Factor out char printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* generic_val_print helper for TYPE_CODE_ENUM. */
513
514 static void
515 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519 {
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579 }
580
581 /* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583 static void
584 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589 {
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595 }
596
597 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599 static void
600 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605 {
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624 }
625
626 /* generic_val_print helper for TYPE_CODE_BOOL. */
627
628 static void
629 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
630 int embedded_offset, struct ui_file *stream,
631 const struct value *original_value,
632 const struct value_print_options *options,
633 const struct generic_val_print_decorations *decorations)
634 {
635 LONGEST val;
636
637 if (options->format || options->output_format)
638 {
639 struct value_print_options opts = *options;
640 opts.format = (options->format ? options->format
641 : options->output_format);
642 val_print_scalar_formatted (type, valaddr, embedded_offset,
643 original_value, &opts, 0, stream);
644 }
645 else
646 {
647 val = unpack_long (type, valaddr + embedded_offset);
648 if (val == 0)
649 fputs_filtered (decorations->false_name, stream);
650 else if (val == 1)
651 fputs_filtered (decorations->true_name, stream);
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655 }
656
657 /* generic_val_print helper for TYPE_CODE_INT. */
658
659 static void
660 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
661 int embedded_offset, struct ui_file *stream,
662 const struct value *original_value,
663 const struct value_print_options *options)
664 {
665 if (options->format || options->output_format)
666 {
667 struct value_print_options opts = *options;
668
669 opts.format = (options->format ? options->format
670 : options->output_format);
671 val_print_scalar_formatted (type, valaddr, embedded_offset,
672 original_value, &opts, 0, stream);
673 }
674 else
675 val_print_type_code_int (type, valaddr + embedded_offset, stream);
676 }
677
678 /* generic_val_print helper for TYPE_CODE_CHAR. */
679
680 static void
681 generic_val_print_char (struct type *type, struct type *unresolved_type,
682 const gdb_byte *valaddr, int embedded_offset,
683 struct ui_file *stream,
684 const struct value *original_value,
685 const struct value_print_options *options)
686 {
687 LONGEST val;
688
689 if (options->format || options->output_format)
690 {
691 struct value_print_options opts = *options;
692
693 opts.format = (options->format ? options->format
694 : options->output_format);
695 val_print_scalar_formatted (type, valaddr, embedded_offset,
696 original_value, &opts, 0, stream);
697 }
698 else
699 {
700 val = unpack_long (type, valaddr + embedded_offset);
701 if (TYPE_UNSIGNED (type))
702 fprintf_filtered (stream, "%u", (unsigned int) val);
703 else
704 fprintf_filtered (stream, "%d", (int) val);
705 fputs_filtered (" ", stream);
706 LA_PRINT_CHAR (val, unresolved_type, stream);
707 }
708 }
709
710 /* A generic val_print that is suitable for use by language
711 implementations of the la_val_print method. This function can
712 handle most type codes, though not all, notably exception
713 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
714 the caller.
715
716 Most arguments are as to val_print.
717
718 The additional DECORATIONS argument can be used to customize the
719 output in some small, language-specific ways. */
720
721 void
722 generic_val_print (struct type *type, const gdb_byte *valaddr,
723 int embedded_offset, CORE_ADDR address,
724 struct ui_file *stream, int recurse,
725 const struct value *original_value,
726 const struct value_print_options *options,
727 const struct generic_val_print_decorations *decorations)
728 {
729 struct type *unresolved_type = type;
730
731 type = check_typedef (type);
732 switch (TYPE_CODE (type))
733 {
734 case TYPE_CODE_ARRAY:
735 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
736 recurse, original_value, options);
737 break;
738
739 case TYPE_CODE_MEMBERPTR:
740 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
741 original_value, options);
742 break;
743
744 case TYPE_CODE_PTR:
745 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
746 original_value, options);
747 break;
748
749 case TYPE_CODE_REF:
750 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
751 original_value, options);
752 break;
753
754 case TYPE_CODE_ENUM:
755 generic_val_print_enum (type, valaddr, embedded_offset, stream,
756 original_value, options);
757 break;
758
759 case TYPE_CODE_FLAGS:
760 generic_val_print_flags (type, valaddr, embedded_offset, stream,
761 original_value, options);
762 break;
763
764 case TYPE_CODE_FUNC:
765 case TYPE_CODE_METHOD:
766 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
767 original_value, options);
768 break;
769
770 case TYPE_CODE_BOOL:
771 generic_val_print_bool (type, valaddr, embedded_offset, stream,
772 original_value, options, decorations);
773 break;
774
775 case TYPE_CODE_RANGE:
776 /* FIXME: create_static_range_type does not set the unsigned bit in a
777 range type (I think it probably should copy it from the
778 target type), so we won't print values which are too large to
779 fit in a signed integer correctly. */
780 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
781 print with the target type, though, because the size of our
782 type and the target type might differ). */
783
784 /* FALLTHROUGH */
785
786 case TYPE_CODE_INT:
787 generic_val_print_int (type, valaddr, embedded_offset, stream,
788 original_value, options);
789 break;
790
791 case TYPE_CODE_CHAR:
792 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
793 stream, original_value, options);
794 break;
795
796 case TYPE_CODE_FLT:
797 if (options->format)
798 {
799 val_print_scalar_formatted (type, valaddr, embedded_offset,
800 original_value, options, 0, stream);
801 }
802 else
803 {
804 print_floating (valaddr + embedded_offset, type, stream);
805 }
806 break;
807
808 case TYPE_CODE_DECFLOAT:
809 if (options->format)
810 val_print_scalar_formatted (type, valaddr, embedded_offset,
811 original_value, options, 0, stream);
812 else
813 print_decimal_floating (valaddr + embedded_offset,
814 type, stream);
815 break;
816
817 case TYPE_CODE_VOID:
818 fputs_filtered (decorations->void_name, stream);
819 break;
820
821 case TYPE_CODE_ERROR:
822 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
823 break;
824
825 case TYPE_CODE_UNDEF:
826 /* This happens (without TYPE_FLAG_STUB set) on systems which
827 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
828 "struct foo *bar" and no complete type for struct foo in that
829 file. */
830 fprintf_filtered (stream, _("<incomplete type>"));
831 break;
832
833 case TYPE_CODE_COMPLEX:
834 fprintf_filtered (stream, "%s", decorations->complex_prefix);
835 if (options->format)
836 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
837 valaddr, embedded_offset,
838 original_value, options, 0, stream);
839 else
840 print_floating (valaddr + embedded_offset,
841 TYPE_TARGET_TYPE (type),
842 stream);
843 fprintf_filtered (stream, "%s", decorations->complex_infix);
844 if (options->format)
845 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
846 valaddr,
847 embedded_offset
848 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
849 original_value,
850 options, 0, stream);
851 else
852 print_floating (valaddr + embedded_offset
853 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
854 TYPE_TARGET_TYPE (type),
855 stream);
856 fprintf_filtered (stream, "%s", decorations->complex_suffix);
857 break;
858
859 case TYPE_CODE_UNION:
860 case TYPE_CODE_STRUCT:
861 case TYPE_CODE_METHODPTR:
862 default:
863 error (_("Unhandled type code %d in symbol table."),
864 TYPE_CODE (type));
865 }
866 gdb_flush (stream);
867 }
868
869 /* Print using the given LANGUAGE the data of type TYPE located at
870 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
871 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
872 STREAM according to OPTIONS. VAL is the whole object that came
873 from ADDRESS. VALADDR must point to the head of VAL's contents
874 buffer.
875
876 The language printers will pass down an adjusted EMBEDDED_OFFSET to
877 further helper subroutines as subfields of TYPE are printed. In
878 such cases, VALADDR is passed down unadjusted, as well as VAL, so
879 that VAL can be queried for metadata about the contents data being
880 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
881 buffer. For example: "has this field been optimized out", or "I'm
882 printing an object while inspecting a traceframe; has this
883 particular piece of data been collected?".
