Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 struct gdbarch *gdbarch = get_type_arch (type);
437 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
438
439 if (options->format && options->format != 's')
440 {
441 val_print_scalar_formatted (type, valaddr, embedded_offset,
442 original_value, options, 0, stream);
443 }
444 else
445 {
446 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
447 struct type *elttype = check_typedef (unresolved_elttype);
448 CORE_ADDR addr = unpack_pointer (type,
449 valaddr + embedded_offset * unit_size);
450
451 print_unpacked_pointer (type, elttype, addr, stream, options);
452 }
453 }
454
455
456 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
457
458 static void
459 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
460 int embedded_offset, struct ui_file *stream,
461 const struct value *original_value,
462 const struct value_print_options *options)
463 {
464 val_print_scalar_formatted (type, valaddr, embedded_offset,
465 original_value, options, 0, stream);
466 }
467
468 /* generic_val_print helper for TYPE_CODE_REF. */
469
470 static void
471 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
472 int embedded_offset, struct ui_file *stream, int recurse,
473 const struct value *original_value,
474 const struct value_print_options *options)
475 {
476 struct gdbarch *gdbarch = get_type_arch (type);
477 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
478
479 if (options->addressprint)
480 {
481 CORE_ADDR addr
482 = extract_typed_address (valaddr + embedded_offset, type);
483
484 fprintf_filtered (stream, "@");
485 fputs_filtered (paddress (gdbarch, addr), stream);
486 if (options->deref_ref)
487 fputs_filtered (": ", stream);
488 }
489 /* De-reference the reference. */
490 if (options->deref_ref)
491 {
492 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
493 {
494 struct value *deref_val;
495
496 deref_val = coerce_ref_if_computed (original_value);
497 if (deref_val != NULL)
498 {
499 /* More complicated computed references are not supported. */
500 gdb_assert (embedded_offset == 0);
501 }
502 else
503 deref_val = value_at (TYPE_TARGET_TYPE (type),
504 unpack_pointer (type,
505 (valaddr
506 + embedded_offset)));
507
508 common_val_print (deref_val, stream, recurse, options,
509 current_language);
510 }
511 else
512 fputs_filtered ("???", stream);
513 }
514 }
515
516 /* generic_val_print helper for TYPE_CODE_ENUM. */
517
518 static void
519 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
520 int embedded_offset, struct ui_file *stream,
521 const struct value *original_value,
522 const struct value_print_options *options)
523 {
524 unsigned int i;
525 unsigned int len;
526 LONGEST val;
527 struct gdbarch *gdbarch = get_type_arch (type);
528 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
529
530 if (options->format)
531 {
532 val_print_scalar_formatted (type, valaddr, embedded_offset,
533 original_value, options, 0, stream);
534 return;
535 }
536 len = TYPE_NFIELDS (type);
537 val = unpack_long (type, valaddr + embedded_offset * unit_size);
538 for (i = 0; i < len; i++)
539 {
540 QUIT;
541 if (val == TYPE_FIELD_ENUMVAL (type, i))
542 {
543 break;
544 }
545 }
546 if (i < len)
547 {
548 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
549 }
550 else if (TYPE_FLAG_ENUM (type))
551 {
552 int first = 1;
553
554 /* We have a "flag" enum, so we try to decompose it into
555 pieces as appropriate. A flag enum has disjoint
556 constants by definition. */
557 fputs_filtered ("(", stream);
558 for (i = 0; i < len; ++i)
559 {
560 QUIT;
561
562 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
563 {
564 if (!first)
565 fputs_filtered (" | ", stream);
566 first = 0;
567
568 val &= ~TYPE_FIELD_ENUMVAL (type, i);
569 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
570 }
571 }
572
573 if (first || val != 0)
574 {
575 if (!first)
576 fputs_filtered (" | ", stream);
577 fputs_filtered ("unknown: ", stream);
578 print_longest (stream, 'd', 0, val);
579 }
580
581 fputs_filtered (")", stream);
582 }
583 else
584 print_longest (stream, 'd', 0, val);
585 }
586
587 /* generic_val_print helper for TYPE_CODE_FLAGS. */
588
589 static void
590 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
591 int embedded_offset, struct ui_file *stream,
592 const struct value *original_value,
593 const struct value_print_options *options)
594
595 {
596 if (options->format)
597 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
598 options, 0, stream);
599 else
600 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
601 }
602
603 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
604
605 static void
606 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
607 int embedded_offset, CORE_ADDR address,
608 struct ui_file *stream,
609 const struct value *original_value,
610 const struct value_print_options *options)
611 {
612 struct gdbarch *gdbarch = get_type_arch (type);
613
614 if (options->format)
615 {
616 val_print_scalar_formatted (type, valaddr, embedded_offset,
617 original_value, options, 0, stream);
618 }
619 else
620 {
621 /* FIXME, we should consider, at least for ANSI C language,
622 eliminating the distinction made between FUNCs and POINTERs
623 to FUNCs. */
624 fprintf_filtered (stream, "{");
625 type_print (type, "", stream, -1);
626 fprintf_filtered (stream, "} ");
627 /* Try to print what function it points to, and its address. */
628 print_address_demangle (options, gdbarch, address, stream, demangle);
629 }
630 }
631
632 /* generic_val_print helper for TYPE_CODE_BOOL. */
633
634 static void
635 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
636 int embedded_offset, struct ui_file *stream,
637 const struct value *original_value,
638 const struct value_print_options *options,
639 const struct generic_val_print_decorations *decorations)
640 {
641 LONGEST val;
642 struct gdbarch *gdbarch = get_type_arch (type);
643 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
644
645 if (options->format || options->output_format)
646 {
647 struct value_print_options opts = *options;
648 opts.format = (options->format ? options->format
649 : options->output_format);
650 val_print_scalar_formatted (type, valaddr, embedded_offset,
651 original_value, &opts, 0, stream);
652 }
653 else
654 {
655 val = unpack_long (type, valaddr + embedded_offset * unit_size);
656 if (val == 0)
657 fputs_filtered (decorations->false_name, stream);
658 else if (val == 1)
659 fputs_filtered (decorations->true_name, stream);
660 else
661 print_longest (stream, 'd', 0, val);
662 }
663 }
664
665 /* generic_val_print helper for TYPE_CODE_INT. */
666
667 static void
668 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
669 int embedded_offset, struct ui_file *stream,
670 const struct value *original_value,
671 const struct value_print_options *options)
672 {
673 struct gdbarch *gdbarch = get_type_arch (type);
674 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
675
676 if (options->format || options->output_format)
677 {
678 struct value_print_options opts = *options;
679
680 opts.format = (options->format ? options->format
681 : options->output_format);
682 val_print_scalar_formatted (type, valaddr, embedded_offset,
683 original_value, &opts, 0, stream);
684 }
685 else
686 val_print_type_code_int (type, valaddr + embedded_offset * unit_size,
687 stream);
688 }
689
690 /* generic_val_print helper for TYPE_CODE_CHAR. */
691
692 static void
693 generic_val_print_char (struct type *type, struct type *unresolved_type,
694 const gdb_byte *valaddr, int embedded_offset,
695 struct ui_file *stream,
696 const struct value *original_value,
697 const struct value_print_options *options)
698 {
699 LONGEST val;
700 struct gdbarch *gdbarch = get_type_arch (type);
701 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
702
703 if (options->format || options->output_format)
704 {
705 struct value_print_options opts = *options;
706
707 opts.format = (options->format ? options->format
708 : options->output_format);
709 val_print_scalar_formatted (type, valaddr, embedded_offset,
710 original_value, &opts, 0, stream);
711 }
712 else
713 {
714 val = unpack_long (type, valaddr + embedded_offset * unit_size);
715 if (TYPE_UNSIGNED (type))
716 fprintf_filtered (stream, "%u", (unsigned int) val);
717 else
718 fprintf_filtered (stream, "%d", (int) val);
719 fputs_filtered (" ", stream);
720 LA_PRINT_CHAR (val, unresolved_type, stream);
721 }
722 }
723
724 /* generic_val_print helper for TYPE_CODE_FLT. */
725
726 static void
727 generic_val_print_float (struct type *type, const gdb_byte *valaddr,
728 int embedded_offset, struct ui_file *stream,
729 const struct value *original_value,
730 const struct value_print_options *options)
731 {
732 struct gdbarch *gdbarch = get_type_arch (type);
733 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
734
735 if (options->format)
736 {
737 val_print_scalar_formatted (type, valaddr, embedded_offset,
738 original_value, options, 0, stream);
739 }
740 else
741 {
742 print_floating (valaddr + embedded_offset * unit_size, type, stream);
743 }
744 }
745
746 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
747
748 static void
749 generic_val_print_decfloat (struct type *type, const gdb_byte *valaddr,
750 int embedded_offset, struct ui_file *stream,
751 const struct value *original_value,
752 const struct value_print_options *options)
753 {
754 struct gdbarch *gdbarch = get_type_arch (type);
755 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
756
757 if (options->format)
758 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
759 options, 0, stream);
760 else
761 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
762 stream);
763 }
764
765 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
766
767 static void
768 generic_val_print_complex (struct type *type, const gdb_byte *valaddr,
769 int embedded_offset, struct ui_file *stream,
770 const struct value *original_value,
771 const struct value_print_options *options,
772 const struct generic_val_print_decorations
773 *decorations)
774 {
775 struct gdbarch *gdbarch = get_type_arch (type);
776 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
777
778 fprintf_filtered (stream, "%s", decorations->complex_prefix);
779 if (options->format)
780 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
781 embedded_offset, original_value, options, 0,
782 stream);
783 else
784 print_floating (valaddr + embedded_offset * unit_size,
785 TYPE_TARGET_TYPE (type), stream);
786 fprintf_filtered (stream, "%s", decorations->complex_infix);
787 if (options->format)
788 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
789 embedded_offset
790 + type_length_units (TYPE_TARGET_TYPE (type)),
791 original_value, options, 0, stream);
792 else
793 print_floating (valaddr + embedded_offset * unit_size
794 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
795 TYPE_TARGET_TYPE (type), stream);
796 fprintf_filtered (stream, "%s", decorations->complex_suffix);
797 }
798
799 /* A generic val_print that is suitable for use by language
800 implementations of the la_val_print method. This function can
801 handle most type codes, though not all, notably exception
802 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
803 the caller.
