Fix generic_val_print_enum for value-based printing
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492 /* generic_value_print helper for TYPE_CODE_PTR. */
493
494 static void
495 generic_value_print_ptr (struct value *val, struct ui_file *stream,
496 const struct value_print_options *options)
497 {
498
499 if (options->format && options->format != 's')
500 value_print_scalar_formatted (val, options, 0, stream);
501 else
502 {
503 struct type *type = check_typedef (value_type (val));
504 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
505 const gdb_byte *valaddr = value_contents_for_printing (val);
506 CORE_ADDR addr = unpack_pointer (type, valaddr);
507
508 print_unpacked_pointer (type, elttype, addr, stream, options);
509 }
510 }
511
512
513 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
514
515 static void
516 generic_val_print_memberptr (struct type *type,
517 int embedded_offset, struct ui_file *stream,
518 struct value *original_value,
519 const struct value_print_options *options)
520 {
521 val_print_scalar_formatted (type, embedded_offset,
522 original_value, options, 0, stream);
523 }
524
525 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
526
527 static void
528 print_ref_address (struct type *type, const gdb_byte *address_buffer,
529 int embedded_offset, struct ui_file *stream)
530 {
531 struct gdbarch *gdbarch = get_type_arch (type);
532
533 if (address_buffer != NULL)
534 {
535 CORE_ADDR address
536 = extract_typed_address (address_buffer + embedded_offset, type);
537
538 fprintf_filtered (stream, "@");
539 fputs_filtered (paddress (gdbarch, address), stream);
540 }
541 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
542 }
543
544 /* If VAL is addressable, return the value contents buffer of a value that
545 represents a pointer to VAL. Otherwise return NULL. */
546
547 static const gdb_byte *
548 get_value_addr_contents (struct value *deref_val)
549 {
550 gdb_assert (deref_val != NULL);
551
552 if (value_lval_const (deref_val) == lval_memory)
553 return value_contents_for_printing_const (value_addr (deref_val));
554 else
555 {
556 /* We have a non-addressable value, such as a DW_AT_const_value. */
557 return NULL;
558 }
559 }
560
561 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
562
563 static void
564 generic_val_print_ref (struct type *type,
565 int embedded_offset, struct ui_file *stream, int recurse,
566 struct value *original_value,
567 const struct value_print_options *options)
568 {
569 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
570 struct value *deref_val = NULL;
571 const int value_is_synthetic
572 = value_bits_synthetic_pointer (original_value,
573 TARGET_CHAR_BIT * embedded_offset,
574 TARGET_CHAR_BIT * TYPE_LENGTH (type));
575 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
576 || options->deref_ref);
577 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
578 const gdb_byte *valaddr = value_contents_for_printing (original_value);
579
580 if (must_coerce_ref && type_is_defined)
581 {
582 deref_val = coerce_ref_if_computed (original_value);
583
584 if (deref_val != NULL)
585 {
586 /* More complicated computed references are not supported. */
587 gdb_assert (embedded_offset == 0);
588 }
589 else
590 deref_val = value_at (TYPE_TARGET_TYPE (type),
591 unpack_pointer (type, valaddr + embedded_offset));
592 }
593 /* Else, original_value isn't a synthetic reference or we don't have to print
594 the reference's contents.
595
596 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
597 cause original_value to be a not_lval instead of an lval_computed,
598 which will make value_bits_synthetic_pointer return false.
599 This happens because if options->objectprint is true, c_value_print will
600 overwrite original_value's contents with the result of coercing
601 the reference through value_addr, and then set its type back to
602 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
603 we can simply treat it as non-synthetic and move on. */
604
605 if (options->addressprint)
606 {
607 const gdb_byte *address = (value_is_synthetic && type_is_defined
608 ? get_value_addr_contents (deref_val)
609 : valaddr);
610
611 print_ref_address (type, address, embedded_offset, stream);
612
613 if (options->deref_ref)
614 fputs_filtered (": ", stream);
615 }
616
617 if (options->deref_ref)
618 {
619 if (type_is_defined)
620 common_val_print (deref_val, stream, recurse, options,
621 current_language);
622 else
623 fputs_filtered ("???", stream);
624 }
625 }
626
627 /* Helper function for generic_val_print_enum.
628 This is also used to print enums in TYPE_CODE_FLAGS values. */
629
630 static void
631 generic_val_print_enum_1 (struct type *type, LONGEST val,
632 struct ui_file *stream)
633 {
634 unsigned int i;
635 unsigned int len;
636
637 len = TYPE_NFIELDS (type);
638 for (i = 0; i < len; i++)
639 {
640 QUIT;
641 if (val == TYPE_FIELD_ENUMVAL (type, i))
642 {
643 break;
644 }
645 }
646 if (i < len)
647 {
648 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
649 stream);
650 }
651 else if (TYPE_FLAG_ENUM (type))
652 {
653 int first = 1;
654
655 /* We have a "flag" enum, so we try to decompose it into pieces as
656 appropriate. The enum may have multiple enumerators representing
657 the same bit, in which case we choose to only print the first one
658 we find. */
659 for (i = 0; i < len; ++i)
660 {
661 QUIT;
662
663 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
664 int nbits = count_one_bits_ll (enumval);
665
666 gdb_assert (nbits == 0 || nbits == 1);
667
668 if ((val & enumval) != 0)
669 {
670 if (first)
671 {
672 fputs_filtered ("(", stream);
673 first = 0;
674 }
675 else
676 fputs_filtered (" | ", stream);
677
678 val &= ~TYPE_FIELD_ENUMVAL (type, i);
679 fputs_styled (TYPE_FIELD_NAME (type, i),
680 variable_name_style.style (), stream);
681 }
682 }
683
684 if (val != 0)
685 {
686 /* There are leftover bits, print them. */
687 if (first)
688 fputs_filtered ("(", stream);
689 else
690 fputs_filtered (" | ", stream);
691
692 fputs_filtered ("unknown: 0x", stream);
693 print_longest (stream, 'x', 0, val);
694 fputs_filtered (")", stream);
695 }
696 else if (first)
697 {
698 /* Nothing has been printed and the value is 0, the enum value must
699 have been 0. */
700 fputs_filtered ("0", stream);
701 }
702 else
703 {
704 /* Something has been printed, close the parenthesis. */
705 fputs_filtered (")", stream);
706 }
707 }
708 else
709 print_longest (stream, 'd', 0, val);
710 }
711
712 /* generic_val_print helper for TYPE_CODE_ENUM. */
713
714 static void
715 generic_val_print_enum (struct type *type,
716 int embedded_offset, struct ui_file *stream,
717 struct value *original_value,
718 const struct value_print_options *options)
719 {
720 LONGEST val;
721 struct gdbarch *gdbarch = get_type_arch (type);
722 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
723
724 gdb_assert (!options->format);
725
726 const gdb_byte *valaddr = value_contents_for_printing (original_value);
727
728 val = unpack_long (type, valaddr + embedded_offset * unit_size);
729
730 generic_val_print_enum_1 (type, val, stream);
731 }
732
733 /* generic_val_print helper for TYPE_CODE_FLAGS. */
734
735 static void
736 generic_val_print_flags (struct type *type,
737 int embedded_offset, struct ui_file *stream,
738 struct value *original_value,
739 const struct value_print_options *options)
740
741 {
742 if (options->format)
743 val_print_scalar_formatted (type, embedded_offset, original_value,
744 options, 0, stream);
745 else
746 {
747 const gdb_byte *valaddr = value_contents_for_printing (original_value);
748
749 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
750 }
751 }
752
753 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
754
755 static void
756 generic_val_print_func (struct type *type,
757 int embedded_offset, CORE_ADDR address,
758 struct ui_file *stream,
759 struct value *original_value,
760 const struct value_print_options *options)
761 {
762 struct gdbarch *gdbarch = get_type_arch (type);
763
764 if (options->format)
765 {
766 val_print_scalar_formatted (type, embedded_offset,
767 original_value, options, 0, stream);
768 }
769 else
770 {
771 /* FIXME, we should consider, at least for ANSI C language,
772 eliminating the distinction made between FUNCs and POINTERs
773 to FUNCs. */
774 fprintf_filtered (stream, "{");
775 type_print (type, "", stream, -1);
776 fprintf_filtered (stream, "} ");
777 /* Try to print what function it points to, and its address. */
778 print_address_demangle (options, gdbarch, address, stream, demangle);
779 }
780 }
781
782 /* generic_val_print helper for TYPE_CODE_BOOL. */
783
784 static void
785 generic_val_print_bool (struct type *type,
786 int embedded_offset, struct ui_file *stream,
787 struct value *original_value,
788 const struct value_print_options *options,
789 const struct generic_val_print_decorations *decorations)
790 {
791 LONGEST val;
792 struct gdbarch *gdbarch = get_type_arch (type);
793 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
794
795 if (options->format || options->output_format)
796 {
797 struct value_print_options opts = *options;
798 opts.format = (options->format ? options->format
799 : options->output_format);
800 val_print_scalar_formatted (type, embedded_offset,
801 original_value, &opts, 0, stream);
802 }
803 else
804 {
805 const gdb_byte *valaddr = value_contents_for_printing (original_value);
806
807 val = unpack_long (type, valaddr + embedded_offset * unit_size);
808 if (val == 0)
809 fputs_filtered (decorations->false_name, stream);
810 else if (val == 1)
811 fputs_filtered (decorations->true_name, stream);
812 else
813 print_longest (stream, 'd', 0, val);
814 }
815 }
816
817 /* generic_val_print helper for TYPE_CODE_INT. */
818
819 static void
820 generic_val_print_int (struct type *type,
821 int embedded_offset, struct ui_file *stream,
822 struct value *original_value,
823 const struct value_print_options *options)
824 {
825 struct value_print_options opts = *options;
826
827 opts.format = (options->format ? options->format
828 : options->output_format);
829 val_print_scalar_formatted (type, embedded_offset,
830 original_value, &opts, 0, stream);
831 }
832
833 /* generic_val_print helper for TYPE_CODE_CHAR. */
834
835 static void
836 generic_val_print_char (struct type *type, struct type *unresolved_type,
837 int embedded_offset,
838 struct ui_file *stream,
839 struct value *original_value,
840 const struct value_print_options *options)
841 {
842 LONGEST val;
843 struct gdbarch *gdbarch = get_type_arch (type);
844 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
845
846 if (options->format || options->output_format)
847 {
848 struct value_print_options opts = *options;
849
850 opts.format = (options->format ? options->format
851 : options->output_format);
852 val_print_scalar_formatted (type, embedded_offset,
853 original_value, &opts, 0, stream);
854 }
855 else
856 {
857 const gdb_byte *valaddr = value_contents_for_printing (original_value);
858
859 val = unpack_long (type, valaddr + embedded_offset * unit_size);
860 if (TYPE_UNSIGNED (type))
861 fprintf_filtered (stream, "%u", (unsigned int) val);
862 else
863 fprintf_filtered (stream, "%d", (int) val);
864 fputs_filtered (" ", stream);
865 LA_PRINT_CHAR (val, unresolved_type, stream);
866 }
867 }
868
869 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
870
871 static void
872 generic_val_print_float (struct type *type,
873 int embedded_offset, struct ui_file *stream,
874 struct value *original_value,
875 const struct value_print_options *options)
876 {
877 struct gdbarch *gdbarch = get_type_arch (type);
878 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
879
880 if (options->format)
881 {
882 val_print_scalar_formatted (type, embedded_offset,
883 original_value, options, 0, stream);
884 }
885 else
886 {
887 const gdb_byte *valaddr = value_contents_for_printing (original_value);
888
889 print_floating (valaddr + embedded_offset * unit_size, type, stream);
890 }
891 }
892
893 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
894
895 static void
896 generic_val_print_complex (struct type *type,
897 int embedded_offset, struct ui_file *stream,
898 struct value *original_value,
899 const struct value_print_options *options,
900 const struct generic_val_print_decorations
901 *decorations)
902 {
903 struct gdbarch *gdbarch = get_type_arch (type);
904 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
905 const gdb_byte *valaddr = value_contents_for_printing (original_value);
906
907 fprintf_filtered (stream, "%s", decorations->complex_prefix);
908 if (options->format)
909 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
910 embedded_offset, original_value, options, 0,
911 stream);
912 else
913 print_floating (valaddr + embedded_offset * unit_size,
914 TYPE_TARGET_TYPE (type), stream);
915 fprintf_filtered (stream, "%s", decorations->complex_infix);
916 if (options->format)
917 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
918 embedded_offset
919 + type_length_units (TYPE_TARGET_TYPE (type)),
920 original_value, options, 0, stream);
921 else
922 print_floating (valaddr + embedded_offset * unit_size
923 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
924 TYPE_TARGET_TYPE (type), stream);
925 fprintf_filtered (stream, "%s", decorations->complex_suffix);
926 }
927
928 /* A generic val_print that is suitable for use by language
929 implementations of the la_val_print method. This function can
930 handle most type codes, though not all, notably exception
931 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
932 the caller.