884
885 RECURSE indicates the amount of indentation to supply before
886 continuation lines; this amount is roughly twice the value of
887 RECURSE. */
888
889 void
890 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
891 CORE_ADDR address, struct ui_file *stream, int recurse,
892 const struct value *val,
893 const struct value_print_options *options,
894 const struct language_defn *language)
895 {
896 int ret = 0;
897 struct value_print_options local_opts = *options;
898 struct type *real_type = check_typedef (type);
899
900 if (local_opts.prettyformat == Val_prettyformat_default)
901 local_opts.prettyformat = (local_opts.prettyformat_structs
902 ? Val_prettyformat : Val_no_prettyformat);
903
904 QUIT;
905
906 /* Ensure that the type is complete and not just a stub. If the type is
907 only a stub and we can't find and substitute its complete type, then
908 print appropriate string and return. */
909
910 if (TYPE_STUB (real_type))
911 {
912 fprintf_filtered (stream, _("<incomplete type>"));
913 gdb_flush (stream);
914 return;
915 }
916
917 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
918 return;
919
920 if (!options->raw)
921 {
922 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
923 address, stream, recurse,
924 val, options, language);
925 if (ret)
926 return;
927 }
928
929 /* Handle summary mode. If the value is a scalar, print it;
930 otherwise, print an ellipsis. */
931 if (options->summary && !val_print_scalar_type_p (type))
932 {
933 fprintf_filtered (stream, "...");
934 return;
935 }
936
937 TRY
938 {
939 language->la_val_print (type, valaddr, embedded_offset, address,
940 stream, recurse, val,
941 &local_opts);
942 }
943 CATCH (except, RETURN_MASK_ERROR)
944 {
945 fprintf_filtered (stream, _("<error reading variable>"));
946 }
947 END_CATCH
948 }
949
950 /* Check whether the value VAL is printable. Return 1 if it is;
951 return 0 and print an appropriate error message to STREAM according to
952 OPTIONS if it is not. */
953
954 static int
955 value_check_printable (struct value *val, struct ui_file *stream,
956 const struct value_print_options *options)
957 {
958 if (val == 0)
959 {
960 fprintf_filtered (stream, _("<address of value unknown>"));
961 return 0;
962 }
963
964 if (value_entirely_optimized_out (val))
965 {
966 if (options->summary && !val_print_scalar_type_p (value_type (val)))
967 fprintf_filtered (stream, "...");
968 else
969 val_print_optimized_out (val, stream);
970 return 0;
971 }
972
973 if (value_entirely_unavailable (val))
974 {
975 if (options->summary && !val_print_scalar_type_p (value_type (val)))
976 fprintf_filtered (stream, "...");
977 else
978 val_print_unavailable (stream);
979 return 0;
980 }
981
982 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
983 {
984 fprintf_filtered (stream, _("<internal function %s>"),
985 value_internal_function_name (val));
986 return 0;
987 }
988
989 return 1;
990 }
991
992 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
993 to OPTIONS.
994
995 This is a preferable interface to val_print, above, because it uses
996 GDB's value mechanism. */
997
998 void
999 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1000 const struct value_print_options *options,
1001 const struct language_defn *language)
1002 {
1003 if (!value_check_printable (val, stream, options))
1004 return;
1005
1006 if (language->la_language == language_ada)
1007 /* The value might have a dynamic type, which would cause trouble
1008 below when trying to extract the value contents (since the value
1009 size is determined from the type size which is unknown). So
1010 get a fixed representation of our value. */
1011 val = ada_to_fixed_value (val);
1012
1013 val_print (value_type (val), value_contents_for_printing (val),
1014 value_embedded_offset (val), value_address (val),
1015 stream, recurse,
1016 val, options, language);
1017 }
1018
1019 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1020 is printed using the current_language syntax. */
1021
1022 void
1023 value_print (struct value *val, struct ui_file *stream,
1024 const struct value_print_options *options)
1025 {
1026 if (!value_check_printable (val, stream, options))
1027 return;
1028
1029 if (!options->raw)
1030 {
1031 int r
1032 = apply_ext_lang_val_pretty_printer (value_type (val),
1033 value_contents_for_printing (val),
1034 value_embedded_offset (val),
1035 value_address (val),
1036 stream, 0,
1037 val, options, current_language);
1038
1039 if (r)
1040 return;
1041 }
1042
1043 LA_VALUE_PRINT (val, stream, options);
1044 }
1045
1046 /* Called by various <lang>_val_print routines to print
1047 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1048 value. STREAM is where to print the value. */
1049
1050 void
1051 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1052 struct ui_file *stream)
1053 {
1054 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1055
1056 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1057 {
1058 LONGEST val;
1059
1060 if (TYPE_UNSIGNED (type)
1061 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1062 byte_order, &val))
1063 {
1064 print_longest (stream, 'u', 0, val);
1065 }
1066 else
1067 {
1068 /* Signed, or we couldn't turn an unsigned value into a
1069 LONGEST. For signed values, one could assume two's
1070 complement (a reasonable assumption, I think) and do
1071 better than this. */
1072 print_hex_chars (stream, (unsigned char *) valaddr,
1073 TYPE_LENGTH (type), byte_order);
1074 }
1075 }
1076 else
1077 {
1078 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1079 unpack_long (type, valaddr));
1080 }
1081 }
1082
1083 void
1084 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1085 struct ui_file *stream)
1086 {
1087 ULONGEST val = unpack_long (type, valaddr);
1088 int bitpos, nfields = TYPE_NFIELDS (type);
1089
1090 fputs_filtered ("[ ", stream);
1091 for (bitpos = 0; bitpos < nfields; bitpos++)
1092 {
1093 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1094 && (val & ((ULONGEST)1 << bitpos)))
1095 {
1096 if (TYPE_FIELD_NAME (type, bitpos))
1097 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1098 else
1099 fprintf_filtered (stream, "#%d ", bitpos);
1100 }
1101 }
1102 fputs_filtered ("]", stream);
1103 }
1104
1105 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1106 according to OPTIONS and SIZE on STREAM. Format i is not supported
1107 at this level.
1108
1109 This is how the elements of an array or structure are printed
1110 with a format. */
1111
1112 void
1113 val_print_scalar_formatted (struct type *type,
1114 const gdb_byte *valaddr, int embedded_offset,
1115 const struct value *val,
1116 const struct value_print_options *options,
1117 int size,
1118 struct ui_file *stream)
1119 {
1120 gdb_assert (val != NULL);
1121 gdb_assert (valaddr == value_contents_for_printing_const (val));
1122
1123 /* If we get here with a string format, try again without it. Go
1124 all the way back to the language printers, which may call us
1125 again. */
1126 if (options->format == 's')
1127 {
1128 struct value_print_options opts = *options;
1129 opts.format = 0;
1130 opts.deref_ref = 0;
1131 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1132 current_language);
1133 return;
1134 }
1135
1136 /* A scalar object that does not have all bits available can't be
1137 printed, because all bits contribute to its representation. */
1138 if (value_bits_any_optimized_out (val,
1139 TARGET_CHAR_BIT * embedded_offset,
1140 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1141 val_print_optimized_out (val, stream);
1142 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1143 val_print_unavailable (stream);
1144 else
1145 print_scalar_formatted (valaddr + embedded_offset, type,
1146 options, size, stream);
1147 }
1148
1149 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1150 The raison d'etre of this function is to consolidate printing of
1151 LONG_LONG's into this one function. The format chars b,h,w,g are
1152 from print_scalar_formatted(). Numbers are printed using C
1153 format.
1154
1155 USE_C_FORMAT means to use C format in all cases. Without it,
1156 'o' and 'x' format do not include the standard C radix prefix
1157 (leading 0 or 0x).
1158
1159 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1160 and was intended to request formating according to the current
1161 language and would be used for most integers that GDB prints. The
1162 exceptional cases were things like protocols where the format of
1163 the integer is a protocol thing, not a user-visible thing). The
1164 parameter remains to preserve the information of what things might
1165 be printed with language-specific format, should we ever resurrect
1166 that capability. */
1167
1168 void
1169 print_longest (struct ui_file *stream, int format, int use_c_format,
1170 LONGEST val_long)
1171 {
1172 const char *val;
1173
1174 switch (format)
1175 {
1176 case 'd':
1177 val = int_string (val_long, 10, 1, 0, 1); break;
1178 case 'u':
1179 val = int_string (val_long, 10, 0, 0, 1); break;
1180 case 'x':
1181 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1182 case 'b':
1183 val = int_string (val_long, 16, 0, 2, 1); break;
1184 case 'h':
1185 val = int_string (val_long, 16, 0, 4, 1); break;
1186 case 'w':
1187 val = int_string (val_long, 16, 0, 8, 1); break;
1188 case 'g':
1189 val = int_string (val_long, 16, 0, 16, 1); break;
1190 break;
1191 case 'o':
1192 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1193 default:
1194 internal_error (__FILE__, __LINE__,
1195 _("failed internal consistency check"));
1196 }
1197 fputs_filtered (val, stream);
1198 }
1199
1200 /* This used to be a macro, but I don't think it is called often enough
1201 to merit such treatment. */
1202 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1203 arguments to a function, number in a value history, register number, etc.)
1204 where the value must not be larger than can fit in an int. */
1205
1206 int
1207 longest_to_int (LONGEST arg)
1208 {
1209 /* Let the compiler do the work. */
1210 int rtnval = (int) arg;
1211
1212 /* Check for overflows or underflows. */
1213 if (sizeof (LONGEST) > sizeof (int))
1214 {
1215 if (rtnval != arg)
1216 {
1217 error (_("Value out of range."));
1218 }
1219 }
1220 return (rtnval);
1221 }
1222
1223 /* Print a floating point value of type TYPE (not always a
1224 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1225
1226 void
1227 print_floating (const gdb_byte *valaddr, struct type *type,
1228 struct ui_file *stream)
1229 {
1230 DOUBLEST doub;
1231 int inv;
1232 const struct floatformat *fmt = NULL;
1233 unsigned len = TYPE_LENGTH (type);
1234 enum float_kind kind;
1235
1236 /* If it is a floating-point, check for obvious problems. */
1237 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1238 fmt = floatformat_from_type (type);
1239 if (fmt != NULL)
1240 {
1241 kind = floatformat_classify (fmt, valaddr);
1242 if (kind == float_nan)
1243 {
1244 if (floatformat_is_negative (fmt, valaddr))
1245 fprintf_filtered (stream, "-");
1246 fprintf_filtered (stream, "nan(");
1247 fputs_filtered ("0x", stream);
1248 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1249 fprintf_filtered (stream, ")");
1250 return;
1251 }
1252 else if (kind == float_infinite)
1253 {
1254 if (floatformat_is_negative (fmt, valaddr))
1255 fputs_filtered ("-", stream);
1256 fputs_filtered ("inf", stream);
1257 return;
1258 }
1259 }
1260
1261 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1262 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1263 needs to be used as that takes care of any necessary type
1264 conversions. Such conversions are of course direct to DOUBLEST
1265 and disregard any possible target floating point limitations.
