Factor out function/method printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* generic_val_print helper for TYPE_CODE_ENUM. */
513
514 static void
515 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519 {
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579 }
580
581 /* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583 static void
584 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589 {
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595 }
596
597 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599 static void
600 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605 {
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624 }
625
626 /* A generic val_print that is suitable for use by language
627 implementations of the la_val_print method. This function can
628 handle most type codes, though not all, notably exception
629 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
630 the caller.
631
632 Most arguments are as to val_print.
633
634 The additional DECORATIONS argument can be used to customize the
635 output in some small, language-specific ways. */
636
637 void
638 generic_val_print (struct type *type, const gdb_byte *valaddr,
639 int embedded_offset, CORE_ADDR address,
640 struct ui_file *stream, int recurse,
641 const struct value *original_value,
642 const struct value_print_options *options,
643 const struct generic_val_print_decorations *decorations)
644 {
645 struct type *unresolved_type = type;
646 LONGEST val;
647
648 type = check_typedef (type);
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_ARRAY:
652 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
653 recurse, original_value, options);
654 break;
655
656 case TYPE_CODE_MEMBERPTR:
657 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
658 original_value, options);
659 break;
660
661 case TYPE_CODE_PTR:
662 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
663 original_value, options);
664 break;
665
666 case TYPE_CODE_REF:
667 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
668 original_value, options);
669 break;
670
671 case TYPE_CODE_ENUM:
672 generic_val_print_enum (type, valaddr, embedded_offset, stream,
673 original_value, options);
674 break;
675
676 case TYPE_CODE_FLAGS:
677 generic_val_print_flags (type, valaddr, embedded_offset, stream,
678 original_value, options);
679 break;
680
681 case TYPE_CODE_FUNC:
682 case TYPE_CODE_METHOD:
683 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
684 original_value, options);
685 break;
686
687 case TYPE_CODE_BOOL:
688 if (options->format || options->output_format)
689 {
690 struct value_print_options opts = *options;
691 opts.format = (options->format ? options->format
692 : options->output_format);
693 val_print_scalar_formatted (type, valaddr, embedded_offset,
694 original_value, &opts, 0, stream);
695 }
696 else
697 {
698 val = unpack_long (type, valaddr + embedded_offset);
699 if (val == 0)
700 fputs_filtered (decorations->false_name, stream);
701 else if (val == 1)
702 fputs_filtered (decorations->true_name, stream);
703 else
704 print_longest (stream, 'd', 0, val);
705 }
706 break;
707
708 case TYPE_CODE_RANGE:
709 /* FIXME: create_static_range_type does not set the unsigned bit in a
710 range type (I think it probably should copy it from the
711 target type), so we won't print values which are too large to
712 fit in a signed integer correctly. */
713 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
714 print with the target type, though, because the size of our
715 type and the target type might differ). */
716
717 /* FALLTHROUGH */
718
719 case TYPE_CODE_INT:
720 if (options->format || options->output_format)
721 {
722 struct value_print_options opts = *options;
723
724 opts.format = (options->format ? options->format
725 : options->output_format);
726 val_print_scalar_formatted (type, valaddr, embedded_offset,
727 original_value, &opts, 0, stream);
728 }
729 else
730 val_print_type_code_int (type, valaddr + embedded_offset, stream);
731 break;
732
733 case TYPE_CODE_CHAR:
734 if (options->format || options->output_format)
735 {
736 struct value_print_options opts = *options;
737
738 opts.format = (options->format ? options->format
739 : options->output_format);
740 val_print_scalar_formatted (type, valaddr, embedded_offset,
741 original_value, &opts, 0, stream);
742 }
743 else
744 {
745 val = unpack_long (type, valaddr + embedded_offset);
746 if (TYPE_UNSIGNED (type))
747 fprintf_filtered (stream, "%u", (unsigned int) val);
748 else
749 fprintf_filtered (stream, "%d", (int) val);
750 fputs_filtered (" ", stream);
751 LA_PRINT_CHAR (val, unresolved_type, stream);
752 }
753 break;
754
755 case TYPE_CODE_FLT:
756 if (options->format)
757 {
758 val_print_scalar_formatted (type, valaddr, embedded_offset,
759 original_value, options, 0, stream);
760 }
761 else
762 {
763 print_floating (valaddr + embedded_offset, type, stream);
764 }
765 break;
766
767 case TYPE_CODE_DECFLOAT:
768 if (options->format)
769 val_print_scalar_formatted (type, valaddr, embedded_offset,
770 original_value, options, 0, stream);
771 else
772 print_decimal_floating (valaddr + embedded_offset,
773 type, stream);
774 break;
775
776 case TYPE_CODE_VOID:
777 fputs_filtered (decorations->void_name, stream);
778 break;
779
780 case TYPE_CODE_ERROR:
781 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
782 break;
783
784 case TYPE_CODE_UNDEF:
785 /* This happens (without TYPE_FLAG_STUB set) on systems which
786 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
787 "struct foo *bar" and no complete type for struct foo in that
788 file. */
789 fprintf_filtered (stream, _("<incomplete type>"));
790 break;
791
792 case TYPE_CODE_COMPLEX:
793 fprintf_filtered (stream, "%s", decorations->complex_prefix);
794 if (options->format)
795 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
796 valaddr, embedded_offset,
797 original_value, options, 0, stream);
798 else
799 print_floating (valaddr + embedded_offset,
800 TYPE_TARGET_TYPE (type),
801 stream);
802 fprintf_filtered (stream, "%s", decorations->complex_infix);
803 if (options->format)
804 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
805 valaddr,
806 embedded_offset
807 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
808 original_value,
809 options, 0, stream);
810 else
811 print_floating (valaddr + embedded_offset
812 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
813 TYPE_TARGET_TYPE (type),
814 stream);
815 fprintf_filtered (stream, "%s", decorations->complex_suffix);
816 break;
817
818 case TYPE_CODE_UNION:
819 case TYPE_CODE_STRUCT:
820 case TYPE_CODE_METHODPTR:
821 default:
822 error (_("Unhandled type code %d in symbol table."),
823 TYPE_CODE (type));
824 }
825 gdb_flush (stream);
826 }
827
828 /* Print using the given LANGUAGE the data of type TYPE located at
829 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
830 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
831 STREAM according to OPTIONS. VAL is the whole object that came
832 from ADDRESS. VALADDR must point to the head of VAL's contents
833 buffer.
834
835 The language printers will pass down an adjusted EMBEDDED_OFFSET to
836 further helper subroutines as subfields of TYPE are printed. In
837 such cases, VALADDR is passed down unadjusted, as well as VAL, so
838 that VAL can be queried for metadata about the contents data being
839 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
840 buffer. For example: "has this field been optimized out", or "I'm
841 printing an object while inspecting a traceframe; has this
842 particular piece of data been collected?".
843
844 RECURSE indicates the amount of indentation to supply before
845 continuation lines; this amount is roughly twice the value of
846 RECURSE. */
847
848 void
849 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
850 CORE_ADDR address, struct ui_file *stream, int recurse,
851 const struct value *val,
852 const struct value_print_options *options,
853 const struct language_defn *language)
854 {
855 int ret = 0;
856 struct value_print_options local_opts = *options;
857 struct type *real_type = check_typedef (type);
858
859 if (local_opts.prettyformat == Val_prettyformat_default)
860 local_opts.prettyformat = (local_opts.prettyformat_structs
861 ? Val_prettyformat : Val_no_prettyformat);
862
863 QUIT;
864
865 /* Ensure that the type is complete and not just a stub. If the type is
866 only a stub and we can't find and substitute its complete type, then
867 print appropriate string and return. */
868
869 if (TYPE_STUB (real_type))
870 {
871 fprintf_filtered (stream, _("<incomplete type>"));
872 gdb_flush (stream);
873 return;
874 }
875
876 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
877 return;
878
879 if (!options->raw)
880 {
881 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
882 address, stream, recurse,
883 val, options, language);
884 if (ret)
885 return;
886 }
887
888 /* Handle summary mode. If the value is a scalar, print it;
889 otherwise, print an ellipsis. */
890 if (options->summary && !val_print_scalar_type_p (type))
891 {
892 fprintf_filtered (stream, "...");
893 return;
894 }
895
896 TRY
897 {
898 language->la_val_print (type, valaddr, embedded_offset, address,
899 stream, recurse, val,
900 &local_opts);
901 }
902 CATCH (except, RETURN_MASK_ERROR)
903 {
904 fprintf_filtered (stream, _("<error reading variable>"));
905 }
906 END_CATCH
907 }
908
909 /* Check whether the value VAL is printable. Return 1 if it is;
910 return 0 and print an appropriate error message to STREAM according to
911 OPTIONS if it is not. */
912
913 static int
914 value_check_printable (struct value *val, struct ui_file *stream,
915 const struct value_print_options *options)
916 {
917 if (val == 0)
918 {
919 fprintf_filtered (stream, _("<address of value unknown>"));
920 return 0;
921 }
922
923 if (value_entirely_optimized_out (val))
924 {
925 if (options->summary && !val_print_scalar_type_p (value_type (val)))
926 fprintf_filtered (stream, "...");
927 else
928 val_print_optimized_out (val, stream);
929 return 0;
930 }
931
932 if (value_entirely_unavailable (val))
933 {
934 if (options->summary && !val_print_scalar_type_p (value_type (val)))
935 fprintf_filtered (stream, "...");
936 else
937 val_print_unavailable (stream);
938 return 0;
939 }
940
941 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
942 {
943 fprintf_filtered (stream, _("<internal function %s>"),
944 value_internal_function_name (val));
945 return 0;
946 }
947
948 return 1;
949 }
950
951 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
952 to OPTIONS.