933
934 Most arguments are as to val_print.
935
936 The additional DECORATIONS argument can be used to customize the
937 output in some small, language-specific ways. */
938
939 void
940 generic_val_print (struct type *type,
941 int embedded_offset, CORE_ADDR address,
942 struct ui_file *stream, int recurse,
943 struct value *original_value,
944 const struct value_print_options *options,
945 const struct generic_val_print_decorations *decorations)
946 {
947 struct type *unresolved_type = type;
948
949 type = check_typedef (type);
950 switch (TYPE_CODE (type))
951 {
952 case TYPE_CODE_ARRAY:
953 generic_val_print_array (type, embedded_offset, address, stream,
954 recurse, original_value, options, decorations);
955 break;
956
957 case TYPE_CODE_MEMBERPTR:
958 generic_val_print_memberptr (type, embedded_offset, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_PTR:
963 generic_val_print_ptr (type, embedded_offset, stream,
964 original_value, options);
965 break;
966
967 case TYPE_CODE_REF:
968 case TYPE_CODE_RVALUE_REF:
969 generic_val_print_ref (type, embedded_offset, stream, recurse,
970 original_value, options);
971 break;
972
973 case TYPE_CODE_ENUM:
974 if (options->format)
975 val_print_scalar_formatted (type, embedded_offset,
976 original_value, options, 0, stream);
977 else
978 generic_val_print_enum (type, embedded_offset, stream,
979 original_value, options);
980 break;
981
982 case TYPE_CODE_FLAGS:
983 generic_val_print_flags (type, embedded_offset, stream,
984 original_value, options);
985 break;
986
987 case TYPE_CODE_FUNC:
988 case TYPE_CODE_METHOD:
989 generic_val_print_func (type, embedded_offset, address, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_BOOL:
994 generic_val_print_bool (type, embedded_offset, stream,
995 original_value, options, decorations);
996 break;
997
998 case TYPE_CODE_RANGE:
999 /* FIXME: create_static_range_type does not set the unsigned bit in a
1000 range type (I think it probably should copy it from the
1001 target type), so we won't print values which are too large to
1002 fit in a signed integer correctly. */
1003 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
1004 print with the target type, though, because the size of our
1005 type and the target type might differ). */
1006
1007 /* FALLTHROUGH */
1008
1009 case TYPE_CODE_INT:
1010 generic_val_print_int (type, embedded_offset, stream,
1011 original_value, options);
1012 break;
1013
1014 case TYPE_CODE_CHAR:
1015 generic_val_print_char (type, unresolved_type, embedded_offset,
1016 stream, original_value, options);
1017 break;
1018
1019 case TYPE_CODE_FLT:
1020 case TYPE_CODE_DECFLOAT:
1021 generic_val_print_float (type, embedded_offset, stream,
1022 original_value, options);
1023 break;
1024
1025 case TYPE_CODE_VOID:
1026 fputs_filtered (decorations->void_name, stream);
1027 break;
1028
1029 case TYPE_CODE_ERROR:
1030 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1031 break;
1032
1033 case TYPE_CODE_UNDEF:
1034 /* This happens (without TYPE_STUB set) on systems which don't use
1035 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1036 and no complete type for struct foo in that file. */
1037 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1038 break;
1039
1040 case TYPE_CODE_COMPLEX:
1041 generic_val_print_complex (type, embedded_offset, stream,
1042 original_value, options, decorations);
1043 break;
1044
1045 case TYPE_CODE_UNION:
1046 case TYPE_CODE_STRUCT:
1047 case TYPE_CODE_METHODPTR:
1048 default:
1049 error (_("Unhandled type code %d in symbol table."),
1050 TYPE_CODE (type));
1051 }
1052 }
1053
1054 /* See valprint.h. */
1055
1056 void
1057 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
1058 const struct value_print_options *options,
1059 const struct generic_val_print_decorations *decorations)
1060 {
1061 struct type *type = value_type (val);
1062 struct type *unresolved_type = type;
1063
1064 type = check_typedef (type);
1065 switch (TYPE_CODE (type))
1066 {
1067 case TYPE_CODE_ARRAY:
1068 generic_val_print_array (type, 0, value_address (val), stream,
1069 recurse, val, options, decorations);
1070 break;
1071
1072 case TYPE_CODE_MEMBERPTR:
1073 value_print_scalar_formatted (val, options, 0, stream);
1074 break;
1075
1076 case TYPE_CODE_PTR:
1077 generic_value_print_ptr (val, stream, options);
1078 break;
1079
1080 case TYPE_CODE_REF:
1081 case TYPE_CODE_RVALUE_REF:
1082 generic_val_print_ref (type, 0, stream, recurse,
1083 val, options);
1084 break;
1085
1086 case TYPE_CODE_ENUM:
1087 if (options->format)
1088 value_print_scalar_formatted (val, options, 0, stream);
1089 else
1090 generic_val_print_enum (type, 0, stream, val, options);
1091 break;
1092
1093 case TYPE_CODE_FLAGS:
1094 generic_val_print_flags (type, 0, stream,
1095 val, options);
1096 break;
1097
1098 case TYPE_CODE_FUNC:
1099 case TYPE_CODE_METHOD:
1100 generic_val_print_func (type, 0, value_address (val), stream,
1101 val, options);
1102 break;
1103
1104 case TYPE_CODE_BOOL:
1105 generic_val_print_bool (type, 0, stream,
1106 val, options, decorations);
1107 break;
1108
1109 case TYPE_CODE_RANGE:
1110 /* FIXME: create_static_range_type does not set the unsigned bit in a
1111 range type (I think it probably should copy it from the
1112 target type), so we won't print values which are too large to
1113 fit in a signed integer correctly. */
1114 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
1115 print with the target type, though, because the size of our
1116 type and the target type might differ). */
1117
1118 /* FALLTHROUGH */
1119
1120 case TYPE_CODE_INT:
1121 generic_val_print_int (type, 0, stream,
1122 val, options);
1123 break;
1124
1125 case TYPE_CODE_CHAR:
1126 generic_val_print_char (type, unresolved_type, 0,
1127 stream, val, options);
1128 break;
1129
1130 case TYPE_CODE_FLT:
1131 case TYPE_CODE_DECFLOAT:
1132 generic_val_print_float (type, 0, stream,
1133 val, options);
1134 break;
1135
1136 case TYPE_CODE_VOID:
1137 fputs_filtered (decorations->void_name, stream);
1138 break;
1139
1140 case TYPE_CODE_ERROR:
1141 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1142 break;
1143
1144 case TYPE_CODE_UNDEF:
1145 /* This happens (without TYPE_STUB set) on systems which don't use
1146 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1147 and no complete type for struct foo in that file. */
1148 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1149 break;
1150
1151 case TYPE_CODE_COMPLEX:
1152 generic_val_print_complex (type, 0, stream,
1153 val, options, decorations);
1154 break;
1155
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_STRUCT:
1158 case TYPE_CODE_METHODPTR:
1159 default:
1160 error (_("Unhandled type code %d in symbol table."),
1161 TYPE_CODE (type));
1162 }
1163 }
1164
1165 /* Helper function for val_print and common_val_print that does the
1166 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1167 the value to be printed. */
1168
1169 static void
1170 do_val_print (struct value *full_value,
1171 struct type *type, LONGEST embedded_offset,
1172 CORE_ADDR address, struct ui_file *stream, int recurse,
1173 struct value *val,
1174 const struct value_print_options *options,
1175 const struct language_defn *language)
1176 {
1177 int ret = 0;
1178 struct value_print_options local_opts = *options;
1179 struct type *real_type = check_typedef (type);
1180
1181 if (local_opts.prettyformat == Val_prettyformat_default)
1182 local_opts.prettyformat = (local_opts.prettyformat_structs
1183 ? Val_prettyformat : Val_no_prettyformat);
1184
1185 QUIT;
1186
1187 /* Ensure that the type is complete and not just a stub. If the type is
1188 only a stub and we can't find and substitute its complete type, then
1189 print appropriate string and return. */
1190
1191 if (TYPE_STUB (real_type))
1192 {
1193 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1194 return;
1195 }
1196
1197 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1198 return;
1199
1200 if (!options->raw)
1201 {
1202 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1203 address, stream, recurse,
1204 val, options, language);
1205 if (ret)
1206 return;
1207 }
1208
1209 /* Handle summary mode. If the value is a scalar, print it;
1210 otherwise, print an ellipsis. */
1211 if (options->summary && !val_print_scalar_type_p (type))
1212 {
1213 fprintf_filtered (stream, "...");
1214 return;
1215 }
1216
1217 /* If this value is too deep then don't print it. */
1218 if (!val_print_scalar_or_string_type_p (type, language)
1219 && val_print_check_max_depth (stream, recurse, options, language))
1220 return;
1221
1222 try
1223 {
1224 if (full_value != nullptr && language->la_value_print_inner != nullptr)
1225 language->la_value_print_inner (full_value, stream, recurse,
1226 &local_opts);
1227 else
1228 language->la_val_print (type, embedded_offset, address,
1229 stream, recurse, val,
1230 &local_opts);
1231 }
1232 catch (const gdb_exception_error &except)
1233 {
1234 fprintf_styled (stream, metadata_style.style (),
1235 _("<error reading variable>"));
1236 }
1237 }
1238
1239 /* Print using the given LANGUAGE the data of type TYPE located at
1240 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1241 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1242 stdio stream STREAM according to OPTIONS. VAL is the whole object
1243 that came from ADDRESS.
1244
1245 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1246 further helper subroutines as subfields of TYPE are printed. In
1247 such cases, VAL is passed down unadjusted, so
1248 that VAL can be queried for metadata about the contents data being
1249 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1250 buffer. For example: "has this field been optimized out", or "I'm
1251 printing an object while inspecting a traceframe; has this
1252 particular piece of data been collected?".
1253
1254 RECURSE indicates the amount of indentation to supply before
1255 continuation lines; this amount is roughly twice the value of
1256 RECURSE. */
1257
1258 void
1259 val_print (struct type *type, LONGEST embedded_offset,
1260 CORE_ADDR address, struct ui_file *stream, int recurse,
1261 struct value *val,
1262 const struct value_print_options *options,
1263 const struct language_defn *language)
1264 {
1265 do_val_print (nullptr, type, embedded_offset, address, stream,
1266 recurse, val, options, language);
1267 }
1268
1269 /* See valprint.h. */
1270
1271 bool
1272 val_print_check_max_depth (struct ui_file *stream, int recurse,
1273 const struct value_print_options *options,
1274 const struct language_defn *language)
1275 {
1276 if (options->max_depth > -1 && recurse >= options->max_depth)
1277 {
1278 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1279 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1280 return true;
1281 }
1282
1283 return false;
1284 }
1285
1286 /* Check whether the value VAL is printable. Return 1 if it is;
1287 return 0 and print an appropriate error message to STREAM according to
1288 OPTIONS if it is not. */
1289
1290 static int
1291 value_check_printable (struct value *val, struct ui_file *stream,
1292 const struct value_print_options *options)
1293 {
1294 if (val == 0)
1295 {
1296 fprintf_styled (stream, metadata_style.style (),
1297 _("<address of value unknown>"));
1298 return 0;
1299 }
1300
1301 if (value_entirely_optimized_out (val))
1302 {
1303 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1304 fprintf_filtered (stream, "...");
1305 else
1306 val_print_optimized_out (val, stream);
1307 return 0;
1308 }
1309
1310 if (value_entirely_unavailable (val))
1311 {
1312 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1313 fprintf_filtered (stream, "...");
1314 else
1315 val_print_unavailable (stream);
1316 return 0;
1317 }
1318
1319 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1320 {
1321 fprintf_styled (stream, metadata_style.style (),
1322 _("<internal function %s>"),
1323 value_internal_function_name (val));
1324 return 0;
1325 }
1326
1327 if (type_not_associated (value_type (val)))
1328 {
1329 val_print_not_associated (stream);
1330 return 0;
1331 }
1332
1333 if (type_not_allocated (value_type (val)))
1334 {
1335 val_print_not_allocated (stream);
1336 return 0;
1337 }
1338
1339 return 1;
1340 }
1341
1342 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1343 to OPTIONS.