1266 For instance, a u64 would be converted and displayed exactly on a
1267 host with 80 bit DOUBLEST but with loss of information on a host
1268 with 64 bit DOUBLEST. */
1269
1270 doub = unpack_double (type, valaddr, &inv);
1271 if (inv)
1272 {
1273 fprintf_filtered (stream, "<invalid float value>");
1274 return;
1275 }
1276
1277 /* FIXME: kettenis/2001-01-20: The following code makes too much
1278 assumptions about the host and target floating point format. */
1279
1280 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1281 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1282 instead uses the type's length to determine the precision of the
1283 floating-point value being printed. */
1284
1285 if (len < sizeof (double))
1286 fprintf_filtered (stream, "%.9g", (double) doub);
1287 else if (len == sizeof (double))
1288 fprintf_filtered (stream, "%.17g", (double) doub);
1289 else
1290 #ifdef PRINTF_HAS_LONG_DOUBLE
1291 fprintf_filtered (stream, "%.35Lg", doub);
1292 #else
1293 /* This at least wins with values that are representable as
1294 doubles. */
1295 fprintf_filtered (stream, "%.17g", (double) doub);
1296 #endif
1297 }
1298
1299 void
1300 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1301 struct ui_file *stream)
1302 {
1303 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1304 char decstr[MAX_DECIMAL_STRING];
1305 unsigned len = TYPE_LENGTH (type);
1306
1307 decimal_to_string (valaddr, len, byte_order, decstr);
1308 fputs_filtered (decstr, stream);
1309 return;
1310 }
1311
1312 void
1313 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1314 unsigned len, enum bfd_endian byte_order)
1315 {
1316
1317 #define BITS_IN_BYTES 8
1318
1319 const gdb_byte *p;
1320 unsigned int i;
1321 int b;
1322
1323 /* Declared "int" so it will be signed.
1324 This ensures that right shift will shift in zeros. */
1325
1326 const int mask = 0x080;
1327
1328 /* FIXME: We should be not printing leading zeroes in most cases. */
1329
1330 if (byte_order == BFD_ENDIAN_BIG)
1331 {
1332 for (p = valaddr;
1333 p < valaddr + len;
1334 p++)
1335 {
1336 /* Every byte has 8 binary characters; peel off
1337 and print from the MSB end. */
1338
1339 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1340 {
1341 if (*p & (mask >> i))
1342 b = 1;
1343 else
1344 b = 0;
1345
1346 fprintf_filtered (stream, "%1d", b);
1347 }
1348 }
1349 }
1350 else
1351 {
1352 for (p = valaddr + len - 1;
1353 p >= valaddr;
1354 p--)
1355 {
1356 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1357 {
1358 if (*p & (mask >> i))
1359 b = 1;
1360 else
1361 b = 0;
1362
1363 fprintf_filtered (stream, "%1d", b);
1364 }
1365 }
1366 }
1367 }
1368
1369 /* VALADDR points to an integer of LEN bytes.
1370 Print it in octal on stream or format it in buf. */
1371
1372 void
1373 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1374 unsigned len, enum bfd_endian byte_order)
1375 {
1376 const gdb_byte *p;
1377 unsigned char octa1, octa2, octa3, carry;
1378 int cycle;
1379
1380 /* FIXME: We should be not printing leading zeroes in most cases. */
1381
1382
1383 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1384 * the extra bits, which cycle every three bytes:
1385 *
1386 * Byte side: 0 1 2 3
1387 * | | | |
1388 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1389 *
1390 * Octal side: 0 1 carry 3 4 carry ...
1391 *
1392 * Cycle number: 0 1 2
1393 *
1394 * But of course we are printing from the high side, so we have to
1395 * figure out where in the cycle we are so that we end up with no
1396 * left over bits at the end.
1397 */
1398 #define BITS_IN_OCTAL 3
1399 #define HIGH_ZERO 0340
1400 #define LOW_ZERO 0016
1401 #define CARRY_ZERO 0003
1402 #define HIGH_ONE 0200
1403 #define MID_ONE 0160
1404 #define LOW_ONE 0016
1405 #define CARRY_ONE 0001
1406 #define HIGH_TWO 0300
1407 #define MID_TWO 0070
1408 #define LOW_TWO 0007
1409
1410 /* For 32 we start in cycle 2, with two bits and one bit carry;
1411 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1412
1413 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1414 carry = 0;
1415
1416 fputs_filtered ("0", stream);
1417 if (byte_order == BFD_ENDIAN_BIG)
1418 {
1419 for (p = valaddr;
1420 p < valaddr + len;
1421 p++)
1422 {
1423 switch (cycle)
1424 {
1425 case 0:
1426 /* No carry in, carry out two bits. */
1427
1428 octa1 = (HIGH_ZERO & *p) >> 5;
1429 octa2 = (LOW_ZERO & *p) >> 2;
1430 carry = (CARRY_ZERO & *p);
1431 fprintf_filtered (stream, "%o", octa1);
1432 fprintf_filtered (stream, "%o", octa2);
1433 break;
1434
1435 case 1:
1436 /* Carry in two bits, carry out one bit. */
1437
1438 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1439 octa2 = (MID_ONE & *p) >> 4;
1440 octa3 = (LOW_ONE & *p) >> 1;
1441 carry = (CARRY_ONE & *p);
1442 fprintf_filtered (stream, "%o", octa1);
1443 fprintf_filtered (stream, "%o", octa2);
1444 fprintf_filtered (stream, "%o", octa3);
1445 break;
1446
1447 case 2:
1448 /* Carry in one bit, no carry out. */
1449
1450 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1451 octa2 = (MID_TWO & *p) >> 3;
1452 octa3 = (LOW_TWO & *p);
1453 carry = 0;
1454 fprintf_filtered (stream, "%o", octa1);
1455 fprintf_filtered (stream, "%o", octa2);
1456 fprintf_filtered (stream, "%o", octa3);
1457 break;
1458
1459 default:
1460 error (_("Internal error in octal conversion;"));
1461 }
1462
1463 cycle++;
1464 cycle = cycle % BITS_IN_OCTAL;
1465 }
1466 }
1467 else
1468 {
1469 for (p = valaddr + len - 1;
1470 p >= valaddr;
1471 p--)
1472 {
1473 switch (cycle)
1474 {
1475 case 0:
1476 /* Carry out, no carry in */
1477
1478 octa1 = (HIGH_ZERO & *p) >> 5;
1479 octa2 = (LOW_ZERO & *p) >> 2;
1480 carry = (CARRY_ZERO & *p);
1481 fprintf_filtered (stream, "%o", octa1);
1482 fprintf_filtered (stream, "%o", octa2);
1483 break;
1484
1485 case 1:
1486 /* Carry in, carry out */
1487
1488 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1489 octa2 = (MID_ONE & *p) >> 4;
1490 octa3 = (LOW_ONE & *p) >> 1;
1491 carry = (CARRY_ONE & *p);
1492 fprintf_filtered (stream, "%o", octa1);
1493 fprintf_filtered (stream, "%o", octa2);
1494 fprintf_filtered (stream, "%o", octa3);
1495 break;
1496
1497 case 2:
1498 /* Carry in, no carry out */
1499
1500 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1501 octa2 = (MID_TWO & *p) >> 3;
1502 octa3 = (LOW_TWO & *p);
1503 carry = 0;
1504 fprintf_filtered (stream, "%o", octa1);
1505 fprintf_filtered (stream, "%o", octa2);
1506 fprintf_filtered (stream, "%o", octa3);
1507 break;
1508
1509 default:
1510 error (_("Internal error in octal conversion;"));
1511 }
1512
1513 cycle++;
1514 cycle = cycle % BITS_IN_OCTAL;
1515 }
1516 }
1517
1518 }
1519
1520 /* VALADDR points to an integer of LEN bytes.
1521 Print it in decimal on stream or format it in buf. */
1522
1523 void
1524 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1525 unsigned len, enum bfd_endian byte_order)
1526 {
1527 #define TEN 10
1528 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1529 #define CARRY_LEFT( x ) ((x) % TEN)
1530 #define SHIFT( x ) ((x) << 4)
1531 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1532 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1533
1534 const gdb_byte *p;
1535 unsigned char *digits;
1536 int carry;
1537 int decimal_len;
1538 int i, j, decimal_digits;
1539 int dummy;
1540 int flip;
1541
1542 /* Base-ten number is less than twice as many digits
1543 as the base 16 number, which is 2 digits per byte. */
1544
1545 decimal_len = len * 2 * 2;
1546 digits = xmalloc (decimal_len);
1547
1548 for (i = 0; i < decimal_len; i++)
1549 {
1550 digits[i] = 0;
1551 }
1552
1553 /* Ok, we have an unknown number of bytes of data to be printed in
1554 * decimal.
