Factor out complex printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* generic_val_print helper for TYPE_CODE_ENUM. */
513
514 static void
515 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519 {
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579 }
580
581 /* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583 static void
584 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589 {
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595 }
596
597 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599 static void
600 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605 {
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624 }
625
626 /* generic_val_print helper for TYPE_CODE_BOOL. */
627
628 static void
629 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
630 int embedded_offset, struct ui_file *stream,
631 const struct value *original_value,
632 const struct value_print_options *options,
633 const struct generic_val_print_decorations *decorations)
634 {
635 LONGEST val;
636
637 if (options->format || options->output_format)
638 {
639 struct value_print_options opts = *options;
640 opts.format = (options->format ? options->format
641 : options->output_format);
642 val_print_scalar_formatted (type, valaddr, embedded_offset,
643 original_value, &opts, 0, stream);
644 }
645 else
646 {
647 val = unpack_long (type, valaddr + embedded_offset);
648 if (val == 0)
649 fputs_filtered (decorations->false_name, stream);
650 else if (val == 1)
651 fputs_filtered (decorations->true_name, stream);
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655 }
656
657 /* generic_val_print helper for TYPE_CODE_INT. */
658
659 static void
660 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
661 int embedded_offset, struct ui_file *stream,
662 const struct value *original_value,
663 const struct value_print_options *options)
664 {
665 if (options->format || options->output_format)
666 {
667 struct value_print_options opts = *options;
668
669 opts.format = (options->format ? options->format
670 : options->output_format);
671 val_print_scalar_formatted (type, valaddr, embedded_offset,
672 original_value, &opts, 0, stream);
673 }
674 else
675 val_print_type_code_int (type, valaddr + embedded_offset, stream);
676 }
677
678 /* generic_val_print helper for TYPE_CODE_CHAR. */
679
680 static void
681 generic_val_print_char (struct type *type, struct type *unresolved_type,
682 const gdb_byte *valaddr, int embedded_offset,
683 struct ui_file *stream,
684 const struct value *original_value,
685 const struct value_print_options *options)
686 {
687 LONGEST val;
688
689 if (options->format || options->output_format)
690 {
691 struct value_print_options opts = *options;
692
693 opts.format = (options->format ? options->format
694 : options->output_format);
695 val_print_scalar_formatted (type, valaddr, embedded_offset,
696 original_value, &opts, 0, stream);
697 }
698 else
699 {
700 val = unpack_long (type, valaddr + embedded_offset);
701 if (TYPE_UNSIGNED (type))
702 fprintf_filtered (stream, "%u", (unsigned int) val);
703 else
704 fprintf_filtered (stream, "%d", (int) val);
705 fputs_filtered (" ", stream);
706 LA_PRINT_CHAR (val, unresolved_type, stream);
707 }
708 }
709
710 /* generic_val_print helper for TYPE_CODE_FLT. */
711
712 static void
713 generic_val_print_float (struct type *type, const gdb_byte *valaddr,
714 int embedded_offset, struct ui_file *stream,
715 const struct value *original_value,
716 const struct value_print_options *options)
717 {
718 if (options->format)
719 {
720 val_print_scalar_formatted (type, valaddr, embedded_offset,
721 original_value, options, 0, stream);
722 }
723 else
724 {
725 print_floating (valaddr + embedded_offset, type, stream);
726 }
727 }
728
729 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
730
731 static void
732 generic_val_print_decfloat (struct type *type, const gdb_byte *valaddr,
733 int embedded_offset, struct ui_file *stream,
734 const struct value *original_value,
735 const struct value_print_options *options)
736 {
737 if (options->format)
738 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
739 options, 0, stream);
740 else
741 print_decimal_floating (valaddr + embedded_offset, type, stream);
742 }
743
744 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
745
746 static void
747 generic_val_print_complex (struct type *type, const gdb_byte *valaddr,
748 int embedded_offset, struct ui_file *stream,
749 const struct value *original_value,
750 const struct value_print_options *options,
751 const struct generic_val_print_decorations
752 *decorations)
753 {
754 fprintf_filtered (stream, "%s", decorations->complex_prefix);
755 if (options->format)
756 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
757 embedded_offset, original_value, options, 0,
758 stream);
759 else
760 print_floating (valaddr + embedded_offset, TYPE_TARGET_TYPE (type),
761 stream);
762 fprintf_filtered (stream, "%s", decorations->complex_infix);
763 if (options->format)
764 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
765 embedded_offset
766 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
767 original_value, options, 0, stream);
768 else
769 print_floating (valaddr + embedded_offset
770 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
771 TYPE_TARGET_TYPE (type), stream);
772 fprintf_filtered (stream, "%s", decorations->complex_suffix);
773 }
774
775 /* A generic val_print that is suitable for use by language
776 implementations of the la_val_print method. This function can
777 handle most type codes, though not all, notably exception
778 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
779 the caller.
780
781 Most arguments are as to val_print.
782
783 The additional DECORATIONS argument can be used to customize the
784 output in some small, language-specific ways. */
785
786 void
787 generic_val_print (struct type *type, const gdb_byte *valaddr,
788 int embedded_offset, CORE_ADDR address,
789 struct ui_file *stream, int recurse,
790 const struct value *original_value,
791 const struct value_print_options *options,
792 const struct generic_val_print_decorations *decorations)
793 {
794 struct type *unresolved_type = type;
795
796 type = check_typedef (type);
797 switch (TYPE_CODE (type))
798 {
799 case TYPE_CODE_ARRAY:
800 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
801 recurse, original_value, options);
802 break;
803
804 case TYPE_CODE_MEMBERPTR:
805 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
806 original_value, options);
807 break;
808
809 case TYPE_CODE_PTR:
810 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
811 original_value, options);
812 break;
813
814 case TYPE_CODE_REF:
815 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
816 original_value, options);
817 break;
818
819 case TYPE_CODE_ENUM:
820 generic_val_print_enum (type, valaddr, embedded_offset, stream,
821 original_value, options);
822 break;
823
824 case TYPE_CODE_FLAGS:
825 generic_val_print_flags (type, valaddr, embedded_offset, stream,
826 original_value, options);
827 break;
828
829 case TYPE_CODE_FUNC:
830 case TYPE_CODE_METHOD:
831 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
832 original_value, options);
833 break;
834
835 case TYPE_CODE_BOOL:
836 generic_val_print_bool (type, valaddr, embedded_offset, stream,
837 original_value, options, decorations);
838 break;
839
840 case TYPE_CODE_RANGE:
841 /* FIXME: create_static_range_type does not set the unsigned bit in a
842 range type (I think it probably should copy it from the
843 target type), so we won't print values which are too large to
844 fit in a signed integer correctly. */
845 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
846 print with the target type, though, because the size of our
847 type and the target type might differ). */
848
849 /* FALLTHROUGH */
850
851 case TYPE_CODE_INT:
852 generic_val_print_int (type, valaddr, embedded_offset, stream,
853 original_value, options);
854 break;
855
856 case TYPE_CODE_CHAR:
857 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
858 stream, original_value, options);
859 break;
860
861 case TYPE_CODE_FLT:
862 generic_val_print_float (type, valaddr, embedded_offset, stream,
863 original_value, options);
864 break;
865
866 case TYPE_CODE_DECFLOAT:
867 generic_val_print_decfloat (type, valaddr, embedded_offset, stream,
868 original_value, options);
869 break;
870
871 case TYPE_CODE_VOID:
872 fputs_filtered (decorations->void_name, stream);
873 break;
874
875 case TYPE_CODE_ERROR:
876 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
877 break;
878
879 case TYPE_CODE_UNDEF:
880 /* This happens (without TYPE_FLAG_STUB set) on systems which
881 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
882 "struct foo *bar" and no complete type for struct foo in that
883 file. */
884 fprintf_filtered (stream, _("<incomplete type>"));
885 break;
886
887 case TYPE_CODE_COMPLEX:
888 generic_val_print_complex (type, valaddr, embedded_offset, stream,
889 original_value, options, decorations);
890 break;
891
892 case TYPE_CODE_UNION:
893 case TYPE_CODE_STRUCT:
894 case TYPE_CODE_METHODPTR:
895 default:
896 error (_("Unhandled type code %d in symbol table."),
897 TYPE_CODE (type));
898 }
899 gdb_flush (stream);
900 }
901
902 /* Print using the given LANGUAGE the data of type TYPE located at
903 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
904 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
905 STREAM according to OPTIONS. VAL is the whole object that came
906 from ADDRESS. VALADDR must point to the head of VAL's contents
907 buffer.
908
909 The language printers will pass down an adjusted EMBEDDED_OFFSET to
910 further helper subroutines as subfields of TYPE are printed. In
911 such cases, VALADDR is passed down unadjusted, as well as VAL, so
912 that VAL can be queried for metadata about the contents data being
913 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
914 buffer. For example: "has this field been optimized out", or "I'm
915 printing an object while inspecting a traceframe; has this
916 particular piece of data been collected?".