804
805 Most arguments are as to val_print.
806
807 The additional DECORATIONS argument can be used to customize the
808 output in some small, language-specific ways. */
809
810 void
811 generic_val_print (struct type *type, const gdb_byte *valaddr,
812 int embedded_offset, CORE_ADDR address,
813 struct ui_file *stream, int recurse,
814 const struct value *original_value,
815 const struct value_print_options *options,
816 const struct generic_val_print_decorations *decorations)
817 {
818 struct type *unresolved_type = type;
819
820 type = check_typedef (type);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_ARRAY:
824 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
825 recurse, original_value, options);
826 break;
827
828 case TYPE_CODE_MEMBERPTR:
829 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
830 original_value, options);
831 break;
832
833 case TYPE_CODE_PTR:
834 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
835 original_value, options);
836 break;
837
838 case TYPE_CODE_REF:
839 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
840 original_value, options);
841 break;
842
843 case TYPE_CODE_ENUM:
844 generic_val_print_enum (type, valaddr, embedded_offset, stream,
845 original_value, options);
846 break;
847
848 case TYPE_CODE_FLAGS:
849 generic_val_print_flags (type, valaddr, embedded_offset, stream,
850 original_value, options);
851 break;
852
853 case TYPE_CODE_FUNC:
854 case TYPE_CODE_METHOD:
855 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
856 original_value, options);
857 break;
858
859 case TYPE_CODE_BOOL:
860 generic_val_print_bool (type, valaddr, embedded_offset, stream,
861 original_value, options, decorations);
862 break;
863
864 case TYPE_CODE_RANGE:
865 /* FIXME: create_static_range_type does not set the unsigned bit in a
866 range type (I think it probably should copy it from the
867 target type), so we won't print values which are too large to
868 fit in a signed integer correctly. */
869 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
870 print with the target type, though, because the size of our
871 type and the target type might differ). */
872
873 /* FALLTHROUGH */
874
875 case TYPE_CODE_INT:
876 generic_val_print_int (type, valaddr, embedded_offset, stream,
877 original_value, options);
878 break;
879
880 case TYPE_CODE_CHAR:
881 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
882 stream, original_value, options);
883 break;
884
885 case TYPE_CODE_FLT:
886 generic_val_print_float (type, valaddr, embedded_offset, stream,
887 original_value, options);
888 break;
889
890 case TYPE_CODE_DECFLOAT:
891 generic_val_print_decfloat (type, valaddr, embedded_offset, stream,
892 original_value, options);
893 break;
894
895 case TYPE_CODE_VOID:
896 fputs_filtered (decorations->void_name, stream);
897 break;
898
899 case TYPE_CODE_ERROR:
900 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
901 break;
902
903 case TYPE_CODE_UNDEF:
904 /* This happens (without TYPE_FLAG_STUB set) on systems which
905 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
906 "struct foo *bar" and no complete type for struct foo in that
907 file. */
908 fprintf_filtered (stream, _("<incomplete type>"));
909 break;
910
911 case TYPE_CODE_COMPLEX:
912 generic_val_print_complex (type, valaddr, embedded_offset, stream,
913 original_value, options, decorations);
914 break;
915
916 case TYPE_CODE_UNION:
917 case TYPE_CODE_STRUCT:
918 case TYPE_CODE_METHODPTR:
919 default:
920 error (_("Unhandled type code %d in symbol table."),
921 TYPE_CODE (type));
922 }
923 gdb_flush (stream);
924 }
925
926 /* Print using the given LANGUAGE the data of type TYPE located at
927 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
928 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
929 STREAM according to OPTIONS. VAL is the whole object that came
930 from ADDRESS. VALADDR must point to the head of VAL's contents
931 buffer.
932
933 The language printers will pass down an adjusted EMBEDDED_OFFSET to
934 further helper subroutines as subfields of TYPE are printed. In
935 such cases, VALADDR is passed down unadjusted, as well as VAL, so
936 that VAL can be queried for metadata about the contents data being
937 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
938 buffer. For example: "has this field been optimized out", or "I'm
939 printing an object while inspecting a traceframe; has this
940 particular piece of data been collected?".
941
942 RECURSE indicates the amount of indentation to supply before
943 continuation lines; this amount is roughly twice the value of
944 RECURSE. */
945
946 void
947 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
948 CORE_ADDR address, struct ui_file *stream, int recurse,
949 const struct value *val,
950 const struct value_print_options *options,
951 const struct language_defn *language)
952 {
953 int ret = 0;
954 struct value_print_options local_opts = *options;
955 struct type *real_type = check_typedef (type);
956
957 if (local_opts.prettyformat == Val_prettyformat_default)
958 local_opts.prettyformat = (local_opts.prettyformat_structs
959 ? Val_prettyformat : Val_no_prettyformat);
960
961 QUIT;
962
963 /* Ensure that the type is complete and not just a stub. If the type is
964 only a stub and we can't find and substitute its complete type, then
965 print appropriate string and return. */
966
967 if (TYPE_STUB (real_type))
968 {
969 fprintf_filtered (stream, _("<incomplete type>"));
970 gdb_flush (stream);
971 return;
972 }
973
974 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
975 return;
976
977 if (!options->raw)
978 {
979 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
980 address, stream, recurse,
981 val, options, language);
982 if (ret)
983 return;
984 }
985
986 /* Handle summary mode. If the value is a scalar, print it;
987 otherwise, print an ellipsis. */
988 if (options->summary && !val_print_scalar_type_p (type))
989 {
990 fprintf_filtered (stream, "...");
991 return;
992 }
993
994 TRY
995 {
996 language->la_val_print (type, valaddr, embedded_offset, address,
997 stream, recurse, val,
998 &local_opts);
999 }
1000 CATCH (except, RETURN_MASK_ERROR)
1001 {
1002 fprintf_filtered (stream, _("<error reading variable>"));
1003 }
1004 END_CATCH
1005 }
1006
1007 /* Check whether the value VAL is printable. Return 1 if it is;
1008 return 0 and print an appropriate error message to STREAM according to
1009 OPTIONS if it is not. */
1010
1011 static int
1012 value_check_printable (struct value *val, struct ui_file *stream,
1013 const struct value_print_options *options)
1014 {
1015 if (val == 0)
1016 {
1017 fprintf_filtered (stream, _("<address of value unknown>"));
1018 return 0;
1019 }
1020
1021 if (value_entirely_optimized_out (val))
1022 {
1023 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1024 fprintf_filtered (stream, "...");
1025 else
1026 val_print_optimized_out (val, stream);
1027 return 0;
1028 }
1029
1030 if (value_entirely_unavailable (val))
1031 {
1032 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1033 fprintf_filtered (stream, "...");
1034 else
1035 val_print_unavailable (stream);
1036 return 0;
1037 }
1038
1039 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1040 {
1041 fprintf_filtered (stream, _("<internal function %s>"),
1042 value_internal_function_name (val));
1043 return 0;
1044 }
1045
1046 return 1;
1047 }
1048
1049 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1050 to OPTIONS.
1051
1052 This is a preferable interface to val_print, above, because it uses
1053 GDB's value mechanism. */
1054
1055 void
1056 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1057 const struct value_print_options *options,
1058 const struct language_defn *language)
1059 {
1060 if (!value_check_printable (val, stream, options))
1061 return;
1062
1063 if (language->la_language == language_ada)
1064 /* The value might have a dynamic type, which would cause trouble
1065 below when trying to extract the value contents (since the value
1066 size is determined from the type size which is unknown). So
1067 get a fixed representation of our value. */
1068 val = ada_to_fixed_value (val);
1069
1070 val_print (value_type (val), value_contents_for_printing (val),
1071 value_embedded_offset (val), value_address (val),
1072 stream, recurse,
1073 val, options, language);
1074 }
1075
1076 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1077 is printed using the current_language syntax. */
1078
1079 void
1080 value_print (struct value *val, struct ui_file *stream,
1081 const struct value_print_options *options)
1082 {
1083 if (!value_check_printable (val, stream, options))
1084 return;
1085
1086 if (!options->raw)
1087 {
1088 int r
1089 = apply_ext_lang_val_pretty_printer (value_type (val),
1090 value_contents_for_printing (val),
1091 value_embedded_offset (val),
1092 value_address (val),
1093 stream, 0,
1094 val, options, current_language);
1095
1096 if (r)
1097 return;
1098 }
1099
1100 LA_VALUE_PRINT (val, stream, options);
1101 }
1102
1103 /* Called by various <lang>_val_print routines to print
1104 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1105 value. STREAM is where to print the value. */
1106
1107 void
1108 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1109 struct ui_file *stream)
1110 {
1111 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1112
1113 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1114 {
1115 LONGEST val;
1116
1117 if (TYPE_UNSIGNED (type)
1118 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1119 byte_order, &val))
1120 {
1121 print_longest (stream, 'u', 0, val);
1122 }
1123 else
1124 {
1125 /* Signed, or we couldn't turn an unsigned value into a
1126 LONGEST. For signed values, one could assume two's
1127 complement (a reasonable assumption, I think) and do
1128 better than this. */
1129 print_hex_chars (stream, (unsigned char *) valaddr,
1130 TYPE_LENGTH (type), byte_order);
1131 }
1132 }
1133 else
1134 {
1135 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1136 unpack_long (type, valaddr));
1137 }
1138 }
1139
1140 void
1141 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1142 struct ui_file *stream)
1143 {
1144 ULONGEST val = unpack_long (type, valaddr);
1145 int bitpos, nfields = TYPE_NFIELDS (type);
1146
1147 fputs_filtered ("[ ", stream);
1148 for (bitpos = 0; bitpos < nfields; bitpos++)
1149 {
1150 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1151 && (val & ((ULONGEST)1 << bitpos)))
1152 {
1153 if (TYPE_FIELD_NAME (type, bitpos))
1154 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1155 else
1156 fprintf_filtered (stream, "#%d ", bitpos);
1157 }
1158 }
1159 fputs_filtered ("]", stream);
1160 }
1161
1162 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1163 according to OPTIONS and SIZE on STREAM. Format i is not supported
1164 at this level.