1555 *
1556 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1557 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1558 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1559 *
1560 * The trick is that "digits" holds a base-10 number, but sometimes
1561 * the individual digits are > 10.
1562 *
1563 * Outer loop is per nibble (hex digit) of input, from MSD end to
1564 * LSD end.
1565 */
1566 decimal_digits = 0; /* Number of decimal digits so far */
1567 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1568 flip = 0;
1569 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1570 {
1571 /*
1572 * Multiply current base-ten number by 16 in place.
1573 * Each digit was between 0 and 9, now is between
1574 * 0 and 144.
1575 */
1576 for (j = 0; j < decimal_digits; j++)
1577 {
1578 digits[j] = SHIFT (digits[j]);
1579 }
1580
1581 /* Take the next nibble off the input and add it to what
1582 * we've got in the LSB position. Bottom 'digit' is now
1583 * between 0 and 159.
1584 *
1585 * "flip" is used to run this loop twice for each byte.
1586 */
1587 if (flip == 0)
1588 {
1589 /* Take top nibble. */
1590
1591 digits[0] += HIGH_NIBBLE (*p);
1592 flip = 1;
1593 }
1594 else
1595 {
1596 /* Take low nibble and bump our pointer "p". */
1597
1598 digits[0] += LOW_NIBBLE (*p);
1599 if (byte_order == BFD_ENDIAN_BIG)
1600 p++;
1601 else
1602 p--;
1603 flip = 0;
1604 }
1605
1606 /* Re-decimalize. We have to do this often enough
1607 * that we don't overflow, but once per nibble is
1608 * overkill. Easier this way, though. Note that the
1609 * carry is often larger than 10 (e.g. max initial
1610 * carry out of lowest nibble is 15, could bubble all
1611 * the way up greater than 10). So we have to do
1612 * the carrying beyond the last current digit.
1613 */
1614 carry = 0;
1615 for (j = 0; j < decimal_len - 1; j++)
1616 {
1617 digits[j] += carry;
1618
1619 /* "/" won't handle an unsigned char with
1620 * a value that if signed would be negative.
1621 * So extend to longword int via "dummy".
1622 */
1623 dummy = digits[j];
1624 carry = CARRY_OUT (dummy);
1625 digits[j] = CARRY_LEFT (dummy);
1626
1627 if (j >= decimal_digits && carry == 0)
1628 {
1629 /*
1630 * All higher digits are 0 and we
1631 * no longer have a carry.
1632 *
1633 * Note: "j" is 0-based, "decimal_digits" is
1634 * 1-based.
1635 */
1636 decimal_digits = j + 1;
1637 break;
1638 }
1639 }
1640 }
1641
1642 /* Ok, now "digits" is the decimal representation, with
1643 the "decimal_digits" actual digits. Print! */
1644
1645 for (i = decimal_digits - 1; i >= 0; i--)
1646 {
1647 fprintf_filtered (stream, "%1d", digits[i]);
1648 }
1649 xfree (digits);
1650 }
1651
1652 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1653
1654 void
1655 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1656 unsigned len, enum bfd_endian byte_order)
1657 {
1658 const gdb_byte *p;
1659
1660 /* FIXME: We should be not printing leading zeroes in most cases. */
1661
1662 fputs_filtered ("0x", stream);
1663 if (byte_order == BFD_ENDIAN_BIG)
1664 {
1665 for (p = valaddr;
1666 p < valaddr + len;
1667 p++)
1668 {
1669 fprintf_filtered (stream, "%02x", *p);
1670 }
1671 }
1672 else
1673 {
1674 for (p = valaddr + len - 1;
1675 p >= valaddr;
1676 p--)
1677 {
1678 fprintf_filtered (stream, "%02x", *p);
1679 }
1680 }
1681 }
1682
1683 /* VALADDR points to a char integer of LEN bytes.
1684 Print it out in appropriate language form on stream.
1685 Omit any leading zero chars. */
1686
1687 void
1688 print_char_chars (struct ui_file *stream, struct type *type,
1689 const gdb_byte *valaddr,
1690 unsigned len, enum bfd_endian byte_order)
1691 {
1692 const gdb_byte *p;
1693
1694 if (byte_order == BFD_ENDIAN_BIG)
1695 {
1696 p = valaddr;
1697 while (p < valaddr + len - 1 && *p == 0)
1698 ++p;
1699
1700 while (p < valaddr + len)
1701 {
1702 LA_EMIT_CHAR (*p, type, stream, '\'');
1703 ++p;
1704 }
1705 }
1706 else
1707 {
1708 p = valaddr + len - 1;
1709 while (p > valaddr && *p == 0)
1710 --p;
1711
1712 while (p >= valaddr)
1713 {
1714 LA_EMIT_CHAR (*p, type, stream, '\'');
1715 --p;
1716 }
1717 }
1718 }
1719
1720 /* Print function pointer with inferior address ADDRESS onto stdio
1721 stream STREAM. */
1722
1723 void
1724 print_function_pointer_address (const struct value_print_options *options,
1725 struct gdbarch *gdbarch,
1726 CORE_ADDR address,
1727 struct ui_file *stream)
1728 {
1729 CORE_ADDR func_addr
1730 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1731 &current_target);
1732
1733 /* If the function pointer is represented by a description, print
1734 the address of the description. */
1735 if (options->addressprint && func_addr != address)
1736 {
1737 fputs_filtered ("@", stream);
1738 fputs_filtered (paddress (gdbarch, address), stream);
1739 fputs_filtered (": ", stream);
1740 }
1741 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1742 }
1743
1744
1745 /* Print on STREAM using the given OPTIONS the index for the element
1746 at INDEX of an array whose index type is INDEX_TYPE. */
1747
1748 void
1749 maybe_print_array_index (struct type *index_type, LONGEST index,
1750 struct ui_file *stream,
1751 const struct value_print_options *options)
1752 {
1753 struct value *index_value;
1754
1755 if (!options->print_array_indexes)
1756 return;
1757
1758 index_value = value_from_longest (index_type, index);
1759
1760 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1761 }
1762
1763 /* Called by various <lang>_val_print routines to print elements of an
1764 array in the form "<elem1>, <elem2>, <elem3>, ...".
1765
1766 (FIXME?) Assumes array element separator is a comma, which is correct
1767 for all languages currently handled.
1768 (FIXME?) Some languages have a notation for repeated array elements,
1769 perhaps we should try to use that notation when appropriate. */
1770
1771 void
1772 val_print_array_elements (struct type *type,
1773 const gdb_byte *valaddr, int embedded_offset,
1774 CORE_ADDR address, struct ui_file *stream,
1775 int recurse,
1776 const struct value *val,
1777 const struct value_print_options *options,
1778 unsigned int i)
1779 {
1780 unsigned int things_printed = 0;
1781 unsigned len;
1782 struct type *elttype, *index_type, *base_index_type;
1783 unsigned eltlen;
1784 /* Position of the array element we are examining to see
1785 whether it is repeated. */
1786 unsigned int rep1;
1787 /* Number of repetitions we have detected so far. */
1788 unsigned int reps;
1789 LONGEST low_bound, high_bound;
1790 LONGEST low_pos, high_pos;
1791
1792 elttype = TYPE_TARGET_TYPE (type);
1793 eltlen = TYPE_LENGTH (check_typedef (elttype));
1794 index_type = TYPE_INDEX_TYPE (type);
1795
1796 if (get_array_bounds (type, &low_bound, &high_bound))
1797 {
1798 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1799 base_index_type = TYPE_TARGET_TYPE (index_type);
1800 else
1801 base_index_type = index_type;
1802
1803 /* Non-contiguous enumerations types can by used as index types
1804 in some languages (e.g. Ada). In this case, the array length
1805 shall be computed from the positions of the first and last
1806 literal in the enumeration type, and not from the values
1807 of these literals. */
1808 if (!discrete_position (base_index_type, low_bound, &low_pos)
1809 || !discrete_position (base_index_type, high_bound, &high_pos))
1810 {
1811 warning (_("unable to get positions in array, use bounds instead"));
1812 low_pos = low_bound;
1813 high_pos = high_bound;
1814 }
1815
1816 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1817 But we have to be a little extra careful, because some languages
1818 such as Ada allow LOW_POS to be greater than HIGH_POS for
1819 empty arrays. In that situation, the array length is just zero,
1820 not negative! */
1821 if (low_pos > high_pos)
1822 len = 0;
1823 else
1824 len = high_pos - low_pos + 1;
1825 }
1826 else
1827 {
1828 warning (_("unable to get bounds of array, assuming null array"));
1829 low_bound = 0;
1830 len = 0;
1831 }
1832
1833 annotate_array_section_begin (i, elttype);
1834
1835 for (; i < len && things_printed < options->print_max; i++)
1836 {
1837 if (i != 0)
1838 {
1839 if (options->prettyformat_arrays)
1840 {
1841 fprintf_filtered (stream, ",\n");
1842 print_spaces_filtered (2 + 2 * recurse, stream);
1843 }
1844 else
1845 {
1846 fprintf_filtered (stream, ", ");
1847 }
1848 }
1849 wrap_here (n_spaces (2 + 2 * recurse));
1850 maybe_print_array_index (index_type, i + low_bound,
1851 stream, options);
1852
1853 rep1 = i + 1;
1854 reps = 1;
1855 /* Only check for reps if repeat_count_threshold is not set to
1856 UINT_MAX (unlimited). */
1857 if (options->repeat_count_threshold < UINT_MAX)
1858 {
1859 while (rep1 < len
1860 && value_contents_eq (val,
1861 embedded_offset + i * eltlen,
1862 val,
1863 (embedded_offset
1864 + rep1 * eltlen),
1865 eltlen))
1866 {
1867 ++reps;
1868 ++rep1;
1869 }
1870 }
1871
1872 if (reps > options->repeat_count_threshold)
1873 {
1874 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1875 address, stream, recurse + 1, val, options,
1876 current_language);
1877 annotate_elt_rep (reps);
1878 fprintf_filtered (stream, " <repeats %u times>", reps);
1879 annotate_elt_rep_end ();
1880
1881 i = rep1 - 1;
1882 things_printed += options->repeat_count_threshold;
1883 }
1884 else
1885 {
1886 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1887 address,
1888 stream, recurse + 1, val, options, current_language);
1889 annotate_elt ();
1890 things_printed++;
1891 }
1892 }
1893 annotate_array_section_end ();
1894 if (i < len)
1895 {
1896 fprintf_filtered (stream, "...");
1897 }
1898 }
1899
1900 /* Read LEN bytes of target memory at address MEMADDR, placing the
1901 results in GDB's memory at MYADDR. Returns a count of the bytes
1902 actually read, and optionally a target_xfer_status value in the
1903 location pointed to by ERRPTR if ERRPTR is non-null. */
1904
1905 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1906 function be eliminated. */
1907
1908 static int
1909 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1910 int len, int *errptr)
1911 {
1912 int nread; /* Number of bytes actually read. */
1913 int errcode; /* Error from last read. */
1914
1915 /* First try a complete read. */
1916 errcode = target_read_memory (memaddr, myaddr, len);
1917 if (errcode == 0)
1918 {
1919 /* Got it all. */
1920 nread = len;
1921 }
1922 else
1923 {
1924 /* Loop, reading one byte at a time until we get as much as we can. */
1925 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1926 {
1927 errcode = target_read_memory (memaddr++, myaddr++, 1);
1928 }
1929 /* If an error, the last read was unsuccessful, so adjust count. */
1930 if (errcode != 0)
1931 {
1932 nread--;
1933 }
1934 }
1935 if (errptr != NULL)
1936 {
1937 *errptr = errcode;
1938 }
1939 return (nread);
1940 }
1941
1942 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1943 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1944 allocated buffer containing the string, which the caller is responsible to
1945 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1946 success, or a target_xfer_status on failure.