953
954 This is a preferable interface to val_print, above, because it uses
955 GDB's value mechanism. */
956
957 void
958 common_val_print (struct value *val, struct ui_file *stream, int recurse,
959 const struct value_print_options *options,
960 const struct language_defn *language)
961 {
962 if (!value_check_printable (val, stream, options))
963 return;
964
965 if (language->la_language == language_ada)
966 /* The value might have a dynamic type, which would cause trouble
967 below when trying to extract the value contents (since the value
968 size is determined from the type size which is unknown). So
969 get a fixed representation of our value. */
970 val = ada_to_fixed_value (val);
971
972 val_print (value_type (val), value_contents_for_printing (val),
973 value_embedded_offset (val), value_address (val),
974 stream, recurse,
975 val, options, language);
976 }
977
978 /* Print on stream STREAM the value VAL according to OPTIONS. The value
979 is printed using the current_language syntax. */
980
981 void
982 value_print (struct value *val, struct ui_file *stream,
983 const struct value_print_options *options)
984 {
985 if (!value_check_printable (val, stream, options))
986 return;
987
988 if (!options->raw)
989 {
990 int r
991 = apply_ext_lang_val_pretty_printer (value_type (val),
992 value_contents_for_printing (val),
993 value_embedded_offset (val),
994 value_address (val),
995 stream, 0,
996 val, options, current_language);
997
998 if (r)
999 return;
1000 }
1001
1002 LA_VALUE_PRINT (val, stream, options);
1003 }
1004
1005 /* Called by various <lang>_val_print routines to print
1006 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1007 value. STREAM is where to print the value. */
1008
1009 void
1010 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1011 struct ui_file *stream)
1012 {
1013 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1014
1015 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1016 {
1017 LONGEST val;
1018
1019 if (TYPE_UNSIGNED (type)
1020 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1021 byte_order, &val))
1022 {
1023 print_longest (stream, 'u', 0, val);
1024 }
1025 else
1026 {
1027 /* Signed, or we couldn't turn an unsigned value into a
1028 LONGEST. For signed values, one could assume two's
1029 complement (a reasonable assumption, I think) and do
1030 better than this. */
1031 print_hex_chars (stream, (unsigned char *) valaddr,
1032 TYPE_LENGTH (type), byte_order);
1033 }
1034 }
1035 else
1036 {
1037 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1038 unpack_long (type, valaddr));
1039 }
1040 }
1041
1042 void
1043 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1044 struct ui_file *stream)
1045 {
1046 ULONGEST val = unpack_long (type, valaddr);
1047 int bitpos, nfields = TYPE_NFIELDS (type);
1048
1049 fputs_filtered ("[ ", stream);
1050 for (bitpos = 0; bitpos < nfields; bitpos++)
1051 {
1052 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1053 && (val & ((ULONGEST)1 << bitpos)))
1054 {
1055 if (TYPE_FIELD_NAME (type, bitpos))
1056 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1057 else
1058 fprintf_filtered (stream, "#%d ", bitpos);
1059 }
1060 }
1061 fputs_filtered ("]", stream);
1062 }
1063
1064 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1065 according to OPTIONS and SIZE on STREAM. Format i is not supported
1066 at this level.
1067
1068 This is how the elements of an array or structure are printed
1069 with a format. */
1070
1071 void
1072 val_print_scalar_formatted (struct type *type,
1073 const gdb_byte *valaddr, int embedded_offset,
1074 const struct value *val,
1075 const struct value_print_options *options,
1076 int size,
1077 struct ui_file *stream)
1078 {
1079 gdb_assert (val != NULL);
1080 gdb_assert (valaddr == value_contents_for_printing_const (val));
1081
1082 /* If we get here with a string format, try again without it. Go
1083 all the way back to the language printers, which may call us
1084 again. */
1085 if (options->format == 's')
1086 {
1087 struct value_print_options opts = *options;
1088 opts.format = 0;
1089 opts.deref_ref = 0;
1090 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1091 current_language);
1092 return;
1093 }
1094
1095 /* A scalar object that does not have all bits available can't be
1096 printed, because all bits contribute to its representation. */
1097 if (value_bits_any_optimized_out (val,
1098 TARGET_CHAR_BIT * embedded_offset,
1099 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1100 val_print_optimized_out (val, stream);
1101 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1102 val_print_unavailable (stream);
1103 else
1104 print_scalar_formatted (valaddr + embedded_offset, type,
1105 options, size, stream);
1106 }
1107
1108 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1109 The raison d'etre of this function is to consolidate printing of
1110 LONG_LONG's into this one function. The format chars b,h,w,g are
1111 from print_scalar_formatted(). Numbers are printed using C
1112 format.
1113
1114 USE_C_FORMAT means to use C format in all cases. Without it,
1115 'o' and 'x' format do not include the standard C radix prefix
1116 (leading 0 or 0x).
1117
1118 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1119 and was intended to request formating according to the current
1120 language and would be used for most integers that GDB prints. The
1121 exceptional cases were things like protocols where the format of
1122 the integer is a protocol thing, not a user-visible thing). The
1123 parameter remains to preserve the information of what things might
1124 be printed with language-specific format, should we ever resurrect
1125 that capability. */
1126
1127 void
1128 print_longest (struct ui_file *stream, int format, int use_c_format,
1129 LONGEST val_long)
1130 {
1131 const char *val;
1132
1133 switch (format)
1134 {
1135 case 'd':
1136 val = int_string (val_long, 10, 1, 0, 1); break;
1137 case 'u':
1138 val = int_string (val_long, 10, 0, 0, 1); break;
1139 case 'x':
1140 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1141 case 'b':
1142 val = int_string (val_long, 16, 0, 2, 1); break;
1143 case 'h':
1144 val = int_string (val_long, 16, 0, 4, 1); break;
1145 case 'w':
1146 val = int_string (val_long, 16, 0, 8, 1); break;
1147 case 'g':
1148 val = int_string (val_long, 16, 0, 16, 1); break;
1149 break;
1150 case 'o':
1151 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1152 default:
1153 internal_error (__FILE__, __LINE__,
1154 _("failed internal consistency check"));
1155 }
1156 fputs_filtered (val, stream);
1157 }
1158
1159 /* This used to be a macro, but I don't think it is called often enough
1160 to merit such treatment. */
1161 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1162 arguments to a function, number in a value history, register number, etc.)
1163 where the value must not be larger than can fit in an int. */
1164
1165 int
1166 longest_to_int (LONGEST arg)
1167 {
1168 /* Let the compiler do the work. */
1169 int rtnval = (int) arg;
1170
1171 /* Check for overflows or underflows. */
1172 if (sizeof (LONGEST) > sizeof (int))
1173 {
1174 if (rtnval != arg)
1175 {
1176 error (_("Value out of range."));
1177 }
1178 }
1179 return (rtnval);
1180 }
1181
1182 /* Print a floating point value of type TYPE (not always a
1183 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1184
1185 void
1186 print_floating (const gdb_byte *valaddr, struct type *type,
1187 struct ui_file *stream)
1188 {
1189 DOUBLEST doub;
1190 int inv;
1191 const struct floatformat *fmt = NULL;
1192 unsigned len = TYPE_LENGTH (type);
1193 enum float_kind kind;
1194
1195 /* If it is a floating-point, check for obvious problems. */
1196 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1197 fmt = floatformat_from_type (type);
1198 if (fmt != NULL)
1199 {
1200 kind = floatformat_classify (fmt, valaddr);
1201 if (kind == float_nan)
1202 {
1203 if (floatformat_is_negative (fmt, valaddr))
1204 fprintf_filtered (stream, "-");
1205 fprintf_filtered (stream, "nan(");
1206 fputs_filtered ("0x", stream);
1207 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1208 fprintf_filtered (stream, ")");
1209 return;
1210 }
1211 else if (kind == float_infinite)
1212 {
1213 if (floatformat_is_negative (fmt, valaddr))
1214 fputs_filtered ("-", stream);
1215 fputs_filtered ("inf", stream);
1216 return;
1217 }
1218 }
1219
1220 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1221 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1222 needs to be used as that takes care of any necessary type
1223 conversions. Such conversions are of course direct to DOUBLEST
1224 and disregard any possible target floating point limitations.
