Introduce la_value_print_inner
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* Helper function for val_print and common_val_print that does the
1037 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1038 the value to be printed. */
1039
1040 static void
1041 do_val_print (struct value *full_value,
1042 struct type *type, LONGEST embedded_offset,
1043 CORE_ADDR address, struct ui_file *stream, int recurse,
1044 struct value *val,
1045 const struct value_print_options *options,
1046 const struct language_defn *language)
1047 {
1048 int ret = 0;
1049 struct value_print_options local_opts = *options;
1050 struct type *real_type = check_typedef (type);
1051
1052 if (local_opts.prettyformat == Val_prettyformat_default)
1053 local_opts.prettyformat = (local_opts.prettyformat_structs
1054 ? Val_prettyformat : Val_no_prettyformat);
1055
1056 QUIT;
1057
1058 /* Ensure that the type is complete and not just a stub. If the type is
1059 only a stub and we can't find and substitute its complete type, then
1060 print appropriate string and return. */
1061
1062 if (TYPE_STUB (real_type))
1063 {
1064 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1065 return;
1066 }
1067
1068 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1069 return;
1070
1071 if (!options->raw)
1072 {
1073 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1074 address, stream, recurse,
1075 val, options, language);
1076 if (ret)
1077 return;
1078 }
1079
1080 /* Handle summary mode. If the value is a scalar, print it;
1081 otherwise, print an ellipsis. */
1082 if (options->summary && !val_print_scalar_type_p (type))
1083 {
1084 fprintf_filtered (stream, "...");
1085 return;
1086 }
1087
1088 /* If this value is too deep then don't print it. */
1089 if (!val_print_scalar_or_string_type_p (type, language)
1090 && val_print_check_max_depth (stream, recurse, options, language))
1091 return;
1092
1093 try
1094 {
1095 if (full_value != nullptr && language->la_value_print_inner != nullptr)
1096 language->la_value_print_inner (full_value, stream, recurse,
1097 &local_opts);
1098 else
1099 language->la_val_print (type, embedded_offset, address,
1100 stream, recurse, val,
1101 &local_opts);
1102 }
1103 catch (const gdb_exception_error &except)
1104 {
1105 fprintf_styled (stream, metadata_style.style (),
1106 _("<error reading variable>"));
1107 }
1108 }
1109
1110 /* Print using the given LANGUAGE the data of type TYPE located at
1111 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1112 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1113 stdio stream STREAM according to OPTIONS. VAL is the whole object
1114 that came from ADDRESS.
1115
1116 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1117 further helper subroutines as subfields of TYPE are printed. In
1118 such cases, VAL is passed down unadjusted, so
1119 that VAL can be queried for metadata about the contents data being
1120 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1121 buffer. For example: "has this field been optimized out", or "I'm
1122 printing an object while inspecting a traceframe; has this
1123 particular piece of data been collected?".
1124
1125 RECURSE indicates the amount of indentation to supply before
1126 continuation lines; this amount is roughly twice the value of
1127 RECURSE. */
1128
1129 void
1130 val_print (struct type *type, LONGEST embedded_offset,
1131 CORE_ADDR address, struct ui_file *stream, int recurse,
1132 struct value *val,
1133 const struct value_print_options *options,
1134 const struct language_defn *language)
1135 {
1136 do_val_print (nullptr, type, embedded_offset, address, stream,
1137 recurse, val, options, language);
1138 }
1139
1140 /* See valprint.h. */
1141
1142 bool
1143 val_print_check_max_depth (struct ui_file *stream, int recurse,
1144 const struct value_print_options *options,
1145 const struct language_defn *language)
1146 {
1147 if (options->max_depth > -1 && recurse >= options->max_depth)
1148 {
1149 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1150 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1151 return true;
1152 }
1153
1154 return false;
1155 }
1156
1157 /* Check whether the value VAL is printable. Return 1 if it is;
1158 return 0 and print an appropriate error message to STREAM according to
1159 OPTIONS if it is not. */
1160
1161 static int
1162 value_check_printable (struct value *val, struct ui_file *stream,
1163 const struct value_print_options *options)
1164 {
1165 if (val == 0)
1166 {
1167 fprintf_styled (stream, metadata_style.style (),
1168 _("<address of value unknown>"));
1169 return 0;
1170 }
1171
1172 if (value_entirely_optimized_out (val))
1173 {
1174 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1175 fprintf_filtered (stream, "...");
1176 else
1177 val_print_optimized_out (val, stream);
1178 return 0;
1179 }
1180
1181 if (value_entirely_unavailable (val))
1182 {
1183 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1184 fprintf_filtered (stream, "...");
1185 else
1186 val_print_unavailable (stream);
1187 return 0;
1188 }
1189
1190 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1191 {
1192 fprintf_styled (stream, metadata_style.style (),
1193 _("<internal function %s>"),
1194 value_internal_function_name (val));
1195 return 0;
1196 }
1197
1198 if (type_not_associated (value_type (val)))
1199 {
1200 val_print_not_associated (stream);
1201 return 0;
1202 }
1203
1204 if (type_not_allocated (value_type (val)))
1205 {
1206 val_print_not_allocated (stream);
1207 return 0;
1208 }
1209
1210 return 1;
1211 }
1212
1213 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1214 to OPTIONS.
1215
1216 This is a preferable interface to val_print, above, because it uses
1217 GDB's value mechanism. */
1218
1219 void
1220 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1221 const struct value_print_options *options,
1222 const struct language_defn *language)
1223 {
1224 if (!value_check_printable (val, stream, options))
1225 return;
1226
1227 if (language->la_language == language_ada)
1228 /* The value might have a dynamic type, which would cause trouble
1229 below when trying to extract the value contents (since the value
1230 size is determined from the type size which is unknown). So
1231 get a fixed representation of our value. */
1232 val = ada_to_fixed_value (val);
1233
1234 if (value_lazy (val))
1235 value_fetch_lazy (val);
1236
1237 do_val_print (val, value_type (val),
1238 value_embedded_offset (val), value_address (val),
1239 stream, recurse,
1240 val, options, language);
1241 }
1242
1243 /* See valprint.h. */
1244
1245 void
1246 common_val_print_checked (struct value *val, struct ui_file *stream,
1247 int recurse,
1248 const struct value_print_options *options,
1249 const struct language_defn *language)
1250 {
1251 if (!value_check_printable (val, stream, options))
1252 return;
1253 common_val_print (val, stream, recurse, options, language);
1254 }
1255
1256 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1257 is printed using the current_language syntax. */
1258
1259 void
1260 value_print (struct value *val, struct ui_file *stream,
1261 const struct value_print_options *options)
1262 {
1263 scoped_value_mark free_values;
1264
1265 if (!value_check_printable (val, stream, options))
1266 return;
1267
1268 if (!options->raw)
1269 {
1270 int r
1271 = apply_ext_lang_val_pretty_printer (value_type (val),
1272 value_embedded_offset (val),
1273 value_address (val),
1274 stream, 0,
1275 val, options, current_language);
1276
1277 if (r)
1278 return;
1279 }
1280
1281 LA_VALUE_PRINT (val, stream, options);
1282 }
1283
1284 static void
1285 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1286 struct ui_file *stream)
1287 {
1288 ULONGEST val = unpack_long (type, valaddr);
1289 int field, nfields = TYPE_NFIELDS (type);
1290 struct gdbarch *gdbarch = get_type_arch (type);
1291 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1292
1293 fputs_filtered ("[", stream);
1294 for (field = 0; field < nfields; field++)
1295 {
1296 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1297 {
1298 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1299
1300 if (field_type == bool_type
1301 /* We require boolean types here to be one bit wide. This is a
1302 problematic place to notify the user of an internal error
1303 though. Instead just fall through and print the field as an
1304 int. */
1305 && TYPE_FIELD_BITSIZE (type, field) == 1)
1306 {
1307 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1308 fprintf_filtered
1309 (stream, " %ps",
1310 styled_string (variable_name_style.style (),
1311 TYPE_FIELD_NAME (type, field)));
1312 }
1313 else
1314 {
1315 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1316 ULONGEST field_val
1317 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1318
1319 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1320 field_val &= ((ULONGEST) 1 << field_len) - 1;
1321 fprintf_filtered (stream, " %ps=",
1322 styled_string (variable_name_style.style (),
1323 TYPE_FIELD_NAME (type, field)));
1324 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1325 generic_val_print_enum_1 (field_type, field_val, stream);
1326 else
1327 print_longest (stream, 'd', 0, field_val);
1328 }
1329 }
1330 }
1331 fputs_filtered (" ]", stream);
1332 }
1333
1334 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1335 according to OPTIONS and SIZE on STREAM. Format i is not supported
1336 at this level.