1947
1948 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1949 (including eventual NULs in the middle or end of the string).
1950
1951 If LEN is -1, stops at the first null character (not necessarily
1952 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1953 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1954 the string.
1955
1956 Unless an exception is thrown, BUFFER will always be allocated, even on
1957 failure. In this case, some characters might have been read before the
1958 failure happened. Check BYTES_READ to recognize this situation.
1959
1960 Note: There was a FIXME asking to make this code use target_read_string,
1961 but this function is more general (can read past null characters, up to
1962 given LEN). Besides, it is used much more often than target_read_string
1963 so it is more tested. Perhaps callers of target_read_string should use
1964 this function instead? */
1965
1966 int
1967 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1968 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1969 {
1970 int errcode; /* Errno returned from bad reads. */
1971 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1972 gdb_byte *bufptr; /* Pointer to next available byte in
1973 buffer. */
1974 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1975
1976 /* Loop until we either have all the characters, or we encounter
1977 some error, such as bumping into the end of the address space. */
1978
1979 *buffer = NULL;
1980
1981 old_chain = make_cleanup (free_current_contents, buffer);
1982
1983 if (len > 0)
1984 {
1985 /* We want fetchlimit chars, so we might as well read them all in
1986 one operation. */
1987 unsigned int fetchlen = min (len, fetchlimit);
1988
1989 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1990 bufptr = *buffer;
1991
1992 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1993 / width;
1994 addr += nfetch * width;
1995 bufptr += nfetch * width;
1996 }
1997 else if (len == -1)
1998 {
1999 unsigned long bufsize = 0;
2000 unsigned int chunksize; /* Size of each fetch, in chars. */
2001 int found_nul; /* Non-zero if we found the nul char. */
2002 gdb_byte *limit; /* First location past end of fetch buffer. */
2003
2004 found_nul = 0;
2005 /* We are looking for a NUL terminator to end the fetching, so we
2006 might as well read in blocks that are large enough to be efficient,
2007 but not so large as to be slow if fetchlimit happens to be large.
2008 So we choose the minimum of 8 and fetchlimit. We used to use 200
2009 instead of 8 but 200 is way too big for remote debugging over a
2010 serial line. */
2011 chunksize = min (8, fetchlimit);
2012
2013 do
2014 {
2015 QUIT;
2016 nfetch = min (chunksize, fetchlimit - bufsize);
2017
2018 if (*buffer == NULL)
2019 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2020 else
2021 *buffer = (gdb_byte *) xrealloc (*buffer,
2022 (nfetch + bufsize) * width);
2023
2024 bufptr = *buffer + bufsize * width;
2025 bufsize += nfetch;
2026
2027 /* Read as much as we can. */
2028 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2029 / width;
2030
2031 /* Scan this chunk for the null character that terminates the string
2032 to print. If found, we don't need to fetch any more. Note
2033 that bufptr is explicitly left pointing at the next character
2034 after the null character, or at the next character after the end
2035 of the buffer. */
2036
2037 limit = bufptr + nfetch * width;
2038 while (bufptr < limit)
2039 {
2040 unsigned long c;
2041
2042 c = extract_unsigned_integer (bufptr, width, byte_order);
2043 addr += width;
2044 bufptr += width;
2045 if (c == 0)
2046 {
2047 /* We don't care about any error which happened after
2048 the NUL terminator. */
2049 errcode = 0;
2050 found_nul = 1;
2051 break;
2052 }
2053 }
2054 }
2055 while (errcode == 0 /* no error */
2056 && bufptr - *buffer < fetchlimit * width /* no overrun */
2057 && !found_nul); /* haven't found NUL yet */
2058 }
2059 else
2060 { /* Length of string is really 0! */
2061 /* We always allocate *buffer. */
2062 *buffer = bufptr = xmalloc (1);
2063 errcode = 0;
2064 }
2065
2066 /* bufptr and addr now point immediately beyond the last byte which we
2067 consider part of the string (including a '\0' which ends the string). */
2068 *bytes_read = bufptr - *buffer;
2069
2070 QUIT;
2071
2072 discard_cleanups (old_chain);
2073
2074 return errcode;
2075 }
2076
2077 /* Return true if print_wchar can display W without resorting to a
2078 numeric escape, false otherwise. */
2079
2080 static int
2081 wchar_printable (gdb_wchar_t w)
2082 {
2083 return (gdb_iswprint (w)
2084 || w == LCST ('\a') || w == LCST ('\b')
2085 || w == LCST ('\f') || w == LCST ('\n')
2086 || w == LCST ('\r') || w == LCST ('\t')
2087 || w == LCST ('\v'));
2088 }
2089
2090 /* A helper function that converts the contents of STRING to wide
2091 characters and then appends them to OUTPUT. */
2092
2093 static void
2094 append_string_as_wide (const char *string,
2095 struct obstack *output)
2096 {
2097 for (; *string; ++string)
2098 {
2099 gdb_wchar_t w = gdb_btowc (*string);
2100 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2101 }
2102 }
2103
2104 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2105 original (target) bytes representing the character, ORIG_LEN is the
2106 number of valid bytes. WIDTH is the number of bytes in a base
2107 characters of the type. OUTPUT is an obstack to which wide
2108 characters are emitted. QUOTER is a (narrow) character indicating
2109 the style of quotes surrounding the character to be printed.
2110 NEED_ESCAPE is an in/out flag which is used to track numeric
2111 escapes across calls. */
2112
2113 static void
2114 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2115 int orig_len, int width,
2116 enum bfd_endian byte_order,
2117 struct obstack *output,
2118 int quoter, int *need_escapep)
2119 {
2120 int need_escape = *need_escapep;
2121
2122 *need_escapep = 0;
2123
2124 /* iswprint implementation on Windows returns 1 for tab character.