917
918 RECURSE indicates the amount of indentation to supply before
919 continuation lines; this amount is roughly twice the value of
920 RECURSE. */
921
922 void
923 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
924 CORE_ADDR address, struct ui_file *stream, int recurse,
925 const struct value *val,
926 const struct value_print_options *options,
927 const struct language_defn *language)
928 {
929 int ret = 0;
930 struct value_print_options local_opts = *options;
931 struct type *real_type = check_typedef (type);
932
933 if (local_opts.prettyformat == Val_prettyformat_default)
934 local_opts.prettyformat = (local_opts.prettyformat_structs
935 ? Val_prettyformat : Val_no_prettyformat);
936
937 QUIT;
938
939 /* Ensure that the type is complete and not just a stub. If the type is
940 only a stub and we can't find and substitute its complete type, then
941 print appropriate string and return. */
942
943 if (TYPE_STUB (real_type))
944 {
945 fprintf_filtered (stream, _("<incomplete type>"));
946 gdb_flush (stream);
947 return;
948 }
949
950 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
951 return;
952
953 if (!options->raw)
954 {
955 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
956 address, stream, recurse,
957 val, options, language);
958 if (ret)
959 return;
960 }
961
962 /* Handle summary mode. If the value is a scalar, print it;
963 otherwise, print an ellipsis. */
964 if (options->summary && !val_print_scalar_type_p (type))
965 {
966 fprintf_filtered (stream, "...");
967 return;
968 }
969
970 TRY
971 {
972 language->la_val_print (type, valaddr, embedded_offset, address,
973 stream, recurse, val,
974 &local_opts);
975 }
976 CATCH (except, RETURN_MASK_ERROR)
977 {
978 fprintf_filtered (stream, _("<error reading variable>"));
979 }
980 END_CATCH
981 }
982
983 /* Check whether the value VAL is printable. Return 1 if it is;
984 return 0 and print an appropriate error message to STREAM according to
985 OPTIONS if it is not. */
986
987 static int
988 value_check_printable (struct value *val, struct ui_file *stream,
989 const struct value_print_options *options)
990 {
991 if (val == 0)
992 {
993 fprintf_filtered (stream, _("<address of value unknown>"));
994 return 0;
995 }
996
997 if (value_entirely_optimized_out (val))
998 {
999 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1000 fprintf_filtered (stream, "...");
1001 else
1002 val_print_optimized_out (val, stream);
1003 return 0;
1004 }
1005
1006 if (value_entirely_unavailable (val))
1007 {
1008 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1009 fprintf_filtered (stream, "...");
1010 else
1011 val_print_unavailable (stream);
1012 return 0;
1013 }
1014
1015 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1016 {
1017 fprintf_filtered (stream, _("<internal function %s>"),
1018 value_internal_function_name (val));
1019 return 0;
1020 }
1021
1022 return 1;
1023 }
1024
1025 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1026 to OPTIONS.
1027
1028 This is a preferable interface to val_print, above, because it uses
1029 GDB's value mechanism. */
1030
1031 void
1032 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1033 const struct value_print_options *options,
1034 const struct language_defn *language)
1035 {
1036 if (!value_check_printable (val, stream, options))
1037 return;
1038
1039 if (language->la_language == language_ada)
1040 /* The value might have a dynamic type, which would cause trouble
1041 below when trying to extract the value contents (since the value
1042 size is determined from the type size which is unknown). So
1043 get a fixed representation of our value. */
1044 val = ada_to_fixed_value (val);
1045
1046 val_print (value_type (val), value_contents_for_printing (val),
1047 value_embedded_offset (val), value_address (val),
1048 stream, recurse,
1049 val, options, language);
1050 }
1051
1052 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1053 is printed using the current_language syntax. */
1054
1055 void
1056 value_print (struct value *val, struct ui_file *stream,
1057 const struct value_print_options *options)
1058 {
1059 if (!value_check_printable (val, stream, options))
1060 return;
1061
1062 if (!options->raw)
1063 {
1064 int r
1065 = apply_ext_lang_val_pretty_printer (value_type (val),
1066 value_contents_for_printing (val),
1067 value_embedded_offset (val),
1068 value_address (val),
1069 stream, 0,
1070 val, options, current_language);
1071
1072 if (r)
1073 return;
1074 }
1075
1076 LA_VALUE_PRINT (val, stream, options);
1077 }
1078
1079 /* Called by various <lang>_val_print routines to print
1080 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1081 value. STREAM is where to print the value. */
1082
1083 void
1084 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1085 struct ui_file *stream)
1086 {
1087 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1088
1089 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1090 {
1091 LONGEST val;
1092
1093 if (TYPE_UNSIGNED (type)
1094 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1095 byte_order, &val))
1096 {
1097 print_longest (stream, 'u', 0, val);
1098 }
1099 else
1100 {
1101 /* Signed, or we couldn't turn an unsigned value into a
1102 LONGEST. For signed values, one could assume two's
1103 complement (a reasonable assumption, I think) and do
1104 better than this. */
1105 print_hex_chars (stream, (unsigned char *) valaddr,
1106 TYPE_LENGTH (type), byte_order);
1107 }
1108 }
1109 else
1110 {
1111 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1112 unpack_long (type, valaddr));
1113 }
1114 }
1115
1116 void
1117 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1118 struct ui_file *stream)
1119 {
1120 ULONGEST val = unpack_long (type, valaddr);
1121 int bitpos, nfields = TYPE_NFIELDS (type);
1122
1123 fputs_filtered ("[ ", stream);
1124 for (bitpos = 0; bitpos < nfields; bitpos++)
1125 {
1126 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1127 && (val & ((ULONGEST)1 << bitpos)))
1128 {
1129 if (TYPE_FIELD_NAME (type, bitpos))
1130 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1131 else
1132 fprintf_filtered (stream, "#%d ", bitpos);
1133 }
1134 }
1135 fputs_filtered ("]", stream);
1136 }
1137
1138 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1139 according to OPTIONS and SIZE on STREAM. Format i is not supported
1140 at this level.
1141
1142 This is how the elements of an array or structure are printed
1143 with a format. */
1144
1145 void
1146 val_print_scalar_formatted (struct type *type,
1147 const gdb_byte *valaddr, int embedded_offset,
1148 const struct value *val,
1149 const struct value_print_options *options,
1150 int size,
1151 struct ui_file *stream)
1152 {
1153 gdb_assert (val != NULL);
1154 gdb_assert (valaddr == value_contents_for_printing_const (val));
1155
1156 /* If we get here with a string format, try again without it. Go
1157 all the way back to the language printers, which may call us
1158 again. */
1159 if (options->format == 's')
1160 {
1161 struct value_print_options opts = *options;
1162 opts.format = 0;
1163 opts.deref_ref = 0;
1164 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1165 current_language);
1166 return;
1167 }
1168
1169 /* A scalar object that does not have all bits available can't be
1170 printed, because all bits contribute to its representation. */
1171 if (value_bits_any_optimized_out (val,
1172 TARGET_CHAR_BIT * embedded_offset,
1173 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1174 val_print_optimized_out (val, stream);
1175 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1176 val_print_unavailable (stream);
1177 else
1178 print_scalar_formatted (valaddr + embedded_offset, type,
1179 options, size, stream);
1180 }
1181
1182 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1183 The raison d'etre of this function is to consolidate printing of
1184 LONG_LONG's into this one function. The format chars b,h,w,g are
1185 from print_scalar_formatted(). Numbers are printed using C
1186 format.
1187
1188 USE_C_FORMAT means to use C format in all cases. Without it,
1189 'o' and 'x' format do not include the standard C radix prefix
1190 (leading 0 or 0x).
1191
1192 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1193 and was intended to request formating according to the current
1194 language and would be used for most integers that GDB prints. The
1195 exceptional cases were things like protocols where the format of
1196 the integer is a protocol thing, not a user-visible thing). The
1197 parameter remains to preserve the information of what things might
1198 be printed with language-specific format, should we ever resurrect
1199 that capability. */
1200
1201 void
1202 print_longest (struct ui_file *stream, int format, int use_c_format,
1203 LONGEST val_long)
1204 {
1205 const char *val;
1206
1207 switch (format)
1208 {
1209 case 'd':
1210 val = int_string (val_long, 10, 1, 0, 1); break;
1211 case 'u':
1212 val = int_string (val_long, 10, 0, 0, 1); break;
1213 case 'x':
1214 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1215 case 'b':
1216 val = int_string (val_long, 16, 0, 2, 1); break;
1217 case 'h':
1218 val = int_string (val_long, 16, 0, 4, 1); break;
1219 case 'w':
1220 val = int_string (val_long, 16, 0, 8, 1); break;
1221 case 'g':
1222 val = int_string (val_long, 16, 0, 16, 1); break;
1223 break;
1224 case 'o':
1225 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1226 default:
1227 internal_error (__FILE__, __LINE__,
1228 _("failed internal consistency check"));
1229 }
1230 fputs_filtered (val, stream);
1231 }
1232
1233 /* This used to be a macro, but I don't think it is called often enough
1234 to merit such treatment. */
1235 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1236 arguments to a function, number in a value history, register number, etc.)