1337
1338 This is how the elements of an array or structure are printed
1339 with a format. */
1340
1341 void
1342 val_print_scalar_formatted (struct type *type,
1343 LONGEST embedded_offset,
1344 struct value *val,
1345 const struct value_print_options *options,
1346 int size,
1347 struct ui_file *stream)
1348 {
1349 struct gdbarch *arch = get_type_arch (type);
1350 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1351
1352 gdb_assert (val != NULL);
1353
1354 /* If we get here with a string format, try again without it. Go
1355 all the way back to the language printers, which may call us
1356 again. */
1357 if (options->format == 's')
1358 {
1359 struct value_print_options opts = *options;
1360 opts.format = 0;
1361 opts.deref_ref = 0;
1362 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1363 current_language);
1364 return;
1365 }
1366
1367 /* value_contents_for_printing fetches all VAL's contents. They are
1368 needed to check whether VAL is optimized-out or unavailable
1369 below. */
1370 const gdb_byte *valaddr = value_contents_for_printing (val);
1371
1372 /* A scalar object that does not have all bits available can't be
1373 printed, because all bits contribute to its representation. */
1374 if (value_bits_any_optimized_out (val,
1375 TARGET_CHAR_BIT * embedded_offset,
1376 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1377 val_print_optimized_out (val, stream);
1378 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1379 val_print_unavailable (stream);
1380 else
1381 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1382 options, size, stream);
1383 }
1384
1385 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1386 The raison d'etre of this function is to consolidate printing of
1387 LONG_LONG's into this one function. The format chars b,h,w,g are
1388 from print_scalar_formatted(). Numbers are printed using C
1389 format.
1390
1391 USE_C_FORMAT means to use C format in all cases. Without it,
1392 'o' and 'x' format do not include the standard C radix prefix
1393 (leading 0 or 0x).
1394
1395 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1396 and was intended to request formatting according to the current
1397 language and would be used for most integers that GDB prints. The
1398 exceptional cases were things like protocols where the format of
1399 the integer is a protocol thing, not a user-visible thing). The
1400 parameter remains to preserve the information of what things might
1401 be printed with language-specific format, should we ever resurrect
1402 that capability. */
1403
1404 void
1405 print_longest (struct ui_file *stream, int format, int use_c_format,
1406 LONGEST val_long)
1407 {
1408 const char *val;
1409
1410 switch (format)
1411 {
1412 case 'd':
1413 val = int_string (val_long, 10, 1, 0, 1); break;
1414 case 'u':
1415 val = int_string (val_long, 10, 0, 0, 1); break;
1416 case 'x':
1417 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1418 case 'b':
1419 val = int_string (val_long, 16, 0, 2, 1); break;
1420 case 'h':
1421 val = int_string (val_long, 16, 0, 4, 1); break;
1422 case 'w':
1423 val = int_string (val_long, 16, 0, 8, 1); break;
1424 case 'g':
1425 val = int_string (val_long, 16, 0, 16, 1); break;
1426 break;
1427 case 'o':
1428 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1429 default:
1430 internal_error (__FILE__, __LINE__,
1431 _("failed internal consistency check"));
1432 }
1433 fputs_filtered (val, stream);
1434 }
1435
1436 /* This used to be a macro, but I don't think it is called often enough
1437 to merit such treatment. */
1438 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1439 arguments to a function, number in a value history, register number, etc.)
1440 where the value must not be larger than can fit in an int. */
1441
1442 int
1443 longest_to_int (LONGEST arg)
1444 {
1445 /* Let the compiler do the work. */
1446 int rtnval = (int) arg;
1447
1448 /* Check for overflows or underflows. */
1449 if (sizeof (LONGEST) > sizeof (int))
1450 {
1451 if (rtnval != arg)
1452 {
1453 error (_("Value out of range."));
1454 }
1455 }
1456 return (rtnval);
1457 }
1458
1459 /* Print a floating point value of floating-point type TYPE,
1460 pointed to in GDB by VALADDR, on STREAM. */
1461
1462 void
1463 print_floating (const gdb_byte *valaddr, struct type *type,
1464 struct ui_file *stream)
1465 {
1466 std::string str = target_float_to_string (valaddr, type);
1467 fputs_filtered (str.c_str (), stream);
1468 }
1469
1470 void
1471 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1472 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1473 {
1474 const gdb_byte *p;
1475 unsigned int i;
1476 int b;
1477 bool seen_a_one = false;
1478
1479 /* Declared "int" so it will be signed.
1480 This ensures that right shift will shift in zeros. */
1481
1482 const int mask = 0x080;
1483
1484 if (byte_order == BFD_ENDIAN_BIG)
1485 {
1486 for (p = valaddr;
1487 p < valaddr + len;
1488 p++)
1489 {
1490 /* Every byte has 8 binary characters; peel off
1491 and print from the MSB end. */
1492
1493 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1494 {
1495 if (*p & (mask >> i))
1496 b = '1';
1497 else
1498 b = '0';
1499
1500 if (zero_pad || seen_a_one || b == '1')
1501 fputc_filtered (b, stream);
1502 if (b == '1')
1503 seen_a_one = true;
1504 }
1505 }
1506 }
1507 else
1508 {
1509 for (p = valaddr + len - 1;
1510 p >= valaddr;
1511 p--)
1512 {
1513 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1514 {
1515 if (*p & (mask >> i))
1516 b = '1';
1517 else
1518 b = '0';
1519
1520 if (zero_pad || seen_a_one || b == '1')
1521 fputc_filtered (b, stream);
1522 if (b == '1')
1523 seen_a_one = true;
1524 }
1525 }
1526 }
1527
1528 /* When not zero-padding, ensure that something is printed when the
1529 input is 0. */
1530 if (!zero_pad && !seen_a_one)
1531 fputc_filtered ('0', stream);
1532 }
1533
1534 /* A helper for print_octal_chars that emits a single octal digit,
1535 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1536
1537 static void
1538 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1539 {
1540 if (*seen_a_one || digit != 0)
1541 fprintf_filtered (stream, "%o", digit);
1542 if (digit != 0)
1543 *seen_a_one = true;
1544 }
1545
1546 /* VALADDR points to an integer of LEN bytes.
1547 Print it in octal on stream or format it in buf. */
1548
1549 void
1550 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1551 unsigned len, enum bfd_endian byte_order)
1552 {
1553 const gdb_byte *p;
1554 unsigned char octa1, octa2, octa3, carry;
1555 int cycle;
1556
1557 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1558 * the extra bits, which cycle every three bytes:
1559 *
1560 * Byte side: 0 1 2 3
1561 * | | | |
1562 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1563 *
1564 * Octal side: 0 1 carry 3 4 carry ...
1565 *
1566 * Cycle number: 0 1 2
1567 *
1568 * But of course we are printing from the high side, so we have to
1569 * figure out where in the cycle we are so that we end up with no
1570 * left over bits at the end.