1344
1345 This is a preferable interface to val_print, above, because it uses
1346 GDB's value mechanism. */
1347
1348 void
1349 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1350 const struct value_print_options *options,
1351 const struct language_defn *language)
1352 {
1353 if (!value_check_printable (val, stream, options))
1354 return;
1355
1356 if (language->la_language == language_ada)
1357 /* The value might have a dynamic type, which would cause trouble
1358 below when trying to extract the value contents (since the value
1359 size is determined from the type size which is unknown). So
1360 get a fixed representation of our value. */
1361 val = ada_to_fixed_value (val);
1362
1363 if (value_lazy (val))
1364 value_fetch_lazy (val);
1365
1366 do_val_print (val, value_type (val),
1367 value_embedded_offset (val), value_address (val),
1368 stream, recurse,
1369 val, options, language);
1370 }
1371
1372 /* See valprint.h. */
1373
1374 void
1375 common_val_print_checked (struct value *val, struct ui_file *stream,
1376 int recurse,
1377 const struct value_print_options *options,
1378 const struct language_defn *language)
1379 {
1380 if (!value_check_printable (val, stream, options))
1381 return;
1382 common_val_print (val, stream, recurse, options, language);
1383 }
1384
1385 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1386 is printed using the current_language syntax. */
1387
1388 void
1389 value_print (struct value *val, struct ui_file *stream,
1390 const struct value_print_options *options)
1391 {
1392 scoped_value_mark free_values;
1393
1394 if (!value_check_printable (val, stream, options))
1395 return;
1396
1397 if (!options->raw)
1398 {
1399 int r
1400 = apply_ext_lang_val_pretty_printer (value_type (val),
1401 value_embedded_offset (val),
1402 value_address (val),
1403 stream, 0,
1404 val, options, current_language);
1405
1406 if (r)
1407 return;
1408 }
1409
1410 LA_VALUE_PRINT (val, stream, options);
1411 }
1412
1413 static void
1414 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1415 struct ui_file *stream)
1416 {
1417 ULONGEST val = unpack_long (type, valaddr);
1418 int field, nfields = TYPE_NFIELDS (type);
1419 struct gdbarch *gdbarch = get_type_arch (type);
1420 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1421
1422 fputs_filtered ("[", stream);
1423 for (field = 0; field < nfields; field++)
1424 {
1425 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1426 {
1427 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1428
1429 if (field_type == bool_type
1430 /* We require boolean types here to be one bit wide. This is a
1431 problematic place to notify the user of an internal error
1432 though. Instead just fall through and print the field as an
1433 int. */
1434 && TYPE_FIELD_BITSIZE (type, field) == 1)
1435 {
1436 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1437 fprintf_filtered
1438 (stream, " %ps",
1439 styled_string (variable_name_style.style (),
1440 TYPE_FIELD_NAME (type, field)));
1441 }
1442 else
1443 {
1444 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1445 ULONGEST field_val
1446 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1447
1448 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1449 field_val &= ((ULONGEST) 1 << field_len) - 1;
1450 fprintf_filtered (stream, " %ps=",
1451 styled_string (variable_name_style.style (),
1452 TYPE_FIELD_NAME (type, field)));
1453 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1454 generic_val_print_enum_1 (field_type, field_val, stream);
1455 else
1456 print_longest (stream, 'd', 0, field_val);
1457 }
1458 }
1459 }
1460 fputs_filtered (" ]", stream);
1461 }
1462
1463 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1464 according to OPTIONS and SIZE on STREAM. Format i is not supported
1465 at this level.
1466
1467 This is how the elements of an array or structure are printed
1468 with a format. */
1469
1470 void
1471 val_print_scalar_formatted (struct type *type,
1472 LONGEST embedded_offset,
1473 struct value *val,
1474 const struct value_print_options *options,
1475 int size,
1476 struct ui_file *stream)
1477 {
1478 struct gdbarch *arch = get_type_arch (type);
1479 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1480
1481 gdb_assert (val != NULL);
1482
1483 /* If we get here with a string format, try again without it. Go
1484 all the way back to the language printers, which may call us
1485 again. */
1486 if (options->format == 's')
1487 {
1488 struct value_print_options opts = *options;
1489 opts.format = 0;
1490 opts.deref_ref = 0;
1491 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1492 current_language);
1493 return;
1494 }
1495
1496 /* value_contents_for_printing fetches all VAL's contents. They are
1497 needed to check whether VAL is optimized-out or unavailable
1498 below. */
1499 const gdb_byte *valaddr = value_contents_for_printing (val);
1500
1501 /* A scalar object that does not have all bits available can't be
1502 printed, because all bits contribute to its representation. */
1503 if (value_bits_any_optimized_out (val,
1504 TARGET_CHAR_BIT * embedded_offset,
1505 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1506 val_print_optimized_out (val, stream);
1507 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1508 val_print_unavailable (stream);
1509 else
1510 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1511 options, size, stream);
1512 }
1513
1514 /* See valprint.h. */
1515
1516 void
1517 value_print_scalar_formatted (struct value *val,
1518 const struct value_print_options *options,
1519 int size,
1520 struct ui_file *stream)
1521 {
1522 struct type *type = check_typedef (value_type (val));
1523
1524 gdb_assert (val != NULL);
1525
1526 /* If we get here with a string format, try again without it. Go
1527 all the way back to the language printers, which may call us
1528 again. */
1529 if (options->format == 's')
1530 {
1531 struct value_print_options opts = *options;
1532 opts.format = 0;
1533 opts.deref_ref = 0;
1534 common_val_print (val, stream, 0, &opts, current_language);
1535 return;
1536 }
1537
1538 /* value_contents_for_printing fetches all VAL's contents. They are
1539 needed to check whether VAL is optimized-out or unavailable
1540 below. */
1541 const gdb_byte *valaddr = value_contents_for_printing (val);
1542
1543 /* A scalar object that does not have all bits available can't be
1544 printed, because all bits contribute to its representation. */
1545 if (value_bits_any_optimized_out (val, 0,
1546 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1547 val_print_optimized_out (val, stream);
1548 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1549 val_print_unavailable (stream);
1550 else
1551 print_scalar_formatted (valaddr, type, options, size, stream);
1552 }
1553
1554 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1555 The raison d'etre of this function is to consolidate printing of
1556 LONG_LONG's into this one function. The format chars b,h,w,g are
1557 from print_scalar_formatted(). Numbers are printed using C
1558 format.
1559
1560 USE_C_FORMAT means to use C format in all cases. Without it,
1561 'o' and 'x' format do not include the standard C radix prefix
1562 (leading 0 or 0x).
1563
1564 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1565 and was intended to request formatting according to the current
1566 language and would be used for most integers that GDB prints. The
1567 exceptional cases were things like protocols where the format of
1568 the integer is a protocol thing, not a user-visible thing). The
1569 parameter remains to preserve the information of what things might
1570 be printed with language-specific format, should we ever resurrect
1571 that capability. */
1572
1573 void
1574 print_longest (struct ui_file *stream, int format, int use_c_format,
1575 LONGEST val_long)
1576 {
1577 const char *val;
1578
1579 switch (format)
1580 {
1581 case 'd':
1582 val = int_string (val_long, 10, 1, 0, 1); break;
1583 case 'u':
1584 val = int_string (val_long, 10, 0, 0, 1); break;
1585 case 'x':
1586 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1587 case 'b':
1588 val = int_string (val_long, 16, 0, 2, 1); break;
1589 case 'h':
1590 val = int_string (val_long, 16, 0, 4, 1); break;
1591 case 'w':
1592 val = int_string (val_long, 16, 0, 8, 1); break;
1593 case 'g':
1594 val = int_string (val_long, 16, 0, 16, 1); break;
1595 break;
1596 case 'o':
1597 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1598 default:
1599 internal_error (__FILE__, __LINE__,
1600 _("failed internal consistency check"));
1601 }
1602 fputs_filtered (val, stream);
1603 }
1604
1605 /* This used to be a macro, but I don't think it is called often enough
1606 to merit such treatment. */
1607 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1608 arguments to a function, number in a value history, register number, etc.)
1609 where the value must not be larger than can fit in an int. */
1610
1611 int
1612 longest_to_int (LONGEST arg)
1613 {
1614 /* Let the compiler do the work. */
1615 int rtnval = (int) arg;
1616
1617 /* Check for overflows or underflows. */
1618 if (sizeof (LONGEST) > sizeof (int))
1619 {
1620 if (rtnval != arg)
1621 {
1622 error (_("Value out of range."));
1623 }
1624 }
1625 return (rtnval);
1626 }
1627
1628 /* Print a floating point value of floating-point type TYPE,
1629 pointed to in GDB by VALADDR, on STREAM. */
1630
1631 void
1632 print_floating (const gdb_byte *valaddr, struct type *type,
1633 struct ui_file *stream)
1634 {
1635 std::string str = target_float_to_string (valaddr, type);
1636 fputs_filtered (str.c_str (), stream);
1637 }
1638
1639 void
1640 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1641 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1642 {
1643 const gdb_byte *p;
1644 unsigned int i;
1645 int b;
1646 bool seen_a_one = false;
1647
1648 /* Declared "int" so it will be signed.
1649 This ensures that right shift will shift in zeros. */
1650
1651 const int mask = 0x080;
1652
1653 if (byte_order == BFD_ENDIAN_BIG)
1654 {
1655 for (p = valaddr;
1656 p < valaddr + len;
1657 p++)
1658 {
1659 /* Every byte has 8 binary characters; peel off
1660 and print from the MSB end. */
1661
1662 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1663 {
1664 if (*p & (mask >> i))
1665 b = '1';
1666 else
1667 b = '0';
1668
1669 if (zero_pad || seen_a_one || b == '1')
1670 fputc_filtered (b, stream);
1671 if (b == '1')
1672 seen_a_one = true;
1673 }
1674 }
1675 }
1676 else
1677 {
1678 for (p = valaddr + len - 1;
1679 p >= valaddr;
1680 p--)
1681 {
1682 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1683 {
1684 if (*p & (mask >> i))
1685 b = '1';
1686 else
1687 b = '0';
1688
1689 if (zero_pad || seen_a_one || b == '1')
1690 fputc_filtered (b, stream);
1691 if (b == '1')
1692 seen_a_one = true;
1693 }
1694 }
1695 }
1696
1697 /* When not zero-padding, ensure that something is printed when the
1698 input is 0. */
1699 if (!zero_pad && !seen_a_one)
1700 fputc_filtered ('0', stream);
1701 }
1702
1703 /* A helper for print_octal_chars that emits a single octal digit,
1704 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1705
1706 static void
1707 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1708 {
1709 if (*seen_a_one || digit != 0)
1710 fprintf_filtered (stream, "%o", digit);
1711 if (digit != 0)
1712 *seen_a_one = true;
1713 }
1714
1715 /* VALADDR points to an integer of LEN bytes.
1716 Print it in octal on stream or format it in buf. */
1717
1718 void
1719 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1720 unsigned len, enum bfd_endian byte_order)
1721 {
1722 const gdb_byte *p;
1723 unsigned char octa1, octa2, octa3, carry;
1724 int cycle;
1725
1726 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1727 * the extra bits, which cycle every three bytes:
1728 *
1729 * Byte side: 0 1 2 3
1730 * | | | |
1731 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1732 *
1733 * Octal side: 0 1 carry 3 4 carry ...