1237 where the value must not be larger than can fit in an int. */
1238
1239 int
1240 longest_to_int (LONGEST arg)
1241 {
1242 /* Let the compiler do the work. */
1243 int rtnval = (int) arg;
1244
1245 /* Check for overflows or underflows. */
1246 if (sizeof (LONGEST) > sizeof (int))
1247 {
1248 if (rtnval != arg)
1249 {
1250 error (_("Value out of range."));
1251 }
1252 }
1253 return (rtnval);
1254 }
1255
1256 /* Print a floating point value of type TYPE (not always a
1257 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1258
1259 void
1260 print_floating (const gdb_byte *valaddr, struct type *type,
1261 struct ui_file *stream)
1262 {
1263 DOUBLEST doub;
1264 int inv;
1265 const struct floatformat *fmt = NULL;
1266 unsigned len = TYPE_LENGTH (type);
1267 enum float_kind kind;
1268
1269 /* If it is a floating-point, check for obvious problems. */
1270 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1271 fmt = floatformat_from_type (type);
1272 if (fmt != NULL)
1273 {
1274 kind = floatformat_classify (fmt, valaddr);
1275 if (kind == float_nan)
1276 {
1277 if (floatformat_is_negative (fmt, valaddr))
1278 fprintf_filtered (stream, "-");
1279 fprintf_filtered (stream, "nan(");
1280 fputs_filtered ("0x", stream);
1281 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1282 fprintf_filtered (stream, ")");
1283 return;
1284 }
1285 else if (kind == float_infinite)
1286 {
1287 if (floatformat_is_negative (fmt, valaddr))
1288 fputs_filtered ("-", stream);
1289 fputs_filtered ("inf", stream);
1290 return;
1291 }
1292 }
1293
1294 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1295 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1296 needs to be used as that takes care of any necessary type
1297 conversions. Such conversions are of course direct to DOUBLEST
1298 and disregard any possible target floating point limitations.
1299 For instance, a u64 would be converted and displayed exactly on a
1300 host with 80 bit DOUBLEST but with loss of information on a host
1301 with 64 bit DOUBLEST. */
1302
1303 doub = unpack_double (type, valaddr, &inv);
1304 if (inv)
1305 {
1306 fprintf_filtered (stream, "<invalid float value>");
1307 return;
1308 }
1309
1310 /* FIXME: kettenis/2001-01-20: The following code makes too much
1311 assumptions about the host and target floating point format. */
1312
1313 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1314 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1315 instead uses the type's length to determine the precision of the
1316 floating-point value being printed. */
1317
1318 if (len < sizeof (double))
1319 fprintf_filtered (stream, "%.9g", (double) doub);
1320 else if (len == sizeof (double))
1321 fprintf_filtered (stream, "%.17g", (double) doub);
1322 else
1323 #ifdef PRINTF_HAS_LONG_DOUBLE
1324 fprintf_filtered (stream, "%.35Lg", doub);
1325 #else
1326 /* This at least wins with values that are representable as
1327 doubles. */
1328 fprintf_filtered (stream, "%.17g", (double) doub);
1329 #endif
1330 }
1331
1332 void
1333 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1334 struct ui_file *stream)
1335 {
1336 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1337 char decstr[MAX_DECIMAL_STRING];
1338 unsigned len = TYPE_LENGTH (type);
1339
1340 decimal_to_string (valaddr, len, byte_order, decstr);
1341 fputs_filtered (decstr, stream);
1342 return;
1343 }
1344
1345 void
1346 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1347 unsigned len, enum bfd_endian byte_order)
1348 {
1349
1350 #define BITS_IN_BYTES 8
1351
1352 const gdb_byte *p;
1353 unsigned int i;
1354 int b;
1355
1356 /* Declared "int" so it will be signed.
1357 This ensures that right shift will shift in zeros. */
1358
1359 const int mask = 0x080;
1360
1361 /* FIXME: We should be not printing leading zeroes in most cases. */
1362
1363 if (byte_order == BFD_ENDIAN_BIG)
1364 {
1365 for (p = valaddr;
1366 p < valaddr + len;
1367 p++)
1368 {
1369 /* Every byte has 8 binary characters; peel off
1370 and print from the MSB end. */
1371
1372 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1373 {
1374 if (*p & (mask >> i))
1375 b = 1;
1376 else
1377 b = 0;
1378
1379 fprintf_filtered (stream, "%1d", b);
1380 }
1381 }
1382 }
1383 else
1384 {
1385 for (p = valaddr + len - 1;
1386 p >= valaddr;
1387 p--)
1388 {
1389 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1390 {
1391 if (*p & (mask >> i))
1392 b = 1;
1393 else
1394 b = 0;
1395
1396 fprintf_filtered (stream, "%1d", b);
1397 }
1398 }
1399 }
1400 }
1401
1402 /* VALADDR points to an integer of LEN bytes.
1403 Print it in octal on stream or format it in buf. */
1404
1405 void
1406 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1407 unsigned len, enum bfd_endian byte_order)
1408 {
1409 const gdb_byte *p;
1410 unsigned char octa1, octa2, octa3, carry;
1411 int cycle;
1412
1413 /* FIXME: We should be not printing leading zeroes in most cases. */
1414
1415
1416 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1417 * the extra bits, which cycle every three bytes:
1418 *
1419 * Byte side: 0 1 2 3
1420 * | | | |
1421 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1422 *
1423 * Octal side: 0 1 carry 3 4 carry ...
1424 *
1425 * Cycle number: 0 1 2
1426 *
1427 * But of course we are printing from the high side, so we have to
1428 * figure out where in the cycle we are so that we end up with no
1429 * left over bits at the end.
1430 */
1431 #define BITS_IN_OCTAL 3
1432 #define HIGH_ZERO 0340
1433 #define LOW_ZERO 0016
1434 #define CARRY_ZERO 0003
1435 #define HIGH_ONE 0200
1436 #define MID_ONE 0160
1437 #define LOW_ONE 0016
1438 #define CARRY_ONE 0001
1439 #define HIGH_TWO 0300
1440 #define MID_TWO 0070
1441 #define LOW_TWO 0007
1442
1443 /* For 32 we start in cycle 2, with two bits and one bit carry;
1444 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1445
1446 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1447 carry = 0;
1448
1449 fputs_filtered ("0", stream);
1450 if (byte_order == BFD_ENDIAN_BIG)
1451 {
1452 for (p = valaddr;
1453 p < valaddr + len;
1454 p++)
1455 {
1456 switch (cycle)
1457 {
1458 case 0:
1459 /* No carry in, carry out two bits. */
1460
1461 octa1 = (HIGH_ZERO & *p) >> 5;
1462 octa2 = (LOW_ZERO & *p) >> 2;
1463 carry = (CARRY_ZERO & *p);
1464 fprintf_filtered (stream, "%o", octa1);
1465 fprintf_filtered (stream, "%o", octa2);
1466 break;
1467
1468 case 1:
1469 /* Carry in two bits, carry out one bit. */
1470
1471 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1472 octa2 = (MID_ONE & *p) >> 4;
1473 octa3 = (LOW_ONE & *p) >> 1;
1474 carry = (CARRY_ONE & *p);
1475 fprintf_filtered (stream, "%o", octa1);
1476 fprintf_filtered (stream, "%o", octa2);
1477 fprintf_filtered (stream, "%o", octa3);
1478 break;
1479
1480 case 2:
1481 /* Carry in one bit, no carry out. */
1482
1483 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1484 octa2 = (MID_TWO & *p) >> 3;
1485 octa3 = (LOW_TWO & *p);
1486 carry = 0;
1487 fprintf_filtered (stream, "%o", octa1);
1488 fprintf_filtered (stream, "%o", octa2);
1489 fprintf_filtered (stream, "%o", octa3);
1490 break;
1491
1492 default:
1493 error (_("Internal error in octal conversion;"));
1494 }
1495
1496 cycle++;
1497 cycle = cycle % BITS_IN_OCTAL;
1498 }
1499 }
1500 else
1501 {
1502 for (p = valaddr + len - 1;
1503 p >= valaddr;
1504 p--)
1505 {
1506 switch (cycle)
1507 {
1508 case 0:
1509 /* Carry out, no carry in */
1510
1511 octa1 = (HIGH_ZERO & *p) >> 5;
1512 octa2 = (LOW_ZERO & *p) >> 2;
1513 carry = (CARRY_ZERO & *p);
1514 fprintf_filtered (stream, "%o", octa1);
1515 fprintf_filtered (stream, "%o", octa2);
1516 break;
1517
1518 case 1:
1519 /* Carry in, carry out */
1520
1521 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1522 octa2 = (MID_ONE & *p) >> 4;
1523 octa3 = (LOW_ONE & *p) >> 1;
1524 carry = (CARRY_ONE & *p);
1525 fprintf_filtered (stream, "%o", octa1);
1526 fprintf_filtered (stream, "%o", octa2);
1527 fprintf_filtered (stream, "%o", octa3);
1528 break;
1529
1530 case 2:
1531 /* Carry in, no carry out */
1532
1533 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1534 octa2 = (MID_TWO & *p) >> 3;
1535 octa3 = (LOW_TWO & *p);
1536 carry = 0;
1537 fprintf_filtered (stream, "%o", octa1);
1538 fprintf_filtered (stream, "%o", octa2);
1539 fprintf_filtered (stream, "%o", octa3);
1540 break;
1541
1542 default:
1543 error (_("Internal error in octal conversion;"));
1544 }
1545
1546 cycle++;
1547 cycle = cycle % BITS_IN_OCTAL;
1548 }
1549 }
1550
1551 }
1552
1553 /* VALADDR points to an integer of LEN bytes.