1225 For instance, a u64 would be converted and displayed exactly on a
1226 host with 80 bit DOUBLEST but with loss of information on a host
1227 with 64 bit DOUBLEST. */
1228
1229 doub = unpack_double (type, valaddr, &inv);
1230 if (inv)
1231 {
1232 fprintf_filtered (stream, "<invalid float value>");
1233 return;
1234 }
1235
1236 /* FIXME: kettenis/2001-01-20: The following code makes too much
1237 assumptions about the host and target floating point format. */
1238
1239 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1240 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1241 instead uses the type's length to determine the precision of the
1242 floating-point value being printed. */
1243
1244 if (len < sizeof (double))
1245 fprintf_filtered (stream, "%.9g", (double) doub);
1246 else if (len == sizeof (double))
1247 fprintf_filtered (stream, "%.17g", (double) doub);
1248 else
1249 #ifdef PRINTF_HAS_LONG_DOUBLE
1250 fprintf_filtered (stream, "%.35Lg", doub);
1251 #else
1252 /* This at least wins with values that are representable as
1253 doubles. */
1254 fprintf_filtered (stream, "%.17g", (double) doub);
1255 #endif
1256 }
1257
1258 void
1259 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1260 struct ui_file *stream)
1261 {
1262 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1263 char decstr[MAX_DECIMAL_STRING];
1264 unsigned len = TYPE_LENGTH (type);
1265
1266 decimal_to_string (valaddr, len, byte_order, decstr);
1267 fputs_filtered (decstr, stream);
1268 return;
1269 }
1270
1271 void
1272 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1273 unsigned len, enum bfd_endian byte_order)
1274 {
1275
1276 #define BITS_IN_BYTES 8
1277
1278 const gdb_byte *p;
1279 unsigned int i;
1280 int b;
1281
1282 /* Declared "int" so it will be signed.
1283 This ensures that right shift will shift in zeros. */
1284
1285 const int mask = 0x080;
1286
1287 /* FIXME: We should be not printing leading zeroes in most cases. */
1288
1289 if (byte_order == BFD_ENDIAN_BIG)
1290 {
1291 for (p = valaddr;
1292 p < valaddr + len;
1293 p++)
1294 {
1295 /* Every byte has 8 binary characters; peel off
1296 and print from the MSB end. */
1297
1298 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1299 {
1300 if (*p & (mask >> i))
1301 b = 1;
1302 else
1303 b = 0;
1304
1305 fprintf_filtered (stream, "%1d", b);
1306 }
1307 }
1308 }
1309 else
1310 {
1311 for (p = valaddr + len - 1;
1312 p >= valaddr;
1313 p--)
1314 {
1315 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1316 {
1317 if (*p & (mask >> i))
1318 b = 1;
1319 else
1320 b = 0;
1321
1322 fprintf_filtered (stream, "%1d", b);
1323 }
1324 }
1325 }
1326 }
1327
1328 /* VALADDR points to an integer of LEN bytes.
1329 Print it in octal on stream or format it in buf. */
1330
1331 void
1332 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1333 unsigned len, enum bfd_endian byte_order)
1334 {
1335 const gdb_byte *p;
1336 unsigned char octa1, octa2, octa3, carry;
1337 int cycle;
1338
1339 /* FIXME: We should be not printing leading zeroes in most cases. */
1340
1341
1342 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1343 * the extra bits, which cycle every three bytes:
1344 *
1345 * Byte side: 0 1 2 3
1346 * | | | |
1347 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1348 *
1349 * Octal side: 0 1 carry 3 4 carry ...
1350 *
1351 * Cycle number: 0 1 2
1352 *
1353 * But of course we are printing from the high side, so we have to
1354 * figure out where in the cycle we are so that we end up with no
1355 * left over bits at the end.
1356 */
1357 #define BITS_IN_OCTAL 3
1358 #define HIGH_ZERO 0340
1359 #define LOW_ZERO 0016
1360 #define CARRY_ZERO 0003
1361 #define HIGH_ONE 0200
1362 #define MID_ONE 0160
1363 #define LOW_ONE 0016
1364 #define CARRY_ONE 0001
1365 #define HIGH_TWO 0300
1366 #define MID_TWO 0070
1367 #define LOW_TWO 0007
1368
1369 /* For 32 we start in cycle 2, with two bits and one bit carry;
1370 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1371
1372 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1373 carry = 0;
1374
1375 fputs_filtered ("0", stream);
1376 if (byte_order == BFD_ENDIAN_BIG)
1377 {
1378 for (p = valaddr;
1379 p < valaddr + len;
1380 p++)
1381 {
1382 switch (cycle)
1383 {
1384 case 0:
1385 /* No carry in, carry out two bits. */
1386
1387 octa1 = (HIGH_ZERO & *p) >> 5;
1388 octa2 = (LOW_ZERO & *p) >> 2;
1389 carry = (CARRY_ZERO & *p);
1390 fprintf_filtered (stream, "%o", octa1);
1391 fprintf_filtered (stream, "%o", octa2);
1392 break;
1393
1394 case 1:
1395 /* Carry in two bits, carry out one bit. */
1396
1397 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1398 octa2 = (MID_ONE & *p) >> 4;
1399 octa3 = (LOW_ONE & *p) >> 1;
1400 carry = (CARRY_ONE & *p);
1401 fprintf_filtered (stream, "%o", octa1);
1402 fprintf_filtered (stream, "%o", octa2);
1403 fprintf_filtered (stream, "%o", octa3);
1404 break;
1405
1406 case 2:
1407 /* Carry in one bit, no carry out. */
1408
1409 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1410 octa2 = (MID_TWO & *p) >> 3;
1411 octa3 = (LOW_TWO & *p);
1412 carry = 0;
1413 fprintf_filtered (stream, "%o", octa1);
1414 fprintf_filtered (stream, "%o", octa2);
1415 fprintf_filtered (stream, "%o", octa3);
1416 break;
1417
1418 default:
1419 error (_("Internal error in octal conversion;"));
1420 }
1421
1422 cycle++;
1423 cycle = cycle % BITS_IN_OCTAL;
1424 }
1425 }
1426 else
1427 {
1428 for (p = valaddr + len - 1;
1429 p >= valaddr;
1430 p--)
1431 {
1432 switch (cycle)
1433 {
1434 case 0:
1435 /* Carry out, no carry in */
1436
1437 octa1 = (HIGH_ZERO & *p) >> 5;
1438 octa2 = (LOW_ZERO & *p) >> 2;
1439 carry = (CARRY_ZERO & *p);
1440 fprintf_filtered (stream, "%o", octa1);
1441 fprintf_filtered (stream, "%o", octa2);
1442 break;
1443
1444 case 1:
1445 /* Carry in, carry out */
1446
1447 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1448 octa2 = (MID_ONE & *p) >> 4;
1449 octa3 = (LOW_ONE & *p) >> 1;
1450 carry = (CARRY_ONE & *p);
1451 fprintf_filtered (stream, "%o", octa1);
1452 fprintf_filtered (stream, "%o", octa2);
1453 fprintf_filtered (stream, "%o", octa3);
1454 break;
1455
1456 case 2:
1457 /* Carry in, no carry out */
1458
1459 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1460 octa2 = (MID_TWO & *p) >> 3;
1461 octa3 = (LOW_TWO & *p);
1462 carry = 0;
1463 fprintf_filtered (stream, "%o", octa1);
1464 fprintf_filtered (stream, "%o", octa2);
1465 fprintf_filtered (stream, "%o", octa3);
1466 break;
1467
1468 default:
1469 error (_("Internal error in octal conversion;"));
1470 }
1471
1472 cycle++;
1473 cycle = cycle % BITS_IN_OCTAL;
1474 }
1475 }
1476
1477 }
1478
1479 /* VALADDR points to an integer of LEN bytes.
1480 Print it in decimal on stream or format it in buf. */
1481
1482 void
1483 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1484 unsigned len, enum bfd_endian byte_order)
1485 {
1486 #define TEN 10
1487 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1488 #define CARRY_LEFT( x ) ((x) % TEN)
1489 #define SHIFT( x ) ((x) << 4)
1490 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1491 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1492
1493 const gdb_byte *p;
1494 unsigned char *digits;
1495 int carry;
1496 int decimal_len;
1497 int i, j, decimal_digits;
1498 int dummy;
1499 int flip;
1500
1501 /* Base-ten number is less than twice as many digits
1502 as the base 16 number, which is 2 digits per byte. */
1503
1504 decimal_len = len * 2 * 2;
1505 digits = xmalloc (decimal_len);
1506
1507 for (i = 0; i < decimal_len; i++)
1508 {
1509 digits[i] = 0;
1510 }
1511
1512 /* Ok, we have an unknown number of bytes of data to be printed in
1513 * decimal.
1514 *
1515 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1516 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1517 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1518 *
1519 * The trick is that "digits" holds a base-10 number, but sometimes
1520 * the individual digits are > 10.
1521 *
1522 * Outer loop is per nibble (hex digit) of input, from MSD end to
1523 * LSD end.
1524 */
1525 decimal_digits = 0; /* Number of decimal digits so far */
1526 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1527 flip = 0;
1528 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1529 {
1530 /*
1531 * Multiply current base-ten number by 16 in place.