1734 *
1735 * Cycle number: 0 1 2
1736 *
1737 * But of course we are printing from the high side, so we have to
1738 * figure out where in the cycle we are so that we end up with no
1739 * left over bits at the end.
1740 */
1741 #define BITS_IN_OCTAL 3
1742 #define HIGH_ZERO 0340
1743 #define LOW_ZERO 0034
1744 #define CARRY_ZERO 0003
1745 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1746 "cycle zero constants are wrong");
1747 #define HIGH_ONE 0200
1748 #define MID_ONE 0160
1749 #define LOW_ONE 0016
1750 #define CARRY_ONE 0001
1751 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1752 "cycle one constants are wrong");
1753 #define HIGH_TWO 0300
1754 #define MID_TWO 0070
1755 #define LOW_TWO 0007
1756 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1757 "cycle two constants are wrong");
1758
1759 /* For 32 we start in cycle 2, with two bits and one bit carry;
1760 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1761
1762 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1763 carry = 0;
1764
1765 fputs_filtered ("0", stream);
1766 bool seen_a_one = false;
1767 if (byte_order == BFD_ENDIAN_BIG)
1768 {
1769 for (p = valaddr;
1770 p < valaddr + len;
1771 p++)
1772 {
1773 switch (cycle)
1774 {
1775 case 0:
1776 /* No carry in, carry out two bits. */
1777
1778 octa1 = (HIGH_ZERO & *p) >> 5;
1779 octa2 = (LOW_ZERO & *p) >> 2;
1780 carry = (CARRY_ZERO & *p);
1781 emit_octal_digit (stream, &seen_a_one, octa1);
1782 emit_octal_digit (stream, &seen_a_one, octa2);
1783 break;
1784
1785 case 1:
1786 /* Carry in two bits, carry out one bit. */
1787
1788 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1789 octa2 = (MID_ONE & *p) >> 4;
1790 octa3 = (LOW_ONE & *p) >> 1;
1791 carry = (CARRY_ONE & *p);
1792 emit_octal_digit (stream, &seen_a_one, octa1);
1793 emit_octal_digit (stream, &seen_a_one, octa2);
1794 emit_octal_digit (stream, &seen_a_one, octa3);
1795 break;
1796
1797 case 2:
1798 /* Carry in one bit, no carry out. */
1799
1800 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1801 octa2 = (MID_TWO & *p) >> 3;
1802 octa3 = (LOW_TWO & *p);
1803 carry = 0;
1804 emit_octal_digit (stream, &seen_a_one, octa1);
1805 emit_octal_digit (stream, &seen_a_one, octa2);
1806 emit_octal_digit (stream, &seen_a_one, octa3);
1807 break;
1808
1809 default:
1810 error (_("Internal error in octal conversion;"));
1811 }
1812
1813 cycle++;
1814 cycle = cycle % BITS_IN_OCTAL;
1815 }
1816 }
1817 else
1818 {
1819 for (p = valaddr + len - 1;
1820 p >= valaddr;
1821 p--)
1822 {
1823 switch (cycle)
1824 {
1825 case 0:
1826 /* Carry out, no carry in */
1827
1828 octa1 = (HIGH_ZERO & *p) >> 5;
1829 octa2 = (LOW_ZERO & *p) >> 2;
1830 carry = (CARRY_ZERO & *p);
1831 emit_octal_digit (stream, &seen_a_one, octa1);
1832 emit_octal_digit (stream, &seen_a_one, octa2);
1833 break;
1834
1835 case 1:
1836 /* Carry in, carry out */
1837
1838 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1839 octa2 = (MID_ONE & *p) >> 4;
1840 octa3 = (LOW_ONE & *p) >> 1;
1841 carry = (CARRY_ONE & *p);
1842 emit_octal_digit (stream, &seen_a_one, octa1);
1843 emit_octal_digit (stream, &seen_a_one, octa2);
1844 emit_octal_digit (stream, &seen_a_one, octa3);
1845 break;
1846
1847 case 2:
1848 /* Carry in, no carry out */
1849
1850 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1851 octa2 = (MID_TWO & *p) >> 3;
1852 octa3 = (LOW_TWO & *p);
1853 carry = 0;
1854 emit_octal_digit (stream, &seen_a_one, octa1);
1855 emit_octal_digit (stream, &seen_a_one, octa2);
1856 emit_octal_digit (stream, &seen_a_one, octa3);
1857 break;
1858
1859 default:
1860 error (_("Internal error in octal conversion;"));
1861 }
1862
1863 cycle++;
1864 cycle = cycle % BITS_IN_OCTAL;
1865 }
1866 }
1867
1868 }
1869
1870 /* Possibly negate the integer represented by BYTES. It contains LEN
1871 bytes in the specified byte order. If the integer is negative,
1872 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1873 nothing and return false. */
1874
1875 static bool
1876 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1877 enum bfd_endian byte_order,
1878 gdb::byte_vector *out_vec)
1879 {
1880 gdb_byte sign_byte;
1881 gdb_assert (len > 0);
1882 if (byte_order == BFD_ENDIAN_BIG)
1883 sign_byte = bytes[0];
1884 else
1885 sign_byte = bytes[len - 1];
1886 if ((sign_byte & 0x80) == 0)
1887 return false;
1888
1889 out_vec->resize (len);
1890
1891 /* Compute -x == 1 + ~x. */
1892 if (byte_order == BFD_ENDIAN_LITTLE)
1893 {
1894 unsigned carry = 1;
1895 for (unsigned i = 0; i < len; ++i)
1896 {
1897 unsigned tem = (0xff & ~bytes[i]) + carry;
1898 (*out_vec)[i] = tem & 0xff;
1899 carry = tem / 256;
1900 }
1901 }
1902 else
1903 {
1904 unsigned carry = 1;
1905 for (unsigned i = len; i > 0; --i)
1906 {
1907 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1908 (*out_vec)[i - 1] = tem & 0xff;
1909 carry = tem / 256;
1910 }
1911 }
1912
1913 return true;
1914 }
1915
1916 /* VALADDR points to an integer of LEN bytes.
1917 Print it in decimal on stream or format it in buf. */
1918
1919 void
1920 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1921 unsigned len, bool is_signed,
1922 enum bfd_endian byte_order)
1923 {
1924 #define TEN 10
1925 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1926 #define CARRY_LEFT( x ) ((x) % TEN)
1927 #define SHIFT( x ) ((x) << 4)
1928 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1929 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1930
1931 const gdb_byte *p;
1932 int carry;
1933 int decimal_len;
1934 int i, j, decimal_digits;
1935 int dummy;
1936 int flip;
1937
1938 gdb::byte_vector negated_bytes;
1939 if (is_signed
1940 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1941 {
1942 fputs_filtered ("-", stream);
1943 valaddr = negated_bytes.data ();
1944 }
1945
1946 /* Base-ten number is less than twice as many digits
1947 as the base 16 number, which is 2 digits per byte. */
1948
1949 decimal_len = len * 2 * 2;
1950 std::vector<unsigned char> digits (decimal_len, 0);
1951
1952 /* Ok, we have an unknown number of bytes of data to be printed in
1953 * decimal.
1954 *
1955 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1956 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1957 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1958 *
1959 * The trick is that "digits" holds a base-10 number, but sometimes
1960 * the individual digits are > 10.
1961 *
1962 * Outer loop is per nibble (hex digit) of input, from MSD end to
1963 * LSD end.
1964 */
1965 decimal_digits = 0; /* Number of decimal digits so far */
1966 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1967 flip = 0;
1968 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1969 {
1970 /*
1971 * Multiply current base-ten number by 16 in place.
1972 * Each digit was between 0 and 9, now is between
1973 * 0 and 144.
1974 */
1975 for (j = 0; j < decimal_digits; j++)
1976 {
1977 digits[j] = SHIFT (digits[j]);
1978 }
1979
1980 /* Take the next nibble off the input and add it to what
1981 * we've got in the LSB position. Bottom 'digit' is now
1982 * between 0 and 159.
1983 *
1984 * "flip" is used to run this loop twice for each byte.
1985 */
1986 if (flip == 0)
1987 {
1988 /* Take top nibble. */
1989
1990 digits[0] += HIGH_NIBBLE (*p);
1991 flip = 1;
1992 }
1993 else
1994 {
1995 /* Take low nibble and bump our pointer "p". */
1996
1997 digits[0] += LOW_NIBBLE (*p);
1998 if (byte_order == BFD_ENDIAN_BIG)
1999 p++;
2000 else
2001 p--;
2002 flip = 0;
2003 }
2004
2005 /* Re-decimalize. We have to do this often enough
2006 * that we don't overflow, but once per nibble is
2007 * overkill. Easier this way, though. Note that the
2008 * carry is often larger than 10 (e.g. max initial
2009 * carry out of lowest nibble is 15, could bubble all
2010 * the way up greater than 10). So we have to do
2011 * the carrying beyond the last current digit.
2012 */
2013 carry = 0;
2014 for (j = 0; j < decimal_len - 1; j++)
2015 {
2016 digits[j] += carry;
2017
2018 /* "/" won't handle an unsigned char with
2019 * a value that if signed would be negative.
2020 * So extend to longword int via "dummy".
2021 */
2022 dummy = digits[j];
2023 carry = CARRY_OUT (dummy);
2024 digits[j] = CARRY_LEFT (dummy);
2025
2026 if (j >= decimal_digits && carry == 0)
2027 {
2028 /*
2029 * All higher digits are 0 and we
2030 * no longer have a carry.
2031 *
2032 * Note: "j" is 0-based, "decimal_digits" is
2033 * 1-based.
2034 */
2035 decimal_digits = j + 1;
2036 break;
2037 }
2038 }
2039 }
2040
2041 /* Ok, now "digits" is the decimal representation, with
2042 the "decimal_digits" actual digits. Print! */
2043
2044 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
2045 ;
2046
2047 for (; i >= 0; i--)
2048 {
2049 fprintf_filtered (stream, "%1d", digits[i]);
2050 }
2051 }
2052
2053 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
2054
2055 void
2056 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
2057 unsigned len, enum bfd_endian byte_order,
2058 bool zero_pad)
2059 {
2060 const gdb_byte *p;
2061
2062 fputs_filtered ("0x", stream);
2063 if (byte_order == BFD_ENDIAN_BIG)
2064 {
2065 p = valaddr;
2066
2067 if (!zero_pad)
2068 {
2069 /* Strip leading 0 bytes, but be sure to leave at least a
2070 single byte at the end. */
2071 for (; p < valaddr + len - 1 && !*p; ++p)
2072 ;
2073 }
2074
2075 const gdb_byte *first = p;
2076 for (;
2077 p < valaddr + len;
2078 p++)
2079 {
2080 /* When not zero-padding, use a different format for the
2081 very first byte printed. */
2082 if (!zero_pad && p == first)
2083 fprintf_filtered (stream, "%x", *p);
2084 else
2085 fprintf_filtered (stream, "%02x", *p);
2086 }
2087 }
2088 else
2089 {
2090 p = valaddr + len - 1;
2091
2092 if (!zero_pad)
2093 {
2094 /* Strip leading 0 bytes, but be sure to leave at least a
2095 single byte at the end. */
2096 for (; p >= valaddr + 1 && !*p; --p)
2097 ;
2098 }
2099
2100 const gdb_byte *first = p;
2101 for (;
2102 p >= valaddr;
2103 p--)
2104 {
2105 /* When not zero-padding, use a different format for the
2106 very first byte printed. */
2107 if (!zero_pad && p == first)
2108 fprintf_filtered (stream, "%x", *p);
2109 else
2110 fprintf_filtered (stream, "%02x", *p);
2111 }
2112 }
2113 }
2114
2115 /* VALADDR points to a char integer of LEN bytes.