1554 Print it in decimal on stream or format it in buf. */
1555
1556 void
1557 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1558 unsigned len, enum bfd_endian byte_order)
1559 {
1560 #define TEN 10
1561 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1562 #define CARRY_LEFT( x ) ((x) % TEN)
1563 #define SHIFT( x ) ((x) << 4)
1564 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1565 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1566
1567 const gdb_byte *p;
1568 unsigned char *digits;
1569 int carry;
1570 int decimal_len;
1571 int i, j, decimal_digits;
1572 int dummy;
1573 int flip;
1574
1575 /* Base-ten number is less than twice as many digits
1576 as the base 16 number, which is 2 digits per byte. */
1577
1578 decimal_len = len * 2 * 2;
1579 digits = xmalloc (decimal_len);
1580
1581 for (i = 0; i < decimal_len; i++)
1582 {
1583 digits[i] = 0;
1584 }
1585
1586 /* Ok, we have an unknown number of bytes of data to be printed in
1587 * decimal.
1588 *
1589 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1590 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1591 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1592 *
1593 * The trick is that "digits" holds a base-10 number, but sometimes
1594 * the individual digits are > 10.
1595 *
1596 * Outer loop is per nibble (hex digit) of input, from MSD end to
1597 * LSD end.
1598 */
1599 decimal_digits = 0; /* Number of decimal digits so far */
1600 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1601 flip = 0;
1602 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1603 {
1604 /*
1605 * Multiply current base-ten number by 16 in place.
1606 * Each digit was between 0 and 9, now is between
1607 * 0 and 144.
1608 */
1609 for (j = 0; j < decimal_digits; j++)
1610 {
1611 digits[j] = SHIFT (digits[j]);
1612 }
1613
1614 /* Take the next nibble off the input and add it to what
1615 * we've got in the LSB position. Bottom 'digit' is now
1616 * between 0 and 159.
1617 *
1618 * "flip" is used to run this loop twice for each byte.
1619 */
1620 if (flip == 0)
1621 {
1622 /* Take top nibble. */
1623
1624 digits[0] += HIGH_NIBBLE (*p);
1625 flip = 1;
1626 }
1627 else
1628 {
1629 /* Take low nibble and bump our pointer "p". */
1630
1631 digits[0] += LOW_NIBBLE (*p);
1632 if (byte_order == BFD_ENDIAN_BIG)
1633 p++;
1634 else
1635 p--;
1636 flip = 0;
1637 }
1638
1639 /* Re-decimalize. We have to do this often enough
1640 * that we don't overflow, but once per nibble is
1641 * overkill. Easier this way, though. Note that the
1642 * carry is often larger than 10 (e.g. max initial
1643 * carry out of lowest nibble is 15, could bubble all
1644 * the way up greater than 10). So we have to do
1645 * the carrying beyond the last current digit.
1646 */
1647 carry = 0;
1648 for (j = 0; j < decimal_len - 1; j++)
1649 {
1650 digits[j] += carry;
1651
1652 /* "/" won't handle an unsigned char with
1653 * a value that if signed would be negative.
1654 * So extend to longword int via "dummy".
1655 */
1656 dummy = digits[j];
1657 carry = CARRY_OUT (dummy);
1658 digits[j] = CARRY_LEFT (dummy);
1659
1660 if (j >= decimal_digits && carry == 0)
1661 {
1662 /*
1663 * All higher digits are 0 and we
1664 * no longer have a carry.
1665 *
1666 * Note: "j" is 0-based, "decimal_digits" is
1667 * 1-based.
1668 */
1669 decimal_digits = j + 1;
1670 break;
1671 }
1672 }
1673 }
1674
1675 /* Ok, now "digits" is the decimal representation, with
1676 the "decimal_digits" actual digits. Print! */
1677
1678 for (i = decimal_digits - 1; i >= 0; i--)
1679 {
1680 fprintf_filtered (stream, "%1d", digits[i]);
1681 }
1682 xfree (digits);
1683 }
1684
1685 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1686
1687 void
1688 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1689 unsigned len, enum bfd_endian byte_order)
1690 {
1691 const gdb_byte *p;
1692
1693 /* FIXME: We should be not printing leading zeroes in most cases. */
1694
1695 fputs_filtered ("0x", stream);
1696 if (byte_order == BFD_ENDIAN_BIG)
1697 {
1698 for (p = valaddr;
1699 p < valaddr + len;
1700 p++)
1701 {
1702 fprintf_filtered (stream, "%02x", *p);
1703 }
1704 }
1705 else
1706 {
1707 for (p = valaddr + len - 1;
1708 p >= valaddr;
1709 p--)
1710 {
1711 fprintf_filtered (stream, "%02x", *p);
1712 }
1713 }
1714 }
1715
1716 /* VALADDR points to a char integer of LEN bytes.
1717 Print it out in appropriate language form on stream.
1718 Omit any leading zero chars. */
1719
1720 void
1721 print_char_chars (struct ui_file *stream, struct type *type,
1722 const gdb_byte *valaddr,
1723 unsigned len, enum bfd_endian byte_order)
1724 {
1725 const gdb_byte *p;
1726
1727 if (byte_order == BFD_ENDIAN_BIG)
1728 {
1729 p = valaddr;
1730 while (p < valaddr + len - 1 && *p == 0)
1731 ++p;
1732
1733 while (p < valaddr + len)
1734 {
1735 LA_EMIT_CHAR (*p, type, stream, '\'');
1736 ++p;
1737 }
1738 }
1739 else
1740 {
1741 p = valaddr + len - 1;
1742 while (p > valaddr && *p == 0)
1743 --p;
1744
1745 while (p >= valaddr)
1746 {
1747 LA_EMIT_CHAR (*p, type, stream, '\'');
1748 --p;
1749 }
1750 }
1751 }
1752
1753 /* Print function pointer with inferior address ADDRESS onto stdio
1754 stream STREAM. */
1755
1756 void
1757 print_function_pointer_address (const struct value_print_options *options,
1758 struct gdbarch *gdbarch,
1759 CORE_ADDR address,
1760 struct ui_file *stream)
1761 {
1762 CORE_ADDR func_addr
1763 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1764 &current_target);
1765
1766 /* If the function pointer is represented by a description, print
1767 the address of the description. */
1768 if (options->addressprint && func_addr != address)
1769 {
1770 fputs_filtered ("@", stream);
1771 fputs_filtered (paddress (gdbarch, address), stream);
1772 fputs_filtered (": ", stream);
1773 }
1774 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1775 }
1776
1777
1778 /* Print on STREAM using the given OPTIONS the index for the element
1779 at INDEX of an array whose index type is INDEX_TYPE. */
1780
1781 void
1782 maybe_print_array_index (struct type *index_type, LONGEST index,
1783 struct ui_file *stream,
1784 const struct value_print_options *options)
1785 {
1786 struct value *index_value;
1787
1788 if (!options->print_array_indexes)
1789 return;
1790
1791 index_value = value_from_longest (index_type, index);
1792
1793 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1794 }
1795
1796 /* Called by various <lang>_val_print routines to print elements of an
1797 array in the form "<elem1>, <elem2>, <elem3>, ...".
1798
1799 (FIXME?) Assumes array element separator is a comma, which is correct
1800 for all languages currently handled.