1532 * Each digit was between 0 and 9, now is between
1533 * 0 and 144.
1534 */
1535 for (j = 0; j < decimal_digits; j++)
1536 {
1537 digits[j] = SHIFT (digits[j]);
1538 }
1539
1540 /* Take the next nibble off the input and add it to what
1541 * we've got in the LSB position. Bottom 'digit' is now
1542 * between 0 and 159.
1543 *
1544 * "flip" is used to run this loop twice for each byte.
1545 */
1546 if (flip == 0)
1547 {
1548 /* Take top nibble. */
1549
1550 digits[0] += HIGH_NIBBLE (*p);
1551 flip = 1;
1552 }
1553 else
1554 {
1555 /* Take low nibble and bump our pointer "p". */
1556
1557 digits[0] += LOW_NIBBLE (*p);
1558 if (byte_order == BFD_ENDIAN_BIG)
1559 p++;
1560 else
1561 p--;
1562 flip = 0;
1563 }
1564
1565 /* Re-decimalize. We have to do this often enough
1566 * that we don't overflow, but once per nibble is
1567 * overkill. Easier this way, though. Note that the
1568 * carry is often larger than 10 (e.g. max initial
1569 * carry out of lowest nibble is 15, could bubble all
1570 * the way up greater than 10). So we have to do
1571 * the carrying beyond the last current digit.
1572 */
1573 carry = 0;
1574 for (j = 0; j < decimal_len - 1; j++)
1575 {
1576 digits[j] += carry;
1577
1578 /* "/" won't handle an unsigned char with
1579 * a value that if signed would be negative.
1580 * So extend to longword int via "dummy".
1581 */
1582 dummy = digits[j];
1583 carry = CARRY_OUT (dummy);
1584 digits[j] = CARRY_LEFT (dummy);
1585
1586 if (j >= decimal_digits && carry == 0)
1587 {
1588 /*
1589 * All higher digits are 0 and we
1590 * no longer have a carry.
1591 *
1592 * Note: "j" is 0-based, "decimal_digits" is
1593 * 1-based.
1594 */
1595 decimal_digits = j + 1;
1596 break;
1597 }
1598 }
1599 }
1600
1601 /* Ok, now "digits" is the decimal representation, with
1602 the "decimal_digits" actual digits. Print! */
1603
1604 for (i = decimal_digits - 1; i >= 0; i--)
1605 {
1606 fprintf_filtered (stream, "%1d", digits[i]);
1607 }
1608 xfree (digits);
1609 }
1610
1611 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1612
1613 void
1614 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1615 unsigned len, enum bfd_endian byte_order)
1616 {
1617 const gdb_byte *p;
1618
1619 /* FIXME: We should be not printing leading zeroes in most cases. */
1620
1621 fputs_filtered ("0x", stream);
1622 if (byte_order == BFD_ENDIAN_BIG)
1623 {
1624 for (p = valaddr;
1625 p < valaddr + len;
1626 p++)
1627 {
1628 fprintf_filtered (stream, "%02x", *p);
1629 }
1630 }
1631 else
1632 {
1633 for (p = valaddr + len - 1;
1634 p >= valaddr;
1635 p--)
1636 {
1637 fprintf_filtered (stream, "%02x", *p);
1638 }
1639 }
1640 }
1641
1642 /* VALADDR points to a char integer of LEN bytes.
1643 Print it out in appropriate language form on stream.
1644 Omit any leading zero chars. */
1645
1646 void
1647 print_char_chars (struct ui_file *stream, struct type *type,
1648 const gdb_byte *valaddr,
1649 unsigned len, enum bfd_endian byte_order)
1650 {
1651 const gdb_byte *p;
1652
1653 if (byte_order == BFD_ENDIAN_BIG)
1654 {
1655 p = valaddr;
1656 while (p < valaddr + len - 1 && *p == 0)
1657 ++p;
1658
1659 while (p < valaddr + len)
1660 {
1661 LA_EMIT_CHAR (*p, type, stream, '\'');
1662 ++p;
1663 }
1664 }
1665 else
1666 {
1667 p = valaddr + len - 1;
1668 while (p > valaddr && *p == 0)
1669 --p;
1670
1671 while (p >= valaddr)
1672 {
1673 LA_EMIT_CHAR (*p, type, stream, '\'');
1674 --p;
1675 }
1676 }
1677 }
1678
1679 /* Print function pointer with inferior address ADDRESS onto stdio
1680 stream STREAM. */
1681
1682 void
1683 print_function_pointer_address (const struct value_print_options *options,
1684 struct gdbarch *gdbarch,
1685 CORE_ADDR address,
1686 struct ui_file *stream)
1687 {
1688 CORE_ADDR func_addr
1689 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1690 &current_target);
1691
1692 /* If the function pointer is represented by a description, print
1693 the address of the description. */
1694 if (options->addressprint && func_addr != address)
1695 {
1696 fputs_filtered ("@", stream);
1697 fputs_filtered (paddress (gdbarch, address), stream);
1698 fputs_filtered (": ", stream);
1699 }
1700 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1701 }
1702
1703
1704 /* Print on STREAM using the given OPTIONS the index for the element
1705 at INDEX of an array whose index type is INDEX_TYPE. */
1706
1707 void
1708 maybe_print_array_index (struct type *index_type, LONGEST index,
1709 struct ui_file *stream,
1710 const struct value_print_options *options)
1711 {
1712 struct value *index_value;
1713
1714 if (!options->print_array_indexes)
1715 return;
1716
1717 index_value = value_from_longest (index_type, index);
1718
1719 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1720 }
1721
1722 /* Called by various <lang>_val_print routines to print elements of an
1723 array in the form "<elem1>, <elem2>, <elem3>, ...".
1724
1725 (FIXME?) Assumes array element separator is a comma, which is correct
1726 for all languages currently handled.
1727 (FIXME?) Some languages have a notation for repeated array elements,
1728 perhaps we should try to use that notation when appropriate. */
1729
1730 void
1731 val_print_array_elements (struct type *type,
1732 const gdb_byte *valaddr, int embedded_offset,
1733 CORE_ADDR address, struct ui_file *stream,
1734 int recurse,
1735 const struct value *val,
1736 const struct value_print_options *options,
1737 unsigned int i)
1738 {
1739 unsigned int things_printed = 0;
1740 unsigned len;
1741 struct type *elttype, *index_type, *base_index_type;
1742 unsigned eltlen;
1743 /* Position of the array element we are examining to see
1744 whether it is repeated. */
1745 unsigned int rep1;
1746 /* Number of repetitions we have detected so far. */
1747 unsigned int reps;
1748 LONGEST low_bound, high_bound;
1749 LONGEST low_pos, high_pos;
1750
1751 elttype = TYPE_TARGET_TYPE (type);
1752 eltlen = TYPE_LENGTH (check_typedef (elttype));
1753 index_type = TYPE_INDEX_TYPE (type);
1754
1755 if (get_array_bounds (type, &low_bound, &high_bound))
1756 {
1757 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1758 base_index_type = TYPE_TARGET_TYPE (index_type);
1759 else
1760 base_index_type = index_type;
1761
1762 /* Non-contiguous enumerations types can by used as index types
1763 in some languages (e.g. Ada). In this case, the array length
1764 shall be computed from the positions of the first and last
1765 literal in the enumeration type, and not from the values
1766 of these literals. */
1767 if (!discrete_position (base_index_type, low_bound, &low_pos)
1768 || !discrete_position (base_index_type, high_bound, &high_pos))
1769 {
1770 warning (_("unable to get positions in array, use bounds instead"));
1771 low_pos = low_bound;
1772 high_pos = high_bound;
1773 }
1774
1775 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1776 But we have to be a little extra careful, because some languages
1777 such as Ada allow LOW_POS to be greater than HIGH_POS for
1778 empty arrays. In that situation, the array length is just zero,
1779 not negative! */
1780 if (low_pos > high_pos)
1781 len = 0;
1782 else
1783 len = high_pos - low_pos + 1;
1784 }
1785 else
1786 {
1787 warning (_("unable to get bounds of array, assuming null array"));
1788 low_bound = 0;
1789 len = 0;
1790 }
1791
1792 annotate_array_section_begin (i, elttype);
1793
1794 for (; i < len && things_printed < options->print_max; i++)
1795 {
1796 if (i != 0)
1797 {
1798 if (options->prettyformat_arrays)
1799 {
1800 fprintf_filtered (stream, ",\n");
1801 print_spaces_filtered (2 + 2 * recurse, stream);
1802 }
1803 else
1804 {
1805 fprintf_filtered (stream, ", ");
1806 }
1807 }
1808 wrap_here (n_spaces (2 + 2 * recurse));
1809 maybe_print_array_index (index_type, i + low_bound,
1810 stream, options);
1811
1812 rep1 = i + 1;
1813 reps = 1;
1814 /* Only check for reps if repeat_count_threshold is not set to
1815 UINT_MAX (unlimited). */
1816 if (options->repeat_count_threshold < UINT_MAX)
1817 {
1818 while (rep1 < len
1819 && value_contents_eq (val,
1820 embedded_offset + i * eltlen,
1821 val,
1822 (embedded_offset
1823 + rep1 * eltlen),
1824 eltlen))
1825 {
1826 ++reps;
1827 ++rep1;
1828 }
1829 }
1830
1831 if (reps > options->repeat_count_threshold)
1832 {
1833 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1834 address, stream, recurse + 1, val, options,
1835 current_language);
1836 annotate_elt_rep (reps);
1837 fprintf_filtered (stream, " <repeats %u times>", reps);
1838 annotate_elt_rep_end ();
1839
1840 i = rep1 - 1;
1841 things_printed += options->repeat_count_threshold;
1842 }
1843 else
1844 {
1845 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1846 address,
1847 stream, recurse + 1, val, options, current_language);
1848 annotate_elt ();
1849 things_printed++;
1850 }
1851 }
1852 annotate_array_section_end ();
1853 if (i < len)
1854 {
1855 fprintf_filtered (stream, "...");
1856 }
1857 }
1858
1859 /* Read LEN bytes of target memory at address MEMADDR, placing the
1860 results in GDB's memory at MYADDR. Returns a count of the bytes
1861 actually read, and optionally a target_xfer_status value in the
1862 location pointed to by ERRPTR if ERRPTR is non-null. */
1863
1864 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1865 function be eliminated. */
1866
1867 static int
1868 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1869 int len, int *errptr)
1870 {
1871 int nread; /* Number of bytes actually read. */
1872 int errcode; /* Error from last read. */
1873
1874 /* First try a complete read. */
1875 errcode = target_read_memory (memaddr, myaddr, len);
1876 if (errcode == 0)
1877 {
1878 /* Got it all. */
1879 nread = len;
1880 }
1881 else
1882 {
1883 /* Loop, reading one byte at a time until we get as much as we can. */
1884 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1885 {
1886 errcode = target_read_memory (memaddr++, myaddr++, 1);
1887 }
1888 /* If an error, the last read was unsuccessful, so adjust count. */
1889 if (errcode != 0)
1890 {
1891 nread--;
1892 }
1893 }
1894 if (errptr != NULL)
1895 {
1896 *errptr = errcode;
1897 }
1898 return (nread);
1899 }
1900
1901 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1902 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1903 allocated buffer containing the string, which the caller is responsible to
1904 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1905 success, or a target_xfer_status on failure.