2116 Print it out in appropriate language form on stream.
2117 Omit any leading zero chars. */
2118
2119 void
2120 print_char_chars (struct ui_file *stream, struct type *type,
2121 const gdb_byte *valaddr,
2122 unsigned len, enum bfd_endian byte_order)
2123 {
2124 const gdb_byte *p;
2125
2126 if (byte_order == BFD_ENDIAN_BIG)
2127 {
2128 p = valaddr;
2129 while (p < valaddr + len - 1 && *p == 0)
2130 ++p;
2131
2132 while (p < valaddr + len)
2133 {
2134 LA_EMIT_CHAR (*p, type, stream, '\'');
2135 ++p;
2136 }
2137 }
2138 else
2139 {
2140 p = valaddr + len - 1;
2141 while (p > valaddr && *p == 0)
2142 --p;
2143
2144 while (p >= valaddr)
2145 {
2146 LA_EMIT_CHAR (*p, type, stream, '\'');
2147 --p;
2148 }
2149 }
2150 }
2151
2152 /* Print function pointer with inferior address ADDRESS onto stdio
2153 stream STREAM. */
2154
2155 void
2156 print_function_pointer_address (const struct value_print_options *options,
2157 struct gdbarch *gdbarch,
2158 CORE_ADDR address,
2159 struct ui_file *stream)
2160 {
2161 CORE_ADDR func_addr
2162 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2163 current_top_target ());
2164
2165 /* If the function pointer is represented by a description, print
2166 the address of the description. */
2167 if (options->addressprint && func_addr != address)
2168 {
2169 fputs_filtered ("@", stream);
2170 fputs_filtered (paddress (gdbarch, address), stream);
2171 fputs_filtered (": ", stream);
2172 }
2173 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2174 }
2175
2176
2177 /* Print on STREAM using the given OPTIONS the index for the element
2178 at INDEX of an array whose index type is INDEX_TYPE. */
2179
2180 void
2181 maybe_print_array_index (struct type *index_type, LONGEST index,
2182 struct ui_file *stream,
2183 const struct value_print_options *options)
2184 {
2185 struct value *index_value;
2186
2187 if (!options->print_array_indexes)
2188 return;
2189
2190 index_value = value_from_longest (index_type, index);
2191
2192 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2193 }
2194
2195 /* Called by various <lang>_val_print routines to print elements of an
2196 array in the form "<elem1>, <elem2>, <elem3>, ...".
2197
2198 (FIXME?) Assumes array element separator is a comma, which is correct
2199 for all languages currently handled.
2200 (FIXME?) Some languages have a notation for repeated array elements,
2201 perhaps we should try to use that notation when appropriate. */
2202
2203 void
2204 val_print_array_elements (struct type *type,
2205 LONGEST embedded_offset,
2206 CORE_ADDR address, struct ui_file *stream,
2207 int recurse,
2208 struct value *val,
2209 const struct value_print_options *options,
2210 unsigned int i)
2211 {
2212 unsigned int things_printed = 0;
2213 unsigned len;
2214 struct type *elttype, *index_type, *base_index_type;
2215 unsigned eltlen;
2216 /* Position of the array element we are examining to see
2217 whether it is repeated. */
2218 unsigned int rep1;
2219 /* Number of repetitions we have detected so far. */
2220 unsigned int reps;
2221 LONGEST low_bound, high_bound;
2222 LONGEST low_pos, high_pos;
2223
2224 elttype = TYPE_TARGET_TYPE (type);
2225 eltlen = type_length_units (check_typedef (elttype));
2226 index_type = TYPE_INDEX_TYPE (type);
2227
2228 if (get_array_bounds (type, &low_bound, &high_bound))
2229 {
2230 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2231 base_index_type = TYPE_TARGET_TYPE (index_type);
2232 else
2233 base_index_type = index_type;
2234
2235 /* Non-contiguous enumerations types can by used as index types
2236 in some languages (e.g. Ada). In this case, the array length
2237 shall be computed from the positions of the first and last
2238 literal in the enumeration type, and not from the values
2239 of these literals. */
2240 if (!discrete_position (base_index_type, low_bound, &low_pos)
2241 || !discrete_position (base_index_type, high_bound, &high_pos))
2242 {
2243 warning (_("unable to get positions in array, use bounds instead"));
2244 low_pos = low_bound;
2245 high_pos = high_bound;
2246 }
2247
2248 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2249 But we have to be a little extra careful, because some languages
2250 such as Ada allow LOW_POS to be greater than HIGH_POS for
2251 empty arrays. In that situation, the array length is just zero,
2252 not negative! */
2253 if (low_pos > high_pos)
2254 len = 0;
2255 else
2256 len = high_pos - low_pos + 1;
2257 }
2258 else
2259 {
2260 warning (_("unable to get bounds of array, assuming null array"));
2261 low_bound = 0;
2262 len = 0;
2263 }
2264
2265 annotate_array_section_begin (i, elttype);
2266
2267 for (; i < len && things_printed < options->print_max; i++)
2268 {
2269 if (i != 0)
2270 {
2271 if (options->prettyformat_arrays)
2272 {
2273 fprintf_filtered (stream, ",\n");
2274 print_spaces_filtered (2 + 2 * recurse, stream);
2275 }
2276 else
2277 {
2278 fprintf_filtered (stream, ", ");
2279 }
2280 }
2281 wrap_here (n_spaces (2 + 2 * recurse));
2282 maybe_print_array_index (index_type, i + low_bound,
2283 stream, options);
2284
2285 rep1 = i + 1;
2286 reps = 1;
2287 /* Only check for reps if repeat_count_threshold is not set to
2288 UINT_MAX (unlimited). */
2289 if (options->repeat_count_threshold < UINT_MAX)
2290 {
2291 while (rep1 < len
2292 && value_contents_eq (val,
2293 embedded_offset + i * eltlen,
2294 val,
2295 (embedded_offset
2296 + rep1 * eltlen),
2297 eltlen))
2298 {
2299 ++reps;
2300 ++rep1;
2301 }
2302 }
2303
2304 if (reps > options->repeat_count_threshold)
2305 {
2306 val_print (elttype, embedded_offset + i * eltlen,
2307 address, stream, recurse + 1, val, options,
2308 current_language);
2309 annotate_elt_rep (reps);
2310 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2311 metadata_style.style ().ptr (), reps, nullptr);
2312 annotate_elt_rep_end ();
2313
2314 i = rep1 - 1;
2315 things_printed += options->repeat_count_threshold;
2316 }
2317 else
2318 {
2319 val_print (elttype, embedded_offset + i * eltlen,
2320 address,
2321 stream, recurse + 1, val, options, current_language);
2322 annotate_elt ();
2323 things_printed++;
2324 }
2325 }
2326 annotate_array_section_end ();
2327 if (i < len)
2328 {
2329 fprintf_filtered (stream, "...");
2330 }
2331 }
2332
2333 /* See valprint.h. */
2334
2335 void
2336 value_print_array_elements (struct value *val, struct ui_file *stream,
2337 int recurse,
2338 const struct value_print_options *options,
2339 unsigned int i)
2340 {
2341 unsigned int things_printed = 0;
2342 unsigned len;
2343 struct type *elttype, *index_type, *base_index_type;
2344 unsigned eltlen;
2345 /* Position of the array element we are examining to see
2346 whether it is repeated. */
2347 unsigned int rep1;
2348 /* Number of repetitions we have detected so far. */
2349 unsigned int reps;
2350 LONGEST low_bound, high_bound;
2351 LONGEST low_pos, high_pos;
2352
2353 struct type *type = check_typedef (value_type (val));
2354
2355 elttype = TYPE_TARGET_TYPE (type);
2356 eltlen = type_length_units (check_typedef (elttype));
2357 index_type = TYPE_INDEX_TYPE (type);
2358
2359 if (get_array_bounds (type, &low_bound, &high_bound))
2360 {
2361 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2362 base_index_type = TYPE_TARGET_TYPE (index_type);
2363 else
2364 base_index_type = index_type;
2365
2366 /* Non-contiguous enumerations types can by used as index types
2367 in some languages (e.g. Ada). In this case, the array length
2368 shall be computed from the positions of the first and last
2369 literal in the enumeration type, and not from the values
2370 of these literals. */
2371 if (!discrete_position (base_index_type, low_bound, &low_pos)
2372 || !discrete_position (base_index_type, high_bound, &high_pos))
2373 {
2374 warning (_("unable to get positions in array, use bounds instead"));
2375 low_pos = low_bound;
2376 high_pos = high_bound;
2377 }
2378
2379 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2380 But we have to be a little extra careful, because some languages
2381 such as Ada allow LOW_POS to be greater than HIGH_POS for
2382 empty arrays. In that situation, the array length is just zero,
2383 not negative! */
2384 if (low_pos > high_pos)
2385 len = 0;
2386 else
2387 len = high_pos - low_pos + 1;
2388 }
2389 else
2390 {
2391 warning (_("unable to get bounds of array, assuming null array"));
2392 low_bound = 0;
2393 len = 0;
2394 }
2395
2396 annotate_array_section_begin (i, elttype);
2397
2398 for (; i < len && things_printed < options->print_max; i++)
2399 {
2400 scoped_value_mark free_values;
2401
2402 if (i != 0)
2403 {
2404 if (options->prettyformat_arrays)
2405 {
2406 fprintf_filtered (stream, ",\n");
2407 print_spaces_filtered (2 + 2 * recurse, stream);
2408 }
2409 else
2410 fprintf_filtered (stream, ", ");
2411 }
2412 wrap_here (n_spaces (2 + 2 * recurse));
2413 maybe_print_array_index (index_type, i + low_bound,
2414 stream, options);
2415
2416 rep1 = i + 1;
2417 reps = 1;
2418 /* Only check for reps if repeat_count_threshold is not set to
2419 UINT_MAX (unlimited). */
2420 if (options->repeat_count_threshold < UINT_MAX)
2421 {
2422 while (rep1 < len
2423 && value_contents_eq (val, i * eltlen,
2424 val, rep1 * eltlen,
2425 eltlen))
2426 {
2427 ++reps;
2428 ++rep1;
2429 }
2430 }
2431
2432 struct value *element = value_from_component (val, elttype, eltlen * i);
2433 common_val_print (element, stream, recurse + 1, options,
2434 current_language);
2435
2436 if (reps > options->repeat_count_threshold)
2437 {
2438 annotate_elt_rep (reps);
2439 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2440 metadata_style.style ().ptr (), reps, nullptr);
2441 annotate_elt_rep_end ();
2442
2443 i = rep1 - 1;
2444 things_printed += options->repeat_count_threshold;
2445 }
2446 else
2447 {
2448 annotate_elt ();
2449 things_printed++;
2450 }
2451 }
2452 annotate_array_section_end ();
2453 if (i < len)
2454 fprintf_filtered (stream, "...");
2455 }
2456
2457 /* Read LEN bytes of target memory at address MEMADDR, placing the
2458 results in GDB's memory at MYADDR. Returns a count of the bytes
2459 actually read, and optionally a target_xfer_status value in the
2460 location pointed to by ERRPTR if ERRPTR is non-null. */
2461
2462 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2463 function be eliminated. */
2464
2465 static int
2466 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2467 int len, int *errptr)
2468 {
2469 int nread; /* Number of bytes actually read. */
2470 int errcode; /* Error from last read. */
2471
2472 /* First try a complete read. */
2473 errcode = target_read_memory (memaddr, myaddr, len);
2474 if (errcode == 0)
2475 {
2476 /* Got it all. */
2477 nread = len;
2478 }
2479 else
2480 {
2481 /* Loop, reading one byte at a time until we get as much as we can. */
2482 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2483 {
2484 errcode = target_read_memory (memaddr++, myaddr++, 1);
2485 }
2486 /* If an error, the last read was unsuccessful, so adjust count. */
2487 if (errcode != 0)
2488 {
2489 nread--;
2490 }
2491 }
2492 if (errptr != NULL)
2493 {
2494 *errptr = errcode;
2495 }
2496 return (nread);
2497 }
2498
2499 /* Read a string from the inferior, at ADDR, with LEN characters of
2500 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2501 will be set to a newly allocated buffer containing the string, and
2502 BYTES_READ will be set to the number of bytes read. Returns 0 on
2503 success, or a target_xfer_status on failure.
2504
2505 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2506 (including eventual NULs in the middle or end of the string).
2507
2508 If LEN is -1, stops at the first null character (not necessarily
2509 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2510 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2511 the string.
2512
2513 Unless an exception is thrown, BUFFER will always be allocated, even on
2514 failure. In this case, some characters might have been read before the
2515 failure happened. Check BYTES_READ to recognize this situation.