1571 */
1572 #define BITS_IN_OCTAL 3
1573 #define HIGH_ZERO 0340
1574 #define LOW_ZERO 0034
1575 #define CARRY_ZERO 0003
1576 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1577 "cycle zero constants are wrong");
1578 #define HIGH_ONE 0200
1579 #define MID_ONE 0160
1580 #define LOW_ONE 0016
1581 #define CARRY_ONE 0001
1582 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1583 "cycle one constants are wrong");
1584 #define HIGH_TWO 0300
1585 #define MID_TWO 0070
1586 #define LOW_TWO 0007
1587 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1588 "cycle two constants are wrong");
1589
1590 /* For 32 we start in cycle 2, with two bits and one bit carry;
1591 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1592
1593 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1594 carry = 0;
1595
1596 fputs_filtered ("0", stream);
1597 bool seen_a_one = false;
1598 if (byte_order == BFD_ENDIAN_BIG)
1599 {
1600 for (p = valaddr;
1601 p < valaddr + len;
1602 p++)
1603 {
1604 switch (cycle)
1605 {
1606 case 0:
1607 /* No carry in, carry out two bits. */
1608
1609 octa1 = (HIGH_ZERO & *p) >> 5;
1610 octa2 = (LOW_ZERO & *p) >> 2;
1611 carry = (CARRY_ZERO & *p);
1612 emit_octal_digit (stream, &seen_a_one, octa1);
1613 emit_octal_digit (stream, &seen_a_one, octa2);
1614 break;
1615
1616 case 1:
1617 /* Carry in two bits, carry out one bit. */
1618
1619 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1620 octa2 = (MID_ONE & *p) >> 4;
1621 octa3 = (LOW_ONE & *p) >> 1;
1622 carry = (CARRY_ONE & *p);
1623 emit_octal_digit (stream, &seen_a_one, octa1);
1624 emit_octal_digit (stream, &seen_a_one, octa2);
1625 emit_octal_digit (stream, &seen_a_one, octa3);
1626 break;
1627
1628 case 2:
1629 /* Carry in one bit, no carry out. */
1630
1631 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1632 octa2 = (MID_TWO & *p) >> 3;
1633 octa3 = (LOW_TWO & *p);
1634 carry = 0;
1635 emit_octal_digit (stream, &seen_a_one, octa1);
1636 emit_octal_digit (stream, &seen_a_one, octa2);
1637 emit_octal_digit (stream, &seen_a_one, octa3);
1638 break;
1639
1640 default:
1641 error (_("Internal error in octal conversion;"));
1642 }
1643
1644 cycle++;
1645 cycle = cycle % BITS_IN_OCTAL;
1646 }
1647 }
1648 else
1649 {
1650 for (p = valaddr + len - 1;
1651 p >= valaddr;
1652 p--)
1653 {
1654 switch (cycle)
1655 {
1656 case 0:
1657 /* Carry out, no carry in */
1658
1659 octa1 = (HIGH_ZERO & *p) >> 5;
1660 octa2 = (LOW_ZERO & *p) >> 2;
1661 carry = (CARRY_ZERO & *p);
1662 emit_octal_digit (stream, &seen_a_one, octa1);
1663 emit_octal_digit (stream, &seen_a_one, octa2);
1664 break;
1665
1666 case 1:
1667 /* Carry in, carry out */
1668
1669 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1670 octa2 = (MID_ONE & *p) >> 4;
1671 octa3 = (LOW_ONE & *p) >> 1;
1672 carry = (CARRY_ONE & *p);
1673 emit_octal_digit (stream, &seen_a_one, octa1);
1674 emit_octal_digit (stream, &seen_a_one, octa2);
1675 emit_octal_digit (stream, &seen_a_one, octa3);
1676 break;
1677
1678 case 2:
1679 /* Carry in, no carry out */
1680
1681 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1682 octa2 = (MID_TWO & *p) >> 3;
1683 octa3 = (LOW_TWO & *p);
1684 carry = 0;
1685 emit_octal_digit (stream, &seen_a_one, octa1);
1686 emit_octal_digit (stream, &seen_a_one, octa2);
1687 emit_octal_digit (stream, &seen_a_one, octa3);
1688 break;
1689
1690 default:
1691 error (_("Internal error in octal conversion;"));
1692 }
1693
1694 cycle++;
1695 cycle = cycle % BITS_IN_OCTAL;
1696 }
1697 }
1698
1699 }
1700
1701 /* Possibly negate the integer represented by BYTES. It contains LEN
1702 bytes in the specified byte order. If the integer is negative,
1703 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1704 nothing and return false. */
1705
1706 static bool
1707 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1708 enum bfd_endian byte_order,
1709 gdb::byte_vector *out_vec)
1710 {
1711 gdb_byte sign_byte;
1712 gdb_assert (len > 0);
1713 if (byte_order == BFD_ENDIAN_BIG)
1714 sign_byte = bytes[0];
1715 else
1716 sign_byte = bytes[len - 1];
1717 if ((sign_byte & 0x80) == 0)
1718 return false;
1719
1720 out_vec->resize (len);
1721
1722 /* Compute -x == 1 + ~x. */
1723 if (byte_order == BFD_ENDIAN_LITTLE)
1724 {
1725 unsigned carry = 1;
1726 for (unsigned i = 0; i < len; ++i)
1727 {
1728 unsigned tem = (0xff & ~bytes[i]) + carry;
1729 (*out_vec)[i] = tem & 0xff;
1730 carry = tem / 256;
1731 }
1732 }
1733 else
1734 {
1735 unsigned carry = 1;
1736 for (unsigned i = len; i > 0; --i)
1737 {
1738 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1739 (*out_vec)[i - 1] = tem & 0xff;
1740 carry = tem / 256;
1741 }
1742 }
1743
1744 return true;
1745 }
1746
1747 /* VALADDR points to an integer of LEN bytes.
1748 Print it in decimal on stream or format it in buf. */
1749
1750 void
1751 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1752 unsigned len, bool is_signed,
1753 enum bfd_endian byte_order)
1754 {
1755 #define TEN 10
1756 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1757 #define CARRY_LEFT( x ) ((x) % TEN)
1758 #define SHIFT( x ) ((x) << 4)
1759 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1760 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1761
1762 const gdb_byte *p;
1763 int carry;
1764 int decimal_len;
1765 int i, j, decimal_digits;
1766 int dummy;
1767 int flip;
1768
1769 gdb::byte_vector negated_bytes;
1770 if (is_signed
1771 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1772 {
1773 fputs_filtered ("-", stream);
1774 valaddr = negated_bytes.data ();
1775 }
1776
1777 /* Base-ten number is less than twice as many digits
1778 as the base 16 number, which is 2 digits per byte. */
1779
1780 decimal_len = len * 2 * 2;
1781 std::vector<unsigned char> digits (decimal_len, 0);
1782
1783 /* Ok, we have an unknown number of bytes of data to be printed in
1784 * decimal.
1785 *
1786 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1787 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1788 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1789 *
1790 * The trick is that "digits" holds a base-10 number, but sometimes
1791 * the individual digits are > 10.
1792 *
1793 * Outer loop is per nibble (hex digit) of input, from MSD end to
1794 * LSD end.
1795 */
1796 decimal_digits = 0; /* Number of decimal digits so far */
1797 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1798 flip = 0;
1799 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1800 {
1801 /*
1802 * Multiply current base-ten number by 16 in place.
1803 * Each digit was between 0 and 9, now is between
1804 * 0 and 144.
1805 */
1806 for (j = 0; j < decimal_digits; j++)
1807 {
1808 digits[j] = SHIFT (digits[j]);
1809 }
1810
1811 /* Take the next nibble off the input and add it to what
1812 * we've got in the LSB position. Bottom 'digit' is now
1813 * between 0 and 159.
1814 *
1815 * "flip" is used to run this loop twice for each byte.
1816 */
1817 if (flip == 0)
1818 {
1819 /* Take top nibble. */
1820
1821 digits[0] += HIGH_NIBBLE (*p);
1822 flip = 1;
1823 }
1824 else
1825 {
1826 /* Take low nibble and bump our pointer "p". */
1827
1828 digits[0] += LOW_NIBBLE (*p);
1829 if (byte_order == BFD_ENDIAN_BIG)
1830 p++;
1831 else
1832 p--;
1833 flip = 0;
1834 }
1835
1836 /* Re-decimalize. We have to do this often enough
1837 * that we don't overflow, but once per nibble is
1838 * overkill. Easier this way, though. Note that the
1839 * carry is often larger than 10 (e.g. max initial
1840 * carry out of lowest nibble is 15, could bubble all
1841 * the way up greater than 10). So we have to do
1842 * the carrying beyond the last current digit.
1843 */
1844 carry = 0;
1845 for (j = 0; j < decimal_len - 1; j++)
1846 {
1847 digits[j] += carry;
1848
1849 /* "/" won't handle an unsigned char with
1850 * a value that if signed would be negative.
1851 * So extend to longword int via "dummy".
1852 */
1853 dummy = digits[j];
1854 carry = CARRY_OUT (dummy);
1855 digits[j] = CARRY_LEFT (dummy);
1856
1857 if (j >= decimal_digits && carry == 0)
1858 {
1859 /*
1860 * All higher digits are 0 and we
1861 * no longer have a carry.
1862 *
1863 * Note: "j" is 0-based, "decimal_digits" is
1864 * 1-based.
1865 */
1866 decimal_digits = j + 1;
1867 break;
1868 }
1869 }
1870 }
1871
1872 /* Ok, now "digits" is the decimal representation, with
1873 the "decimal_digits" actual digits. Print! */
1874
1875 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1876 ;
1877
1878 for (; i >= 0; i--)
1879 {
1880 fprintf_filtered (stream, "%1d", digits[i]);
1881 }
1882 }
1883
1884 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1885
1886 void
1887 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1888 unsigned len, enum bfd_endian byte_order,
1889 bool zero_pad)
1890 {
1891 const gdb_byte *p;
1892
1893 fputs_filtered ("0x", stream);
1894 if (byte_order == BFD_ENDIAN_BIG)
1895 {
1896 p = valaddr;
1897
1898 if (!zero_pad)
1899 {
1900 /* Strip leading 0 bytes, but be sure to leave at least a
1901 single byte at the end. */
1902 for (; p < valaddr + len - 1 && !*p; ++p)
1903 ;
1904 }
1905
1906 const gdb_byte *first = p;
1907 for (;
1908 p < valaddr + len;
1909 p++)
1910 {
1911 /* When not zero-padding, use a different format for the
1912 very first byte printed. */
1913 if (!zero_pad && p == first)
1914 fprintf_filtered (stream, "%x", *p);
1915 else
1916 fprintf_filtered (stream, "%02x", *p);
1917 }
1918 }
1919 else
1920 {
1921 p = valaddr + len - 1;
1922
1923 if (!zero_pad)
1924 {
1925 /* Strip leading 0 bytes, but be sure to leave at least a
1926 single byte at the end. */
1927 for (; p >= valaddr + 1 && !*p; --p)
1928 ;
1929 }
1930
1931 const gdb_byte *first = p;
1932 for (;
1933 p >= valaddr;
1934 p--)
1935 {
1936 /* When not zero-padding, use a different format for the
1937 very first byte printed. */
1938 if (!zero_pad && p == first)
1939 fprintf_filtered (stream, "%x", *p);
1940 else
1941 fprintf_filtered (stream, "%02x", *p);
1942 }
1943 }
1944 }
1945
1946 /* VALADDR points to a char integer of LEN bytes.