1906
1907 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1908 (including eventual NULs in the middle or end of the string).
1909
1910 If LEN is -1, stops at the first null character (not necessarily
1911 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1912 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1913 the string.
1914
1915 Unless an exception is thrown, BUFFER will always be allocated, even on
1916 failure. In this case, some characters might have been read before the
1917 failure happened. Check BYTES_READ to recognize this situation.
1918
1919 Note: There was a FIXME asking to make this code use target_read_string,
1920 but this function is more general (can read past null characters, up to
1921 given LEN). Besides, it is used much more often than target_read_string
1922 so it is more tested. Perhaps callers of target_read_string should use
1923 this function instead? */
1924
1925 int
1926 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1927 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1928 {
1929 int errcode; /* Errno returned from bad reads. */
1930 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1931 gdb_byte *bufptr; /* Pointer to next available byte in
1932 buffer. */
1933 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1934
1935 /* Loop until we either have all the characters, or we encounter
1936 some error, such as bumping into the end of the address space. */
1937
1938 *buffer = NULL;
1939
1940 old_chain = make_cleanup (free_current_contents, buffer);
1941
1942 if (len > 0)
1943 {
1944 /* We want fetchlimit chars, so we might as well read them all in
1945 one operation. */
1946 unsigned int fetchlen = min (len, fetchlimit);
1947
1948 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1949 bufptr = *buffer;
1950
1951 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1952 / width;
1953 addr += nfetch * width;
1954 bufptr += nfetch * width;
1955 }
1956 else if (len == -1)
1957 {
1958 unsigned long bufsize = 0;
1959 unsigned int chunksize; /* Size of each fetch, in chars. */
1960 int found_nul; /* Non-zero if we found the nul char. */
1961 gdb_byte *limit; /* First location past end of fetch buffer. */
1962
1963 found_nul = 0;
1964 /* We are looking for a NUL terminator to end the fetching, so we
1965 might as well read in blocks that are large enough to be efficient,
1966 but not so large as to be slow if fetchlimit happens to be large.
1967 So we choose the minimum of 8 and fetchlimit. We used to use 200
1968 instead of 8 but 200 is way too big for remote debugging over a
1969 serial line. */
1970 chunksize = min (8, fetchlimit);
1971
1972 do
1973 {
1974 QUIT;
1975 nfetch = min (chunksize, fetchlimit - bufsize);
1976
1977 if (*buffer == NULL)
1978 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1979 else
1980 *buffer = (gdb_byte *) xrealloc (*buffer,
1981 (nfetch + bufsize) * width);
1982
1983 bufptr = *buffer + bufsize * width;
1984 bufsize += nfetch;
1985
1986 /* Read as much as we can. */
1987 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1988 / width;
1989
1990 /* Scan this chunk for the null character that terminates the string
1991 to print. If found, we don't need to fetch any more. Note
1992 that bufptr is explicitly left pointing at the next character
1993 after the null character, or at the next character after the end
1994 of the buffer. */
1995
1996 limit = bufptr + nfetch * width;
1997 while (bufptr < limit)
1998 {
1999 unsigned long c;
2000
2001 c = extract_unsigned_integer (bufptr, width, byte_order);
2002 addr += width;
2003 bufptr += width;
2004 if (c == 0)
2005 {
2006 /* We don't care about any error which happened after
2007 the NUL terminator. */
2008 errcode = 0;
2009 found_nul = 1;
2010 break;
2011 }
2012 }
2013 }
2014 while (errcode == 0 /* no error */
2015 && bufptr - *buffer < fetchlimit * width /* no overrun */
2016 && !found_nul); /* haven't found NUL yet */
2017 }
2018 else
2019 { /* Length of string is really 0! */
2020 /* We always allocate *buffer. */
2021 *buffer = bufptr = xmalloc (1);
2022 errcode = 0;
2023 }
2024
2025 /* bufptr and addr now point immediately beyond the last byte which we
2026 consider part of the string (including a '\0' which ends the string). */
2027 *bytes_read = bufptr - *buffer;
2028
2029 QUIT;
2030
2031 discard_cleanups (old_chain);
2032
2033 return errcode;
2034 }
2035
2036 /* Return true if print_wchar can display W without resorting to a
2037 numeric escape, false otherwise. */
2038
2039 static int
2040 wchar_printable (gdb_wchar_t w)
2041 {
2042 return (gdb_iswprint (w)
2043 || w == LCST ('\a') || w == LCST ('\b')
2044 || w == LCST ('\f') || w == LCST ('\n')
2045 || w == LCST ('\r') || w == LCST ('\t')
2046 || w == LCST ('\v'));
2047 }
2048
2049 /* A helper function that converts the contents of STRING to wide
2050 characters and then appends them to OUTPUT. */
2051
2052 static void
2053 append_string_as_wide (const char *string,
2054 struct obstack *output)
2055 {
2056 for (; *string; ++string)
2057 {
2058 gdb_wchar_t w = gdb_btowc (*string);
2059 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2060 }
2061 }
2062
2063 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2064 original (target) bytes representing the character, ORIG_LEN is the
2065 number of valid bytes. WIDTH is the number of bytes in a base
2066 characters of the type. OUTPUT is an obstack to which wide
2067 characters are emitted. QUOTER is a (narrow) character indicating
2068 the style of quotes surrounding the character to be printed.
2069 NEED_ESCAPE is an in/out flag which is used to track numeric
2070 escapes across calls. */
2071
2072 static void
2073 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2074 int orig_len, int width,
2075 enum bfd_endian byte_order,
2076 struct obstack *output,
2077 int quoter, int *need_escapep)
2078 {
2079 int need_escape = *need_escapep;
2080
2081 *need_escapep = 0;
2082
2083 /* iswprint implementation on Windows returns 1 for tab character.