2516
2517 Note: There was a FIXME asking to make this code use target_read_string,
2518 but this function is more general (can read past null characters, up to
2519 given LEN). Besides, it is used much more often than target_read_string
2520 so it is more tested. Perhaps callers of target_read_string should use
2521 this function instead? */
2522
2523 int
2524 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2525 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2526 int *bytes_read)
2527 {
2528 int errcode; /* Errno returned from bad reads. */
2529 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2530 gdb_byte *bufptr; /* Pointer to next available byte in
2531 buffer. */
2532
2533 /* Loop until we either have all the characters, or we encounter
2534 some error, such as bumping into the end of the address space. */
2535
2536 buffer->reset (nullptr);
2537
2538 if (len > 0)
2539 {
2540 /* We want fetchlimit chars, so we might as well read them all in
2541 one operation. */
2542 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2543
2544 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2545 bufptr = buffer->get ();
2546
2547 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2548 / width;
2549 addr += nfetch * width;
2550 bufptr += nfetch * width;
2551 }
2552 else if (len == -1)
2553 {
2554 unsigned long bufsize = 0;
2555 unsigned int chunksize; /* Size of each fetch, in chars. */
2556 int found_nul; /* Non-zero if we found the nul char. */
2557 gdb_byte *limit; /* First location past end of fetch buffer. */
2558
2559 found_nul = 0;
2560 /* We are looking for a NUL terminator to end the fetching, so we
2561 might as well read in blocks that are large enough to be efficient,
2562 but not so large as to be slow if fetchlimit happens to be large.
2563 So we choose the minimum of 8 and fetchlimit. We used to use 200
2564 instead of 8 but 200 is way too big for remote debugging over a
2565 serial line. */
2566 chunksize = std::min (8u, fetchlimit);
2567
2568 do
2569 {
2570 QUIT;
2571 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2572
2573 if (*buffer == NULL)
2574 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2575 else
2576 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2577 (nfetch + bufsize) * width));
2578
2579 bufptr = buffer->get () + bufsize * width;
2580 bufsize += nfetch;
2581
2582 /* Read as much as we can. */
2583 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2584 / width;
2585
2586 /* Scan this chunk for the null character that terminates the string
2587 to print. If found, we don't need to fetch any more. Note
2588 that bufptr is explicitly left pointing at the next character
2589 after the null character, or at the next character after the end
2590 of the buffer. */
2591
2592 limit = bufptr + nfetch * width;
2593 while (bufptr < limit)
2594 {
2595 unsigned long c;
2596
2597 c = extract_unsigned_integer (bufptr, width, byte_order);
2598 addr += width;
2599 bufptr += width;
2600 if (c == 0)
2601 {
2602 /* We don't care about any error which happened after
2603 the NUL terminator. */
2604 errcode = 0;
2605 found_nul = 1;
2606 break;
2607 }
2608 }
2609 }
2610 while (errcode == 0 /* no error */
2611 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2612 && !found_nul); /* haven't found NUL yet */
2613 }
2614 else
2615 { /* Length of string is really 0! */
2616 /* We always allocate *buffer. */
2617 buffer->reset ((gdb_byte *) xmalloc (1));
2618 bufptr = buffer->get ();
2619 errcode = 0;
2620 }
2621
2622 /* bufptr and addr now point immediately beyond the last byte which we
2623 consider part of the string (including a '\0' which ends the string). */
2624 *bytes_read = bufptr - buffer->get ();
2625
2626 QUIT;
2627
2628 return errcode;
2629 }
2630
2631 /* Return true if print_wchar can display W without resorting to a
2632 numeric escape, false otherwise. */
2633
2634 static int
2635 wchar_printable (gdb_wchar_t w)
2636 {
2637 return (gdb_iswprint (w)
2638 || w == LCST ('\a') || w == LCST ('\b')
2639 || w == LCST ('\f') || w == LCST ('\n')
2640 || w == LCST ('\r') || w == LCST ('\t')
2641 || w == LCST ('\v'));
2642 }
2643
2644 /* A helper function that converts the contents of STRING to wide
2645 characters and then appends them to OUTPUT. */
2646
2647 static void
2648 append_string_as_wide (const char *string,
2649 struct obstack *output)
2650 {
2651 for (; *string; ++string)
2652 {
2653 gdb_wchar_t w = gdb_btowc (*string);
2654 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2655 }
2656 }
2657
2658 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2659 original (target) bytes representing the character, ORIG_LEN is the
2660 number of valid bytes. WIDTH is the number of bytes in a base
2661 characters of the type. OUTPUT is an obstack to which wide
2662 characters are emitted. QUOTER is a (narrow) character indicating
2663 the style of quotes surrounding the character to be printed.
2664 NEED_ESCAPE is an in/out flag which is used to track numeric
2665 escapes across calls. */
2666
2667 static void
2668 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2669 int orig_len, int width,
2670 enum bfd_endian byte_order,
2671 struct obstack *output,
2672 int quoter, int *need_escapep)
2673 {
2674 int need_escape = *need_escapep;
2675
2676 *need_escapep = 0;
2677
2678 /* iswprint implementation on Windows returns 1 for tab character.
2679 In order to avoid different printout on this host, we explicitly
2680 use wchar_printable function. */
2681 switch (w)
2682 {
2683 case LCST ('\a'):
2684 obstack_grow_wstr (output, LCST ("\\a"));
2685 break;
2686 case LCST ('\b'):
2687 obstack_grow_wstr (output, LCST ("\\b"));
2688 break;
2689 case LCST ('\f'):
2690 obstack_grow_wstr (output, LCST ("\\f"));
2691 break;
2692 case LCST ('\n'):
2693 obstack_grow_wstr (output, LCST ("\\n"));
2694 break;
2695 case LCST ('\r'):
2696 obstack_grow_wstr (output, LCST ("\\r"));
2697 break;
2698 case LCST ('\t'):
2699 obstack_grow_wstr (output, LCST ("\\t"));
2700 break;
2701 case LCST ('\v'):
2702 obstack_grow_wstr (output, LCST ("\\v"));
2703 break;
2704 default:
2705 {
2706 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2707 && w != LCST ('8')
2708 && w != LCST ('9'))))
2709 {
2710 gdb_wchar_t wchar = w;
2711
2712 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2713 obstack_grow_wstr (output, LCST ("\\"));
2714 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2715 }
2716 else
2717 {
2718 int i;
2719
2720 for (i = 0; i + width <= orig_len; i += width)
2721 {
2722 char octal[30];
2723 ULONGEST value;
2724
2725 value = extract_unsigned_integer (&orig[i], width,
2726 byte_order);
2727 /* If the value fits in 3 octal digits, print it that
2728 way. Otherwise, print it as a hex escape. */
2729 if (value <= 0777)
2730 xsnprintf (octal, sizeof (octal), "\\%.3o",
2731 (int) (value & 0777));
2732 else
2733 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2734 append_string_as_wide (octal, output);
2735 }
2736 /* If we somehow have extra bytes, print them now. */
2737 while (i < orig_len)
2738 {
2739 char octal[5];
2740
2741 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2742 append_string_as_wide (octal, output);
2743 ++i;
2744 }
2745
2746 *need_escapep = 1;
2747 }
2748 break;
2749 }
2750 }
2751 }
2752
2753 /* Print the character C on STREAM as part of the contents of a
2754 literal string whose delimiter is QUOTER. ENCODING names the
2755 encoding of C. */
2756
2757 void
2758 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2759 int quoter, const char *encoding)
2760 {
2761 enum bfd_endian byte_order
2762 = type_byte_order (type);
2763 gdb_byte *c_buf;
2764 int need_escape = 0;
2765
2766 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2767 pack_long (c_buf, type, c);
2768
2769 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2770
2771 /* This holds the printable form of the wchar_t data. */
2772 auto_obstack wchar_buf;
2773
2774 while (1)
2775 {
2776 int num_chars;
2777 gdb_wchar_t *chars;
2778 const gdb_byte *buf;
2779 size_t buflen;
2780 int print_escape = 1;
2781 enum wchar_iterate_result result;
2782
2783 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2784 if (num_chars < 0)
2785 break;
2786 if (num_chars > 0)
2787 {
2788 /* If all characters are printable, print them. Otherwise,
2789 we're going to have to print an escape sequence. We
2790 check all characters because we want to print the target
2791 bytes in the escape sequence, and we don't know character
2792 boundaries there. */
2793 int i;
2794
2795 print_escape = 0;
2796 for (i = 0; i < num_chars; ++i)
2797 if (!wchar_printable (chars[i]))
2798 {
2799 print_escape = 1;
2800 break;
2801 }
2802
2803 if (!print_escape)
2804 {
2805 for (i = 0; i < num_chars; ++i)
2806 print_wchar (chars[i], buf, buflen,
2807 TYPE_LENGTH (type), byte_order,
2808 &wchar_buf, quoter, &need_escape);
2809 }
2810 }
2811
2812 /* This handles the NUM_CHARS == 0 case as well. */
2813 if (print_escape)
2814 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2815 byte_order, &wchar_buf, quoter, &need_escape);
2816 }
2817
2818 /* The output in the host encoding. */
2819 auto_obstack output;
2820
2821 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2822 (gdb_byte *) obstack_base (&wchar_buf),
2823 obstack_object_size (&wchar_buf),
2824 sizeof (gdb_wchar_t), &output, translit_char);
2825 obstack_1grow (&output, '\0');
2826
2827 fputs_filtered ((const char *) obstack_base (&output), stream);
2828 }
2829
2830 /* Return the repeat count of the next character/byte in ITER,
2831 storing the result in VEC. */
2832
2833 static int
2834 count_next_character (wchar_iterator *iter,
2835 std::vector<converted_character> *vec)
2836 {
2837 struct converted_character *current;
2838
2839 if (vec->empty ())
2840 {
2841 struct converted_character tmp;
2842 gdb_wchar_t *chars;
2843
2844 tmp.num_chars
2845 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2846 if (tmp.num_chars > 0)
2847 {
2848 gdb_assert (tmp.num_chars < MAX_WCHARS);
2849 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2850 }
2851 vec->push_back (tmp);
2852 }
2853
2854 current = &vec->back ();
2855
2856 /* Count repeated characters or bytes. */
2857 current->repeat_count = 1;
2858 if (current->num_chars == -1)
2859 {
2860 /* EOF */
2861 return -1;
2862 }
2863 else
2864 {
2865 gdb_wchar_t *chars;
2866 struct converted_character d;
2867 int repeat;
2868
2869 d.repeat_count = 0;
2870
2871 while (1)
2872 {
2873 /* Get the next character. */
2874 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2875
2876 /* If a character was successfully converted, save the character
2877 into the converted character. */
2878 if (d.num_chars > 0)
2879 {
2880 gdb_assert (d.num_chars < MAX_WCHARS);
2881 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2882 }
2883
2884 /* Determine if the current character is the same as this
2885 new character. */
2886 if (d.num_chars == current->num_chars && d.result == current->result)
2887 {
2888 /* There are two cases to consider:
2889
2890 1) Equality of converted character (num_chars > 0)
2891 2) Equality of non-converted character (num_chars == 0) */
2892 if ((current->num_chars > 0
2893 && memcmp (current->chars, d.chars,
2894 WCHAR_BUFLEN (current->num_chars)) == 0)
2895 || (current->num_chars == 0
2896 && current->buflen == d.buflen
2897 && memcmp (current->buf, d.buf, current->buflen) == 0))
2898 ++current->repeat_count;
2899 else
2900 break;
2901 }
2902 else
2903 break;
2904 }
2905
2906 /* Push this next converted character onto the result vector. */
2907 repeat = current->repeat_count;
2908 vec->push_back (d);
2909 return repeat;
2910 }
2911 }
2912
2913 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2914 character to use with string output. WIDTH is the size of the output
2915 character type. BYTE_ORDER is the target byte order. OPTIONS
2916 is the user's print options. */
2917
2918 static void
2919 print_converted_chars_to_obstack (struct obstack *obstack,
2920 const std::vector<converted_character> &chars,
2921 int quote_char, int width,
2922 enum bfd_endian byte_order,
2923 const struct value_print_options *options)
2924 {
2925 unsigned int idx;
2926 const converted_character *elem;
2927 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2928 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2929 int need_escape = 0;
2930