1947 Print it out in appropriate language form on stream.
1948 Omit any leading zero chars. */
1949
1950 void
1951 print_char_chars (struct ui_file *stream, struct type *type,
1952 const gdb_byte *valaddr,
1953 unsigned len, enum bfd_endian byte_order)
1954 {
1955 const gdb_byte *p;
1956
1957 if (byte_order == BFD_ENDIAN_BIG)
1958 {
1959 p = valaddr;
1960 while (p < valaddr + len - 1 && *p == 0)
1961 ++p;
1962
1963 while (p < valaddr + len)
1964 {
1965 LA_EMIT_CHAR (*p, type, stream, '\'');
1966 ++p;
1967 }
1968 }
1969 else
1970 {
1971 p = valaddr + len - 1;
1972 while (p > valaddr && *p == 0)
1973 --p;
1974
1975 while (p >= valaddr)
1976 {
1977 LA_EMIT_CHAR (*p, type, stream, '\'');
1978 --p;
1979 }
1980 }
1981 }
1982
1983 /* Print function pointer with inferior address ADDRESS onto stdio
1984 stream STREAM. */
1985
1986 void
1987 print_function_pointer_address (const struct value_print_options *options,
1988 struct gdbarch *gdbarch,
1989 CORE_ADDR address,
1990 struct ui_file *stream)
1991 {
1992 CORE_ADDR func_addr
1993 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1994 current_top_target ());
1995
1996 /* If the function pointer is represented by a description, print
1997 the address of the description. */
1998 if (options->addressprint && func_addr != address)
1999 {
2000 fputs_filtered ("@", stream);
2001 fputs_filtered (paddress (gdbarch, address), stream);
2002 fputs_filtered (": ", stream);
2003 }
2004 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2005 }
2006
2007
2008 /* Print on STREAM using the given OPTIONS the index for the element
2009 at INDEX of an array whose index type is INDEX_TYPE. */
2010
2011 void
2012 maybe_print_array_index (struct type *index_type, LONGEST index,
2013 struct ui_file *stream,
2014 const struct value_print_options *options)
2015 {
2016 struct value *index_value;
2017
2018 if (!options->print_array_indexes)
2019 return;
2020
2021 index_value = value_from_longest (index_type, index);
2022
2023 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2024 }
2025
2026 /* Called by various <lang>_val_print routines to print elements of an
2027 array in the form "<elem1>, <elem2>, <elem3>, ...".
2028
2029 (FIXME?) Assumes array element separator is a comma, which is correct
2030 for all languages currently handled.
2031 (FIXME?) Some languages have a notation for repeated array elements,
2032 perhaps we should try to use that notation when appropriate. */
2033
2034 void
2035 val_print_array_elements (struct type *type,
2036 LONGEST embedded_offset,
2037 CORE_ADDR address, struct ui_file *stream,
2038 int recurse,
2039 struct value *val,
2040 const struct value_print_options *options,
2041 unsigned int i)
2042 {
2043 unsigned int things_printed = 0;
2044 unsigned len;
2045 struct type *elttype, *index_type, *base_index_type;
2046 unsigned eltlen;
2047 /* Position of the array element we are examining to see
2048 whether it is repeated. */
2049 unsigned int rep1;
2050 /* Number of repetitions we have detected so far. */
2051 unsigned int reps;
2052 LONGEST low_bound, high_bound;
2053 LONGEST low_pos, high_pos;
2054
2055 elttype = TYPE_TARGET_TYPE (type);
2056 eltlen = type_length_units (check_typedef (elttype));
2057 index_type = TYPE_INDEX_TYPE (type);
2058
2059 if (get_array_bounds (type, &low_bound, &high_bound))
2060 {
2061 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2062 base_index_type = TYPE_TARGET_TYPE (index_type);
2063 else
2064 base_index_type = index_type;
2065
2066 /* Non-contiguous enumerations types can by used as index types
2067 in some languages (e.g. Ada). In this case, the array length
2068 shall be computed from the positions of the first and last
2069 literal in the enumeration type, and not from the values
2070 of these literals. */
2071 if (!discrete_position (base_index_type, low_bound, &low_pos)
2072 || !discrete_position (base_index_type, high_bound, &high_pos))
2073 {
2074 warning (_("unable to get positions in array, use bounds instead"));
2075 low_pos = low_bound;
2076 high_pos = high_bound;
2077 }
2078
2079 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2080 But we have to be a little extra careful, because some languages
2081 such as Ada allow LOW_POS to be greater than HIGH_POS for
2082 empty arrays. In that situation, the array length is just zero,
2083 not negative! */
2084 if (low_pos > high_pos)
2085 len = 0;
2086 else
2087 len = high_pos - low_pos + 1;
2088 }
2089 else
2090 {
2091 warning (_("unable to get bounds of array, assuming null array"));
2092 low_bound = 0;
2093 len = 0;
2094 }
2095
2096 annotate_array_section_begin (i, elttype);
2097
2098 for (; i < len && things_printed < options->print_max; i++)
2099 {
2100 if (i != 0)
2101 {
2102 if (options->prettyformat_arrays)
2103 {
2104 fprintf_filtered (stream, ",\n");
2105 print_spaces_filtered (2 + 2 * recurse, stream);
2106 }
2107 else
2108 {
2109 fprintf_filtered (stream, ", ");
2110 }
2111 }
2112 wrap_here (n_spaces (2 + 2 * recurse));
2113 maybe_print_array_index (index_type, i + low_bound,
2114 stream, options);
2115
2116 rep1 = i + 1;
2117 reps = 1;
2118 /* Only check for reps if repeat_count_threshold is not set to
2119 UINT_MAX (unlimited). */
2120 if (options->repeat_count_threshold < UINT_MAX)
2121 {
2122 while (rep1 < len
2123 && value_contents_eq (val,
2124 embedded_offset + i * eltlen,
2125 val,
2126 (embedded_offset
2127 + rep1 * eltlen),
2128 eltlen))
2129 {
2130 ++reps;
2131 ++rep1;
2132 }
2133 }
2134
2135 if (reps > options->repeat_count_threshold)
2136 {
2137 val_print (elttype, embedded_offset + i * eltlen,
2138 address, stream, recurse + 1, val, options,
2139 current_language);
2140 annotate_elt_rep (reps);
2141 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2142 metadata_style.style ().ptr (), reps, nullptr);
2143 annotate_elt_rep_end ();
2144
2145 i = rep1 - 1;
2146 things_printed += options->repeat_count_threshold;
2147 }
2148 else
2149 {
2150 val_print (elttype, embedded_offset + i * eltlen,
2151 address,
2152 stream, recurse + 1, val, options, current_language);
2153 annotate_elt ();
2154 things_printed++;
2155 }
2156 }
2157 annotate_array_section_end ();
2158 if (i < len)
2159 {
2160 fprintf_filtered (stream, "...");
2161 }
2162 }
2163
2164 /* Read LEN bytes of target memory at address MEMADDR, placing the
2165 results in GDB's memory at MYADDR. Returns a count of the bytes
2166 actually read, and optionally a target_xfer_status value in the
2167 location pointed to by ERRPTR if ERRPTR is non-null. */
2168
2169 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2170 function be eliminated. */
2171
2172 static int
2173 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2174 int len, int *errptr)
2175 {
2176 int nread; /* Number of bytes actually read. */
2177 int errcode; /* Error from last read. */
2178
2179 /* First try a complete read. */
2180 errcode = target_read_memory (memaddr, myaddr, len);
2181 if (errcode == 0)
2182 {
2183 /* Got it all. */
2184 nread = len;
2185 }
2186 else
2187 {
2188 /* Loop, reading one byte at a time until we get as much as we can. */
2189 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2190 {
2191 errcode = target_read_memory (memaddr++, myaddr++, 1);
2192 }
2193 /* If an error, the last read was unsuccessful, so adjust count. */
2194 if (errcode != 0)
2195 {
2196 nread--;
2197 }
2198 }
2199 if (errptr != NULL)
2200 {
2201 *errptr = errcode;
2202 }
2203 return (nread);
2204 }
2205
2206 /* Read a string from the inferior, at ADDR, with LEN characters of
2207 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2208 will be set to a newly allocated buffer containing the string, and
2209 BYTES_READ will be set to the number of bytes read. Returns 0 on
2210 success, or a target_xfer_status on failure.
2211
2212 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2213 (including eventual NULs in the middle or end of the string).
2214
2215 If LEN is -1, stops at the first null character (not necessarily
2216 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2217 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2218 the string.
2219
2220 Unless an exception is thrown, BUFFER will always be allocated, even on
2221 failure. In this case, some characters might have been read before the
2222 failure happened. Check BYTES_READ to recognize this situation.