1165
1166 This is how the elements of an array or structure are printed
1167 with a format. */
1168
1169 void
1170 val_print_scalar_formatted (struct type *type,
1171 const gdb_byte *valaddr, int embedded_offset,
1172 const struct value *val,
1173 const struct value_print_options *options,
1174 int size,
1175 struct ui_file *stream)
1176 {
1177 struct gdbarch *arch = get_type_arch (type);
1178 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1179
1180 gdb_assert (val != NULL);
1181 gdb_assert (valaddr == value_contents_for_printing_const (val));
1182
1183 /* If we get here with a string format, try again without it. Go
1184 all the way back to the language printers, which may call us
1185 again. */
1186 if (options->format == 's')
1187 {
1188 struct value_print_options opts = *options;
1189 opts.format = 0;
1190 opts.deref_ref = 0;
1191 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1192 current_language);
1193 return;
1194 }
1195
1196 /* A scalar object that does not have all bits available can't be
1197 printed, because all bits contribute to its representation. */
1198 if (value_bits_any_optimized_out (val,
1199 TARGET_CHAR_BIT * embedded_offset,
1200 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1201 val_print_optimized_out (val, stream);
1202 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1203 val_print_unavailable (stream);
1204 else
1205 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1206 options, size, stream);
1207 }
1208
1209 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1210 The raison d'etre of this function is to consolidate printing of
1211 LONG_LONG's into this one function. The format chars b,h,w,g are
1212 from print_scalar_formatted(). Numbers are printed using C
1213 format.
1214
1215 USE_C_FORMAT means to use C format in all cases. Without it,
1216 'o' and 'x' format do not include the standard C radix prefix
1217 (leading 0 or 0x).
1218
1219 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1220 and was intended to request formating according to the current
1221 language and would be used for most integers that GDB prints. The
1222 exceptional cases were things like protocols where the format of
1223 the integer is a protocol thing, not a user-visible thing). The
1224 parameter remains to preserve the information of what things might
1225 be printed with language-specific format, should we ever resurrect
1226 that capability. */
1227
1228 void
1229 print_longest (struct ui_file *stream, int format, int use_c_format,
1230 LONGEST val_long)
1231 {
1232 const char *val;
1233
1234 switch (format)
1235 {
1236 case 'd':
1237 val = int_string (val_long, 10, 1, 0, 1); break;
1238 case 'u':
1239 val = int_string (val_long, 10, 0, 0, 1); break;
1240 case 'x':
1241 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1242 case 'b':
1243 val = int_string (val_long, 16, 0, 2, 1); break;
1244 case 'h':
1245 val = int_string (val_long, 16, 0, 4, 1); break;
1246 case 'w':
1247 val = int_string (val_long, 16, 0, 8, 1); break;
1248 case 'g':
1249 val = int_string (val_long, 16, 0, 16, 1); break;
1250 break;
1251 case 'o':
1252 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1253 default:
1254 internal_error (__FILE__, __LINE__,
1255 _("failed internal consistency check"));
1256 }
1257 fputs_filtered (val, stream);
1258 }
1259
1260 /* This used to be a macro, but I don't think it is called often enough
1261 to merit such treatment. */
1262 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1263 arguments to a function, number in a value history, register number, etc.)
1264 where the value must not be larger than can fit in an int. */
1265
1266 int
1267 longest_to_int (LONGEST arg)
1268 {
1269 /* Let the compiler do the work. */
1270 int rtnval = (int) arg;
1271
1272 /* Check for overflows or underflows. */
1273 if (sizeof (LONGEST) > sizeof (int))
1274 {
1275 if (rtnval != arg)
1276 {
1277 error (_("Value out of range."));
1278 }
1279 }
1280 return (rtnval);
1281 }
1282
1283 /* Print a floating point value of type TYPE (not always a
1284 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1285
1286 void
1287 print_floating (const gdb_byte *valaddr, struct type *type,
1288 struct ui_file *stream)
1289 {
1290 DOUBLEST doub;
1291 int inv;
1292 const struct floatformat *fmt = NULL;
1293 unsigned len = TYPE_LENGTH (type);
1294 enum float_kind kind;
1295
1296 /* If it is a floating-point, check for obvious problems. */
1297 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1298 fmt = floatformat_from_type (type);
1299 if (fmt != NULL)
1300 {
1301 kind = floatformat_classify (fmt, valaddr);
1302 if (kind == float_nan)
1303 {
1304 if (floatformat_is_negative (fmt, valaddr))
1305 fprintf_filtered (stream, "-");
1306 fprintf_filtered (stream, "nan(");
1307 fputs_filtered ("0x", stream);
1308 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1309 fprintf_filtered (stream, ")");
1310 return;
1311 }
1312 else if (kind == float_infinite)
1313 {
1314 if (floatformat_is_negative (fmt, valaddr))
1315 fputs_filtered ("-", stream);
1316 fputs_filtered ("inf", stream);
1317 return;
1318 }
1319 }
1320
1321 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1322 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1323 needs to be used as that takes care of any necessary type
1324 conversions. Such conversions are of course direct to DOUBLEST
1325 and disregard any possible target floating point limitations.
1326 For instance, a u64 would be converted and displayed exactly on a
1327 host with 80 bit DOUBLEST but with loss of information on a host
1328 with 64 bit DOUBLEST. */
1329
1330 doub = unpack_double (type, valaddr, &inv);
1331 if (inv)
1332 {
1333 fprintf_filtered (stream, "<invalid float value>");
1334 return;
1335 }
1336
1337 /* FIXME: kettenis/2001-01-20: The following code makes too much
1338 assumptions about the host and target floating point format. */
1339
1340 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1341 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1342 instead uses the type's length to determine the precision of the
1343 floating-point value being printed. */
1344
1345 if (len < sizeof (double))
1346 fprintf_filtered (stream, "%.9g", (double) doub);
1347 else if (len == sizeof (double))
1348 fprintf_filtered (stream, "%.17g", (double) doub);
1349 else
1350 #ifdef PRINTF_HAS_LONG_DOUBLE
1351 fprintf_filtered (stream, "%.35Lg", doub);
1352 #else
1353 /* This at least wins with values that are representable as
1354 doubles. */
1355 fprintf_filtered (stream, "%.17g", (double) doub);
1356 #endif
1357 }
1358
1359 void
1360 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1361 struct ui_file *stream)
1362 {
1363 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1364 char decstr[MAX_DECIMAL_STRING];
1365 unsigned len = TYPE_LENGTH (type);
1366
1367 decimal_to_string (valaddr, len, byte_order, decstr);
1368 fputs_filtered (decstr, stream);
1369 return;
1370 }
1371
1372 void
1373 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1374 unsigned len, enum bfd_endian byte_order)
1375 {
1376
1377 #define BITS_IN_BYTES 8
1378
1379 const gdb_byte *p;
1380 unsigned int i;
1381 int b;
1382
1383 /* Declared "int" so it will be signed.
1384 This ensures that right shift will shift in zeros. */
1385
1386 const int mask = 0x080;
1387
1388 /* FIXME: We should be not printing leading zeroes in most cases. */
1389
1390 if (byte_order == BFD_ENDIAN_BIG)
1391 {
1392 for (p = valaddr;
1393 p < valaddr + len;
1394 p++)
1395 {
1396 /* Every byte has 8 binary characters; peel off
1397 and print from the MSB end. */
1398
1399 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1400 {
1401 if (*p & (mask >> i))
1402 b = 1;
1403 else
1404 b = 0;
1405
1406 fprintf_filtered (stream, "%1d", b);
1407 }
1408 }
1409 }
1410 else
1411 {
1412 for (p = valaddr + len - 1;
1413 p >= valaddr;
1414 p--)
1415 {
1416 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1417 {
1418 if (*p & (mask >> i))
1419 b = 1;
1420 else
1421 b = 0;
1422
1423 fprintf_filtered (stream, "%1d", b);
1424 }
1425 }
1426 }
1427 }
1428
1429 /* VALADDR points to an integer of LEN bytes.
1430 Print it in octal on stream or format it in buf. */
1431
1432 void
1433 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1434 unsigned len, enum bfd_endian byte_order)
1435 {
1436 const gdb_byte *p;
1437 unsigned char octa1, octa2, octa3, carry;
1438 int cycle;
1439
1440 /* FIXME: We should be not printing leading zeroes in most cases. */
1441
1442
1443 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1444 * the extra bits, which cycle every three bytes:
1445 *
1446 * Byte side: 0 1 2 3
1447 * | | | |
1448 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1449 *
1450 * Octal side: 0 1 carry 3 4 carry ...
1451 *
1452 * Cycle number: 0 1 2
1453 *
1454 * But of course we are printing from the high side, so we have to
1455 * figure out where in the cycle we are so that we end up with no
1456 * left over bits at the end.