2125 In order to avoid different printout on this host, we explicitly
2126 use wchar_printable function. */
2127 switch (w)
2128 {
2129 case LCST ('\a'):
2130 obstack_grow_wstr (output, LCST ("\\a"));
2131 break;
2132 case LCST ('\b'):
2133 obstack_grow_wstr (output, LCST ("\\b"));
2134 break;
2135 case LCST ('\f'):
2136 obstack_grow_wstr (output, LCST ("\\f"));
2137 break;
2138 case LCST ('\n'):
2139 obstack_grow_wstr (output, LCST ("\\n"));
2140 break;
2141 case LCST ('\r'):
2142 obstack_grow_wstr (output, LCST ("\\r"));
2143 break;
2144 case LCST ('\t'):
2145 obstack_grow_wstr (output, LCST ("\\t"));
2146 break;
2147 case LCST ('\v'):
2148 obstack_grow_wstr (output, LCST ("\\v"));
2149 break;
2150 default:
2151 {
2152 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2153 && w != LCST ('8')
2154 && w != LCST ('9'))))
2155 {
2156 gdb_wchar_t wchar = w;
2157
2158 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2159 obstack_grow_wstr (output, LCST ("\\"));
2160 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2161 }
2162 else
2163 {
2164 int i;
2165
2166 for (i = 0; i + width <= orig_len; i += width)
2167 {
2168 char octal[30];
2169 ULONGEST value;
2170
2171 value = extract_unsigned_integer (&orig[i], width,
2172 byte_order);
2173 /* If the value fits in 3 octal digits, print it that
2174 way. Otherwise, print it as a hex escape. */
2175 if (value <= 0777)
2176 xsnprintf (octal, sizeof (octal), "\\%.3o",
2177 (int) (value & 0777));
2178 else
2179 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2180 append_string_as_wide (octal, output);
2181 }
2182 /* If we somehow have extra bytes, print them now. */
2183 while (i < orig_len)
2184 {
2185 char octal[5];
2186
2187 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2188 append_string_as_wide (octal, output);
2189 ++i;
2190 }
2191
2192 *need_escapep = 1;
2193 }
2194 break;
2195 }
2196 }
2197 }
2198
2199 /* Print the character C on STREAM as part of the contents of a
2200 literal string whose delimiter is QUOTER. ENCODING names the
2201 encoding of C. */
2202
2203 void
2204 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2205 int quoter, const char *encoding)
2206 {
2207 enum bfd_endian byte_order
2208 = gdbarch_byte_order (get_type_arch (type));
2209 struct obstack wchar_buf, output;
2210 struct cleanup *cleanups;
2211 gdb_byte *buf;
2212 struct wchar_iterator *iter;
2213 int need_escape = 0;
2214
2215 buf = alloca (TYPE_LENGTH (type));
2216 pack_long (buf, type, c);
2217
2218 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2219 encoding, TYPE_LENGTH (type));
2220 cleanups = make_cleanup_wchar_iterator (iter);
2221
2222 /* This holds the printable form of the wchar_t data. */
2223 obstack_init (&wchar_buf);
2224 make_cleanup_obstack_free (&wchar_buf);
2225
2226 while (1)
2227 {
2228 int num_chars;
2229 gdb_wchar_t *chars;
2230 const gdb_byte *buf;
2231 size_t buflen;
2232 int print_escape = 1;
2233 enum wchar_iterate_result result;
2234
2235 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2236 if (num_chars < 0)
2237 break;
2238 if (num_chars > 0)
2239 {
2240 /* If all characters are printable, print them. Otherwise,
2241 we're going to have to print an escape sequence. We
2242 check all characters because we want to print the target
2243 bytes in the escape sequence, and we don't know character
2244 boundaries there. */
2245 int i;
2246
2247 print_escape = 0;
2248 for (i = 0; i < num_chars; ++i)
2249 if (!wchar_printable (chars[i]))
2250 {
2251 print_escape = 1;
2252 break;
2253 }
2254
2255 if (!print_escape)
2256 {
2257 for (i = 0; i < num_chars; ++i)
2258 print_wchar (chars[i], buf, buflen,
2259 TYPE_LENGTH (type), byte_order,
2260 &wchar_buf, quoter, &need_escape);
2261 }
2262 }
2263
2264 /* This handles the NUM_CHARS == 0 case as well. */
2265 if (print_escape)
2266 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2267 byte_order, &wchar_buf, quoter, &need_escape);
2268 }
2269
2270 /* The output in the host encoding. */
2271 obstack_init (&output);
2272 make_cleanup_obstack_free (&output);
2273
2274 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2275 (gdb_byte *) obstack_base (&wchar_buf),
2276 obstack_object_size (&wchar_buf),
2277 sizeof (gdb_wchar_t), &output, translit_char);
2278 obstack_1grow (&output, '\0');
2279
2280 fputs_filtered (obstack_base (&output), stream);
2281
2282 do_cleanups (cleanups);
2283 }
2284
2285 /* Return the repeat count of the next character/byte in ITER,
2286 storing the result in VEC. */
2287
2288 static int
2289 count_next_character (struct wchar_iterator *iter,
2290 VEC (converted_character_d) **vec)
2291 {
2292 struct converted_character *current;
2293
2294 if (VEC_empty (converted_character_d, *vec))
2295 {
2296 struct converted_character tmp;
2297 gdb_wchar_t *chars;
2298
2299 tmp.num_chars
2300 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2301 if (tmp.num_chars > 0)
2302 {
2303 gdb_assert (tmp.num_chars < MAX_WCHARS);
2304 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2305 }
2306 VEC_safe_push (converted_character_d, *vec, &tmp);
2307 }
2308
2309 current = VEC_last (converted_character_d, *vec);
2310
2311 /* Count repeated characters or bytes. */
2312 current->repeat_count = 1;
2313 if (current->num_chars == -1)
2314 {
2315 /* EOF */
2316 return -1;
2317 }
2318 else
2319 {
2320 gdb_wchar_t *chars;
2321 struct converted_character d;
2322 int repeat;
2323
2324 d.repeat_count = 0;
2325
2326 while (1)
2327 {
2328 /* Get the next character. */
2329 d.num_chars
2330 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2331
2332 /* If a character was successfully converted, save the character
2333 into the converted character. */
2334 if (d.num_chars > 0)
2335 {
2336 gdb_assert (d.num_chars < MAX_WCHARS);
2337 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2338 }
2339
2340 /* Determine if the current character is the same as this
2341 new character. */
2342 if (d.num_chars == current->num_chars && d.result == current->result)
2343 {
2344 /* There are two cases to consider:
2345
2346 1) Equality of converted character (num_chars > 0)
2347 2) Equality of non-converted character (num_chars == 0) */
2348 if ((current->num_chars > 0
2349 && memcmp (current->chars, d.chars,
2350 WCHAR_BUFLEN (current->num_chars)) == 0)
2351 || (current->num_chars == 0
2352 && current->buflen == d.buflen
2353 && memcmp (current->buf, d.buf, current->buflen) == 0))
2354 ++current->repeat_count;
2355 else
2356 break;
2357 }
2358 else
2359 break;
2360 }
2361
2362 /* Push this next converted character onto the result vector. */
2363 repeat = current->repeat_count;
2364 VEC_safe_push (converted_character_d, *vec, &d);
2365 return repeat;
2366 }
2367 }
2368
2369 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2370 character to use with string output. WIDTH is the size of the output
2371 character type. BYTE_ORDER is the the target byte order. OPTIONS
2372 is the user's print options. */
2373
2374 static void
2375 print_converted_chars_to_obstack (struct obstack *obstack,
2376 VEC (converted_character_d) *chars,
2377 int quote_char, int width,
2378 enum bfd_endian byte_order,
2379 const struct value_print_options *options)
2380 {
2381 unsigned int idx;
2382 struct converted_character *elem;
2383 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2384 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2385 int need_escape = 0;
2386
2387 /* Set the start state. */
2388 idx = 0;
2389 last = state = START;
2390 elem = NULL;
2391
2392 while (1)
2393 {
2394 switch (state)
2395 {
2396 case START:
2397 /* Nothing to do. */
2398 break;
2399
2400 case SINGLE:
2401 {
2402 int j;
2403
2404 /* We are outputting a single character
2405 (< options->repeat_count_threshold). */
2406
2407 if (last != SINGLE)
2408 {
2409 /* We were outputting some other type of content, so we
2410 must output and a comma and a quote. */
2411 if (last != START)
2412 obstack_grow_wstr (obstack, LCST (", "));
2413 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2414 }
2415 /* Output the character. */
2416 for (j = 0; j < elem->repeat_count; ++j)
2417 {
2418 if (elem->result == wchar_iterate_ok)
2419 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2420 byte_order, obstack, quote_char, &need_escape);
2421 else
2422 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2423 byte_order, obstack, quote_char, &need_escape);
2424 }
2425 }
2426 break;
2427
2428 case REPEAT:
2429 {
2430 int j;
2431 char *s;
2432
2433 /* We are outputting a character with a repeat count
2434 greater than options->repeat_count_threshold. */
2435
2436 if (last == SINGLE)
2437 {
2438 /* We were outputting a single string. Terminate the
2439 string. */
2440 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2441 }
2442 if (last != START)
2443 obstack_grow_wstr (obstack, LCST (", "));
2444
2445 /* Output the character and repeat string. */
2446 obstack_grow_wstr (obstack, LCST ("'"));
2447 if (elem->result == wchar_iterate_ok)
2448 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2449 byte_order, obstack, quote_char, &need_escape);
2450 else
2451 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2452 byte_order, obstack, quote_char, &need_escape);
2453 obstack_grow_wstr (obstack, LCST ("'"));
2454 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2455 for (j = 0; s[j]; ++j)
2456 {
2457 gdb_wchar_t w = gdb_btowc (s[j]);
2458 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2459 }
2460 xfree (s);
2461 }
2462 break;
2463
2464 case INCOMPLETE:
2465 /* We are outputting an incomplete sequence. */
2466 if (last == SINGLE)
2467 {
2468 /* If we were outputting a string of SINGLE characters,
2469 terminate the quote. */
2470 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2471 }
2472 if (last != START)