2223
2224 Note: There was a FIXME asking to make this code use target_read_string,
2225 but this function is more general (can read past null characters, up to
2226 given LEN). Besides, it is used much more often than target_read_string
2227 so it is more tested. Perhaps callers of target_read_string should use
2228 this function instead? */
2229
2230 int
2231 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2232 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2233 int *bytes_read)
2234 {
2235 int errcode; /* Errno returned from bad reads. */
2236 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2237 gdb_byte *bufptr; /* Pointer to next available byte in
2238 buffer. */
2239
2240 /* Loop until we either have all the characters, or we encounter
2241 some error, such as bumping into the end of the address space. */
2242
2243 buffer->reset (nullptr);
2244
2245 if (len > 0)
2246 {
2247 /* We want fetchlimit chars, so we might as well read them all in
2248 one operation. */
2249 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2250
2251 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2252 bufptr = buffer->get ();
2253
2254 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2255 / width;
2256 addr += nfetch * width;
2257 bufptr += nfetch * width;
2258 }
2259 else if (len == -1)
2260 {
2261 unsigned long bufsize = 0;
2262 unsigned int chunksize; /* Size of each fetch, in chars. */
2263 int found_nul; /* Non-zero if we found the nul char. */
2264 gdb_byte *limit; /* First location past end of fetch buffer. */
2265
2266 found_nul = 0;
2267 /* We are looking for a NUL terminator to end the fetching, so we
2268 might as well read in blocks that are large enough to be efficient,
2269 but not so large as to be slow if fetchlimit happens to be large.
2270 So we choose the minimum of 8 and fetchlimit. We used to use 200
2271 instead of 8 but 200 is way too big for remote debugging over a
2272 serial line. */
2273 chunksize = std::min (8u, fetchlimit);
2274
2275 do
2276 {
2277 QUIT;
2278 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2279
2280 if (*buffer == NULL)
2281 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2282 else
2283 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2284 (nfetch + bufsize) * width));
2285
2286 bufptr = buffer->get () + bufsize * width;
2287 bufsize += nfetch;
2288
2289 /* Read as much as we can. */
2290 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2291 / width;
2292
2293 /* Scan this chunk for the null character that terminates the string
2294 to print. If found, we don't need to fetch any more. Note
2295 that bufptr is explicitly left pointing at the next character
2296 after the null character, or at the next character after the end
2297 of the buffer. */
2298
2299 limit = bufptr + nfetch * width;
2300 while (bufptr < limit)
2301 {
2302 unsigned long c;
2303
2304 c = extract_unsigned_integer (bufptr, width, byte_order);
2305 addr += width;
2306 bufptr += width;
2307 if (c == 0)
2308 {
2309 /* We don't care about any error which happened after
2310 the NUL terminator. */
2311 errcode = 0;
2312 found_nul = 1;
2313 break;
2314 }
2315 }
2316 }
2317 while (errcode == 0 /* no error */
2318 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2319 && !found_nul); /* haven't found NUL yet */
2320 }
2321 else
2322 { /* Length of string is really 0! */
2323 /* We always allocate *buffer. */
2324 buffer->reset ((gdb_byte *) xmalloc (1));
2325 bufptr = buffer->get ();
2326 errcode = 0;
2327 }
2328
2329 /* bufptr and addr now point immediately beyond the last byte which we
2330 consider part of the string (including a '\0' which ends the string). */
2331 *bytes_read = bufptr - buffer->get ();
2332
2333 QUIT;
2334
2335 return errcode;
2336 }
2337
2338 /* Return true if print_wchar can display W without resorting to a
2339 numeric escape, false otherwise. */
2340
2341 static int
2342 wchar_printable (gdb_wchar_t w)
2343 {
2344 return (gdb_iswprint (w)
2345 || w == LCST ('\a') || w == LCST ('\b')
2346 || w == LCST ('\f') || w == LCST ('\n')
2347 || w == LCST ('\r') || w == LCST ('\t')
2348 || w == LCST ('\v'));
2349 }
2350
2351 /* A helper function that converts the contents of STRING to wide
2352 characters and then appends them to OUTPUT. */
2353
2354 static void
2355 append_string_as_wide (const char *string,
2356 struct obstack *output)
2357 {
2358 for (; *string; ++string)
2359 {
2360 gdb_wchar_t w = gdb_btowc (*string);
2361 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2362 }
2363 }
2364
2365 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2366 original (target) bytes representing the character, ORIG_LEN is the
2367 number of valid bytes. WIDTH is the number of bytes in a base
2368 characters of the type. OUTPUT is an obstack to which wide
2369 characters are emitted. QUOTER is a (narrow) character indicating
2370 the style of quotes surrounding the character to be printed.
2371 NEED_ESCAPE is an in/out flag which is used to track numeric
2372 escapes across calls. */
2373
2374 static void
2375 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2376 int orig_len, int width,
2377 enum bfd_endian byte_order,
2378 struct obstack *output,
2379 int quoter, int *need_escapep)
2380 {
2381 int need_escape = *need_escapep;
2382
2383 *need_escapep = 0;
2384
2385 /* iswprint implementation on Windows returns 1 for tab character.
2386 In order to avoid different printout on this host, we explicitly
2387 use wchar_printable function. */
2388 switch (w)
2389 {
2390 case LCST ('\a'):
2391 obstack_grow_wstr (output, LCST ("\\a"));
2392 break;
2393 case LCST ('\b'):
2394 obstack_grow_wstr (output, LCST ("\\b"));
2395 break;
2396 case LCST ('\f'):
2397 obstack_grow_wstr (output, LCST ("\\f"));
2398 break;
2399 case LCST ('\n'):
2400 obstack_grow_wstr (output, LCST ("\\n"));
2401 break;
2402 case LCST ('\r'):
2403 obstack_grow_wstr (output, LCST ("\\r"));
2404 break;
2405 case LCST ('\t'):
2406 obstack_grow_wstr (output, LCST ("\\t"));
2407 break;
2408 case LCST ('\v'):
2409 obstack_grow_wstr (output, LCST ("\\v"));
2410 break;
2411 default:
2412 {
2413 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2414 && w != LCST ('8')
2415 && w != LCST ('9'))))
2416 {
2417 gdb_wchar_t wchar = w;
2418
2419 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2420 obstack_grow_wstr (output, LCST ("\\"));
2421 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2422 }
2423 else
2424 {
2425 int i;
2426
2427 for (i = 0; i + width <= orig_len; i += width)
2428 {
2429 char octal[30];
2430 ULONGEST value;
2431
2432 value = extract_unsigned_integer (&orig[i], width,
2433 byte_order);
2434 /* If the value fits in 3 octal digits, print it that
2435 way. Otherwise, print it as a hex escape. */
2436 if (value <= 0777)
2437 xsnprintf (octal, sizeof (octal), "\\%.3o",
2438 (int) (value & 0777));
2439 else
2440 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2441 append_string_as_wide (octal, output);
2442 }
2443 /* If we somehow have extra bytes, print them now. */
2444 while (i < orig_len)
2445 {
2446 char octal[5];
2447
2448 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2449 append_string_as_wide (octal, output);
2450 ++i;
2451 }
2452
2453 *need_escapep = 1;
2454 }
2455 break;
2456 }
2457 }
2458 }
2459
2460 /* Print the character C on STREAM as part of the contents of a
2461 literal string whose delimiter is QUOTER. ENCODING names the
2462 encoding of C. */
2463
2464 void
2465 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2466 int quoter, const char *encoding)
2467 {
2468 enum bfd_endian byte_order
2469 = type_byte_order (type);
2470 gdb_byte *c_buf;
2471 int need_escape = 0;
2472
2473 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2474 pack_long (c_buf, type, c);
2475
2476 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2477
2478 /* This holds the printable form of the wchar_t data. */
2479 auto_obstack wchar_buf;
2480
2481 while (1)
2482 {
2483 int num_chars;
2484 gdb_wchar_t *chars;
2485 const gdb_byte *buf;
2486 size_t buflen;
2487 int print_escape = 1;
2488 enum wchar_iterate_result result;
2489
2490 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2491 if (num_chars < 0)
2492 break;
2493 if (num_chars > 0)
2494 {
2495 /* If all characters are printable, print them. Otherwise,
2496 we're going to have to print an escape sequence. We
2497 check all characters because we want to print the target
2498 bytes in the escape sequence, and we don't know character
2499 boundaries there. */
2500 int i;
2501
2502 print_escape = 0;
2503 for (i = 0; i < num_chars; ++i)
2504 if (!wchar_printable (chars[i]))
2505 {
2506 print_escape = 1;
2507 break;