1457 */
1458 #define BITS_IN_OCTAL 3
1459 #define HIGH_ZERO 0340
1460 #define LOW_ZERO 0016
1461 #define CARRY_ZERO 0003
1462 #define HIGH_ONE 0200
1463 #define MID_ONE 0160
1464 #define LOW_ONE 0016
1465 #define CARRY_ONE 0001
1466 #define HIGH_TWO 0300
1467 #define MID_TWO 0070
1468 #define LOW_TWO 0007
1469
1470 /* For 32 we start in cycle 2, with two bits and one bit carry;
1471 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1472
1473 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1474 carry = 0;
1475
1476 fputs_filtered ("0", stream);
1477 if (byte_order == BFD_ENDIAN_BIG)
1478 {
1479 for (p = valaddr;
1480 p < valaddr + len;
1481 p++)
1482 {
1483 switch (cycle)
1484 {
1485 case 0:
1486 /* No carry in, carry out two bits. */
1487
1488 octa1 = (HIGH_ZERO & *p) >> 5;
1489 octa2 = (LOW_ZERO & *p) >> 2;
1490 carry = (CARRY_ZERO & *p);
1491 fprintf_filtered (stream, "%o", octa1);
1492 fprintf_filtered (stream, "%o", octa2);
1493 break;
1494
1495 case 1:
1496 /* Carry in two bits, carry out one bit. */
1497
1498 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1499 octa2 = (MID_ONE & *p) >> 4;
1500 octa3 = (LOW_ONE & *p) >> 1;
1501 carry = (CARRY_ONE & *p);
1502 fprintf_filtered (stream, "%o", octa1);
1503 fprintf_filtered (stream, "%o", octa2);
1504 fprintf_filtered (stream, "%o", octa3);
1505 break;
1506
1507 case 2:
1508 /* Carry in one bit, no carry out. */
1509
1510 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1511 octa2 = (MID_TWO & *p) >> 3;
1512 octa3 = (LOW_TWO & *p);
1513 carry = 0;
1514 fprintf_filtered (stream, "%o", octa1);
1515 fprintf_filtered (stream, "%o", octa2);
1516 fprintf_filtered (stream, "%o", octa3);
1517 break;
1518
1519 default:
1520 error (_("Internal error in octal conversion;"));
1521 }
1522
1523 cycle++;
1524 cycle = cycle % BITS_IN_OCTAL;
1525 }
1526 }
1527 else
1528 {
1529 for (p = valaddr + len - 1;
1530 p >= valaddr;
1531 p--)
1532 {
1533 switch (cycle)
1534 {
1535 case 0:
1536 /* Carry out, no carry in */
1537
1538 octa1 = (HIGH_ZERO & *p) >> 5;
1539 octa2 = (LOW_ZERO & *p) >> 2;
1540 carry = (CARRY_ZERO & *p);
1541 fprintf_filtered (stream, "%o", octa1);
1542 fprintf_filtered (stream, "%o", octa2);
1543 break;
1544
1545 case 1:
1546 /* Carry in, carry out */
1547
1548 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1549 octa2 = (MID_ONE & *p) >> 4;
1550 octa3 = (LOW_ONE & *p) >> 1;
1551 carry = (CARRY_ONE & *p);
1552 fprintf_filtered (stream, "%o", octa1);
1553 fprintf_filtered (stream, "%o", octa2);
1554 fprintf_filtered (stream, "%o", octa3);
1555 break;
1556
1557 case 2:
1558 /* Carry in, no carry out */
1559
1560 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1561 octa2 = (MID_TWO & *p) >> 3;
1562 octa3 = (LOW_TWO & *p);
1563 carry = 0;
1564 fprintf_filtered (stream, "%o", octa1);
1565 fprintf_filtered (stream, "%o", octa2);
1566 fprintf_filtered (stream, "%o", octa3);
1567 break;
1568
1569 default:
1570 error (_("Internal error in octal conversion;"));
1571 }
1572
1573 cycle++;
1574 cycle = cycle % BITS_IN_OCTAL;
1575 }
1576 }
1577
1578 }
1579
1580 /* VALADDR points to an integer of LEN bytes.
1581 Print it in decimal on stream or format it in buf. */
1582
1583 void
1584 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1585 unsigned len, enum bfd_endian byte_order)
1586 {
1587 #define TEN 10
1588 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1589 #define CARRY_LEFT( x ) ((x) % TEN)
1590 #define SHIFT( x ) ((x) << 4)
1591 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1592 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1593
1594 const gdb_byte *p;
1595 unsigned char *digits;
1596 int carry;
1597 int decimal_len;
1598 int i, j, decimal_digits;
1599 int dummy;
1600 int flip;
1601
1602 /* Base-ten number is less than twice as many digits
1603 as the base 16 number, which is 2 digits per byte. */
1604
1605 decimal_len = len * 2 * 2;
1606 digits = (unsigned char *) xmalloc (decimal_len);
1607
1608 for (i = 0; i < decimal_len; i++)
1609 {
1610 digits[i] = 0;
1611 }
1612
1613 /* Ok, we have an unknown number of bytes of data to be printed in
1614 * decimal.
1615 *
1616 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1617 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1618 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1619 *
1620 * The trick is that "digits" holds a base-10 number, but sometimes
1621 * the individual digits are > 10.
1622 *
1623 * Outer loop is per nibble (hex digit) of input, from MSD end to
1624 * LSD end.
1625 */
1626 decimal_digits = 0; /* Number of decimal digits so far */
1627 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1628 flip = 0;
1629 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1630 {
1631 /*
1632 * Multiply current base-ten number by 16 in place.
1633 * Each digit was between 0 and 9, now is between
1634 * 0 and 144.
1635 */
1636 for (j = 0; j < decimal_digits; j++)
1637 {
1638 digits[j] = SHIFT (digits[j]);
1639 }
1640
1641 /* Take the next nibble off the input and add it to what
1642 * we've got in the LSB position. Bottom 'digit' is now
1643 * between 0 and 159.
1644 *
1645 * "flip" is used to run this loop twice for each byte.
1646 */
1647 if (flip == 0)
1648 {
1649 /* Take top nibble. */
1650
1651 digits[0] += HIGH_NIBBLE (*p);
1652 flip = 1;
1653 }
1654 else
1655 {
1656 /* Take low nibble and bump our pointer "p". */
1657
1658 digits[0] += LOW_NIBBLE (*p);
1659 if (byte_order == BFD_ENDIAN_BIG)
1660 p++;
1661 else
1662 p--;
1663 flip = 0;
1664 }
1665
1666 /* Re-decimalize. We have to do this often enough
1667 * that we don't overflow, but once per nibble is
1668 * overkill. Easier this way, though. Note that the
1669 * carry is often larger than 10 (e.g. max initial
1670 * carry out of lowest nibble is 15, could bubble all
1671 * the way up greater than 10). So we have to do
1672 * the carrying beyond the last current digit.
1673 */
1674 carry = 0;
1675 for (j = 0; j < decimal_len - 1; j++)
1676 {
1677 digits[j] += carry;
1678
1679 /* "/" won't handle an unsigned char with
1680 * a value that if signed would be negative.
1681 * So extend to longword int via "dummy".
1682 */
1683 dummy = digits[j];
1684 carry = CARRY_OUT (dummy);
1685 digits[j] = CARRY_LEFT (dummy);
1686
1687 if (j >= decimal_digits && carry == 0)
1688 {
1689 /*
1690 * All higher digits are 0 and we
1691 * no longer have a carry.
1692 *
1693 * Note: "j" is 0-based, "decimal_digits" is
1694 * 1-based.
1695 */
1696 decimal_digits = j + 1;
1697 break;
1698 }
1699 }
1700 }
1701
1702 /* Ok, now "digits" is the decimal representation, with
1703 the "decimal_digits" actual digits. Print! */
1704
1705 for (i = decimal_digits - 1; i >= 0; i--)
1706 {
1707 fprintf_filtered (stream, "%1d", digits[i]);
1708 }
1709 xfree (digits);
1710 }
1711
1712 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1713
1714 void
1715 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1716 unsigned len, enum bfd_endian byte_order)
1717 {
1718 const gdb_byte *p;
1719
1720 /* FIXME: We should be not printing leading zeroes in most cases. */
1721
1722 fputs_filtered ("0x", stream);
1723 if (byte_order == BFD_ENDIAN_BIG)
1724 {
1725 for (p = valaddr;
1726 p < valaddr + len;
1727 p++)
1728 {
1729 fprintf_filtered (stream, "%02x", *p);
1730 }
1731 }
1732 else
1733 {
1734 for (p = valaddr + len - 1;
1735 p >= valaddr;
1736 p--)
1737 {
1738 fprintf_filtered (stream, "%02x", *p);
1739 }
1740 }
1741 }
1742
1743 /* VALADDR points to a char integer of LEN bytes.
1744 Print it out in appropriate language form on stream.
1745 Omit any leading zero chars. */
1746
1747 void
1748 print_char_chars (struct ui_file *stream, struct type *type,
1749 const gdb_byte *valaddr,
1750 unsigned len, enum bfd_endian byte_order)
1751 {
1752 const gdb_byte *p;
1753
1754 if (byte_order == BFD_ENDIAN_BIG)
1755 {
1756 p = valaddr;
1757 while (p < valaddr + len - 1 && *p == 0)
1758 ++p;
1759
1760 while (p < valaddr + len)
1761 {
1762 LA_EMIT_CHAR (*p, type, stream, '\'');
1763 ++p;
1764 }
1765 }
1766 else
1767 {
1768 p = valaddr + len - 1;
1769 while (p > valaddr && *p == 0)
1770 --p;
1771
1772 while (p >= valaddr)
1773 {
1774 LA_EMIT_CHAR (*p, type, stream, '\'');
1775 --p;
1776 }
1777 }
1778 }
1779
1780 /* Print function pointer with inferior address ADDRESS onto stdio
1781 stream STREAM. */
1782
1783 void
1784 print_function_pointer_address (const struct value_print_options *options,
1785 struct gdbarch *gdbarch,
1786 CORE_ADDR address,
1787 struct ui_file *stream)
1788 {
1789 CORE_ADDR func_addr
1790 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1791 &current_target);
1792
1793 /* If the function pointer is represented by a description, print
1794 the address of the description. */
1795 if (options->addressprint && func_addr != address)
1796 {
1797 fputs_filtered ("@", stream);
1798 fputs_filtered (paddress (gdbarch, address), stream);
1799 fputs_filtered (": ", stream);
1800 }
1801 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1802 }
1803
1804
1805 /* Print on STREAM using the given OPTIONS the index for the element
1806 at INDEX of an array whose index type is INDEX_TYPE. */
1807
1808 void
1809 maybe_print_array_index (struct type *index_type, LONGEST index,
1810 struct ui_file *stream,
1811 const struct value_print_options *options)
1812 {
1813 struct value *index_value;
1814
1815 if (!options->print_array_indexes)
1816 return;
1817
1818 index_value = value_from_longest (index_type, index);
1819
1820 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1821 }
1822
1823 /* Called by various <lang>_val_print routines to print elements of an
1824 array in the form "<elem1>, <elem2>, <elem3>, ...".