2084 In order to avoid different printout on this host, we explicitly
2085 use wchar_printable function. */
2086 switch (w)
2087 {
2088 case LCST ('\a'):
2089 obstack_grow_wstr (output, LCST ("\\a"));
2090 break;
2091 case LCST ('\b'):
2092 obstack_grow_wstr (output, LCST ("\\b"));
2093 break;
2094 case LCST ('\f'):
2095 obstack_grow_wstr (output, LCST ("\\f"));
2096 break;
2097 case LCST ('\n'):
2098 obstack_grow_wstr (output, LCST ("\\n"));
2099 break;
2100 case LCST ('\r'):
2101 obstack_grow_wstr (output, LCST ("\\r"));
2102 break;
2103 case LCST ('\t'):
2104 obstack_grow_wstr (output, LCST ("\\t"));
2105 break;
2106 case LCST ('\v'):
2107 obstack_grow_wstr (output, LCST ("\\v"));
2108 break;
2109 default:
2110 {
2111 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2112 && w != LCST ('8')
2113 && w != LCST ('9'))))
2114 {
2115 gdb_wchar_t wchar = w;
2116
2117 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2118 obstack_grow_wstr (output, LCST ("\\"));
2119 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2120 }
2121 else
2122 {
2123 int i;
2124
2125 for (i = 0; i + width <= orig_len; i += width)
2126 {
2127 char octal[30];
2128 ULONGEST value;
2129
2130 value = extract_unsigned_integer (&orig[i], width,
2131 byte_order);
2132 /* If the value fits in 3 octal digits, print it that
2133 way. Otherwise, print it as a hex escape. */
2134 if (value <= 0777)
2135 xsnprintf (octal, sizeof (octal), "\\%.3o",
2136 (int) (value & 0777));
2137 else
2138 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2139 append_string_as_wide (octal, output);
2140 }
2141 /* If we somehow have extra bytes, print them now. */
2142 while (i < orig_len)
2143 {
2144 char octal[5];
2145
2146 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2147 append_string_as_wide (octal, output);
2148 ++i;
2149 }
2150
2151 *need_escapep = 1;
2152 }
2153 break;
2154 }
2155 }
2156 }
2157
2158 /* Print the character C on STREAM as part of the contents of a
2159 literal string whose delimiter is QUOTER. ENCODING names the
2160 encoding of C. */
2161
2162 void
2163 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2164 int quoter, const char *encoding)
2165 {
2166 enum bfd_endian byte_order
2167 = gdbarch_byte_order (get_type_arch (type));
2168 struct obstack wchar_buf, output;
2169 struct cleanup *cleanups;
2170 gdb_byte *buf;
2171 struct wchar_iterator *iter;
2172 int need_escape = 0;
2173
2174 buf = alloca (TYPE_LENGTH (type));
2175 pack_long (buf, type, c);
2176
2177 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2178 encoding, TYPE_LENGTH (type));
2179 cleanups = make_cleanup_wchar_iterator (iter);
2180
2181 /* This holds the printable form of the wchar_t data. */
2182 obstack_init (&wchar_buf);
2183 make_cleanup_obstack_free (&wchar_buf);
2184
2185 while (1)
2186 {
2187 int num_chars;
2188 gdb_wchar_t *chars;
2189 const gdb_byte *buf;
2190 size_t buflen;
2191 int print_escape = 1;
2192 enum wchar_iterate_result result;
2193
2194 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2195 if (num_chars < 0)
2196 break;
2197 if (num_chars > 0)
2198 {
2199 /* If all characters are printable, print them. Otherwise,
2200 we're going to have to print an escape sequence. We
2201 check all characters because we want to print the target
2202 bytes in the escape sequence, and we don't know character
2203 boundaries there. */
2204 int i;
2205
2206 print_escape = 0;
2207 for (i = 0; i < num_chars; ++i)
2208 if (!wchar_printable (chars[i]))
2209 {
2210 print_escape = 1;
2211 break;
2212 }
2213
2214 if (!print_escape)
2215 {
2216 for (i = 0; i < num_chars; ++i)
2217 print_wchar (chars[i], buf, buflen,
2218 TYPE_LENGTH (type), byte_order,
2219 &wchar_buf, quoter, &need_escape);
2220 }
2221 }
2222
2223 /* This handles the NUM_CHARS == 0 case as well. */
2224 if (print_escape)
2225 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2226 byte_order, &wchar_buf, quoter, &need_escape);
2227 }
2228
2229 /* The output in the host encoding. */
2230 obstack_init (&output);
2231 make_cleanup_obstack_free (&output);
2232
2233 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2234 (gdb_byte *) obstack_base (&wchar_buf),
2235 obstack_object_size (&wchar_buf),
2236 sizeof (gdb_wchar_t), &output, translit_char);
2237 obstack_1grow (&output, '\0');
2238
2239 fputs_filtered (obstack_base (&output), stream);
2240
2241 do_cleanups (cleanups);
2242 }
2243
2244 /* Return the repeat count of the next character/byte in ITER,
2245 storing the result in VEC. */
2246
2247 static int
2248 count_next_character (struct wchar_iterator *iter,
2249 VEC (converted_character_d) **vec)
2250 {
2251 struct converted_character *current;
2252
2253 if (VEC_empty (converted_character_d, *vec))
2254 {
2255 struct converted_character tmp;
2256 gdb_wchar_t *chars;
2257
2258 tmp.num_chars
2259 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2260 if (tmp.num_chars > 0)
2261 {
2262 gdb_assert (tmp.num_chars < MAX_WCHARS);
2263 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2264 }
2265 VEC_safe_push (converted_character_d, *vec, &tmp);
2266 }
2267
2268 current = VEC_last (converted_character_d, *vec);
2269
2270 /* Count repeated characters or bytes. */
2271 current->repeat_count = 1;
2272 if (current->num_chars == -1)
2273 {
2274 /* EOF */
2275 return -1;
2276 }
2277 else
2278 {
2279 gdb_wchar_t *chars;
2280 struct converted_character d;
2281 int repeat;
2282
2283 d.repeat_count = 0;
2284
2285 while (1)
2286 {
2287 /* Get the next character. */
2288 d.num_chars
2289 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2290
2291 /* If a character was successfully converted, save the character
2292 into the converted character. */
2293 if (d.num_chars > 0)
2294 {
2295 gdb_assert (d.num_chars < MAX_WCHARS);
2296 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2297 }
2298
2299 /* Determine if the current character is the same as this
2300 new character. */
2301 if (d.num_chars == current->num_chars && d.result == current->result)
2302 {
2303 /* There are two cases to consider:
2304
2305 1) Equality of converted character (num_chars > 0)
2306 2) Equality of non-converted character (num_chars == 0) */
2307 if ((current->num_chars > 0
2308 && memcmp (current->chars, d.chars,
2309 WCHAR_BUFLEN (current->num_chars)) == 0)
2310 || (current->num_chars == 0
2311 && current->buflen == d.buflen
2312 && memcmp (current->buf, d.buf, current->buflen) == 0))
2313 ++current->repeat_count;
2314 else
2315 break;
2316 }
2317 else
2318 break;
2319 }
2320
2321 /* Push this next converted character onto the result vector. */
2322 repeat = current->repeat_count;
2323 VEC_safe_push (converted_character_d, *vec, &d);
2324 return repeat;
2325 }
2326 }
2327
2328 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2329 character to use with string output. WIDTH is the size of the output
2330 character type. BYTE_ORDER is the the target byte order. OPTIONS
2331 is the user's print options. */
2332
2333 static void
2334 print_converted_chars_to_obstack (struct obstack *obstack,
2335 VEC (converted_character_d) *chars,
2336 int quote_char, int width,
2337 enum bfd_endian byte_order,
2338 const struct value_print_options *options)
2339 {
2340 unsigned int idx;
2341 struct converted_character *elem;
2342 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2343 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2344 int need_escape = 0;
2345
2346 /* Set the start state. */
2347 idx = 0;
2348 last = state = START;
2349 elem = NULL;
2350
2351 while (1)
2352 {
2353 switch (state)
2354 {
2355 case START:
2356 /* Nothing to do. */
2357 break;
2358
2359 case SINGLE:
2360 {
2361 int j;
2362
2363 /* We are outputting a single character
2364 (< options->repeat_count_threshold). */
2365
2366 if (last != SINGLE)
2367 {
2368 /* We were outputting some other type of content, so we
2369 must output and a comma and a quote. */
2370 if (last != START)
2371 obstack_grow_wstr (obstack, LCST (", "));
2372 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2373 }
2374 /* Output the character. */
2375 for (j = 0; j < elem->repeat_count; ++j)
2376 {
2377 if (elem->result == wchar_iterate_ok)
2378 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2379 byte_order, obstack, quote_char, &need_escape);
2380 else
2381 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2382 byte_order, obstack, quote_char, &need_escape);
2383 }
2384 }
2385 break;
2386
2387 case REPEAT:
2388 {
2389 int j;
2390 char *s;
2391
2392 /* We are outputting a character with a repeat count
2393 greater than options->repeat_count_threshold. */
2394
2395 if (last == SINGLE)
2396 {
2397 /* We were outputting a single string. Terminate the
2398 string. */
2399 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2400 }
2401 if (last != START)
2402 obstack_grow_wstr (obstack, LCST (", "));
2403
2404 /* Output the character and repeat string. */
2405 obstack_grow_wstr (obstack, LCST ("'"));
2406 if (elem->result == wchar_iterate_ok)
2407 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2408 byte_order, obstack, quote_char, &need_escape);
2409 else
2410 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2411 byte_order, obstack, quote_char, &need_escape);
2412 obstack_grow_wstr (obstack, LCST ("'"));
2413 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2414 for (j = 0; s[j]; ++j)
2415 {
2416 gdb_wchar_t w = gdb_btowc (s[j]);
2417 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2418 }
2419 xfree (s);
2420 }
2421 break;
2422