2508 }
2509
2510 if (!print_escape)
2511 {
2512 for (i = 0; i < num_chars; ++i)
2513 print_wchar (chars[i], buf, buflen,
2514 TYPE_LENGTH (type), byte_order,
2515 &wchar_buf, quoter, &need_escape);
2516 }
2517 }
2518
2519 /* This handles the NUM_CHARS == 0 case as well. */
2520 if (print_escape)
2521 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2522 byte_order, &wchar_buf, quoter, &need_escape);
2523 }
2524
2525 /* The output in the host encoding. */
2526 auto_obstack output;
2527
2528 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2529 (gdb_byte *) obstack_base (&wchar_buf),
2530 obstack_object_size (&wchar_buf),
2531 sizeof (gdb_wchar_t), &output, translit_char);
2532 obstack_1grow (&output, '\0');
2533
2534 fputs_filtered ((const char *) obstack_base (&output), stream);
2535 }
2536
2537 /* Return the repeat count of the next character/byte in ITER,
2538 storing the result in VEC. */
2539
2540 static int
2541 count_next_character (wchar_iterator *iter,
2542 std::vector<converted_character> *vec)
2543 {
2544 struct converted_character *current;
2545
2546 if (vec->empty ())
2547 {
2548 struct converted_character tmp;
2549 gdb_wchar_t *chars;
2550
2551 tmp.num_chars
2552 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2553 if (tmp.num_chars > 0)
2554 {
2555 gdb_assert (tmp.num_chars < MAX_WCHARS);
2556 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2557 }
2558 vec->push_back (tmp);
2559 }
2560
2561 current = &vec->back ();
2562
2563 /* Count repeated characters or bytes. */
2564 current->repeat_count = 1;
2565 if (current->num_chars == -1)
2566 {
2567 /* EOF */
2568 return -1;
2569 }
2570 else
2571 {
2572 gdb_wchar_t *chars;
2573 struct converted_character d;
2574 int repeat;
2575
2576 d.repeat_count = 0;
2577
2578 while (1)
2579 {
2580 /* Get the next character. */
2581 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2582
2583 /* If a character was successfully converted, save the character
2584 into the converted character. */
2585 if (d.num_chars > 0)
2586 {
2587 gdb_assert (d.num_chars < MAX_WCHARS);
2588 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2589 }
2590
2591 /* Determine if the current character is the same as this
2592 new character. */
2593 if (d.num_chars == current->num_chars && d.result == current->result)
2594 {
2595 /* There are two cases to consider:
2596
2597 1) Equality of converted character (num_chars > 0)
2598 2) Equality of non-converted character (num_chars == 0) */
2599 if ((current->num_chars > 0
2600 && memcmp (current->chars, d.chars,
2601 WCHAR_BUFLEN (current->num_chars)) == 0)
2602 || (current->num_chars == 0
2603 && current->buflen == d.buflen
2604 && memcmp (current->buf, d.buf, current->buflen) == 0))
2605 ++current->repeat_count;
2606 else
2607 break;
2608 }
2609 else
2610 break;
2611 }
2612
2613 /* Push this next converted character onto the result vector. */
2614 repeat = current->repeat_count;
2615 vec->push_back (d);
2616 return repeat;
2617 }
2618 }
2619
2620 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2621 character to use with string output. WIDTH is the size of the output
2622 character type. BYTE_ORDER is the target byte order. OPTIONS
2623 is the user's print options. */
2624
2625 static void
2626 print_converted_chars_to_obstack (struct obstack *obstack,
2627 const std::vector<converted_character> &chars,
2628 int quote_char, int width,
2629 enum bfd_endian byte_order,
2630 const struct value_print_options *options)
2631 {
2632 unsigned int idx;
2633 const converted_character *elem;
2634 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2635 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2636 int need_escape = 0;
2637
2638 /* Set the start state. */
2639 idx = 0;
2640 last = state = START;
2641 elem = NULL;
2642
2643 while (1)
2644 {
2645 switch (state)
2646 {
2647 case START:
2648 /* Nothing to do. */
2649 break;
2650
2651 case SINGLE:
2652 {
2653 int j;
2654
2655 /* We are outputting a single character
2656 (< options->repeat_count_threshold). */
2657
2658 if (last != SINGLE)
2659 {
2660 /* We were outputting some other type of content, so we
2661 must output and a comma and a quote. */
2662 if (last != START)
2663 obstack_grow_wstr (obstack, LCST (", "));
2664 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2665 }
2666 /* Output the character. */
2667 for (j = 0; j < elem->repeat_count; ++j)
2668 {
2669 if (elem->result == wchar_iterate_ok)
2670 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2671 byte_order, obstack, quote_char, &need_escape);
2672 else
2673 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2674 byte_order, obstack, quote_char, &need_escape);
2675 }
2676 }
2677 break;
2678
2679 case REPEAT:
2680 {
2681 int j;
2682
2683 /* We are outputting a character with a repeat count
2684 greater than options->repeat_count_threshold. */
2685
2686 if (last == SINGLE)
2687 {
2688 /* We were outputting a single string. Terminate the
2689 string. */
2690 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2691 }
2692 if (last != START)
2693 obstack_grow_wstr (obstack, LCST (", "));
2694
2695 /* Output the character and repeat string. */
2696 obstack_grow_wstr (obstack, LCST ("'"));
2697 if (elem->result == wchar_iterate_ok)
2698 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2699 byte_order, obstack, quote_char, &need_escape);
2700 else
2701 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2702 byte_order, obstack, quote_char, &need_escape);
2703 obstack_grow_wstr (obstack, LCST ("'"));
2704 std::string s = string_printf (_(" <repeats %u times>"),
2705 elem->repeat_count);
2706 for (j = 0; s[j]; ++j)
2707 {
2708 gdb_wchar_t w = gdb_btowc (s[j]);
2709 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2710 }
2711 }
2712 break;
2713
2714 case INCOMPLETE:
2715 /* We are outputting an incomplete sequence. */
2716 if (last == SINGLE)
2717 {
2718 /* If we were outputting a string of SINGLE characters,
2719 terminate the quote. */
2720 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2721 }
2722 if (last != START)
2723 obstack_grow_wstr (obstack, LCST (", "));
2724
2725 /* Output the incomplete sequence string. */
2726 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2727 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2728 obstack, 0, &need_escape);
2729 obstack_grow_wstr (obstack, LCST (">"));
2730
2731 /* We do not attempt to output anything after this. */
2732 state = FINISH;
2733 break;
2734
2735 case FINISH:
2736 /* All done. If we were outputting a string of SINGLE
2737 characters, the string must be terminated. Otherwise,
2738 REPEAT and INCOMPLETE are always left properly terminated. */
2739 if (last == SINGLE)
2740 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2741
2742 return;
2743 }
2744
2745 /* Get the next element and state. */
2746 last = state;
2747 if (state != FINISH)
2748 {
2749 elem = &chars[idx++];
2750 switch (elem->result)
2751 {
2752 case wchar_iterate_ok:
2753 case wchar_iterate_invalid:
2754 if (elem->repeat_count > options->repeat_count_threshold)
2755 state = REPEAT;
2756 else
2757 state = SINGLE;
2758 break;
2759
2760 case wchar_iterate_incomplete:
2761 state = INCOMPLETE;
2762 break;
2763
2764 case wchar_iterate_eof:
2765 state = FINISH;
2766 break;
2767 }
2768 }
2769 }
2770 }
2771
2772 /* Print the character string STRING, printing at most LENGTH
2773 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2774 the type of each character. OPTIONS holds the printing options;
2775 printing stops early if the number hits print_max; repeat counts
2776 are printed as appropriate. Print ellipses at the end if we had to
2777 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2778 QUOTE_CHAR is the character to print at each end of the string. If
2779 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2780 omitted. */
2781
2782 void
2783 generic_printstr (struct ui_file *stream, struct type *type,
2784 const gdb_byte *string, unsigned int length,
2785 const char *encoding, int force_ellipses,
2786 int quote_char, int c_style_terminator,
2787 const struct value_print_options *options)
2788 {
2789 enum bfd_endian byte_order = type_byte_order (type);
2790 unsigned int i;
2791 int width = TYPE_LENGTH (type);
2792 int finished = 0;
2793 struct converted_character *last;
2794
2795 if (length == -1)
2796 {
2797 unsigned long current_char = 1;
2798
2799 for (i = 0; current_char; ++i)
2800 {
2801 QUIT;
2802 current_char = extract_unsigned_integer (string + i * width,
2803 width, byte_order);
2804 }
2805 length = i;
2806 }
2807
2808 /* If the string was not truncated due to `set print elements', and
2809 the last byte of it is a null, we don't print that, in