1825
1826 (FIXME?) Assumes array element separator is a comma, which is correct
1827 for all languages currently handled.
1828 (FIXME?) Some languages have a notation for repeated array elements,
1829 perhaps we should try to use that notation when appropriate. */
1830
1831 void
1832 val_print_array_elements (struct type *type,
1833 const gdb_byte *valaddr, int embedded_offset,
1834 CORE_ADDR address, struct ui_file *stream,
1835 int recurse,
1836 const struct value *val,
1837 const struct value_print_options *options,
1838 unsigned int i)
1839 {
1840 unsigned int things_printed = 0;
1841 unsigned len;
1842 struct type *elttype, *index_type, *base_index_type;
1843 unsigned eltlen;
1844 /* Position of the array element we are examining to see
1845 whether it is repeated. */
1846 unsigned int rep1;
1847 /* Number of repetitions we have detected so far. */
1848 unsigned int reps;
1849 LONGEST low_bound, high_bound;
1850 LONGEST low_pos, high_pos;
1851
1852 elttype = TYPE_TARGET_TYPE (type);
1853 eltlen = type_length_units (check_typedef (elttype));
1854 index_type = TYPE_INDEX_TYPE (type);
1855
1856 if (get_array_bounds (type, &low_bound, &high_bound))
1857 {
1858 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1859 base_index_type = TYPE_TARGET_TYPE (index_type);
1860 else
1861 base_index_type = index_type;
1862
1863 /* Non-contiguous enumerations types can by used as index types
1864 in some languages (e.g. Ada). In this case, the array length
1865 shall be computed from the positions of the first and last
1866 literal in the enumeration type, and not from the values
1867 of these literals. */
1868 if (!discrete_position (base_index_type, low_bound, &low_pos)
1869 || !discrete_position (base_index_type, high_bound, &high_pos))
1870 {
1871 warning (_("unable to get positions in array, use bounds instead"));
1872 low_pos = low_bound;
1873 high_pos = high_bound;
1874 }
1875
1876 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1877 But we have to be a little extra careful, because some languages
1878 such as Ada allow LOW_POS to be greater than HIGH_POS for
1879 empty arrays. In that situation, the array length is just zero,
1880 not negative! */
1881 if (low_pos > high_pos)
1882 len = 0;
1883 else
1884 len = high_pos - low_pos + 1;
1885 }
1886 else
1887 {
1888 warning (_("unable to get bounds of array, assuming null array"));
1889 low_bound = 0;
1890 len = 0;
1891 }
1892
1893 annotate_array_section_begin (i, elttype);
1894
1895 for (; i < len && things_printed < options->print_max; i++)
1896 {
1897 if (i != 0)
1898 {
1899 if (options->prettyformat_arrays)
1900 {
1901 fprintf_filtered (stream, ",\n");
1902 print_spaces_filtered (2 + 2 * recurse, stream);
1903 }
1904 else
1905 {
1906 fprintf_filtered (stream, ", ");
1907 }
1908 }
1909 wrap_here (n_spaces (2 + 2 * recurse));
1910 maybe_print_array_index (index_type, i + low_bound,
1911 stream, options);
1912
1913 rep1 = i + 1;
1914 reps = 1;
1915 /* Only check for reps if repeat_count_threshold is not set to
1916 UINT_MAX (unlimited). */
1917 if (options->repeat_count_threshold < UINT_MAX)
1918 {
1919 while (rep1 < len
1920 && value_contents_eq (val,
1921 embedded_offset + i * eltlen,
1922 val,
1923 (embedded_offset
1924 + rep1 * eltlen),
1925 eltlen))
1926 {
1927 ++reps;
1928 ++rep1;
1929 }
1930 }
1931
1932 if (reps > options->repeat_count_threshold)
1933 {
1934 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1935 address, stream, recurse + 1, val, options,
1936 current_language);
1937 annotate_elt_rep (reps);
1938 fprintf_filtered (stream, " <repeats %u times>", reps);
1939 annotate_elt_rep_end ();
1940
1941 i = rep1 - 1;
1942 things_printed += options->repeat_count_threshold;
1943 }
1944 else
1945 {
1946 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1947 address,
1948 stream, recurse + 1, val, options, current_language);
1949 annotate_elt ();
1950 things_printed++;
1951 }
1952 }
1953 annotate_array_section_end ();
1954 if (i < len)
1955 {
1956 fprintf_filtered (stream, "...");
1957 }
1958 }
1959
1960 /* Read LEN bytes of target memory at address MEMADDR, placing the
1961 results in GDB's memory at MYADDR. Returns a count of the bytes
1962 actually read, and optionally a target_xfer_status value in the
1963 location pointed to by ERRPTR if ERRPTR is non-null. */
1964
1965 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1966 function be eliminated. */
1967
1968 static int
1969 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1970 int len, int *errptr)
1971 {
1972 int nread; /* Number of bytes actually read. */
1973 int errcode; /* Error from last read. */
1974
1975 /* First try a complete read. */
1976 errcode = target_read_memory (memaddr, myaddr, len);
1977 if (errcode == 0)
1978 {
1979 /* Got it all. */
1980 nread = len;
1981 }
1982 else
1983 {
1984 /* Loop, reading one byte at a time until we get as much as we can. */
1985 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1986 {
1987 errcode = target_read_memory (memaddr++, myaddr++, 1);
1988 }
1989 /* If an error, the last read was unsuccessful, so adjust count. */
1990 if (errcode != 0)
1991 {
1992 nread--;
1993 }
1994 }
1995 if (errptr != NULL)
1996 {
1997 *errptr = errcode;
1998 }
1999 return (nread);
2000 }
2001
2002 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2003 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2004 allocated buffer containing the string, which the caller is responsible to
2005 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2006 success, or a target_xfer_status on failure.
2007
2008 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2009 (including eventual NULs in the middle or end of the string).
2010
2011 If LEN is -1, stops at the first null character (not necessarily
2012 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2013 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2014 the string.
2015
2016 Unless an exception is thrown, BUFFER will always be allocated, even on
2017 failure. In this case, some characters might have been read before the
2018 failure happened. Check BYTES_READ to recognize this situation.
2019
2020 Note: There was a FIXME asking to make this code use target_read_string,
2021 but this function is more general (can read past null characters, up to
2022 given LEN). Besides, it is used much more often than target_read_string
2023 so it is more tested. Perhaps callers of target_read_string should use
2024 this function instead? */
2025
2026 int
2027 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2028 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2029 {
2030 int errcode; /* Errno returned from bad reads. */
2031 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2032 gdb_byte *bufptr; /* Pointer to next available byte in
2033 buffer. */
2034 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2035
2036 /* Loop until we either have all the characters, or we encounter
2037 some error, such as bumping into the end of the address space. */
2038
2039 *buffer = NULL;
2040
2041 old_chain = make_cleanup (free_current_contents, buffer);
2042
2043 if (len > 0)
2044 {
2045 /* We want fetchlimit chars, so we might as well read them all in
2046 one operation. */
2047 unsigned int fetchlen = min (len, fetchlimit);
2048
2049 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2050 bufptr = *buffer;
2051
2052 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2053 / width;
2054 addr += nfetch * width;
2055 bufptr += nfetch * width;
2056 }
2057 else if (len == -1)
2058 {
2059 unsigned long bufsize = 0;
2060 unsigned int chunksize; /* Size of each fetch, in chars. */
2061 int found_nul; /* Non-zero if we found the nul char. */
2062 gdb_byte *limit; /* First location past end of fetch buffer. */
2063
2064 found_nul = 0;
2065 /* We are looking for a NUL terminator to end the fetching, so we
2066 might as well read in blocks that are large enough to be efficient,
2067 but not so large as to be slow if fetchlimit happens to be large.
2068 So we choose the minimum of 8 and fetchlimit. We used to use 200
2069 instead of 8 but 200 is way too big for remote debugging over a
2070 serial line. */
2071 chunksize = min (8, fetchlimit);
2072
2073 do
2074 {
2075 QUIT;
2076 nfetch = min (chunksize, fetchlimit - bufsize);
2077
2078 if (*buffer == NULL)
2079 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2080 else
2081 *buffer = (gdb_byte *) xrealloc (*buffer,
2082 (nfetch + bufsize) * width);
2083
2084 bufptr = *buffer + bufsize * width;
2085 bufsize += nfetch;
2086
2087 /* Read as much as we can. */
2088 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2089 / width;
2090
2091 /* Scan this chunk for the null character that terminates the string
2092 to print. If found, we don't need to fetch any more. Note
2093 that bufptr is explicitly left pointing at the next character
2094 after the null character, or at the next character after the end
2095 of the buffer. */
2096
2097 limit = bufptr + nfetch * width;
2098 while (bufptr < limit)
2099 {
2100 unsigned long c;
2101
2102 c = extract_unsigned_integer (bufptr, width, byte_order);
2103 addr += width;
2104 bufptr += width;
2105 if (c == 0)
2106 {
2107 /* We don't care about any error which happened after
2108 the NUL terminator. */
2109 errcode = 0;
2110 found_nul = 1;
2111 break;
2112 }
2113 }
2114 }
2115 while (errcode == 0 /* no error */
2116 && bufptr - *buffer < fetchlimit * width /* no overrun */
2117 && !found_nul); /* haven't found NUL yet */
2118 }
2119 else
2120 { /* Length of string is really 0! */
2121 /* We always allocate *buffer. */
2122 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2123 errcode = 0;
2124 }
2125
2126 /* bufptr and addr now point immediately beyond the last byte which we
2127 consider part of the string (including a '\0' which ends the string). */
2128 *bytes_read = bufptr - *buffer;
2129
2130 QUIT;
2131
2132 discard_cleanups (old_chain);
2133
2134 return errcode;
2135 }
2136
2137 /* Return true if print_wchar can display W without resorting to a
2138 numeric escape, false otherwise. */
2139
2140 static int
2141 wchar_printable (gdb_wchar_t w)
2142 {
2143 return (gdb_iswprint (w)
2144 || w == LCST ('\a') || w == LCST ('\b')
2145 || w == LCST ('\f') || w == LCST ('\n')
2146 || w == LCST ('\r') || w == LCST ('\t')
2147 || w == LCST ('\v'));
2148 }
2149
2150 /* A helper function that converts the contents of STRING to wide
2151 characters and then appends them to OUTPUT. */
2152
2153 static void
2154 append_string_as_wide (const char *string,
2155 struct obstack *output)
2156 {
2157 for (; *string; ++string)
2158 {
2159 gdb_wchar_t w = gdb_btowc (*string);
2160 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2161 }
2162 }
2163
2164 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2165 original (target) bytes representing the character, ORIG_LEN is the
2166 number of valid bytes. WIDTH is the number of bytes in a base
2167 characters of the type. OUTPUT is an obstack to which wide
2168 characters are emitted. QUOTER is a (narrow) character indicating
2169 the style of quotes surrounding the character to be printed.