2931 /* Set the start state. */
2932 idx = 0;
2933 last = state = START;
2934 elem = NULL;
2935
2936 while (1)
2937 {
2938 switch (state)
2939 {
2940 case START:
2941 /* Nothing to do. */
2942 break;
2943
2944 case SINGLE:
2945 {
2946 int j;
2947
2948 /* We are outputting a single character
2949 (< options->repeat_count_threshold). */
2950
2951 if (last != SINGLE)
2952 {
2953 /* We were outputting some other type of content, so we
2954 must output and a comma and a quote. */
2955 if (last != START)
2956 obstack_grow_wstr (obstack, LCST (", "));
2957 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2958 }
2959 /* Output the character. */
2960 for (j = 0; j < elem->repeat_count; ++j)
2961 {
2962 if (elem->result == wchar_iterate_ok)
2963 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2964 byte_order, obstack, quote_char, &need_escape);
2965 else
2966 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2967 byte_order, obstack, quote_char, &need_escape);
2968 }
2969 }
2970 break;
2971
2972 case REPEAT:
2973 {
2974 int j;
2975
2976 /* We are outputting a character with a repeat count
2977 greater than options->repeat_count_threshold. */
2978
2979 if (last == SINGLE)
2980 {
2981 /* We were outputting a single string. Terminate the
2982 string. */
2983 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2984 }
2985 if (last != START)
2986 obstack_grow_wstr (obstack, LCST (", "));
2987
2988 /* Output the character and repeat string. */
2989 obstack_grow_wstr (obstack, LCST ("'"));
2990 if (elem->result == wchar_iterate_ok)
2991 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2992 byte_order, obstack, quote_char, &need_escape);
2993 else
2994 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2995 byte_order, obstack, quote_char, &need_escape);
2996 obstack_grow_wstr (obstack, LCST ("'"));
2997 std::string s = string_printf (_(" <repeats %u times>"),
2998 elem->repeat_count);
2999 for (j = 0; s[j]; ++j)
3000 {
3001 gdb_wchar_t w = gdb_btowc (s[j]);
3002 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
3003 }
3004 }
3005 break;
3006
3007 case INCOMPLETE:
3008 /* We are outputting an incomplete sequence. */
3009 if (last == SINGLE)
3010 {
3011 /* If we were outputting a string of SINGLE characters,
3012 terminate the quote. */
3013 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3014 }
3015 if (last != START)
3016 obstack_grow_wstr (obstack, LCST (", "));
3017
3018 /* Output the incomplete sequence string. */
3019 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
3020 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
3021 obstack, 0, &need_escape);
3022 obstack_grow_wstr (obstack, LCST (">"));
3023
3024 /* We do not attempt to output anything after this. */
3025 state = FINISH;
3026 break;
3027
3028 case FINISH:
3029 /* All done. If we were outputting a string of SINGLE
3030 characters, the string must be terminated. Otherwise,
3031 REPEAT and INCOMPLETE are always left properly terminated. */
3032 if (last == SINGLE)
3033 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3034
3035 return;
3036 }
3037
3038 /* Get the next element and state. */
3039 last = state;
3040 if (state != FINISH)
3041 {
3042 elem = &chars[idx++];
3043 switch (elem->result)
3044 {
3045 case wchar_iterate_ok:
3046 case wchar_iterate_invalid:
3047 if (elem->repeat_count > options->repeat_count_threshold)
3048 state = REPEAT;
3049 else
3050 state = SINGLE;
3051 break;
3052
3053 case wchar_iterate_incomplete:
3054 state = INCOMPLETE;
3055 break;
3056
3057 case wchar_iterate_eof:
3058 state = FINISH;
3059 break;
3060 }
3061 }
3062 }
3063 }
3064
3065 /* Print the character string STRING, printing at most LENGTH
3066 characters. LENGTH is -1 if the string is nul terminated. TYPE is
3067 the type of each character. OPTIONS holds the printing options;
3068 printing stops early if the number hits print_max; repeat counts
3069 are printed as appropriate. Print ellipses at the end if we had to
3070 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
3071 QUOTE_CHAR is the character to print at each end of the string. If
3072 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
3073 omitted. */
3074
3075 void
3076 generic_printstr (struct ui_file *stream, struct type *type,
3077 const gdb_byte *string, unsigned int length,
3078 const char *encoding, int force_ellipses,
3079 int quote_char, int c_style_terminator,
3080 const struct value_print_options *options)
3081 {
3082 enum bfd_endian byte_order = type_byte_order (type);
3083 unsigned int i;
3084 int width = TYPE_LENGTH (type);
3085 int finished = 0;
3086 struct converted_character *last;
3087
3088 if (length == -1)
3089 {
3090 unsigned long current_char = 1;
3091
3092 for (i = 0; current_char; ++i)
3093 {
3094 QUIT;
3095 current_char = extract_unsigned_integer (string + i * width,
3096 width, byte_order);
3097 }
3098 length = i;
3099 }
3100
3101 /* If the string was not truncated due to `set print elements', and
3102 the last byte of it is a null, we don't print that, in
3103 traditional C style. */
3104 if (c_style_terminator
3105 && !force_ellipses
3106 && length > 0
3107 && (extract_unsigned_integer (string + (length - 1) * width,
3108 width, byte_order) == 0))
3109 length--;
3110
3111 if (length == 0)
3112 {
3113 fputs_filtered ("\"\"", stream);
3114 return;
3115 }
3116
3117 /* Arrange to iterate over the characters, in wchar_t form. */
3118 wchar_iterator iter (string, length * width, encoding, width);
3119 std::vector<converted_character> converted_chars;
3120
3121 /* Convert characters until the string is over or the maximum
3122 number of printed characters has been reached. */
3123 i = 0;
3124 while (i < options->print_max)
3125 {
3126 int r;
3127
3128 QUIT;
3129
3130 /* Grab the next character and repeat count. */
3131 r = count_next_character (&iter, &converted_chars);
3132
3133 /* If less than zero, the end of the input string was reached. */
3134 if (r < 0)
3135 break;
3136
3137 /* Otherwise, add the count to the total print count and get
3138 the next character. */
3139 i += r;
3140 }
3141
3142 /* Get the last element and determine if the entire string was
3143 processed. */
3144 last = &converted_chars.back ();
3145 finished = (last->result == wchar_iterate_eof);
3146
3147 /* Ensure that CONVERTED_CHARS is terminated. */
3148 last->result = wchar_iterate_eof;
3149
3150 /* WCHAR_BUF is the obstack we use to represent the string in
3151 wchar_t form. */
3152 auto_obstack wchar_buf;
3153
3154 /* Print the output string to the obstack. */
3155 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
3156 width, byte_order, options);
3157
3158 if (force_ellipses || !finished)
3159 obstack_grow_wstr (&wchar_buf, LCST ("..."));
3160
3161 /* OUTPUT is where we collect `char's for printing. */
3162 auto_obstack output;
3163
3164 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
3165 (gdb_byte *) obstack_base (&wchar_buf),
3166 obstack_object_size (&wchar_buf),
3167 sizeof (gdb_wchar_t), &output, translit_char);
3168 obstack_1grow (&output, '\0');
3169
3170 fputs_filtered ((const char *) obstack_base (&output), stream);
3171 }
3172
3173 /* Print a string from the inferior, starting at ADDR and printing up to LEN
3174 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
3175 stops at the first null byte, otherwise printing proceeds (including null
3176 bytes) until either print_max or LEN characters have been printed,
3177 whichever is smaller. ENCODING is the name of the string's
3178 encoding. It can be NULL, in which case the target encoding is
3179 assumed. */
3180
3181 int
3182 val_print_string (struct type *elttype, const char *encoding,
3183 CORE_ADDR addr, int len,
3184 struct ui_file *stream,
3185 const struct value_print_options *options)
3186 {
3187 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
3188 int err; /* Non-zero if we got a bad read. */
3189 int found_nul; /* Non-zero if we found the nul char. */
3190 unsigned int fetchlimit; /* Maximum number of chars to print. */
3191 int bytes_read;
3192 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
3193 struct gdbarch *gdbarch = get_type_arch (elttype);
3194 enum bfd_endian byte_order = type_byte_order (elttype);
3195 int width = TYPE_LENGTH (elttype);
3196
3197 /* First we need to figure out the limit on the number of characters we are
3198 going to attempt to fetch and print. This is actually pretty simple. If
3199 LEN >= zero, then the limit is the minimum of LEN and print_max. If
3200 LEN is -1, then the limit is print_max. This is true regardless of
3201 whether print_max is zero, UINT_MAX (unlimited), or something in between,
3202 because finding the null byte (or available memory) is what actually
3203 limits the fetch. */
3204
3205 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
3206 options->print_max));
3207
3208 err = read_string (addr, len, width, fetchlimit, byte_order,
3209 &buffer, &bytes_read);
3210
3211 addr += bytes_read;
3212
3213 /* We now have either successfully filled the buffer to fetchlimit,
3214 or terminated early due to an error or finding a null char when
3215 LEN is -1. */
3216
3217 /* Determine found_nul by looking at the last character read. */
3218 found_nul = 0;
3219 if (bytes_read >= width)
3220 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
3221 width, byte_order) == 0;
3222 if (len == -1 && !found_nul)
3223 {
3224 gdb_byte *peekbuf;
3225
3226 /* We didn't find a NUL terminator we were looking for. Attempt
3227 to peek at the next character. If not successful, or it is not
3228 a null byte, then force ellipsis to be printed. */
3229
3230 peekbuf = (gdb_byte *) alloca (width);
3231
3232 if (target_read_memory (addr, peekbuf, width) == 0
3233 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
3234 force_ellipsis = 1;
3235 }
3236 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
3237 {
3238 /* Getting an error when we have a requested length, or fetching less
3239 than the number of characters actually requested, always make us
3240 print ellipsis. */
3241 force_ellipsis = 1;
3242 }
3243
3244 /* If we get an error before fetching anything, don't print a string.
3245 But if we fetch something and then get an error, print the string
3246 and then the error message. */
3247 if (err == 0 || bytes_read > 0)
3248 {
3249 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
3250 encoding, force_ellipsis, options);
3251 }
3252
3253 if (err != 0)
3254 {
3255 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
3256
3257 fprintf_filtered (stream, _("<error: %ps>"),
3258 styled_string (metadata_style.style (),
3259 str.c_str ()));
3260 }
3261
3262 return (bytes_read / width);
3263 }
3264
3265 /* Handle 'show print max-depth'. */
3266
3267 static void
3268 show_print_max_depth (struct ui_file *file, int from_tty,
3269 struct cmd_list_element *c, const char *value)
3270 {
3271 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
3272 }
3273 \f
3274
3275 /* The 'set input-radix' command writes to this auxiliary variable.
3276 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3277 it is left unchanged. */
3278
3279 static unsigned input_radix_1 = 10;
3280
3281 /* Validate an input or output radix setting, and make sure the user
3282 knows what they really did here. Radix setting is confusing, e.g.
3283 setting the input radix to "10" never changes it! */
3284
3285 static void
3286 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
3287 {
3288 set_input_radix_1 (from_tty, input_radix_1);
3289 }
3290
3291 static void
3292 set_input_radix_1 (int from_tty, unsigned radix)
3293 {
3294 /* We don't currently disallow any input radix except 0 or 1, which don't
3295 make any mathematical sense. In theory, we can deal with any input
3296 radix greater than 1, even if we don't have unique digits for every
3297 value from 0 to radix-1, but in practice we lose on large radix values.
3298 We should either fix the lossage or restrict the radix range more.
3299 (FIXME). */
3300
3301 if (radix < 2)
3302 {
3303 input_radix_1 = input_radix;
3304 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3305 radix);
3306 }
3307 input_radix_1 = input_radix = radix;
3308 if (from_tty)
3309 {
3310 printf_filtered (_("Input radix now set to "
3311 "decimal %u, hex %x, octal %o.\n"),
3312 radix, radix, radix);
3313 }
3314 }
3315
3316 /* The 'set output-radix' command writes to this auxiliary variable.