1801 (FIXME?) Some languages have a notation for repeated array elements,
1802 perhaps we should try to use that notation when appropriate. */
1803
1804 void
1805 val_print_array_elements (struct type *type,
1806 const gdb_byte *valaddr, int embedded_offset,
1807 CORE_ADDR address, struct ui_file *stream,
1808 int recurse,
1809 const struct value *val,
1810 const struct value_print_options *options,
1811 unsigned int i)
1812 {
1813 unsigned int things_printed = 0;
1814 unsigned len;
1815 struct type *elttype, *index_type, *base_index_type;
1816 unsigned eltlen;
1817 /* Position of the array element we are examining to see
1818 whether it is repeated. */
1819 unsigned int rep1;
1820 /* Number of repetitions we have detected so far. */
1821 unsigned int reps;
1822 LONGEST low_bound, high_bound;
1823 LONGEST low_pos, high_pos;
1824
1825 elttype = TYPE_TARGET_TYPE (type);
1826 eltlen = TYPE_LENGTH (check_typedef (elttype));
1827 index_type = TYPE_INDEX_TYPE (type);
1828
1829 if (get_array_bounds (type, &low_bound, &high_bound))
1830 {
1831 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1832 base_index_type = TYPE_TARGET_TYPE (index_type);
1833 else
1834 base_index_type = index_type;
1835
1836 /* Non-contiguous enumerations types can by used as index types
1837 in some languages (e.g. Ada). In this case, the array length
1838 shall be computed from the positions of the first and last
1839 literal in the enumeration type, and not from the values
1840 of these literals. */
1841 if (!discrete_position (base_index_type, low_bound, &low_pos)
1842 || !discrete_position (base_index_type, high_bound, &high_pos))
1843 {
1844 warning (_("unable to get positions in array, use bounds instead"));
1845 low_pos = low_bound;
1846 high_pos = high_bound;
1847 }
1848
1849 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1850 But we have to be a little extra careful, because some languages
1851 such as Ada allow LOW_POS to be greater than HIGH_POS for
1852 empty arrays. In that situation, the array length is just zero,
1853 not negative! */
1854 if (low_pos > high_pos)
1855 len = 0;
1856 else
1857 len = high_pos - low_pos + 1;
1858 }
1859 else
1860 {
1861 warning (_("unable to get bounds of array, assuming null array"));
1862 low_bound = 0;
1863 len = 0;
1864 }
1865
1866 annotate_array_section_begin (i, elttype);
1867
1868 for (; i < len && things_printed < options->print_max; i++)
1869 {
1870 if (i != 0)
1871 {
1872 if (options->prettyformat_arrays)
1873 {
1874 fprintf_filtered (stream, ",\n");
1875 print_spaces_filtered (2 + 2 * recurse, stream);
1876 }
1877 else
1878 {
1879 fprintf_filtered (stream, ", ");
1880 }
1881 }
1882 wrap_here (n_spaces (2 + 2 * recurse));
1883 maybe_print_array_index (index_type, i + low_bound,
1884 stream, options);
1885
1886 rep1 = i + 1;
1887 reps = 1;
1888 /* Only check for reps if repeat_count_threshold is not set to
1889 UINT_MAX (unlimited). */
1890 if (options->repeat_count_threshold < UINT_MAX)
1891 {
1892 while (rep1 < len
1893 && value_contents_eq (val,
1894 embedded_offset + i * eltlen,
1895 val,
1896 (embedded_offset
1897 + rep1 * eltlen),
1898 eltlen))
1899 {
1900 ++reps;
1901 ++rep1;
1902 }
1903 }
1904
1905 if (reps > options->repeat_count_threshold)
1906 {
1907 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1908 address, stream, recurse + 1, val, options,
1909 current_language);
1910 annotate_elt_rep (reps);
1911 fprintf_filtered (stream, " <repeats %u times>", reps);
1912 annotate_elt_rep_end ();
1913
1914 i = rep1 - 1;
1915 things_printed += options->repeat_count_threshold;
1916 }
1917 else
1918 {
1919 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1920 address,
1921 stream, recurse + 1, val, options, current_language);
1922 annotate_elt ();
1923 things_printed++;
1924 }
1925 }
1926 annotate_array_section_end ();
1927 if (i < len)
1928 {
1929 fprintf_filtered (stream, "...");
1930 }
1931 }
1932
1933 /* Read LEN bytes of target memory at address MEMADDR, placing the
1934 results in GDB's memory at MYADDR. Returns a count of the bytes
1935 actually read, and optionally a target_xfer_status value in the
1936 location pointed to by ERRPTR if ERRPTR is non-null. */
1937
1938 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1939 function be eliminated. */
1940
1941 static int
1942 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1943 int len, int *errptr)
1944 {
1945 int nread; /* Number of bytes actually read. */
1946 int errcode; /* Error from last read. */
1947
1948 /* First try a complete read. */
1949 errcode = target_read_memory (memaddr, myaddr, len);
1950 if (errcode == 0)
1951 {
1952 /* Got it all. */
1953 nread = len;
1954 }
1955 else
1956 {
1957 /* Loop, reading one byte at a time until we get as much as we can. */
1958 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1959 {
1960 errcode = target_read_memory (memaddr++, myaddr++, 1);
1961 }
1962 /* If an error, the last read was unsuccessful, so adjust count. */
1963 if (errcode != 0)
1964 {
1965 nread--;
1966 }
1967 }
1968 if (errptr != NULL)
1969 {
1970 *errptr = errcode;
1971 }
1972 return (nread);
1973 }
1974
1975 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1976 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1977 allocated buffer containing the string, which the caller is responsible to
1978 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1979 success, or a target_xfer_status on failure.
1980
1981 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1982 (including eventual NULs in the middle or end of the string).
1983
1984 If LEN is -1, stops at the first null character (not necessarily
1985 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1986 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1987 the string.
1988
1989 Unless an exception is thrown, BUFFER will always be allocated, even on
1990 failure. In this case, some characters might have been read before the
1991 failure happened. Check BYTES_READ to recognize this situation.
1992
1993 Note: There was a FIXME asking to make this code use target_read_string,
1994 but this function is more general (can read past null characters, up to
1995 given LEN). Besides, it is used much more often than target_read_string
1996 so it is more tested. Perhaps callers of target_read_string should use
1997 this function instead? */
1998
1999 int
2000 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2001 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2002 {
2003 int errcode; /* Errno returned from bad reads. */
2004 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2005 gdb_byte *bufptr; /* Pointer to next available byte in
2006 buffer. */
2007 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2008
2009 /* Loop until we either have all the characters, or we encounter
2010 some error, such as bumping into the end of the address space. */
2011
2012 *buffer = NULL;
2013
2014 old_chain = make_cleanup (free_current_contents, buffer);
2015
2016 if (len > 0)
2017 {
2018 /* We want fetchlimit chars, so we might as well read them all in
2019 one operation. */
2020 unsigned int fetchlen = min (len, fetchlimit);
2021
2022 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2023 bufptr = *buffer;
2024
2025 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2026 / width;
2027 addr += nfetch * width;
2028 bufptr += nfetch * width;
2029 }
2030 else if (len == -1)
2031 {
2032 unsigned long bufsize = 0;
2033 unsigned int chunksize; /* Size of each fetch, in chars. */
2034 int found_nul; /* Non-zero if we found the nul char. */
2035 gdb_byte *limit; /* First location past end of fetch buffer. */
2036
2037 found_nul = 0;
2038 /* We are looking for a NUL terminator to end the fetching, so we
2039 might as well read in blocks that are large enough to be efficient,
2040 but not so large as to be slow if fetchlimit happens to be large.
2041 So we choose the minimum of 8 and fetchlimit. We used to use 200
2042 instead of 8 but 200 is way too big for remote debugging over a
2043 serial line. */
2044 chunksize = min (8, fetchlimit);
2045
2046 do
2047 {
2048 QUIT;
2049 nfetch = min (chunksize, fetchlimit - bufsize);
2050
2051 if (*buffer == NULL)
2052 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2053 else
2054 *buffer = (gdb_byte *) xrealloc (*buffer,
2055 (nfetch + bufsize) * width);
2056
2057 bufptr = *buffer + bufsize * width;
2058 bufsize += nfetch;
2059
2060 /* Read as much as we can. */
2061 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2062 / width;
2063
2064 /* Scan this chunk for the null character that terminates the string
2065 to print. If found, we don't need to fetch any more. Note
2066 that bufptr is explicitly left pointing at the next character
2067 after the null character, or at the next character after the end
2068 of the buffer. */
2069
2070 limit = bufptr + nfetch * width;
2071 while (bufptr < limit)
2072 {
2073 unsigned long c;
2074
2075 c = extract_unsigned_integer (bufptr, width, byte_order);
2076 addr += width;
2077 bufptr += width;
2078 if (c == 0)
2079 {
2080 /* We don't care about any error which happened after
2081 the NUL terminator. */
2082 errcode = 0;
2083 found_nul = 1;
2084 break;
2085 }
2086 }
2087 }
2088 while (errcode == 0 /* no error */
2089 && bufptr - *buffer < fetchlimit * width /* no overrun */
2090 && !found_nul); /* haven't found NUL yet */
2091 }
2092 else
2093 { /* Length of string is really 0! */
2094 /* We always allocate *buffer. */
2095 *buffer = bufptr = xmalloc (1);
2096 errcode = 0;
2097 }
2098
2099 /* bufptr and addr now point immediately beyond the last byte which we
2100 consider part of the string (including a '\0' which ends the string). */
2101 *bytes_read = bufptr - *buffer;
2102
2103 QUIT;
2104
2105 discard_cleanups (old_chain);
2106
2107 return errcode;
2108 }
2109
2110 /* Return true if print_wchar can display W without resorting to a
2111 numeric escape, false otherwise. */
2112
2113 static int
2114 wchar_printable (gdb_wchar_t w)
2115 {
2116 return (gdb_iswprint (w)
2117 || w == LCST ('\a') || w == LCST ('\b')
2118 || w == LCST ('\f') || w == LCST ('\n')
2119 || w == LCST ('\r') || w == LCST ('\t')
2120 || w == LCST ('\v'));
2121 }
2122
2123 /* A helper function that converts the contents of STRING to wide
2124 characters and then appends them to OUTPUT. */
2125
2126 static void
2127 append_string_as_wide (const char *string,
2128 struct obstack *output)
2129 {
2130 for (; *string; ++string)
2131 {
2132 gdb_wchar_t w = gdb_btowc (*string);
2133 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2134 }
2135 }
2136
2137 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2138 original (target) bytes representing the character, ORIG_LEN is the
2139 number of valid bytes. WIDTH is the number of bytes in a base
2140 characters of the type. OUTPUT is an obstack to which wide
2141 characters are emitted. QUOTER is a (narrow) character indicating
2142 the style of quotes surrounding the character to be printed.
2143 NEED_ESCAPE is an in/out flag which is used to track numeric
2144 escapes across calls. */
2145
2146 static void
2147 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2148 int orig_len, int width,
2149 enum bfd_endian byte_order,
2150 struct obstack *output,
2151 int quoter, int *need_escapep)
2152 {
2153 int need_escape = *need_escapep;
2154
2155 *need_escapep = 0;
2156
2157 /* iswprint implementation on Windows returns 1 for tab character.