2170 NEED_ESCAPE is an in/out flag which is used to track numeric
2171 escapes across calls. */
2172
2173 static void
2174 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2175 int orig_len, int width,
2176 enum bfd_endian byte_order,
2177 struct obstack *output,
2178 int quoter, int *need_escapep)
2179 {
2180 int need_escape = *need_escapep;
2181
2182 *need_escapep = 0;
2183
2184 /* iswprint implementation on Windows returns 1 for tab character.
2185 In order to avoid different printout on this host, we explicitly
2186 use wchar_printable function. */
2187 switch (w)
2188 {
2189 case LCST ('\a'):
2190 obstack_grow_wstr (output, LCST ("\\a"));
2191 break;
2192 case LCST ('\b'):
2193 obstack_grow_wstr (output, LCST ("\\b"));
2194 break;
2195 case LCST ('\f'):
2196 obstack_grow_wstr (output, LCST ("\\f"));
2197 break;
2198 case LCST ('\n'):
2199 obstack_grow_wstr (output, LCST ("\\n"));
2200 break;
2201 case LCST ('\r'):
2202 obstack_grow_wstr (output, LCST ("\\r"));
2203 break;
2204 case LCST ('\t'):
2205 obstack_grow_wstr (output, LCST ("\\t"));
2206 break;
2207 case LCST ('\v'):
2208 obstack_grow_wstr (output, LCST ("\\v"));
2209 break;
2210 default:
2211 {
2212 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2213 && w != LCST ('8')
2214 && w != LCST ('9'))))
2215 {
2216 gdb_wchar_t wchar = w;
2217
2218 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2219 obstack_grow_wstr (output, LCST ("\\"));
2220 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2221 }
2222 else
2223 {
2224 int i;
2225
2226 for (i = 0; i + width <= orig_len; i += width)
2227 {
2228 char octal[30];
2229 ULONGEST value;
2230
2231 value = extract_unsigned_integer (&orig[i], width,
2232 byte_order);
2233 /* If the value fits in 3 octal digits, print it that
2234 way. Otherwise, print it as a hex escape. */
2235 if (value <= 0777)
2236 xsnprintf (octal, sizeof (octal), "\\%.3o",
2237 (int) (value & 0777));
2238 else
2239 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2240 append_string_as_wide (octal, output);
2241 }
2242 /* If we somehow have extra bytes, print them now. */
2243 while (i < orig_len)
2244 {
2245 char octal[5];
2246
2247 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2248 append_string_as_wide (octal, output);
2249 ++i;
2250 }
2251
2252 *need_escapep = 1;
2253 }
2254 break;
2255 }
2256 }
2257 }
2258
2259 /* Print the character C on STREAM as part of the contents of a
2260 literal string whose delimiter is QUOTER. ENCODING names the
2261 encoding of C. */
2262
2263 void
2264 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2265 int quoter, const char *encoding)
2266 {
2267 enum bfd_endian byte_order
2268 = gdbarch_byte_order (get_type_arch (type));
2269 struct obstack wchar_buf, output;
2270 struct cleanup *cleanups;
2271 gdb_byte *buf;
2272 struct wchar_iterator *iter;
2273 int need_escape = 0;
2274
2275 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2276 pack_long (buf, type, c);
2277
2278 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2279 encoding, TYPE_LENGTH (type));
2280 cleanups = make_cleanup_wchar_iterator (iter);
2281
2282 /* This holds the printable form of the wchar_t data. */
2283 obstack_init (&wchar_buf);
2284 make_cleanup_obstack_free (&wchar_buf);
2285
2286 while (1)
2287 {
2288 int num_chars;
2289 gdb_wchar_t *chars;
2290 const gdb_byte *buf;
2291 size_t buflen;
2292 int print_escape = 1;
2293 enum wchar_iterate_result result;
2294
2295 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2296 if (num_chars < 0)
2297 break;
2298 if (num_chars > 0)
2299 {
2300 /* If all characters are printable, print them. Otherwise,
2301 we're going to have to print an escape sequence. We
2302 check all characters because we want to print the target
2303 bytes in the escape sequence, and we don't know character
2304 boundaries there. */
2305 int i;
2306
2307 print_escape = 0;
2308 for (i = 0; i < num_chars; ++i)
2309 if (!wchar_printable (chars[i]))
2310 {
2311 print_escape = 1;
2312 break;
2313 }
2314
2315 if (!print_escape)
2316 {
2317 for (i = 0; i < num_chars; ++i)
2318 print_wchar (chars[i], buf, buflen,
2319 TYPE_LENGTH (type), byte_order,
2320 &wchar_buf, quoter, &need_escape);
2321 }
2322 }
2323
2324 /* This handles the NUM_CHARS == 0 case as well. */
2325 if (print_escape)
2326 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2327 byte_order, &wchar_buf, quoter, &need_escape);
2328 }
2329
2330 /* The output in the host encoding. */
2331 obstack_init (&output);
2332 make_cleanup_obstack_free (&output);
2333
2334 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2335 (gdb_byte *) obstack_base (&wchar_buf),
2336 obstack_object_size (&wchar_buf),
2337 sizeof (gdb_wchar_t), &output, translit_char);
2338 obstack_1grow (&output, '\0');
2339
2340 fputs_filtered (obstack_base (&output), stream);
2341
2342 do_cleanups (cleanups);
2343 }
2344
2345 /* Return the repeat count of the next character/byte in ITER,
2346 storing the result in VEC. */
2347
2348 static int
2349 count_next_character (struct wchar_iterator *iter,
2350 VEC (converted_character_d) **vec)
2351 {
2352 struct converted_character *current;
2353
2354 if (VEC_empty (converted_character_d, *vec))
2355 {
2356 struct converted_character tmp;
2357 gdb_wchar_t *chars;
2358
2359 tmp.num_chars
2360 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2361 if (tmp.num_chars > 0)
2362 {
2363 gdb_assert (tmp.num_chars < MAX_WCHARS);
2364 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2365 }
2366 VEC_safe_push (converted_character_d, *vec, &tmp);
2367 }
2368
2369 current = VEC_last (converted_character_d, *vec);
2370
2371 /* Count repeated characters or bytes. */
2372 current->repeat_count = 1;
2373 if (current->num_chars == -1)
2374 {
2375 /* EOF */
2376 return -1;
2377 }
2378 else
2379 {
2380 gdb_wchar_t *chars;
2381 struct converted_character d;
2382 int repeat;
2383
2384 d.repeat_count = 0;
2385
2386 while (1)
2387 {
2388 /* Get the next character. */
2389 d.num_chars
2390 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2391
2392 /* If a character was successfully converted, save the character
2393 into the converted character. */
2394 if (d.num_chars > 0)
2395 {
2396 gdb_assert (d.num_chars < MAX_WCHARS);
2397 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2398 }
2399
2400 /* Determine if the current character is the same as this
2401 new character. */
2402 if (d.num_chars == current->num_chars && d.result == current->result)
2403 {
2404 /* There are two cases to consider:
2405
2406 1) Equality of converted character (num_chars > 0)
2407 2) Equality of non-converted character (num_chars == 0) */
2408 if ((current->num_chars > 0
2409 && memcmp (current->chars, d.chars,
2410 WCHAR_BUFLEN (current->num_chars)) == 0)
2411 || (current->num_chars == 0
2412 && current->buflen == d.buflen
2413 && memcmp (current->buf, d.buf, current->buflen) == 0))
2414 ++current->repeat_count;
2415 else
2416 break;
2417 }
2418 else
2419 break;
2420 }
2421
2422 /* Push this next converted character onto the result vector. */
2423 repeat = current->repeat_count;
2424 VEC_safe_push (converted_character_d, *vec, &d);
2425 return repeat;
2426 }
2427 }
2428
2429 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2430 character to use with string output. WIDTH is the size of the output
2431 character type. BYTE_ORDER is the the target byte order. OPTIONS
2432 is the user's print options. */
2433
2434 static void
2435 print_converted_chars_to_obstack (struct obstack *obstack,
2436 VEC (converted_character_d) *chars,
2437 int quote_char, int width,
2438 enum bfd_endian byte_order,
2439 const struct value_print_options *options)
2440 {
2441 unsigned int idx;
2442 struct converted_character *elem;
2443 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2444 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2445 int need_escape = 0;
2446
2447 /* Set the start state. */
2448 idx = 0;
2449 last = state = START;
2450 elem = NULL;
2451
2452 while (1)
2453 {
2454 switch (state)
2455 {
2456 case START:
2457 /* Nothing to do. */
2458 break;
2459
2460 case SINGLE:
2461 {
2462 int j;
2463
2464 /* We are outputting a single character
2465 (< options->repeat_count_threshold). */
2466
2467 if (last != SINGLE)
2468 {
2469 /* We were outputting some other type of content, so we
2470 must output and a comma and a quote. */
2471 if (last != START)
2472 obstack_grow_wstr (obstack, LCST (", "));
2473 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2474 }
2475 /* Output the character. */
2476 for (j = 0; j < elem->repeat_count; ++j)
2477 {
2478 if (elem->result == wchar_iterate_ok)
2479 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2480 byte_order, obstack, quote_char, &need_escape);
2481 else
2482 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2483 byte_order, obstack, quote_char, &need_escape);
2484 }
2485 }
2486 break;
2487
2488 case REPEAT:
2489 {
2490 int j;
2491 char *s;
2492
2493 /* We are outputting a character with a repeat count
2494 greater than options->repeat_count_threshold. */
2495
2496 if (last == SINGLE)
2497 {
2498 /* We were outputting a single string. Terminate the
2499 string. */
2500 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2501 }
2502 if (last != START)
2503 obstack_grow_wstr (obstack, LCST (", "));
2504
2505 /* Output the character and repeat string. */
2506 obstack_grow_wstr (obstack, LCST ("'"));
2507 if (elem->result == wchar_iterate_ok)
2508 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2509 byte_order, obstack, quote_char, &need_escape);
2510 else