2423 case INCOMPLETE:
2424 /* We are outputting an incomplete sequence. */
2425 if (last == SINGLE)
2426 {
2427 /* If we were outputting a string of SINGLE characters,
2428 terminate the quote. */
2429 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2430 }
2431 if (last != START)
2432 obstack_grow_wstr (obstack, LCST (", "));
2433
2434 /* Output the incomplete sequence string. */
2435 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2436 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2437 obstack, 0, &need_escape);
2438 obstack_grow_wstr (obstack, LCST (">"));
2439
2440 /* We do not attempt to outupt anything after this. */
2441 state = FINISH;
2442 break;
2443
2444 case FINISH:
2445 /* All done. If we were outputting a string of SINGLE
2446 characters, the string must be terminated. Otherwise,
2447 REPEAT and INCOMPLETE are always left properly terminated. */
2448 if (last == SINGLE)
2449 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2450
2451 return;
2452 }
2453
2454 /* Get the next element and state. */
2455 last = state;
2456 if (state != FINISH)
2457 {
2458 elem = VEC_index (converted_character_d, chars, idx++);
2459 switch (elem->result)
2460 {
2461 case wchar_iterate_ok:
2462 case wchar_iterate_invalid:
2463 if (elem->repeat_count > options->repeat_count_threshold)
2464 state = REPEAT;
2465 else
2466 state = SINGLE;
2467 break;
2468
2469 case wchar_iterate_incomplete:
2470 state = INCOMPLETE;
2471 break;
2472
2473 case wchar_iterate_eof:
2474 state = FINISH;
2475 break;
2476 }
2477 }
2478 }
2479 }
2480
2481 /* Print the character string STRING, printing at most LENGTH
2482 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2483 the type of each character. OPTIONS holds the printing options;
2484 printing stops early if the number hits print_max; repeat counts
2485 are printed as appropriate. Print ellipses at the end if we had to
2486 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2487 QUOTE_CHAR is the character to print at each end of the string. If
2488 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2489 omitted. */
2490
2491 void
2492 generic_printstr (struct ui_file *stream, struct type *type,
2493 const gdb_byte *string, unsigned int length,
2494 const char *encoding, int force_ellipses,
2495 int quote_char, int c_style_terminator,
2496 const struct value_print_options *options)
2497 {
2498 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2499 unsigned int i;
2500 int width = TYPE_LENGTH (type);
2501 struct obstack wchar_buf, output;
2502 struct cleanup *cleanup;
2503 struct wchar_iterator *iter;
2504 int finished = 0;
2505 struct converted_character *last;
2506 VEC (converted_character_d) *converted_chars;
2507
2508 if (length == -1)
2509 {
2510 unsigned long current_char = 1;
2511
2512 for (i = 0; current_char; ++i)
2513 {
2514 QUIT;
2515 current_char = extract_unsigned_integer (string + i * width,
2516 width, byte_order);
2517 }
2518 length = i;
2519 }
2520
2521 /* If the string was not truncated due to `set print elements', and
2522 the last byte of it is a null, we don't print that, in
2523 traditional C style. */
2524 if (c_style_terminator
2525 && !force_ellipses
2526 && length > 0
2527 && (extract_unsigned_integer (string + (length - 1) * width,
2528 width, byte_order) == 0))
2529 length--;
2530
2531 if (length == 0)
2532 {
2533 fputs_filtered ("\"\"", stream);
2534 return;
2535 }
2536
2537 /* Arrange to iterate over the characters, in wchar_t form. */
2538 iter = make_wchar_iterator (string, length * width, encoding, width);
2539 cleanup = make_cleanup_wchar_iterator (iter);
2540 converted_chars = NULL;
2541 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2542
2543 /* Convert characters until the string is over or the maximum
2544 number of printed characters has been reached. */
2545 i = 0;
2546 while (i < options->print_max)
2547 {
2548 int r;
2549
2550 QUIT;
2551
2552 /* Grab the next character and repeat count. */
2553 r = count_next_character (iter, &converted_chars);
2554
2555 /* If less than zero, the end of the input string was reached. */
2556 if (r < 0)
2557 break;
2558
2559 /* Otherwise, add the count to the total print count and get
2560 the next character. */
2561 i += r;
2562 }
2563
2564 /* Get the last element and determine if the entire string was
2565 processed. */
2566 last = VEC_last (converted_character_d, converted_chars);
2567 finished = (last->result == wchar_iterate_eof);
2568
2569 /* Ensure that CONVERTED_CHARS is terminated. */
2570 last->result = wchar_iterate_eof;
2571
2572 /* WCHAR_BUF is the obstack we use to represent the string in
2573 wchar_t form. */
2574 obstack_init (&wchar_buf);
2575 make_cleanup_obstack_free (&wchar_buf);
2576
2577 /* Print the output string to the obstack. */
2578 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2579 width, byte_order, options);
2580
2581 if (force_ellipses || !finished)
2582 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2583
2584 /* OUTPUT is where we collect `char's for printing. */
2585 obstack_init (&output);
2586 make_cleanup_obstack_free (&output);
2587
2588 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2589 (gdb_byte *) obstack_base (&wchar_buf),
2590 obstack_object_size (&wchar_buf),
2591 sizeof (gdb_wchar_t), &output, translit_char);
2592 obstack_1grow (&output, '\0');
2593
2594 fputs_filtered (obstack_base (&output), stream);
2595
2596 do_cleanups (cleanup);
2597 }
2598
2599 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2600 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2601 stops at the first null byte, otherwise printing proceeds (including null
2602 bytes) until either print_max or LEN characters have been printed,
2603 whichever is smaller. ENCODING is the name of the string's
2604 encoding. It can be NULL, in which case the target encoding is
2605 assumed. */
2606
2607 int
2608 val_print_string (struct type *elttype, const char *encoding,
2609 CORE_ADDR addr, int len,
2610 struct ui_file *stream,
2611 const struct value_print_options *options)
2612 {
2613 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2614 int errcode; /* Errno returned from bad reads. */
2615 int found_nul; /* Non-zero if we found the nul char. */
2616 unsigned int fetchlimit; /* Maximum number of chars to print. */
2617 int bytes_read;
2618 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2619 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2620 struct gdbarch *gdbarch = get_type_arch (elttype);
2621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2622 int width = TYPE_LENGTH (elttype);
2623
2624 /* First we need to figure out the limit on the number of characters we are
2625 going to attempt to fetch and print. This is actually pretty simple. If
2626 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2627 LEN is -1, then the limit is print_max. This is true regardless of
2628 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2629 because finding the null byte (or available memory) is what actually
2630 limits the fetch. */
2631
2632 fetchlimit = (len == -1 ? options->print_max : min (len,
2633 options->print_max));
2634
2635 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2636 &buffer, &bytes_read);
2637 old_chain = make_cleanup (xfree, buffer);
2638
2639 addr += bytes_read;
2640
2641 /* We now have either successfully filled the buffer to fetchlimit,
2642 or terminated early due to an error or finding a null char when
2643 LEN is -1. */
2644
2645 /* Determine found_nul by looking at the last character read. */
2646 found_nul = 0;
2647 if (bytes_read >= width)
2648 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2649 byte_order) == 0;
2650 if (len == -1 && !found_nul)
2651 {
2652 gdb_byte *peekbuf;
2653
2654 /* We didn't find a NUL terminator we were looking for. Attempt
2655 to peek at the next character. If not successful, or it is not
2656 a null byte, then force ellipsis to be printed. */
2657
2658 peekbuf = (gdb_byte *) alloca (width);
2659
2660 if (target_read_memory (addr, peekbuf, width) == 0
2661 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2662 force_ellipsis = 1;
2663 }
2664 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2665 {
2666 /* Getting an error when we have a requested length, or fetching less
2667 than the number of characters actually requested, always make us
2668 print ellipsis. */
2669 force_ellipsis = 1;
2670 }
2671
2672 /* If we get an error before fetching anything, don't print a string.
2673 But if we fetch something and then get an error, print the string
2674 and then the error message. */
2675 if (errcode == 0 || bytes_read > 0)
2676 {
2677 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2678 encoding, force_ellipsis, options);
2679 }
2680
2681 if (errcode != 0)
2682 {
2683 char *str;
2684
2685 str = memory_error_message (errcode, gdbarch, addr);
2686 make_cleanup (xfree, str);
2687
2688 fprintf_filtered (stream, "<error: ");
2689 fputs_filtered (str, stream);
2690 fprintf_filtered (stream, ">");
2691 }
2692
2693 gdb_flush (stream);
2694 do_cleanups (old_chain);
2695
2696 return (bytes_read / width);
2697 }
2698 \f
2699
2700 /* The 'set input-radix' command writes to this auxiliary variable.
2701 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2702 it is left unchanged. */
2703
2704 static unsigned input_radix_1 = 10;
2705
2706 /* Validate an input or output radix setting, and make sure the user
2707 knows what they really did here. Radix setting is confusing, e.g.