2158 In order to avoid different printout on this host, we explicitly
2159 use wchar_printable function. */
2160 switch (w)
2161 {
2162 case LCST ('\a'):
2163 obstack_grow_wstr (output, LCST ("\\a"));
2164 break;
2165 case LCST ('\b'):
2166 obstack_grow_wstr (output, LCST ("\\b"));
2167 break;
2168 case LCST ('\f'):
2169 obstack_grow_wstr (output, LCST ("\\f"));
2170 break;
2171 case LCST ('\n'):
2172 obstack_grow_wstr (output, LCST ("\\n"));
2173 break;
2174 case LCST ('\r'):
2175 obstack_grow_wstr (output, LCST ("\\r"));
2176 break;
2177 case LCST ('\t'):
2178 obstack_grow_wstr (output, LCST ("\\t"));
2179 break;
2180 case LCST ('\v'):
2181 obstack_grow_wstr (output, LCST ("\\v"));
2182 break;
2183 default:
2184 {
2185 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2186 && w != LCST ('8')
2187 && w != LCST ('9'))))
2188 {
2189 gdb_wchar_t wchar = w;
2190
2191 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2192 obstack_grow_wstr (output, LCST ("\\"));
2193 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2194 }
2195 else
2196 {
2197 int i;
2198
2199 for (i = 0; i + width <= orig_len; i += width)
2200 {
2201 char octal[30];
2202 ULONGEST value;
2203
2204 value = extract_unsigned_integer (&orig[i], width,
2205 byte_order);
2206 /* If the value fits in 3 octal digits, print it that
2207 way. Otherwise, print it as a hex escape. */
2208 if (value <= 0777)
2209 xsnprintf (octal, sizeof (octal), "\\%.3o",
2210 (int) (value & 0777));
2211 else
2212 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2213 append_string_as_wide (octal, output);
2214 }
2215 /* If we somehow have extra bytes, print them now. */
2216 while (i < orig_len)
2217 {
2218 char octal[5];
2219
2220 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2221 append_string_as_wide (octal, output);
2222 ++i;
2223 }
2224
2225 *need_escapep = 1;
2226 }
2227 break;
2228 }
2229 }
2230 }
2231
2232 /* Print the character C on STREAM as part of the contents of a
2233 literal string whose delimiter is QUOTER. ENCODING names the
2234 encoding of C. */
2235
2236 void
2237 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2238 int quoter, const char *encoding)
2239 {
2240 enum bfd_endian byte_order
2241 = gdbarch_byte_order (get_type_arch (type));
2242 struct obstack wchar_buf, output;
2243 struct cleanup *cleanups;
2244 gdb_byte *buf;
2245 struct wchar_iterator *iter;
2246 int need_escape = 0;
2247
2248 buf = alloca (TYPE_LENGTH (type));
2249 pack_long (buf, type, c);
2250
2251 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2252 encoding, TYPE_LENGTH (type));
2253 cleanups = make_cleanup_wchar_iterator (iter);
2254
2255 /* This holds the printable form of the wchar_t data. */
2256 obstack_init (&wchar_buf);
2257 make_cleanup_obstack_free (&wchar_buf);
2258
2259 while (1)
2260 {
2261 int num_chars;
2262 gdb_wchar_t *chars;
2263 const gdb_byte *buf;
2264 size_t buflen;
2265 int print_escape = 1;
2266 enum wchar_iterate_result result;
2267
2268 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2269 if (num_chars < 0)
2270 break;
2271 if (num_chars > 0)
2272 {
2273 /* If all characters are printable, print them. Otherwise,
2274 we're going to have to print an escape sequence. We
2275 check all characters because we want to print the target
2276 bytes in the escape sequence, and we don't know character
2277 boundaries there. */
2278 int i;
2279
2280 print_escape = 0;
2281 for (i = 0; i < num_chars; ++i)
2282 if (!wchar_printable (chars[i]))
2283 {
2284 print_escape = 1;
2285 break;
2286 }
2287
2288 if (!print_escape)
2289 {
2290 for (i = 0; i < num_chars; ++i)
2291 print_wchar (chars[i], buf, buflen,
2292 TYPE_LENGTH (type), byte_order,
2293 &wchar_buf, quoter, &need_escape);
2294 }
2295 }
2296
2297 /* This handles the NUM_CHARS == 0 case as well. */
2298 if (print_escape)
2299 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2300 byte_order, &wchar_buf, quoter, &need_escape);
2301 }
2302
2303 /* The output in the host encoding. */
2304 obstack_init (&output);
2305 make_cleanup_obstack_free (&output);
2306
2307 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2308 (gdb_byte *) obstack_base (&wchar_buf),
2309 obstack_object_size (&wchar_buf),
2310 sizeof (gdb_wchar_t), &output, translit_char);
2311 obstack_1grow (&output, '\0');
2312
2313 fputs_filtered (obstack_base (&output), stream);
2314
2315 do_cleanups (cleanups);
2316 }
2317
2318 /* Return the repeat count of the next character/byte in ITER,
2319 storing the result in VEC. */
2320
2321 static int
2322 count_next_character (struct wchar_iterator *iter,
2323 VEC (converted_character_d) **vec)
2324 {
2325 struct converted_character *current;
2326
2327 if (VEC_empty (converted_character_d, *vec))
2328 {
2329 struct converted_character tmp;
2330 gdb_wchar_t *chars;
2331
2332 tmp.num_chars
2333 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2334 if (tmp.num_chars > 0)
2335 {
2336 gdb_assert (tmp.num_chars < MAX_WCHARS);
2337 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2338 }
2339 VEC_safe_push (converted_character_d, *vec, &tmp);
2340 }
2341
2342 current = VEC_last (converted_character_d, *vec);
2343
2344 /* Count repeated characters or bytes. */
2345 current->repeat_count = 1;
2346 if (current->num_chars == -1)
2347 {
2348 /* EOF */
2349 return -1;
2350 }
2351 else
2352 {
2353 gdb_wchar_t *chars;
2354 struct converted_character d;
2355 int repeat;
2356
2357 d.repeat_count = 0;
2358
2359 while (1)
2360 {
2361 /* Get the next character. */
2362 d.num_chars
2363 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2364
2365 /* If a character was successfully converted, save the character
2366 into the converted character. */
2367 if (d.num_chars > 0)
2368 {
2369 gdb_assert (d.num_chars < MAX_WCHARS);
2370 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2371 }
2372
2373 /* Determine if the current character is the same as this
2374 new character. */
2375 if (d.num_chars == current->num_chars && d.result == current->result)
2376 {
2377 /* There are two cases to consider:
2378
2379 1) Equality of converted character (num_chars > 0)
2380 2) Equality of non-converted character (num_chars == 0) */
2381 if ((current->num_chars > 0
2382 && memcmp (current->chars, d.chars,
2383 WCHAR_BUFLEN (current->num_chars)) == 0)
2384 || (current->num_chars == 0
2385 && current->buflen == d.buflen
2386 && memcmp (current->buf, d.buf, current->buflen) == 0))
2387 ++current->repeat_count;
2388 else
2389 break;
2390 }
2391 else
2392 break;
2393 }
2394
2395 /* Push this next converted character onto the result vector. */
2396 repeat = current->repeat_count;
2397 VEC_safe_push (converted_character_d, *vec, &d);
2398 return repeat;
2399 }
2400 }
2401
2402 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2403 character to use with string output. WIDTH is the size of the output
2404 character type. BYTE_ORDER is the the target byte order. OPTIONS
2405 is the user's print options. */
2406
2407 static void
2408 print_converted_chars_to_obstack (struct obstack *obstack,
2409 VEC (converted_character_d) *chars,
2410 int quote_char, int width,
2411 enum bfd_endian byte_order,
2412 const struct value_print_options *options)
2413 {
2414 unsigned int idx;
2415 struct converted_character *elem;
2416 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2417 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2418 int need_escape = 0;
2419
2420 /* Set the start state. */
2421 idx = 0;
2422 last = state = START;
2423 elem = NULL;
2424
2425 while (1)
2426 {
2427 switch (state)
2428 {
2429 case START:
2430 /* Nothing to do. */
2431 break;
2432
2433 case SINGLE:
2434 {
2435 int j;
2436
2437 /* We are outputting a single character
2438 (< options->repeat_count_threshold). */
2439
2440 if (last != SINGLE)
2441 {
2442 /* We were outputting some other type of content, so we
2443 must output and a comma and a quote. */
2444 if (last != START)
2445 obstack_grow_wstr (obstack, LCST (", "));
2446 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2447 }
2448 /* Output the character. */
2449 for (j = 0; j < elem->repeat_count; ++j)
2450 {
2451 if (elem->result == wchar_iterate_ok)
2452 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2453 byte_order, obstack, quote_char, &need_escape);
2454 else
2455 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2456 byte_order, obstack, quote_char, &need_escape);
2457 }
2458 }
2459 break;
2460
2461 case REPEAT:
2462 {
2463 int j;
2464 char *s;
2465
2466 /* We are outputting a character with a repeat count
2467 greater than options->repeat_count_threshold. */
2468
2469 if (last == SINGLE)
2470 {
2471 /* We were outputting a single string. Terminate the
2472 string. */
2473 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2474 }
2475 if (last != START)
2476 obstack_grow_wstr (obstack, LCST (", "));
2477
2478 /* Output the character and repeat string. */
2479 obstack_grow_wstr (obstack, LCST ("'"));
2480 if (elem->result == wchar_iterate_ok)
2481 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2482 byte_order, obstack, quote_char, &need_escape);
2483 else
2484 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2485 byte_order, obstack, quote_char, &need_escape);
2486 obstack_grow_wstr (obstack, LCST ("'"));
2487 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2488 for (j = 0; s[j]; ++j)
2489 {
2490 gdb_wchar_t w = gdb_btowc (s[j]);
2491 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2492 }
2493 xfree (s);
2494 }
2495 break;
2496
2497 case INCOMPLETE:
2498 /* We are outputting an incomplete sequence. */
2499 if (last == SINGLE)
2500 {
2501 /* If we were outputting a string of SINGLE characters,
2502 terminate the quote. */
2503 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2504 }
2505 if (last != START)