2511 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2512 byte_order, obstack, quote_char, &need_escape);
2513 obstack_grow_wstr (obstack, LCST ("'"));
2514 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2515 for (j = 0; s[j]; ++j)
2516 {
2517 gdb_wchar_t w = gdb_btowc (s[j]);
2518 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2519 }
2520 xfree (s);
2521 }
2522 break;
2523
2524 case INCOMPLETE:
2525 /* We are outputting an incomplete sequence. */
2526 if (last == SINGLE)
2527 {
2528 /* If we were outputting a string of SINGLE characters,
2529 terminate the quote. */
2530 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2531 }
2532 if (last != START)
2533 obstack_grow_wstr (obstack, LCST (", "));
2534
2535 /* Output the incomplete sequence string. */
2536 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2537 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2538 obstack, 0, &need_escape);
2539 obstack_grow_wstr (obstack, LCST (">"));
2540
2541 /* We do not attempt to outupt anything after this. */
2542 state = FINISH;
2543 break;
2544
2545 case FINISH:
2546 /* All done. If we were outputting a string of SINGLE
2547 characters, the string must be terminated. Otherwise,
2548 REPEAT and INCOMPLETE are always left properly terminated. */
2549 if (last == SINGLE)
2550 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2551
2552 return;
2553 }
2554
2555 /* Get the next element and state. */
2556 last = state;
2557 if (state != FINISH)
2558 {
2559 elem = VEC_index (converted_character_d, chars, idx++);
2560 switch (elem->result)
2561 {
2562 case wchar_iterate_ok:
2563 case wchar_iterate_invalid:
2564 if (elem->repeat_count > options->repeat_count_threshold)
2565 state = REPEAT;
2566 else
2567 state = SINGLE;
2568 break;
2569
2570 case wchar_iterate_incomplete:
2571 state = INCOMPLETE;
2572 break;
2573
2574 case wchar_iterate_eof:
2575 state = FINISH;
2576 break;
2577 }
2578 }
2579 }
2580 }
2581
2582 /* Print the character string STRING, printing at most LENGTH
2583 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2584 the type of each character. OPTIONS holds the printing options;
2585 printing stops early if the number hits print_max; repeat counts
2586 are printed as appropriate. Print ellipses at the end if we had to
2587 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2588 QUOTE_CHAR is the character to print at each end of the string. If
2589 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2590 omitted. */
2591
2592 void
2593 generic_printstr (struct ui_file *stream, struct type *type,
2594 const gdb_byte *string, unsigned int length,
2595 const char *encoding, int force_ellipses,
2596 int quote_char, int c_style_terminator,
2597 const struct value_print_options *options)
2598 {
2599 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2600 unsigned int i;
2601 int width = TYPE_LENGTH (type);
2602 struct obstack wchar_buf, output;
2603 struct cleanup *cleanup;
2604 struct wchar_iterator *iter;
2605 int finished = 0;
2606 struct converted_character *last;
2607 VEC (converted_character_d) *converted_chars;
2608
2609 if (length == -1)
2610 {
2611 unsigned long current_char = 1;
2612
2613 for (i = 0; current_char; ++i)
2614 {
2615 QUIT;
2616 current_char = extract_unsigned_integer (string + i * width,
2617 width, byte_order);
2618 }
2619 length = i;
2620 }
2621
2622 /* If the string was not truncated due to `set print elements', and
2623 the last byte of it is a null, we don't print that, in
2624 traditional C style. */
2625 if (c_style_terminator
2626 && !force_ellipses
2627 && length > 0
2628 && (extract_unsigned_integer (string + (length - 1) * width,
2629 width, byte_order) == 0))
2630 length--;
2631
2632 if (length == 0)
2633 {
2634 fputs_filtered ("\"\"", stream);
2635 return;
2636 }
2637
2638 /* Arrange to iterate over the characters, in wchar_t form. */
2639 iter = make_wchar_iterator (string, length * width, encoding, width);
2640 cleanup = make_cleanup_wchar_iterator (iter);
2641 converted_chars = NULL;
2642 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2643
2644 /* Convert characters until the string is over or the maximum
2645 number of printed characters has been reached. */
2646 i = 0;
2647 while (i < options->print_max)
2648 {
2649 int r;
2650
2651 QUIT;
2652
2653 /* Grab the next character and repeat count. */
2654 r = count_next_character (iter, &converted_chars);
2655
2656 /* If less than zero, the end of the input string was reached. */
2657 if (r < 0)
2658 break;
2659
2660 /* Otherwise, add the count to the total print count and get
2661 the next character. */
2662 i += r;
2663 }
2664
2665 /* Get the last element and determine if the entire string was
2666 processed. */
2667 last = VEC_last (converted_character_d, converted_chars);
2668 finished = (last->result == wchar_iterate_eof);
2669
2670 /* Ensure that CONVERTED_CHARS is terminated. */
2671 last->result = wchar_iterate_eof;
2672
2673 /* WCHAR_BUF is the obstack we use to represent the string in
2674 wchar_t form. */
2675 obstack_init (&wchar_buf);
2676 make_cleanup_obstack_free (&wchar_buf);
2677
2678 /* Print the output string to the obstack. */
2679 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2680 width, byte_order, options);
2681
2682 if (force_ellipses || !finished)
2683 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2684
2685 /* OUTPUT is where we collect `char's for printing. */
2686 obstack_init (&output);
2687 make_cleanup_obstack_free (&output);
2688
2689 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2690 (gdb_byte *) obstack_base (&wchar_buf),
2691 obstack_object_size (&wchar_buf),
2692 sizeof (gdb_wchar_t), &output, translit_char);
2693 obstack_1grow (&output, '\0');
2694
2695 fputs_filtered (obstack_base (&output), stream);
2696
2697 do_cleanups (cleanup);
2698 }
2699
2700 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2701 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2702 stops at the first null byte, otherwise printing proceeds (including null
2703 bytes) until either print_max or LEN characters have been printed,
2704 whichever is smaller. ENCODING is the name of the string's
2705 encoding. It can be NULL, in which case the target encoding is
2706 assumed. */
2707
2708 int
2709 val_print_string (struct type *elttype, const char *encoding,
2710 CORE_ADDR addr, int len,
2711 struct ui_file *stream,
2712 const struct value_print_options *options)
2713 {
2714 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2715 int errcode; /* Errno returned from bad reads. */
2716 int found_nul; /* Non-zero if we found the nul char. */
2717 unsigned int fetchlimit; /* Maximum number of chars to print. */
2718 int bytes_read;
2719 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2720 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2721 struct gdbarch *gdbarch = get_type_arch (elttype);
2722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2723 int width = TYPE_LENGTH (elttype);
2724
2725 /* First we need to figure out the limit on the number of characters we are
2726 going to attempt to fetch and print. This is actually pretty simple. If
2727 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2728 LEN is -1, then the limit is print_max. This is true regardless of
2729 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2730 because finding the null byte (or available memory) is what actually
2731 limits the fetch. */
2732
2733 fetchlimit = (len == -1 ? options->print_max : min (len,
2734 options->print_max));
2735
2736 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2737 &buffer, &bytes_read);
2738 old_chain = make_cleanup (xfree, buffer);
2739
2740 addr += bytes_read;
2741
2742 /* We now have either successfully filled the buffer to fetchlimit,
2743 or terminated early due to an error or finding a null char when
2744 LEN is -1. */
2745
2746 /* Determine found_nul by looking at the last character read. */
2747 found_nul = 0;
2748 if (bytes_read >= width)
2749 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2750 byte_order) == 0;
2751 if (len == -1 && !found_nul)
2752 {
2753 gdb_byte *peekbuf;
2754
2755 /* We didn't find a NUL terminator we were looking for. Attempt
2756 to peek at the next character. If not successful, or it is not
2757 a null byte, then force ellipsis to be printed. */
2758
2759 peekbuf = (gdb_byte *) alloca (width);
2760
2761 if (target_read_memory (addr, peekbuf, width) == 0
2762 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2763 force_ellipsis = 1;
2764 }
2765 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2766 {
2767 /* Getting an error when we have a requested length, or fetching less
2768 than the number of characters actually requested, always make us
2769 print ellipsis. */
2770 force_ellipsis = 1;
2771 }
2772
2773 /* If we get an error before fetching anything, don't print a string.
2774 But if we fetch something and then get an error, print the string
2775 and then the error message. */
2776 if (errcode == 0 || bytes_read > 0)
2777 {
2778 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2779 encoding, force_ellipsis, options);
2780 }
2781
2782 if (errcode != 0)
2783 {
2784 char *str;
2785
2786 str = memory_error_message (errcode, gdbarch, addr);
2787 make_cleanup (xfree, str);
2788
2789 fprintf_filtered (stream, "<error: ");
2790 fputs_filtered (str, stream);
2791 fprintf_filtered (stream, ">");
2792 }
2793
2794 gdb_flush (stream);
2795 do_cleanups (old_chain);
2796
2797 return (bytes_read / width);
2798 }
2799 \f
2800
2801 /* The 'set input-radix' command writes to this auxiliary variable.