2810 traditional C style. */
2811 if (c_style_terminator
2812 && !force_ellipses
2813 && length > 0
2814 && (extract_unsigned_integer (string + (length - 1) * width,
2815 width, byte_order) == 0))
2816 length--;
2817
2818 if (length == 0)
2819 {
2820 fputs_filtered ("\"\"", stream);
2821 return;
2822 }
2823
2824 /* Arrange to iterate over the characters, in wchar_t form. */
2825 wchar_iterator iter (string, length * width, encoding, width);
2826 std::vector<converted_character> converted_chars;
2827
2828 /* Convert characters until the string is over or the maximum
2829 number of printed characters has been reached. */
2830 i = 0;
2831 while (i < options->print_max)
2832 {
2833 int r;
2834
2835 QUIT;
2836
2837 /* Grab the next character and repeat count. */
2838 r = count_next_character (&iter, &converted_chars);
2839
2840 /* If less than zero, the end of the input string was reached. */
2841 if (r < 0)
2842 break;
2843
2844 /* Otherwise, add the count to the total print count and get
2845 the next character. */
2846 i += r;
2847 }
2848
2849 /* Get the last element and determine if the entire string was
2850 processed. */
2851 last = &converted_chars.back ();
2852 finished = (last->result == wchar_iterate_eof);
2853
2854 /* Ensure that CONVERTED_CHARS is terminated. */
2855 last->result = wchar_iterate_eof;
2856
2857 /* WCHAR_BUF is the obstack we use to represent the string in
2858 wchar_t form. */
2859 auto_obstack wchar_buf;
2860
2861 /* Print the output string to the obstack. */
2862 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2863 width, byte_order, options);
2864
2865 if (force_ellipses || !finished)
2866 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2867
2868 /* OUTPUT is where we collect `char's for printing. */
2869 auto_obstack output;
2870
2871 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2872 (gdb_byte *) obstack_base (&wchar_buf),
2873 obstack_object_size (&wchar_buf),
2874 sizeof (gdb_wchar_t), &output, translit_char);
2875 obstack_1grow (&output, '\0');
2876
2877 fputs_filtered ((const char *) obstack_base (&output), stream);
2878 }
2879
2880 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2881 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2882 stops at the first null byte, otherwise printing proceeds (including null
2883 bytes) until either print_max or LEN characters have been printed,
2884 whichever is smaller. ENCODING is the name of the string's
2885 encoding. It can be NULL, in which case the target encoding is
2886 assumed. */
2887
2888 int
2889 val_print_string (struct type *elttype, const char *encoding,
2890 CORE_ADDR addr, int len,
2891 struct ui_file *stream,
2892 const struct value_print_options *options)
2893 {
2894 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2895 int err; /* Non-zero if we got a bad read. */
2896 int found_nul; /* Non-zero if we found the nul char. */
2897 unsigned int fetchlimit; /* Maximum number of chars to print. */
2898 int bytes_read;
2899 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2900 struct gdbarch *gdbarch = get_type_arch (elttype);
2901 enum bfd_endian byte_order = type_byte_order (elttype);
2902 int width = TYPE_LENGTH (elttype);
2903
2904 /* First we need to figure out the limit on the number of characters we are
2905 going to attempt to fetch and print. This is actually pretty simple. If
2906 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2907 LEN is -1, then the limit is print_max. This is true regardless of
2908 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2909 because finding the null byte (or available memory) is what actually
2910 limits the fetch. */
2911
2912 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2913 options->print_max));
2914
2915 err = read_string (addr, len, width, fetchlimit, byte_order,
2916 &buffer, &bytes_read);
2917
2918 addr += bytes_read;
2919
2920 /* We now have either successfully filled the buffer to fetchlimit,
2921 or terminated early due to an error or finding a null char when
2922 LEN is -1. */
2923
2924 /* Determine found_nul by looking at the last character read. */
2925 found_nul = 0;
2926 if (bytes_read >= width)
2927 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2928 width, byte_order) == 0;
2929 if (len == -1 && !found_nul)
2930 {
2931 gdb_byte *peekbuf;
2932
2933 /* We didn't find a NUL terminator we were looking for. Attempt
2934 to peek at the next character. If not successful, or it is not
2935 a null byte, then force ellipsis to be printed. */
2936
2937 peekbuf = (gdb_byte *) alloca (width);
2938
2939 if (target_read_memory (addr, peekbuf, width) == 0
2940 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2941 force_ellipsis = 1;
2942 }
2943 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2944 {
2945 /* Getting an error when we have a requested length, or fetching less
2946 than the number of characters actually requested, always make us
2947 print ellipsis. */
2948 force_ellipsis = 1;
2949 }
2950
2951 /* If we get an error before fetching anything, don't print a string.
2952 But if we fetch something and then get an error, print the string
2953 and then the error message. */
2954 if (err == 0 || bytes_read > 0)
2955 {
2956 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2957 encoding, force_ellipsis, options);
2958 }
2959
2960 if (err != 0)
2961 {
2962 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2963
2964 fprintf_filtered (stream, _("<error: %ps>"),
2965 styled_string (metadata_style.style (),
2966 str.c_str ()));
2967 }
2968
2969 return (bytes_read / width);
2970 }
2971
2972 /* Handle 'show print max-depth'. */
2973
2974 static void
2975 show_print_max_depth (struct ui_file *file, int from_tty,
2976 struct cmd_list_element *c, const char *value)
2977 {
2978 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2979 }
2980 \f
2981
2982 /* The 'set input-radix' command writes to this auxiliary variable.
2983 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2984 it is left unchanged. */
2985
2986 static unsigned input_radix_1 = 10;
2987
2988 /* Validate an input or output radix setting, and make sure the user
2989 knows what they really did here. Radix setting is confusing, e.g.
2990 setting the input radix to "10" never changes it! */
2991
2992 static void
2993 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2994 {
2995 set_input_radix_1 (from_tty, input_radix_1);
2996 }
2997
2998 static void
2999 set_input_radix_1 (int from_tty, unsigned radix)
3000 {
3001 /* We don't currently disallow any input radix except 0 or 1, which don't
3002 make any mathematical sense. In theory, we can deal with any input
3003 radix greater than 1, even if we don't have unique digits for every
3004 value from 0 to radix-1, but in practice we lose on large radix values.
3005 We should either fix the lossage or restrict the radix range more.
3006 (FIXME). */
3007
3008 if (radix < 2)
3009 {
3010 input_radix_1 = input_radix;
3011 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3012 radix);
3013 }
3014 input_radix_1 = input_radix = radix;
3015 if (from_tty)
3016 {
3017 printf_filtered (_("Input radix now set to "
3018 "decimal %u, hex %x, octal %o.\n"),
3019 radix, radix, radix);
3020 }
3021 }
3022
3023 /* The 'set output-radix' command writes to this auxiliary variable.
3024 If the requested radix is valid, OUTPUT_RADIX is updated,
3025 otherwise, it is left unchanged. */
3026
3027 static unsigned output_radix_1 = 10;
3028
3029 static void
3030 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3031 {
3032 set_output_radix_1 (from_tty, output_radix_1);
3033 }
3034
3035 static void
3036 set_output_radix_1 (int from_tty, unsigned radix)
3037 {
3038 /* Validate the radix and disallow ones that we aren't prepared to
3039 handle correctly, leaving the radix unchanged. */
3040 switch (radix)
3041 {
3042 case 16:
3043 user_print_options.output_format = 'x'; /* hex */
3044 break;
3045 case 10:
3046 user_print_options.output_format = 0; /* decimal */
3047 break;
3048 case 8:
3049 user_print_options.output_format = 'o'; /* octal */
3050 break;
3051 default:
3052 output_radix_1 = output_radix;
3053 error (_("Unsupported output radix ``decimal %u''; "
3054 "output radix unchanged."),
3055 radix);
3056 }
3057 output_radix_1 = output_radix = radix;
3058 if (from_tty)
3059 {
3060 printf_filtered (_("Output radix now set to "
3061 "decimal %u, hex %x, octal %o.\n"),
3062 radix, radix, radix);
3063 }
3064 }
3065
3066 /* Set both the input and output radix at once. Try to set the output radix
3067 first, since it has the most restrictive range. An radix that is valid as
3068 an output radix is also valid as an input radix.