2506 obstack_grow_wstr (obstack, LCST (", "));
2507
2508 /* Output the incomplete sequence string. */
2509 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2510 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2511 obstack, 0, &need_escape);
2512 obstack_grow_wstr (obstack, LCST (">"));
2513
2514 /* We do not attempt to outupt anything after this. */
2515 state = FINISH;
2516 break;
2517
2518 case FINISH:
2519 /* All done. If we were outputting a string of SINGLE
2520 characters, the string must be terminated. Otherwise,
2521 REPEAT and INCOMPLETE are always left properly terminated. */
2522 if (last == SINGLE)
2523 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2524
2525 return;
2526 }
2527
2528 /* Get the next element and state. */
2529 last = state;
2530 if (state != FINISH)
2531 {
2532 elem = VEC_index (converted_character_d, chars, idx++);
2533 switch (elem->result)
2534 {
2535 case wchar_iterate_ok:
2536 case wchar_iterate_invalid:
2537 if (elem->repeat_count > options->repeat_count_threshold)
2538 state = REPEAT;
2539 else
2540 state = SINGLE;
2541 break;
2542
2543 case wchar_iterate_incomplete:
2544 state = INCOMPLETE;
2545 break;
2546
2547 case wchar_iterate_eof:
2548 state = FINISH;
2549 break;
2550 }
2551 }
2552 }
2553 }
2554
2555 /* Print the character string STRING, printing at most LENGTH
2556 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2557 the type of each character. OPTIONS holds the printing options;
2558 printing stops early if the number hits print_max; repeat counts
2559 are printed as appropriate. Print ellipses at the end if we had to
2560 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2561 QUOTE_CHAR is the character to print at each end of the string. If
2562 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2563 omitted. */
2564
2565 void
2566 generic_printstr (struct ui_file *stream, struct type *type,
2567 const gdb_byte *string, unsigned int length,
2568 const char *encoding, int force_ellipses,
2569 int quote_char, int c_style_terminator,
2570 const struct value_print_options *options)
2571 {
2572 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2573 unsigned int i;
2574 int width = TYPE_LENGTH (type);
2575 struct obstack wchar_buf, output;
2576 struct cleanup *cleanup;
2577 struct wchar_iterator *iter;
2578 int finished = 0;
2579 struct converted_character *last;
2580 VEC (converted_character_d) *converted_chars;
2581
2582 if (length == -1)
2583 {
2584 unsigned long current_char = 1;
2585
2586 for (i = 0; current_char; ++i)
2587 {
2588 QUIT;
2589 current_char = extract_unsigned_integer (string + i * width,
2590 width, byte_order);
2591 }
2592 length = i;
2593 }
2594
2595 /* If the string was not truncated due to `set print elements', and
2596 the last byte of it is a null, we don't print that, in
2597 traditional C style. */
2598 if (c_style_terminator
2599 && !force_ellipses
2600 && length > 0
2601 && (extract_unsigned_integer (string + (length - 1) * width,
2602 width, byte_order) == 0))
2603 length--;
2604
2605 if (length == 0)
2606 {
2607 fputs_filtered ("\"\"", stream);
2608 return;
2609 }
2610
2611 /* Arrange to iterate over the characters, in wchar_t form. */
2612 iter = make_wchar_iterator (string, length * width, encoding, width);
2613 cleanup = make_cleanup_wchar_iterator (iter);
2614 converted_chars = NULL;
2615 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2616
2617 /* Convert characters until the string is over or the maximum
2618 number of printed characters has been reached. */
2619 i = 0;
2620 while (i < options->print_max)
2621 {
2622 int r;
2623
2624 QUIT;
2625
2626 /* Grab the next character and repeat count. */
2627 r = count_next_character (iter, &converted_chars);
2628
2629 /* If less than zero, the end of the input string was reached. */
2630 if (r < 0)
2631 break;
2632
2633 /* Otherwise, add the count to the total print count and get
2634 the next character. */
2635 i += r;
2636 }
2637
2638 /* Get the last element and determine if the entire string was
2639 processed. */
2640 last = VEC_last (converted_character_d, converted_chars);
2641 finished = (last->result == wchar_iterate_eof);
2642
2643 /* Ensure that CONVERTED_CHARS is terminated. */
2644 last->result = wchar_iterate_eof;
2645
2646 /* WCHAR_BUF is the obstack we use to represent the string in
2647 wchar_t form. */
2648 obstack_init (&wchar_buf);
2649 make_cleanup_obstack_free (&wchar_buf);
2650
2651 /* Print the output string to the obstack. */
2652 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2653 width, byte_order, options);
2654
2655 if (force_ellipses || !finished)
2656 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2657
2658 /* OUTPUT is where we collect `char's for printing. */
2659 obstack_init (&output);
2660 make_cleanup_obstack_free (&output);
2661
2662 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2663 (gdb_byte *) obstack_base (&wchar_buf),
2664 obstack_object_size (&wchar_buf),
2665 sizeof (gdb_wchar_t), &output, translit_char);
2666 obstack_1grow (&output, '\0');
2667
2668 fputs_filtered (obstack_base (&output), stream);
2669
2670 do_cleanups (cleanup);
2671 }
2672
2673 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2674 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2675 stops at the first null byte, otherwise printing proceeds (including null
2676 bytes) until either print_max or LEN characters have been printed,
2677 whichever is smaller. ENCODING is the name of the string's
2678 encoding. It can be NULL, in which case the target encoding is
2679 assumed. */
2680
2681 int
2682 val_print_string (struct type *elttype, const char *encoding,
2683 CORE_ADDR addr, int len,
2684 struct ui_file *stream,
2685 const struct value_print_options *options)
2686 {
2687 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2688 int errcode; /* Errno returned from bad reads. */
2689 int found_nul; /* Non-zero if we found the nul char. */
2690 unsigned int fetchlimit; /* Maximum number of chars to print. */
2691 int bytes_read;
2692 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2693 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2694 struct gdbarch *gdbarch = get_type_arch (elttype);
2695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2696 int width = TYPE_LENGTH (elttype);
2697
2698 /* First we need to figure out the limit on the number of characters we are
2699 going to attempt to fetch and print. This is actually pretty simple. If
2700 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2701 LEN is -1, then the limit is print_max. This is true regardless of
2702 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2703 because finding the null byte (or available memory) is what actually
2704 limits the fetch. */
2705
2706 fetchlimit = (len == -1 ? options->print_max : min (len,
2707 options->print_max));
2708
2709 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2710 &buffer, &bytes_read);
2711 old_chain = make_cleanup (xfree, buffer);
2712
2713 addr += bytes_read;
2714
2715 /* We now have either successfully filled the buffer to fetchlimit,
2716 or terminated early due to an error or finding a null char when
2717 LEN is -1. */
2718
2719 /* Determine found_nul by looking at the last character read. */
2720 found_nul = 0;
2721 if (bytes_read >= width)
2722 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2723 byte_order) == 0;
2724 if (len == -1 && !found_nul)
2725 {
2726 gdb_byte *peekbuf;
2727
2728 /* We didn't find a NUL terminator we were looking for. Attempt
2729 to peek at the next character. If not successful, or it is not
2730 a null byte, then force ellipsis to be printed. */
2731
2732 peekbuf = (gdb_byte *) alloca (width);
2733
2734 if (target_read_memory (addr, peekbuf, width) == 0
2735 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2736 force_ellipsis = 1;
2737 }
2738 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2739 {
2740 /* Getting an error when we have a requested length, or fetching less
2741 than the number of characters actually requested, always make us
2742 print ellipsis. */
2743 force_ellipsis = 1;
2744 }
2745
2746 /* If we get an error before fetching anything, don't print a string.
2747 But if we fetch something and then get an error, print the string
2748 and then the error message. */
2749 if (errcode == 0 || bytes_read > 0)
2750 {
2751 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2752 encoding, force_ellipsis, options);
2753 }
2754
2755 if (errcode != 0)
2756 {
2757 char *str;
2758
2759 str = memory_error_message (errcode, gdbarch, addr);
2760 make_cleanup (xfree, str);
2761
2762 fprintf_filtered (stream, "<error: ");
2763 fputs_filtered (str, stream);
2764 fprintf_filtered (stream, ">");
2765 }
2766
2767 gdb_flush (stream);
2768 do_cleanups (old_chain);
2769
2770 return (bytes_read / width);
2771 }
2772 \f
2773
2774 /* The 'set input-radix' command writes to this auxiliary variable.
2775 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2776 it is left unchanged. */
2777
2778 static unsigned input_radix_1 = 10;
2779
2780 /* Validate an input or output radix setting, and make sure the user
2781 knows what they really did here. Radix setting is confusing, e.g.
2782 setting the input radix to "10" never changes it! */
2783
2784 static void
2785 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2786 {
2787 set_input_radix_1 (from_tty, input_radix_1);
2788 }
2789
2790 static void
2791 set_input_radix_1 (int from_tty, unsigned radix)
2792 {
2793 /* We don't currently disallow any input radix except 0 or 1, which don't
2794 make any mathematical sense. In theory, we can deal with any input
2795 radix greater than 1, even if we don't have unique digits for every
2796 value from 0 to radix-1, but in practice we lose on large radix values.