2802 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2803 it is left unchanged. */
2804
2805 static unsigned input_radix_1 = 10;
2806
2807 /* Validate an input or output radix setting, and make sure the user
2808 knows what they really did here. Radix setting is confusing, e.g.
2809 setting the input radix to "10" never changes it! */
2810
2811 static void
2812 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2813 {
2814 set_input_radix_1 (from_tty, input_radix_1);
2815 }
2816
2817 static void
2818 set_input_radix_1 (int from_tty, unsigned radix)
2819 {
2820 /* We don't currently disallow any input radix except 0 or 1, which don't
2821 make any mathematical sense. In theory, we can deal with any input
2822 radix greater than 1, even if we don't have unique digits for every
2823 value from 0 to radix-1, but in practice we lose on large radix values.
2824 We should either fix the lossage or restrict the radix range more.
2825 (FIXME). */
2826
2827 if (radix < 2)
2828 {
2829 input_radix_1 = input_radix;
2830 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2831 radix);
2832 }
2833 input_radix_1 = input_radix = radix;
2834 if (from_tty)
2835 {
2836 printf_filtered (_("Input radix now set to "
2837 "decimal %u, hex %x, octal %o.\n"),
2838 radix, radix, radix);
2839 }
2840 }
2841
2842 /* The 'set output-radix' command writes to this auxiliary variable.
2843 If the requested radix is valid, OUTPUT_RADIX is updated,
2844 otherwise, it is left unchanged. */
2845
2846 static unsigned output_radix_1 = 10;
2847
2848 static void
2849 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2850 {
2851 set_output_radix_1 (from_tty, output_radix_1);
2852 }
2853
2854 static void
2855 set_output_radix_1 (int from_tty, unsigned radix)
2856 {
2857 /* Validate the radix and disallow ones that we aren't prepared to
2858 handle correctly, leaving the radix unchanged. */
2859 switch (radix)
2860 {
2861 case 16:
2862 user_print_options.output_format = 'x'; /* hex */
2863 break;
2864 case 10:
2865 user_print_options.output_format = 0; /* decimal */
2866 break;
2867 case 8:
2868 user_print_options.output_format = 'o'; /* octal */
2869 break;
2870 default:
2871 output_radix_1 = output_radix;
2872 error (_("Unsupported output radix ``decimal %u''; "
2873 "output radix unchanged."),
2874 radix);
2875 }
2876 output_radix_1 = output_radix = radix;
2877 if (from_tty)
2878 {
2879 printf_filtered (_("Output radix now set to "
2880 "decimal %u, hex %x, octal %o.\n"),
2881 radix, radix, radix);
2882 }
2883 }
2884
2885 /* Set both the input and output radix at once. Try to set the output radix
2886 first, since it has the most restrictive range. An radix that is valid as
2887 an output radix is also valid as an input radix.
2888
2889 It may be useful to have an unusual input radix. If the user wishes to
2890 set an input radix that is not valid as an output radix, he needs to use
2891 the 'set input-radix' command. */
2892
2893 static void
2894 set_radix (char *arg, int from_tty)
2895 {
2896 unsigned radix;
2897
2898 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2899 set_output_radix_1 (0, radix);
2900 set_input_radix_1 (0, radix);
2901 if (from_tty)
2902 {
2903 printf_filtered (_("Input and output radices now set to "
2904 "decimal %u, hex %x, octal %o.\n"),
2905 radix, radix, radix);
2906 }
2907 }
2908
2909 /* Show both the input and output radices. */
2910
2911 static void
2912 show_radix (char *arg, int from_tty)
2913 {
2914 if (from_tty)
2915 {
2916 if (input_radix == output_radix)
2917 {
2918 printf_filtered (_("Input and output radices set to "
2919 "decimal %u, hex %x, octal %o.\n"),
2920 input_radix, input_radix, input_radix);
2921 }
2922 else
2923 {
2924 printf_filtered (_("Input radix set to decimal "
2925 "%u, hex %x, octal %o.\n"),
2926 input_radix, input_radix, input_radix);
2927 printf_filtered (_("Output radix set to decimal "
2928 "%u, hex %x, octal %o.\n"),
2929 output_radix, output_radix, output_radix);
2930 }
2931 }
2932 }
2933 \f
2934
2935 static void
2936 set_print (char *arg, int from_tty)
2937 {
2938 printf_unfiltered (
2939 "\"set print\" must be followed by the name of a print subcommand.\n");
2940 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2941 }
2942
2943 static void
2944 show_print (char *args, int from_tty)
2945 {
2946 cmd_show_list (showprintlist, from_tty, "");
2947 }
2948
2949 static void
2950 set_print_raw (char *arg, int from_tty)
2951 {
2952 printf_unfiltered (
2953 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2954 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2955 }
2956
2957 static void
2958 show_print_raw (char *args, int from_tty)
2959 {
2960 cmd_show_list (showprintrawlist, from_tty, "");
2961 }
2962
2963 \f
2964 void
2965 _initialize_valprint (void)
2966 {
2967 add_prefix_cmd ("print", no_class, set_print,
2968 _("Generic command for setting how things print."),
2969 &setprintlist, "set print ", 0, &setlist);
2970 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2971 /* Prefer set print to set prompt. */
2972 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2973
2974 add_prefix_cmd ("print", no_class, show_print,
2975 _("Generic command for showing print settings."),
2976 &showprintlist, "show print ", 0, &showlist);
2977 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2978 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2979
2980 add_prefix_cmd ("raw", no_class, set_print_raw,
2981 _("\
2982 Generic command for setting what things to print in \"raw\" mode."),
2983 &setprintrawlist, "set print raw ", 0, &setprintlist);
2984 add_prefix_cmd ("raw", no_class, show_print_raw,
2985 _("Generic command for showing \"print raw\" settings."),
2986 &showprintrawlist, "show print raw ", 0, &showprintlist);
2987
2988 add_setshow_uinteger_cmd ("elements", no_class,
2989 &user_print_options.print_max, _("\
2990 Set limit on string chars or array elements to print."), _("\
2991 Show limit on string chars or array elements to print."), _("\
2992 \"set print elements unlimited\" causes there to be no limit."),
2993 NULL,
2994 show_print_max,
2995 &setprintlist, &showprintlist);
2996
2997 add_setshow_boolean_cmd ("null-stop", no_class,
2998 &user_print_options.stop_print_at_null, _("\
2999 Set printing of char arrays to stop at first null char."), _("\
3000 Show printing of char arrays to stop at first null char."), NULL,
3001 NULL,
3002 show_stop_print_at_null,
3003 &setprintlist, &showprintlist);
3004
3005 add_setshow_uinteger_cmd ("repeats", no_class,
3006 &user_print_options.repeat_count_threshold, _("\
3007 Set threshold for repeated print elements."), _("\
3008 Show threshold for repeated print elements."), _("\
3009 \"set print repeats unlimited\" causes all elements to be individually printed."),
3010 NULL,
3011 show_repeat_count_threshold,
3012 &setprintlist, &showprintlist);
3013
3014 add_setshow_boolean_cmd ("pretty", class_support,
3015 &user_print_options.prettyformat_structs, _("\
3016 Set pretty formatting of structures."), _("\
3017 Show pretty formatting of structures."), NULL,
3018 NULL,
3019 show_prettyformat_structs,
3020 &setprintlist, &showprintlist);
3021
3022 add_setshow_boolean_cmd ("union", class_support,
3023 &user_print_options.unionprint, _("\
3024 Set printing of unions interior to structures."), _("\
3025 Show printing of unions interior to structures."), NULL,
3026 NULL,
3027 show_unionprint,
3028 &setprintlist, &showprintlist);
3029
3030 add_setshow_boolean_cmd ("array", class_support,
3031 &user_print_options.prettyformat_arrays, _("\
3032 Set pretty formatting of arrays."), _("\
3033 Show pretty formatting of arrays."), NULL,
3034 NULL,
3035 show_prettyformat_arrays,
3036 &setprintlist, &showprintlist);
3037
3038 add_setshow_boolean_cmd ("address", class_support,
3039 &user_print_options.addressprint, _("\
3040 Set printing of addresses."), _("\
3041 Show printing of addresses."), NULL,
3042 NULL,
3043 show_addressprint,
3044 &setprintlist, &showprintlist);
3045
3046 add_setshow_boolean_cmd ("symbol", class_support,
3047 &user_print_options.symbol_print, _("\
3048 Set printing of symbol names when printing pointers."), _("\
3049 Show printing of symbol names when printing pointers."),
3050 NULL, NULL,
3051 show_symbol_print,
3052 &setprintlist, &showprintlist);
3053
3054 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3055 _("\
3056 Set default input radix for entering numbers."), _("\
3057 Show default input radix for entering numbers."), NULL,
3058 set_input_radix,
3059 show_input_radix,
3060 &setlist, &showlist);
3061
3062 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3063 _("\
3064 Set default output radix for printing of values."), _("\
3065 Show default output radix for printing of values."), NULL,
3066 set_output_radix,
3067 show_output_radix,
3068 &setlist, &showlist);
3069
3070 /* The "set radix" and "show radix" commands are special in that
3071 they are like normal set and show commands but allow two normally
3072 independent variables to be either set or shown with a single
3073 command. So the usual deprecated_add_set_cmd() and [deleted]
3074 add_show_from_set() commands aren't really appropriate. */
3075 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3076 longer true - show can display anything. */
3077 add_cmd ("radix", class_support, set_radix, _("\
3078 Set default input and output number radices.\n\
3079 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3080 Without an argument, sets both radices back to the default value of 10."),
3081 &setlist);
3082 add_cmd ("radix", class_support, show_radix, _("\
3083 Show the default input and output number radices.\n\
3084 Use 'show input-radix' or 'show output-radix' to independently show each."),
3085 &showlist);
3086
3087 add_setshow_boolean_cmd ("array-indexes", class_support,
3088 &user_print_options.print_array_indexes, _("\
3089 Set printing of array indexes."), _("\
3090 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3091 &setprintlist, &showprintlist);
3092 }
This page took 0.112435 seconds and 5 git commands to generate.