2473 obstack_grow_wstr (obstack, LCST (", "));
2474
2475 /* Output the incomplete sequence string. */
2476 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2477 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2478 obstack, 0, &need_escape);
2479 obstack_grow_wstr (obstack, LCST (">"));
2480
2481 /* We do not attempt to outupt anything after this. */
2482 state = FINISH;
2483 break;
2484
2485 case FINISH:
2486 /* All done. If we were outputting a string of SINGLE
2487 characters, the string must be terminated. Otherwise,
2488 REPEAT and INCOMPLETE are always left properly terminated. */
2489 if (last == SINGLE)
2490 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2491
2492 return;
2493 }
2494
2495 /* Get the next element and state. */
2496 last = state;
2497 if (state != FINISH)
2498 {
2499 elem = VEC_index (converted_character_d, chars, idx++);
2500 switch (elem->result)
2501 {
2502 case wchar_iterate_ok:
2503 case wchar_iterate_invalid:
2504 if (elem->repeat_count > options->repeat_count_threshold)
2505 state = REPEAT;
2506 else
2507 state = SINGLE;
2508 break;
2509
2510 case wchar_iterate_incomplete:
2511 state = INCOMPLETE;
2512 break;
2513
2514 case wchar_iterate_eof:
2515 state = FINISH;
2516 break;
2517 }
2518 }
2519 }
2520 }
2521
2522 /* Print the character string STRING, printing at most LENGTH
2523 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2524 the type of each character. OPTIONS holds the printing options;
2525 printing stops early if the number hits print_max; repeat counts
2526 are printed as appropriate. Print ellipses at the end if we had to
2527 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2528 QUOTE_CHAR is the character to print at each end of the string. If
2529 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2530 omitted. */
2531
2532 void
2533 generic_printstr (struct ui_file *stream, struct type *type,
2534 const gdb_byte *string, unsigned int length,
2535 const char *encoding, int force_ellipses,
2536 int quote_char, int c_style_terminator,
2537 const struct value_print_options *options)
2538 {
2539 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2540 unsigned int i;
2541 int width = TYPE_LENGTH (type);
2542 struct obstack wchar_buf, output;
2543 struct cleanup *cleanup;
2544 struct wchar_iterator *iter;
2545 int finished = 0;
2546 struct converted_character *last;
2547 VEC (converted_character_d) *converted_chars;
2548
2549 if (length == -1)
2550 {
2551 unsigned long current_char = 1;
2552
2553 for (i = 0; current_char; ++i)
2554 {
2555 QUIT;
2556 current_char = extract_unsigned_integer (string + i * width,
2557 width, byte_order);
2558 }
2559 length = i;
2560 }
2561
2562 /* If the string was not truncated due to `set print elements', and
2563 the last byte of it is a null, we don't print that, in
2564 traditional C style. */
2565 if (c_style_terminator
2566 && !force_ellipses
2567 && length > 0
2568 && (extract_unsigned_integer (string + (length - 1) * width,
2569 width, byte_order) == 0))
2570 length--;
2571
2572 if (length == 0)
2573 {
2574 fputs_filtered ("\"\"", stream);
2575 return;
2576 }
2577
2578 /* Arrange to iterate over the characters, in wchar_t form. */
2579 iter = make_wchar_iterator (string, length * width, encoding, width);
2580 cleanup = make_cleanup_wchar_iterator (iter);
2581 converted_chars = NULL;
2582 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2583
2584 /* Convert characters until the string is over or the maximum
2585 number of printed characters has been reached. */
2586 i = 0;
2587 while (i < options->print_max)
2588 {
2589 int r;
2590
2591 QUIT;
2592
2593 /* Grab the next character and repeat count. */
2594 r = count_next_character (iter, &converted_chars);
2595
2596 /* If less than zero, the end of the input string was reached. */
2597 if (r < 0)
2598 break;
2599
2600 /* Otherwise, add the count to the total print count and get
2601 the next character. */
2602 i += r;
2603 }
2604
2605 /* Get the last element and determine if the entire string was
2606 processed. */
2607 last = VEC_last (converted_character_d, converted_chars);
2608 finished = (last->result == wchar_iterate_eof);
2609
2610 /* Ensure that CONVERTED_CHARS is terminated. */
2611 last->result = wchar_iterate_eof;
2612
2613 /* WCHAR_BUF is the obstack we use to represent the string in
2614 wchar_t form. */
2615 obstack_init (&wchar_buf);
2616 make_cleanup_obstack_free (&wchar_buf);
2617
2618 /* Print the output string to the obstack. */
2619 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2620 width, byte_order, options);
2621
2622 if (force_ellipses || !finished)
2623 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2624
2625 /* OUTPUT is where we collect `char's for printing. */
2626 obstack_init (&output);
2627 make_cleanup_obstack_free (&output);
2628
2629 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2630 (gdb_byte *) obstack_base (&wchar_buf),
2631 obstack_object_size (&wchar_buf),
2632 sizeof (gdb_wchar_t), &output, translit_char);
2633 obstack_1grow (&output, '\0');
2634
2635 fputs_filtered (obstack_base (&output), stream);
2636
2637 do_cleanups (cleanup);
2638 }
2639
2640 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2641 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2642 stops at the first null byte, otherwise printing proceeds (including null
2643 bytes) until either print_max or LEN characters have been printed,
2644 whichever is smaller. ENCODING is the name of the string's
2645 encoding. It can be NULL, in which case the target encoding is
2646 assumed. */
2647
2648 int
2649 val_print_string (struct type *elttype, const char *encoding,
2650 CORE_ADDR addr, int len,
2651 struct ui_file *stream,
2652 const struct value_print_options *options)
2653 {
2654 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2655 int errcode; /* Errno returned from bad reads. */
2656 int found_nul; /* Non-zero if we found the nul char. */
2657 unsigned int fetchlimit; /* Maximum number of chars to print. */
2658 int bytes_read;
2659 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2660 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2661 struct gdbarch *gdbarch = get_type_arch (elttype);
2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2663 int width = TYPE_LENGTH (elttype);
2664
2665 /* First we need to figure out the limit on the number of characters we are
2666 going to attempt to fetch and print. This is actually pretty simple. If
2667 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2668 LEN is -1, then the limit is print_max. This is true regardless of
2669 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2670 because finding the null byte (or available memory) is what actually
2671 limits the fetch. */
2672
2673 fetchlimit = (len == -1 ? options->print_max : min (len,
2674 options->print_max));
2675
2676 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2677 &buffer, &bytes_read);
2678 old_chain = make_cleanup (xfree, buffer);
2679
2680 addr += bytes_read;
2681
2682 /* We now have either successfully filled the buffer to fetchlimit,
2683 or terminated early due to an error or finding a null char when
2684 LEN is -1. */
2685
2686 /* Determine found_nul by looking at the last character read. */
2687 found_nul = 0;
2688 if (bytes_read >= width)
2689 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2690 byte_order) == 0;
2691 if (len == -1 && !found_nul)
2692 {
2693 gdb_byte *peekbuf;
2694
2695 /* We didn't find a NUL terminator we were looking for. Attempt
2696 to peek at the next character. If not successful, or it is not
2697 a null byte, then force ellipsis to be printed. */
2698
2699 peekbuf = (gdb_byte *) alloca (width);
2700
2701 if (target_read_memory (addr, peekbuf, width) == 0
2702 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2703 force_ellipsis = 1;
2704 }
2705 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2706 {
2707 /* Getting an error when we have a requested length, or fetching less
2708 than the number of characters actually requested, always make us
2709 print ellipsis. */
2710 force_ellipsis = 1;
2711 }
2712
2713 /* If we get an error before fetching anything, don't print a string.
2714 But if we fetch something and then get an error, print the string
2715 and then the error message. */
2716 if (errcode == 0 || bytes_read > 0)
2717 {
2718 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2719 encoding, force_ellipsis, options);
2720 }
2721
2722 if (errcode != 0)
2723 {
2724 char *str;
2725
2726 str = memory_error_message (errcode, gdbarch, addr);
2727 make_cleanup (xfree, str);
2728
2729 fprintf_filtered (stream, "<error: ");
2730 fputs_filtered (str, stream);
2731 fprintf_filtered (stream, ">");
2732 }
2733
2734 gdb_flush (stream);
2735 do_cleanups (old_chain);
2736
2737 return (bytes_read / width);
2738 }
2739 \f
2740
2741 /* The 'set input-radix' command writes to this auxiliary variable.
2742 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2743 it is left unchanged. */
2744
2745 static unsigned input_radix_1 = 10;
2746
2747 /* Validate an input or output radix setting, and make sure the user
2748 knows what they really did here. Radix setting is confusing, e.g.
2749 setting the input radix to "10" never changes it! */
2750
2751 static void
2752 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2753 {
2754 set_input_radix_1 (from_tty, input_radix_1);
2755 }
2756
2757 static void
2758 set_input_radix_1 (int from_tty, unsigned radix)
2759 {
2760 /* We don't currently disallow any input radix except 0 or 1, which don't
2761 make any mathematical sense. In theory, we can deal with any input
2762 radix greater than 1, even if we don't have unique digits for every
2763 value from 0 to radix-1, but in practice we lose on large radix values.