3317 If the requested radix is valid, OUTPUT_RADIX is updated,
3318 otherwise, it is left unchanged. */
3319
3320 static unsigned output_radix_1 = 10;
3321
3322 static void
3323 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3324 {
3325 set_output_radix_1 (from_tty, output_radix_1);
3326 }
3327
3328 static void
3329 set_output_radix_1 (int from_tty, unsigned radix)
3330 {
3331 /* Validate the radix and disallow ones that we aren't prepared to
3332 handle correctly, leaving the radix unchanged. */
3333 switch (radix)
3334 {
3335 case 16:
3336 user_print_options.output_format = 'x'; /* hex */
3337 break;
3338 case 10:
3339 user_print_options.output_format = 0; /* decimal */
3340 break;
3341 case 8:
3342 user_print_options.output_format = 'o'; /* octal */
3343 break;
3344 default:
3345 output_radix_1 = output_radix;
3346 error (_("Unsupported output radix ``decimal %u''; "
3347 "output radix unchanged."),
3348 radix);
3349 }
3350 output_radix_1 = output_radix = radix;
3351 if (from_tty)
3352 {
3353 printf_filtered (_("Output radix now set to "
3354 "decimal %u, hex %x, octal %o.\n"),
3355 radix, radix, radix);
3356 }
3357 }
3358
3359 /* Set both the input and output radix at once. Try to set the output radix
3360 first, since it has the most restrictive range. An radix that is valid as
3361 an output radix is also valid as an input radix.
3362
3363 It may be useful to have an unusual input radix. If the user wishes to
3364 set an input radix that is not valid as an output radix, he needs to use
3365 the 'set input-radix' command. */
3366
3367 static void
3368 set_radix (const char *arg, int from_tty)
3369 {
3370 unsigned radix;
3371
3372 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3373 set_output_radix_1 (0, radix);
3374 set_input_radix_1 (0, radix);
3375 if (from_tty)
3376 {
3377 printf_filtered (_("Input and output radices now set to "
3378 "decimal %u, hex %x, octal %o.\n"),
3379 radix, radix, radix);
3380 }
3381 }
3382
3383 /* Show both the input and output radices. */
3384
3385 static void
3386 show_radix (const char *arg, int from_tty)
3387 {
3388 if (from_tty)
3389 {
3390 if (input_radix == output_radix)
3391 {
3392 printf_filtered (_("Input and output radices set to "
3393 "decimal %u, hex %x, octal %o.\n"),
3394 input_radix, input_radix, input_radix);
3395 }
3396 else
3397 {
3398 printf_filtered (_("Input radix set to decimal "
3399 "%u, hex %x, octal %o.\n"),
3400 input_radix, input_radix, input_radix);
3401 printf_filtered (_("Output radix set to decimal "
3402 "%u, hex %x, octal %o.\n"),
3403 output_radix, output_radix, output_radix);
3404 }
3405 }
3406 }
3407 \f
3408
3409 static void
3410 set_print (const char *arg, int from_tty)
3411 {
3412 printf_unfiltered (
3413 "\"set print\" must be followed by the name of a print subcommand.\n");
3414 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3415 }
3416
3417 static void
3418 show_print (const char *args, int from_tty)
3419 {
3420 cmd_show_list (showprintlist, from_tty, "");
3421 }
3422
3423 static void
3424 set_print_raw (const char *arg, int from_tty)
3425 {
3426 printf_unfiltered (
3427 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3428 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3429 }
3430
3431 static void
3432 show_print_raw (const char *args, int from_tty)
3433 {
3434 cmd_show_list (showprintrawlist, from_tty, "");
3435 }
3436
3437 /* Controls printing of vtbl's. */
3438 static void
3439 show_vtblprint (struct ui_file *file, int from_tty,
3440 struct cmd_list_element *c, const char *value)
3441 {
3442 fprintf_filtered (file, _("\
3443 Printing of C++ virtual function tables is %s.\n"),
3444 value);
3445 }
3446
3447 /* Controls looking up an object's derived type using what we find in
3448 its vtables. */
3449 static void
3450 show_objectprint (struct ui_file *file, int from_tty,
3451 struct cmd_list_element *c,
3452 const char *value)
3453 {
3454 fprintf_filtered (file, _("\
3455 Printing of object's derived type based on vtable info is %s.\n"),
3456 value);
3457 }
3458
3459 static void
3460 show_static_field_print (struct ui_file *file, int from_tty,
3461 struct cmd_list_element *c,
3462 const char *value)
3463 {
3464 fprintf_filtered (file,
3465 _("Printing of C++ static members is %s.\n"),
3466 value);
3467 }
3468
3469 \f
3470
3471 /* A couple typedefs to make writing the options a bit more
3472 convenient. */
3473 using boolean_option_def
3474 = gdb::option::boolean_option_def<value_print_options>;
3475 using uinteger_option_def
3476 = gdb::option::uinteger_option_def<value_print_options>;
3477 using zuinteger_unlimited_option_def
3478 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3479
3480 /* Definitions of options for the "print" and "compile print"
3481 commands. */
3482 static const gdb::option::option_def value_print_option_defs[] = {
3483
3484 boolean_option_def {
3485 "address",
3486 [] (value_print_options *opt) { return &opt->addressprint; },
3487 show_addressprint, /* show_cmd_cb */
3488 N_("Set printing of addresses."),
3489 N_("Show printing of addresses."),
3490 NULL, /* help_doc */
3491 },
3492
3493 boolean_option_def {
3494 "array",
3495 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3496 show_prettyformat_arrays, /* show_cmd_cb */
3497 N_("Set pretty formatting of arrays."),
3498 N_("Show pretty formatting of arrays."),
3499 NULL, /* help_doc */
3500 },
3501
3502 boolean_option_def {
3503 "array-indexes",
3504 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3505 show_print_array_indexes, /* show_cmd_cb */
3506 N_("Set printing of array indexes."),
3507 N_("Show printing of array indexes."),
3508 NULL, /* help_doc */
3509 },
3510
3511 uinteger_option_def {
3512 "elements",
3513 [] (value_print_options *opt) { return &opt->print_max; },
3514 show_print_max, /* show_cmd_cb */
3515 N_("Set limit on string chars or array elements to print."),
3516 N_("Show limit on string chars or array elements to print."),
3517 N_("\"unlimited\" causes there to be no limit."),
3518 },
3519
3520 zuinteger_unlimited_option_def {
3521 "max-depth",
3522 [] (value_print_options *opt) { return &opt->max_depth; },
3523 show_print_max_depth, /* show_cmd_cb */
3524 N_("Set maximum print depth for nested structures, unions and arrays."),
3525 N_("Show maximum print depth for nested structures, unions, and arrays."),
3526 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3527 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3528 Use \"unlimited\" to print the complete structure.")
3529 },
3530
3531 boolean_option_def {
3532 "null-stop",
3533 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3534 show_stop_print_at_null, /* show_cmd_cb */
3535 N_("Set printing of char arrays to stop at first null char."),
3536 N_("Show printing of char arrays to stop at first null char."),
3537 NULL, /* help_doc */
3538 },
3539
3540 boolean_option_def {
3541 "object",
3542 [] (value_print_options *opt) { return &opt->objectprint; },
3543 show_objectprint, /* show_cmd_cb */
3544 _("Set printing of C++ virtual function tables."),
3545 _("Show printing of C++ virtual function tables."),
3546 NULL, /* help_doc */
3547 },
3548
3549 boolean_option_def {
3550 "pretty",
3551 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3552 show_prettyformat_structs, /* show_cmd_cb */
3553 N_("Set pretty formatting of structures."),
3554 N_("Show pretty formatting of structures."),
3555 NULL, /* help_doc */
3556 },
3557
3558 boolean_option_def {
3559 "raw-values",
3560 [] (value_print_options *opt) { return &opt->raw; },
3561 NULL, /* show_cmd_cb */
3562 N_("Set whether to print values in raw form."),
3563 N_("Show whether to print values in raw form."),
3564 N_("If set, values are printed in raw form, bypassing any\n\
3565 pretty-printers for that value.")
3566 },
3567
3568 uinteger_option_def {
3569 "repeats",
3570 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3571 show_repeat_count_threshold, /* show_cmd_cb */
3572 N_("Set threshold for repeated print elements."),
3573 N_("Show threshold for repeated print elements."),
3574 N_("\"unlimited\" causes all elements to be individually printed."),
3575 },
3576
3577 boolean_option_def {
3578 "static-members",
3579 [] (value_print_options *opt) { return &opt->static_field_print; },
3580 show_static_field_print, /* show_cmd_cb */
3581 N_("Set printing of C++ static members."),
3582 N_("Show printing of C++ static members."),
3583 NULL, /* help_doc */
3584 },
3585
3586 boolean_option_def {
3587 "symbol",
3588 [] (value_print_options *opt) { return &opt->symbol_print; },
3589 show_symbol_print, /* show_cmd_cb */
3590 N_("Set printing of symbol names when printing pointers."),
3591 N_("Show printing of symbol names when printing pointers."),
3592 NULL, /* help_doc */
3593 },
3594
3595 boolean_option_def {
3596 "union",
3597 [] (value_print_options *opt) { return &opt->unionprint; },
3598 show_unionprint, /* show_cmd_cb */
3599 N_("Set printing of unions interior to structures."),
3600 N_("Show printing of unions interior to structures."),
3601 NULL, /* help_doc */
3602 },
3603
3604 boolean_option_def {
3605 "vtbl",
3606 [] (value_print_options *opt) { return &opt->vtblprint; },
3607 show_vtblprint, /* show_cmd_cb */
3608 N_("Set printing of C++ virtual function tables."),
3609 N_("Show printing of C++ virtual function tables."),
3610 NULL, /* help_doc */
3611 },
3612 };
3613
3614 /* See valprint.h. */
3615
3616 gdb::option::option_def_group
3617 make_value_print_options_def_group (value_print_options *opts)
3618 {
3619 return {{value_print_option_defs}, opts};
3620 }
3621
3622 void _initialize_valprint ();
3623 void
3624 _initialize_valprint ()
3625 {
3626 cmd_list_element *cmd;
3627
3628 add_prefix_cmd ("print", no_class, set_print,
3629 _("Generic command for setting how things print."),
3630 &setprintlist, "set print ", 0, &setlist);
3631 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3632 /* Prefer set print to set prompt. */
3633 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3634
3635 add_prefix_cmd ("print", no_class, show_print,
3636 _("Generic command for showing print settings."),
3637 &showprintlist, "show print ", 0, &showlist);
3638 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3639 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3640
3641 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3642 _("\
3643 Generic command for setting what things to print in \"raw\" mode."),
3644 &setprintrawlist, "set print raw ", 0,
3645 &setprintlist);
3646 deprecate_cmd (cmd, nullptr);
3647
3648 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3649 _("Generic command for showing \"print raw\" settings."),
3650 &showprintrawlist, "show print raw ", 0,
3651 &showprintlist);
3652 deprecate_cmd (cmd, nullptr);
3653
3654 gdb::option::add_setshow_cmds_for_options
3655 (class_support, &user_print_options, value_print_option_defs,
3656 &setprintlist, &showprintlist);
3657
3658 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3659 _("\
3660 Set default input radix for entering numbers."), _("\
3661 Show default input radix for entering numbers."), NULL,
3662 set_input_radix,
3663 show_input_radix,
3664 &setlist, &showlist);
3665
3666 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3667 _("\
3668 Set default output radix for printing of values."), _("\
3669 Show default output radix for printing of values."), NULL,
3670 set_output_radix,
3671 show_output_radix,
3672 &setlist, &showlist);
3673
3674 /* The "set radix" and "show radix" commands are special in that
3675 they are like normal set and show commands but allow two normally
3676 independent variables to be either set or shown with a single
3677 command. So the usual deprecated_add_set_cmd() and [deleted]
3678 add_show_from_set() commands aren't really appropriate. */
3679 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3680 longer true - show can display anything. */
3681 add_cmd ("radix", class_support, set_radix, _("\
3682 Set default input and output number radices.\n\
3683 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3684 Without an argument, sets both radices back to the default value of 10."),
3685 &setlist);
3686 add_cmd ("radix", class_support, show_radix, _("\
3687 Show the default input and output number radices.\n\
3688 Use 'show input-radix' or 'show output-radix' to independently show each."),
3689 &showlist);
3690 }
This page took 0.214783 seconds and 5 git commands to generate.