3069
3070 It may be useful to have an unusual input radix. If the user wishes to
3071 set an input radix that is not valid as an output radix, he needs to use
3072 the 'set input-radix' command. */
3073
3074 static void
3075 set_radix (const char *arg, int from_tty)
3076 {
3077 unsigned radix;
3078
3079 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3080 set_output_radix_1 (0, radix);
3081 set_input_radix_1 (0, radix);
3082 if (from_tty)
3083 {
3084 printf_filtered (_("Input and output radices now set to "
3085 "decimal %u, hex %x, octal %o.\n"),
3086 radix, radix, radix);
3087 }
3088 }
3089
3090 /* Show both the input and output radices. */
3091
3092 static void
3093 show_radix (const char *arg, int from_tty)
3094 {
3095 if (from_tty)
3096 {
3097 if (input_radix == output_radix)
3098 {
3099 printf_filtered (_("Input and output radices set to "
3100 "decimal %u, hex %x, octal %o.\n"),
3101 input_radix, input_radix, input_radix);
3102 }
3103 else
3104 {
3105 printf_filtered (_("Input radix set to decimal "
3106 "%u, hex %x, octal %o.\n"),
3107 input_radix, input_radix, input_radix);
3108 printf_filtered (_("Output radix set to decimal "
3109 "%u, hex %x, octal %o.\n"),
3110 output_radix, output_radix, output_radix);
3111 }
3112 }
3113 }
3114 \f
3115
3116 static void
3117 set_print (const char *arg, int from_tty)
3118 {
3119 printf_unfiltered (
3120 "\"set print\" must be followed by the name of a print subcommand.\n");
3121 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3122 }
3123
3124 static void
3125 show_print (const char *args, int from_tty)
3126 {
3127 cmd_show_list (showprintlist, from_tty, "");
3128 }
3129
3130 static void
3131 set_print_raw (const char *arg, int from_tty)
3132 {
3133 printf_unfiltered (
3134 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3135 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3136 }
3137
3138 static void
3139 show_print_raw (const char *args, int from_tty)
3140 {
3141 cmd_show_list (showprintrawlist, from_tty, "");
3142 }
3143
3144 /* Controls printing of vtbl's. */
3145 static void
3146 show_vtblprint (struct ui_file *file, int from_tty,
3147 struct cmd_list_element *c, const char *value)
3148 {
3149 fprintf_filtered (file, _("\
3150 Printing of C++ virtual function tables is %s.\n"),
3151 value);
3152 }
3153
3154 /* Controls looking up an object's derived type using what we find in
3155 its vtables. */
3156 static void
3157 show_objectprint (struct ui_file *file, int from_tty,
3158 struct cmd_list_element *c,
3159 const char *value)
3160 {
3161 fprintf_filtered (file, _("\
3162 Printing of object's derived type based on vtable info is %s.\n"),
3163 value);
3164 }
3165
3166 static void
3167 show_static_field_print (struct ui_file *file, int from_tty,
3168 struct cmd_list_element *c,
3169 const char *value)
3170 {
3171 fprintf_filtered (file,
3172 _("Printing of C++ static members is %s.\n"),
3173 value);
3174 }
3175
3176 \f
3177
3178 /* A couple typedefs to make writing the options a bit more
3179 convenient. */
3180 using boolean_option_def
3181 = gdb::option::boolean_option_def<value_print_options>;
3182 using uinteger_option_def
3183 = gdb::option::uinteger_option_def<value_print_options>;
3184 using zuinteger_unlimited_option_def
3185 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3186
3187 /* Definitions of options for the "print" and "compile print"
3188 commands. */
3189 static const gdb::option::option_def value_print_option_defs[] = {
3190
3191 boolean_option_def {
3192 "address",
3193 [] (value_print_options *opt) { return &opt->addressprint; },
3194 show_addressprint, /* show_cmd_cb */
3195 N_("Set printing of addresses."),
3196 N_("Show printing of addresses."),
3197 NULL, /* help_doc */
3198 },
3199
3200 boolean_option_def {
3201 "array",
3202 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3203 show_prettyformat_arrays, /* show_cmd_cb */
3204 N_("Set pretty formatting of arrays."),
3205 N_("Show pretty formatting of arrays."),
3206 NULL, /* help_doc */
3207 },
3208
3209 boolean_option_def {
3210 "array-indexes",
3211 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3212 show_print_array_indexes, /* show_cmd_cb */
3213 N_("Set printing of array indexes."),
3214 N_("Show printing of array indexes."),
3215 NULL, /* help_doc */
3216 },
3217
3218 uinteger_option_def {
3219 "elements",
3220 [] (value_print_options *opt) { return &opt->print_max; },
3221 show_print_max, /* show_cmd_cb */
3222 N_("Set limit on string chars or array elements to print."),
3223 N_("Show limit on string chars or array elements to print."),
3224 N_("\"unlimited\" causes there to be no limit."),
3225 },
3226
3227 zuinteger_unlimited_option_def {
3228 "max-depth",
3229 [] (value_print_options *opt) { return &opt->max_depth; },
3230 show_print_max_depth, /* show_cmd_cb */
3231 N_("Set maximum print depth for nested structures, unions and arrays."),
3232 N_("Show maximum print depth for nested structures, unions, and arrays."),
3233 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3234 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3235 Use \"unlimited\" to print the complete structure.")
3236 },
3237
3238 boolean_option_def {
3239 "null-stop",
3240 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3241 show_stop_print_at_null, /* show_cmd_cb */
3242 N_("Set printing of char arrays to stop at first null char."),
3243 N_("Show printing of char arrays to stop at first null char."),
3244 NULL, /* help_doc */
3245 },
3246
3247 boolean_option_def {
3248 "object",
3249 [] (value_print_options *opt) { return &opt->objectprint; },
3250 show_objectprint, /* show_cmd_cb */
3251 _("Set printing of C++ virtual function tables."),
3252 _("Show printing of C++ virtual function tables."),
3253 NULL, /* help_doc */
3254 },
3255
3256 boolean_option_def {
3257 "pretty",
3258 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3259 show_prettyformat_structs, /* show_cmd_cb */
3260 N_("Set pretty formatting of structures."),
3261 N_("Show pretty formatting of structures."),
3262 NULL, /* help_doc */
3263 },
3264
3265 boolean_option_def {
3266 "raw-values",
3267 [] (value_print_options *opt) { return &opt->raw; },
3268 NULL, /* show_cmd_cb */
3269 N_("Set whether to print values in raw form."),
3270 N_("Show whether to print values in raw form."),
3271 N_("If set, values are printed in raw form, bypassing any\n\
3272 pretty-printers for that value.")
3273 },
3274
3275 uinteger_option_def {
3276 "repeats",
3277 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3278 show_repeat_count_threshold, /* show_cmd_cb */
3279 N_("Set threshold for repeated print elements."),
3280 N_("Show threshold for repeated print elements."),
3281 N_("\"unlimited\" causes all elements to be individually printed."),
3282 },
3283
3284 boolean_option_def {
3285 "static-members",
3286 [] (value_print_options *opt) { return &opt->static_field_print; },
3287 show_static_field_print, /* show_cmd_cb */
3288 N_("Set printing of C++ static members."),
3289 N_("Show printing of C++ static members."),
3290 NULL, /* help_doc */
3291 },
3292
3293 boolean_option_def {
3294 "symbol",
3295 [] (value_print_options *opt) { return &opt->symbol_print; },
3296 show_symbol_print, /* show_cmd_cb */
3297 N_("Set printing of symbol names when printing pointers."),
3298 N_("Show printing of symbol names when printing pointers."),
3299 NULL, /* help_doc */
3300 },
3301
3302 boolean_option_def {
3303 "union",
3304 [] (value_print_options *opt) { return &opt->unionprint; },
3305 show_unionprint, /* show_cmd_cb */
3306 N_("Set printing of unions interior to structures."),
3307 N_("Show printing of unions interior to structures."),
3308 NULL, /* help_doc */
3309 },
3310
3311 boolean_option_def {
3312 "vtbl",
3313 [] (value_print_options *opt) { return &opt->vtblprint; },
3314 show_vtblprint, /* show_cmd_cb */
3315 N_("Set printing of C++ virtual function tables."),
3316 N_("Show printing of C++ virtual function tables."),
3317 NULL, /* help_doc */
3318 },
3319 };
3320
3321 /* See valprint.h. */
3322
3323 gdb::option::option_def_group
3324 make_value_print_options_def_group (value_print_options *opts)
3325 {
3326 return {{value_print_option_defs}, opts};
3327 }
3328
3329 void _initialize_valprint ();
3330 void
3331 _initialize_valprint ()
3332 {
3333 cmd_list_element *cmd;
3334
3335 add_prefix_cmd ("print", no_class, set_print,
3336 _("Generic command for setting how things print."),
3337 &setprintlist, "set print ", 0, &setlist);
3338 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3339 /* Prefer set print to set prompt. */
3340 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3341
3342 add_prefix_cmd ("print", no_class, show_print,
3343 _("Generic command for showing print settings."),
3344 &showprintlist, "show print ", 0, &showlist);
3345 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3346 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3347
3348 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3349 _("\
3350 Generic command for setting what things to print in \"raw\" mode."),
3351 &setprintrawlist, "set print raw ", 0,
3352 &setprintlist);
3353 deprecate_cmd (cmd, nullptr);
3354
3355 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3356 _("Generic command for showing \"print raw\" settings."),
3357 &showprintrawlist, "show print raw ", 0,
3358 &showprintlist);
3359 deprecate_cmd (cmd, nullptr);
3360
3361 gdb::option::add_setshow_cmds_for_options
3362 (class_support, &user_print_options, value_print_option_defs,
3363 &setprintlist, &showprintlist);
3364
3365 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3366 _("\
3367 Set default input radix for entering numbers."), _("\
3368 Show default input radix for entering numbers."), NULL,
3369 set_input_radix,
3370 show_input_radix,
3371 &setlist, &showlist);
3372
3373 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3374 _("\
3375 Set default output radix for printing of values."), _("\
3376 Show default output radix for printing of values."), NULL,
3377 set_output_radix,
3378 show_output_radix,
3379 &setlist, &showlist);
3380
3381 /* The "set radix" and "show radix" commands are special in that
3382 they are like normal set and show commands but allow two normally
3383 independent variables to be either set or shown with a single
3384 command. So the usual deprecated_add_set_cmd() and [deleted]
3385 add_show_from_set() commands aren't really appropriate. */
3386 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3387 longer true - show can display anything. */
3388 add_cmd ("radix", class_support, set_radix, _("\
3389 Set default input and output number radices.\n\
3390 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3391 Without an argument, sets both radices back to the default value of 10."),
3392 &setlist);
3393 add_cmd ("radix", class_support, show_radix, _("\
3394 Show the default input and output number radices.\n\
3395 Use 'show input-radix' or 'show output-radix' to independently show each."),
3396 &showlist);
3397 }
This page took 0.09759 seconds and 5 git commands to generate.