repeat_count_threshold,
1225 "Set threshold for repeated print elements.\n\
1226 \"set print repeats 0\" causes all elements to be individually printed.",
1227 &setprintlist),
1228 &showprintlist);
1229
1230 deprecated_add_show_from_set
1231 (add_set_cmd ("pretty", class_support, var_boolean,
1232 (char *) &prettyprint_structs,
1233 "Set prettyprinting of structures.",
1234 &setprintlist),
1235 &showprintlist);
1236
1237 deprecated_add_show_from_set
1238 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1239 "Set printing of unions interior to structures.",
1240 &setprintlist),
1241 &showprintlist);
1242
1243 deprecated_add_show_from_set
1244 (add_set_cmd ("array", class_support, var_boolean,
1245 (char *) &prettyprint_arrays,
1246 "Set prettyprinting of arrays.",
1247 &setprintlist),
1248 &showprintlist);
1249
1250 deprecated_add_show_from_set
1251 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1252 "Set printing of addresses.",
1253 &setprintlist),
1254 &showprintlist);
1255
1256 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1257 (char *) &input_radix,
1258 "Set default input radix for entering numbers.",
1259 &setlist);
1260 deprecated_add_show_from_set (c, &showlist);
1261 set_cmd_sfunc (c, set_input_radix);
1262
1263 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1264 (char *) &output_radix,
1265 "Set default output radix for printing of values.",
1266 &setlist);
1267 deprecated_add_show_from_set (c, &showlist);
1268 set_cmd_sfunc (c, set_output_radix);
1269
1270 /* The "set radix" and "show radix" commands are special in that
1271 they are like normal set and show commands but allow two normally
1272 independent variables to be either set or shown with a single
1273 command. So the usual deprecated_add_set_cmd() and
1274 add_show_from_set() commands aren't really appropriate. */
1275 add_cmd ("radix", class_support, set_radix,
1276 "Set default input and output number radices.\n\
1277 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1278 Without an argument, sets both radices back to the default value of 10.",
1279 &setlist);
1280 add_cmd ("radix", class_support, show_radix,
1281 "Show the default input and output number radices.\n\
1282 Use 'show input-radix' or 'show output-radix' to independently show each.",
1283 &showlist);
1284
1285 /* Give people the defaults which they are used to. */
1286 prettyprint_structs = 0;
1287 prettyprint_arrays = 0;
1288 unionprint = 1;
1289 addressprint = 1;
1290 print_max = PRINT_MAX_DEFAULT;
1291 }
This page took 0.074016 seconds and 4 git commands to generate.