2764 We should either fix the lossage or restrict the radix range more.
2765 (FIXME). */
2766
2767 if (radix < 2)
2768 {
2769 input_radix_1 = input_radix;
2770 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2771 radix);
2772 }
2773 input_radix_1 = input_radix = radix;
2774 if (from_tty)
2775 {
2776 printf_filtered (_("Input radix now set to "
2777 "decimal %u, hex %x, octal %o.\n"),
2778 radix, radix, radix);
2779 }
2780 }
2781
2782 /* The 'set output-radix' command writes to this auxiliary variable.
2783 If the requested radix is valid, OUTPUT_RADIX is updated,
2784 otherwise, it is left unchanged. */
2785
2786 static unsigned output_radix_1 = 10;
2787
2788 static void
2789 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2790 {
2791 set_output_radix_1 (from_tty, output_radix_1);
2792 }
2793
2794 static void
2795 set_output_radix_1 (int from_tty, unsigned radix)
2796 {
2797 /* Validate the radix and disallow ones that we aren't prepared to
2798 handle correctly, leaving the radix unchanged. */
2799 switch (radix)
2800 {
2801 case 16:
2802 user_print_options.output_format = 'x'; /* hex */
2803 break;
2804 case 10:
2805 user_print_options.output_format = 0; /* decimal */
2806 break;
2807 case 8:
2808 user_print_options.output_format = 'o'; /* octal */
2809 break;
2810 default:
2811 output_radix_1 = output_radix;
2812 error (_("Unsupported output radix ``decimal %u''; "
2813 "output radix unchanged."),
2814 radix);
2815 }
2816 output_radix_1 = output_radix = radix;
2817 if (from_tty)
2818 {
2819 printf_filtered (_("Output radix now set to "
2820 "decimal %u, hex %x, octal %o.\n"),
2821 radix, radix, radix);
2822 }
2823 }
2824
2825 /* Set both the input and output radix at once. Try to set the output radix
2826 first, since it has the most restrictive range. An radix that is valid as
2827 an output radix is also valid as an input radix.
2828
2829 It may be useful to have an unusual input radix. If the user wishes to
2830 set an input radix that is not valid as an output radix, he needs to use
2831 the 'set input-radix' command. */
2832
2833 static void
2834 set_radix (char *arg, int from_tty)
2835 {
2836 unsigned radix;
2837
2838 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2839 set_output_radix_1 (0, radix);
2840 set_input_radix_1 (0, radix);
2841 if (from_tty)
2842 {
2843 printf_filtered (_("Input and output radices now set to "
2844 "decimal %u, hex %x, octal %o.\n"),
2845 radix, radix, radix);
2846 }
2847 }
2848
2849 /* Show both the input and output radices. */
2850
2851 static void
2852 show_radix (char *arg, int from_tty)
2853 {
2854 if (from_tty)
2855 {
2856 if (input_radix == output_radix)
2857 {
2858 printf_filtered (_("Input and output radices set to "
2859 "decimal %u, hex %x, octal %o.\n"),
2860 input_radix, input_radix, input_radix);
2861 }
2862 else
2863 {
2864 printf_filtered (_("Input radix set to decimal "
2865 "%u, hex %x, octal %o.\n"),
2866 input_radix, input_radix, input_radix);
2867 printf_filtered (_("Output radix set to decimal "
2868 "%u, hex %x, octal %o.\n"),
2869 output_radix, output_radix, output_radix);
2870 }
2871 }
2872 }
2873 \f
2874
2875 static void
2876 set_print (char *arg, int from_tty)
2877 {
2878 printf_unfiltered (
2879 "\"set print\" must be followed by the name of a print subcommand.\n");
2880 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2881 }
2882
2883 static void
2884 show_print (char *args, int from_tty)
2885 {
2886 cmd_show_list (showprintlist, from_tty, "");
2887 }
2888
2889 static void
2890 set_print_raw (char *arg, int from_tty)
2891 {
2892 printf_unfiltered (
2893 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2894 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2895 }
2896
2897 static void
2898 show_print_raw (char *args, int from_tty)
2899 {
2900 cmd_show_list (showprintrawlist, from_tty, "");
2901 }
2902
2903 \f
2904 void
2905 _initialize_valprint (void)
2906 {
2907 add_prefix_cmd ("print", no_class, set_print,
2908 _("Generic command for setting how things print."),
2909 &setprintlist, "set print ", 0, &setlist);
2910 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2911 /* Prefer set print to set prompt. */
2912 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2913
2914 add_prefix_cmd ("print", no_class, show_print,
2915 _("Generic command for showing print settings."),
2916 &showprintlist, "show print ", 0, &showlist);
2917 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2918 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2919
2920 add_prefix_cmd ("raw", no_class, set_print_raw,
2921 _("\
2922 Generic command for setting what things to print in \"raw\" mode."),
2923 &setprintrawlist, "set print raw ", 0, &setprintlist);
2924 add_prefix_cmd ("raw", no_class, show_print_raw,
2925 _("Generic command for showing \"print raw\" settings."),
2926 &showprintrawlist, "show print raw ", 0, &showprintlist);
2927
2928 add_setshow_uinteger_cmd ("elements", no_class,
2929 &user_print_options.print_max, _("\
2930 Set limit on string chars or array elements to print."), _("\
2931 Show limit on string chars or array elements to print."), _("\
2932 \"set print elements unlimited\" causes there to be no limit."),
2933 NULL,
2934 show_print_max,
2935 &setprintlist, &showprintlist);
2936
2937 add_setshow_boolean_cmd ("null-stop", no_class,
2938 &user_print_options.stop_print_at_null, _("\
2939 Set printing of char arrays to stop at first null char."), _("\
2940 Show printing of char arrays to stop at first null char."), NULL,
2941 NULL,
2942 show_stop_print_at_null,
2943 &setprintlist, &showprintlist);
2944
2945 add_setshow_uinteger_cmd ("repeats", no_class,
2946 &user_print_options.repeat_count_threshold, _("\
2947 Set threshold for repeated print elements."), _("\
2948 Show threshold for repeated print elements."), _("\
2949 \"set print repeats unlimited\" causes all elements to be individually printed."),
2950 NULL,
2951 show_repeat_count_threshold,
2952 &setprintlist, &showprintlist);
2953
2954 add_setshow_boolean_cmd ("pretty", class_support,
2955 &user_print_options.prettyformat_structs, _("\
2956 Set pretty formatting of structures."), _("\
2957 Show pretty formatting of structures."), NULL,
2958 NULL,
2959 show_prettyformat_structs,
2960 &setprintlist, &showprintlist);
2961
2962 add_setshow_boolean_cmd ("union", class_support,
2963 &user_print_options.unionprint, _("\
2964 Set printing of unions interior to structures."), _("\
2965 Show printing of unions interior to structures."), NULL,
2966 NULL,
2967 show_unionprint,
2968 &setprintlist, &showprintlist);
2969
2970 add_setshow_boolean_cmd ("array", class_support,
2971 &user_print_options.prettyformat_arrays, _("\
2972 Set pretty formatting of arrays."), _("\
2973 Show pretty formatting of arrays."), NULL,
2974 NULL,
2975 show_prettyformat_arrays,
2976 &setprintlist, &showprintlist);
2977
2978 add_setshow_boolean_cmd ("address", class_support,
2979 &user_print_options.addressprint, _("\
2980 Set printing of addresses."), _("\
2981 Show printing of addresses."), NULL,
2982 NULL,
2983 show_addressprint,
2984 &setprintlist, &showprintlist);
2985
2986 add_setshow_boolean_cmd ("symbol", class_support,
2987 &user_print_options.symbol_print, _("\
2988 Set printing of symbol names when printing pointers."), _("\
2989 Show printing of symbol names when printing pointers."),
2990 NULL, NULL,
2991 show_symbol_print,
2992 &setprintlist, &showprintlist);
2993
2994 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2995 _("\
2996 Set default input radix for entering numbers."), _("\
2997 Show default input radix for entering numbers."), NULL,
2998 set_input_radix,
2999 show_input_radix,
3000 &setlist, &showlist);
3001
3002 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3003 _("\
3004 Set default output radix for printing of values."), _("\
3005 Show default output radix for printing of values."), NULL,
3006 set_output_radix,
3007 show_output_radix,
3008 &setlist, &showlist);
3009
3010 /* The "set radix" and "show radix" commands are special in that
3011 they are like normal set and show commands but allow two normally
3012 independent variables to be either set or shown with a single
3013 command. So the usual deprecated_add_set_cmd() and [deleted]
3014 add_show_from_set() commands aren't really appropriate. */
3015 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3016 longer true - show can display anything. */
3017 add_cmd ("radix", class_support, set_radix, _("\
3018 Set default input and output number radices.\n\
3019 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3020 Without an argument, sets both radices back to the default value of 10."),
3021 &setlist);
3022 add_cmd ("radix", class_support, show_radix, _("\
3023 Show the default input and output number radices.\n\
3024 Use 'show input-radix' or 'show output-radix' to independently show each."),
3025 &showlist);
3026
3027 add_setshow_boolean_cmd ("array-indexes", class_support,
3028 &user_print_options.print_array_indexes, _("\
3029 Set printing of array indexes."), _("\
3030 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3031 &setprintlist, &showprintlist);
3032 }
This page took 0.18093 seconds and 5 git commands to generate.