2797 We should either fix the lossage or restrict the radix range more.
2798 (FIXME). */
2799
2800 if (radix < 2)
2801 {
2802 input_radix_1 = input_radix;
2803 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2804 radix);
2805 }
2806 input_radix_1 = input_radix = radix;
2807 if (from_tty)
2808 {
2809 printf_filtered (_("Input radix now set to "
2810 "decimal %u, hex %x, octal %o.\n"),
2811 radix, radix, radix);
2812 }
2813 }
2814
2815 /* The 'set output-radix' command writes to this auxiliary variable.
2816 If the requested radix is valid, OUTPUT_RADIX is updated,
2817 otherwise, it is left unchanged. */
2818
2819 static unsigned output_radix_1 = 10;
2820
2821 static void
2822 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2823 {
2824 set_output_radix_1 (from_tty, output_radix_1);
2825 }
2826
2827 static void
2828 set_output_radix_1 (int from_tty, unsigned radix)
2829 {
2830 /* Validate the radix and disallow ones that we aren't prepared to
2831 handle correctly, leaving the radix unchanged. */
2832 switch (radix)
2833 {
2834 case 16:
2835 user_print_options.output_format = 'x'; /* hex */
2836 break;
2837 case 10:
2838 user_print_options.output_format = 0; /* decimal */
2839 break;
2840 case 8:
2841 user_print_options.output_format = 'o'; /* octal */
2842 break;
2843 default:
2844 output_radix_1 = output_radix;
2845 error (_("Unsupported output radix ``decimal %u''; "
2846 "output radix unchanged."),
2847 radix);
2848 }
2849 output_radix_1 = output_radix = radix;
2850 if (from_tty)
2851 {
2852 printf_filtered (_("Output radix now set to "
2853 "decimal %u, hex %x, octal %o.\n"),
2854 radix, radix, radix);
2855 }
2856 }
2857
2858 /* Set both the input and output radix at once. Try to set the output radix
2859 first, since it has the most restrictive range. An radix that is valid as
2860 an output radix is also valid as an input radix.
2861
2862 It may be useful to have an unusual input radix. If the user wishes to
2863 set an input radix that is not valid as an output radix, he needs to use
2864 the 'set input-radix' command. */
2865
2866 static void
2867 set_radix (char *arg, int from_tty)
2868 {
2869 unsigned radix;
2870
2871 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2872 set_output_radix_1 (0, radix);
2873 set_input_radix_1 (0, radix);
2874 if (from_tty)
2875 {
2876 printf_filtered (_("Input and output radices now set to "
2877 "decimal %u, hex %x, octal %o.\n"),
2878 radix, radix, radix);
2879 }
2880 }
2881
2882 /* Show both the input and output radices. */
2883
2884 static void
2885 show_radix (char *arg, int from_tty)
2886 {
2887 if (from_tty)
2888 {
2889 if (input_radix == output_radix)
2890 {
2891 printf_filtered (_("Input and output radices set to "
2892 "decimal %u, hex %x, octal %o.\n"),
2893 input_radix, input_radix, input_radix);
2894 }
2895 else
2896 {
2897 printf_filtered (_("Input radix set to decimal "
2898 "%u, hex %x, octal %o.\n"),
2899 input_radix, input_radix, input_radix);
2900 printf_filtered (_("Output radix set to decimal "
2901 "%u, hex %x, octal %o.\n"),
2902 output_radix, output_radix, output_radix);
2903 }
2904 }
2905 }
2906 \f
2907
2908 static void
2909 set_print (char *arg, int from_tty)
2910 {
2911 printf_unfiltered (
2912 "\"set print\" must be followed by the name of a print subcommand.\n");
2913 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2914 }
2915
2916 static void
2917 show_print (char *args, int from_tty)
2918 {
2919 cmd_show_list (showprintlist, from_tty, "");
2920 }
2921
2922 static void
2923 set_print_raw (char *arg, int from_tty)
2924 {
2925 printf_unfiltered (
2926 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2927 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2928 }
2929
2930 static void
2931 show_print_raw (char *args, int from_tty)
2932 {
2933 cmd_show_list (showprintrawlist, from_tty, "");
2934 }
2935
2936 \f
2937 void
2938 _initialize_valprint (void)
2939 {
2940 add_prefix_cmd ("print", no_class, set_print,
2941 _("Generic command for setting how things print."),
2942 &setprintlist, "set print ", 0, &setlist);
2943 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2944 /* Prefer set print to set prompt. */
2945 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2946
2947 add_prefix_cmd ("print", no_class, show_print,
2948 _("Generic command for showing print settings."),
2949 &showprintlist, "show print ", 0, &showlist);
2950 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2951 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2952
2953 add_prefix_cmd ("raw", no_class, set_print_raw,
2954 _("\
2955 Generic command for setting what things to print in \"raw\" mode."),
2956 &setprintrawlist, "set print raw ", 0, &setprintlist);
2957 add_prefix_cmd ("raw", no_class, show_print_raw,
2958 _("Generic command for showing \"print raw\" settings."),
2959 &showprintrawlist, "show print raw ", 0, &showprintlist);
2960
2961 add_setshow_uinteger_cmd ("elements", no_class,
2962 &user_print_options.print_max, _("\
2963 Set limit on string chars or array elements to print."), _("\
2964 Show limit on string chars or array elements to print."), _("\
2965 \"set print elements unlimited\" causes there to be no limit."),
2966 NULL,
2967 show_print_max,
2968 &setprintlist, &showprintlist);
2969
2970 add_setshow_boolean_cmd ("null-stop", no_class,
2971 &user_print_options.stop_print_at_null, _("\
2972 Set printing of char arrays to stop at first null char."), _("\
2973 Show printing of char arrays to stop at first null char."), NULL,
2974 NULL,
2975 show_stop_print_at_null,
2976 &setprintlist, &showprintlist);
2977
2978 add_setshow_uinteger_cmd ("repeats", no_class,
2979 &user_print_options.repeat_count_threshold, _("\
2980 Set threshold for repeated print elements."), _("\
2981 Show threshold for repeated print elements."), _("\
2982 \"set print repeats unlimited\" causes all elements to be individually printed."),
2983 NULL,
2984 show_repeat_count_threshold,
2985 &setprintlist, &showprintlist);
2986
2987 add_setshow_boolean_cmd ("pretty", class_support,
2988 &user_print_options.prettyformat_structs, _("\
2989 Set pretty formatting of structures."), _("\
2990 Show pretty formatting of structures."), NULL,
2991 NULL,
2992 show_prettyformat_structs,
2993 &setprintlist, &showprintlist);
2994
2995 add_setshow_boolean_cmd ("union", class_support,
2996 &user_print_options.unionprint, _("\
2997 Set printing of unions interior to structures."), _("\
2998 Show printing of unions interior to structures."), NULL,
2999 NULL,
3000 show_unionprint,
3001 &setprintlist, &showprintlist);
3002
3003 add_setshow_boolean_cmd ("array", class_support,
3004 &user_print_options.prettyformat_arrays, _("\
3005 Set pretty formatting of arrays."), _("\
3006 Show pretty formatting of arrays."), NULL,
3007 NULL,
3008 show_prettyformat_arrays,
3009 &setprintlist, &showprintlist);
3010
3011 add_setshow_boolean_cmd ("address", class_support,
3012 &user_print_options.addressprint, _("\
3013 Set printing of addresses."), _("\
3014 Show printing of addresses."), NULL,
3015 NULL,
3016 show_addressprint,
3017 &setprintlist, &showprintlist);
3018
3019 add_setshow_boolean_cmd ("symbol", class_support,
3020 &user_print_options.symbol_print, _("\
3021 Set printing of symbol names when printing pointers."), _("\
3022 Show printing of symbol names when printing pointers."),
3023 NULL, NULL,
3024 show_symbol_print,
3025 &setprintlist, &showprintlist);
3026
3027 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3028 _("\
3029 Set default input radix for entering numbers."), _("\
3030 Show default input radix for entering numbers."), NULL,
3031 set_input_radix,
3032 show_input_radix,
3033 &setlist, &showlist);
3034
3035 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3036 _("\
3037 Set default output radix for printing of values."), _("\
3038 Show default output radix for printing of values."), NULL,
3039 set_output_radix,
3040 show_output_radix,
3041 &setlist, &showlist);
3042
3043 /* The "set radix" and "show radix" commands are special in that
3044 they are like normal set and show commands but allow two normally
3045 independent variables to be either set or shown with a single
3046 command. So the usual deprecated_add_set_cmd() and [deleted]
3047 add_show_from_set() commands aren't really appropriate. */
3048 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3049 longer true - show can display anything. */
3050 add_cmd ("radix", class_support, set_radix, _("\
3051 Set default input and output number radices.\n\
3052 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3053 Without an argument, sets both radices back to the default value of 10."),
3054 &setlist);
3055 add_cmd ("radix", class_support, show_radix, _("\
3056 Show the default input and output number radices.\n\
3057 Use 'show input-radix' or 'show output-radix' to independently show each."),
3058 &showlist);
3059
3060 add_setshow_boolean_cmd ("array-indexes", class_support,
3061 &user_print_options.print_array_indexes, _("\
3062 Set printing of array indexes."), _("\
3063 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3064 &setprintlist, &showprintlist);
3065 }
This page took 0.185047 seconds and 5 git commands to generate.