2708 setting the input radix to "10" never changes it! */
2709
2710 static void
2711 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2712 {
2713 set_input_radix_1 (from_tty, input_radix_1);
2714 }
2715
2716 static void
2717 set_input_radix_1 (int from_tty, unsigned radix)
2718 {
2719 /* We don't currently disallow any input radix except 0 or 1, which don't
2720 make any mathematical sense. In theory, we can deal with any input
2721 radix greater than 1, even if we don't have unique digits for every
2722 value from 0 to radix-1, but in practice we lose on large radix values.
2723 We should either fix the lossage or restrict the radix range more.
2724 (FIXME). */
2725
2726 if (radix < 2)
2727 {
2728 input_radix_1 = input_radix;
2729 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2730 radix);
2731 }
2732 input_radix_1 = input_radix = radix;
2733 if (from_tty)
2734 {
2735 printf_filtered (_("Input radix now set to "
2736 "decimal %u, hex %x, octal %o.\n"),
2737 radix, radix, radix);
2738 }
2739 }
2740
2741 /* The 'set output-radix' command writes to this auxiliary variable.
2742 If the requested radix is valid, OUTPUT_RADIX is updated,
2743 otherwise, it is left unchanged. */
2744
2745 static unsigned output_radix_1 = 10;
2746
2747 static void
2748 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2749 {
2750 set_output_radix_1 (from_tty, output_radix_1);
2751 }
2752
2753 static void
2754 set_output_radix_1 (int from_tty, unsigned radix)
2755 {
2756 /* Validate the radix and disallow ones that we aren't prepared to
2757 handle correctly, leaving the radix unchanged. */
2758 switch (radix)
2759 {
2760 case 16:
2761 user_print_options.output_format = 'x'; /* hex */
2762 break;
2763 case 10:
2764 user_print_options.output_format = 0; /* decimal */
2765 break;
2766 case 8:
2767 user_print_options.output_format = 'o'; /* octal */
2768 break;
2769 default:
2770 output_radix_1 = output_radix;
2771 error (_("Unsupported output radix ``decimal %u''; "
2772 "output radix unchanged."),
2773 radix);
2774 }
2775 output_radix_1 = output_radix = radix;
2776 if (from_tty)
2777 {
2778 printf_filtered (_("Output radix now set to "
2779 "decimal %u, hex %x, octal %o.\n"),
2780 radix, radix, radix);
2781 }
2782 }
2783
2784 /* Set both the input and output radix at once. Try to set the output radix
2785 first, since it has the most restrictive range. An radix that is valid as
2786 an output radix is also valid as an input radix.
2787
2788 It may be useful to have an unusual input radix. If the user wishes to
2789 set an input radix that is not valid as an output radix, he needs to use
2790 the 'set input-radix' command. */
2791
2792 static void
2793 set_radix (char *arg, int from_tty)
2794 {
2795 unsigned radix;
2796
2797 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2798 set_output_radix_1 (0, radix);
2799 set_input_radix_1 (0, radix);
2800 if (from_tty)
2801 {
2802 printf_filtered (_("Input and output radices now set to "
2803 "decimal %u, hex %x, octal %o.\n"),
2804 radix, radix, radix);
2805 }
2806 }
2807
2808 /* Show both the input and output radices. */
2809
2810 static void
2811 show_radix (char *arg, int from_tty)
2812 {
2813 if (from_tty)
2814 {
2815 if (input_radix == output_radix)
2816 {
2817 printf_filtered (_("Input and output radices set to "
2818 "decimal %u, hex %x, octal %o.\n"),
2819 input_radix, input_radix, input_radix);
2820 }
2821 else
2822 {
2823 printf_filtered (_("Input radix set to decimal "
2824 "%u, hex %x, octal %o.\n"),
2825 input_radix, input_radix, input_radix);
2826 printf_filtered (_("Output radix set to decimal "
2827 "%u, hex %x, octal %o.\n"),
2828 output_radix, output_radix, output_radix);
2829 }
2830 }
2831 }
2832 \f
2833
2834 static void
2835 set_print (char *arg, int from_tty)
2836 {
2837 printf_unfiltered (
2838 "\"set print\" must be followed by the name of a print subcommand.\n");
2839 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2840 }
2841
2842 static void
2843 show_print (char *args, int from_tty)
2844 {
2845 cmd_show_list (showprintlist, from_tty, "");
2846 }
2847
2848 static void
2849 set_print_raw (char *arg, int from_tty)
2850 {
2851 printf_unfiltered (
2852 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2853 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2854 }
2855
2856 static void
2857 show_print_raw (char *args, int from_tty)
2858 {
2859 cmd_show_list (showprintrawlist, from_tty, "");
2860 }
2861
2862 \f
2863 void
2864 _initialize_valprint (void)
2865 {
2866 add_prefix_cmd ("print", no_class, set_print,
2867 _("Generic command for setting how things print."),
2868 &setprintlist, "set print ", 0, &setlist);
2869 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2870 /* Prefer set print to set prompt. */
2871 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2872
2873 add_prefix_cmd ("print", no_class, show_print,
2874 _("Generic command for showing print settings."),
2875 &showprintlist, "show print ", 0, &showlist);
2876 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2877 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2878
2879 add_prefix_cmd ("raw", no_class, set_print_raw,
2880 _("\
2881 Generic command for setting what things to print in \"raw\" mode."),
2882 &setprintrawlist, "set print raw ", 0, &setprintlist);
2883 add_prefix_cmd ("raw", no_class, show_print_raw,
2884 _("Generic command for showing \"print raw\" settings."),
2885 &showprintrawlist, "show print raw ", 0, &showprintlist);
2886
2887 add_setshow_uinteger_cmd ("elements", no_class,
2888 &user_print_options.print_max, _("\
2889 Set limit on string chars or array elements to print."), _("\
2890 Show limit on string chars or array elements to print."), _("\
2891 \"set print elements unlimited\" causes there to be no limit."),
2892 NULL,
2893 show_print_max,
2894 &setprintlist, &showprintlist);
2895
2896 add_setshow_boolean_cmd ("null-stop", no_class,
2897 &user_print_options.stop_print_at_null, _("\
2898 Set printing of char arrays to stop at first null char."), _("\
2899 Show printing of char arrays to stop at first null char."), NULL,
2900 NULL,
2901 show_stop_print_at_null,
2902 &setprintlist, &showprintlist);
2903
2904 add_setshow_uinteger_cmd ("repeats", no_class,
2905 &user_print_options.repeat_count_threshold, _("\
2906 Set threshold for repeated print elements."), _("\
2907 Show threshold for repeated print elements."), _("\
2908 \"set print repeats unlimited\" causes all elements to be individually printed."),
2909 NULL,
2910 show_repeat_count_threshold,
2911 &setprintlist, &showprintlist);
2912
2913 add_setshow_boolean_cmd ("pretty", class_support,
2914 &user_print_options.prettyformat_structs, _("\
2915 Set pretty formatting of structures."), _("\
2916 Show pretty formatting of structures."), NULL,
2917 NULL,
2918 show_prettyformat_structs,
2919 &setprintlist, &showprintlist);
2920
2921 add_setshow_boolean_cmd ("union", class_support,
2922 &user_print_options.unionprint, _("\
2923 Set printing of unions interior to structures."), _("\
2924 Show printing of unions interior to structures."), NULL,
2925 NULL,
2926 show_unionprint,
2927 &setprintlist, &showprintlist);
2928
2929 add_setshow_boolean_cmd ("array", class_support,
2930 &user_print_options.prettyformat_arrays, _("\
2931 Set pretty formatting of arrays."), _("\
2932 Show pretty formatting of arrays."), NULL,
2933 NULL,
2934 show_prettyformat_arrays,
2935 &setprintlist, &showprintlist);
2936
2937 add_setshow_boolean_cmd ("address", class_support,
2938 &user_print_options.addressprint, _("\
2939 Set printing of addresses."), _("\
2940 Show printing of addresses."), NULL,
2941 NULL,
2942 show_addressprint,
2943 &setprintlist, &showprintlist);
2944
2945 add_setshow_boolean_cmd ("symbol", class_support,
2946 &user_print_options.symbol_print, _("\
2947 Set printing of symbol names when printing pointers."), _("\
2948 Show printing of symbol names when printing pointers."),
2949 NULL, NULL,
2950 show_symbol_print,
2951 &setprintlist, &showprintlist);
2952
2953 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2954 _("\
2955 Set default input radix for entering numbers."), _("\
2956 Show default input radix for entering numbers."), NULL,
2957 set_input_radix,
2958 show_input_radix,
2959 &setlist, &showlist);
2960
2961 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2962 _("\
2963 Set default output radix for printing of values."), _("\
2964 Show default output radix for printing of values."), NULL,
2965 set_output_radix,
2966 show_output_radix,
2967 &setlist, &showlist);
2968
2969 /* The "set radix" and "show radix" commands are special in that
2970 they are like normal set and show commands but allow two normally
2971 independent variables to be either set or shown with a single
2972 command. So the usual deprecated_add_set_cmd() and [deleted]
2973 add_show_from_set() commands aren't really appropriate. */
2974 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2975 longer true - show can display anything. */
2976 add_cmd ("radix", class_support, set_radix, _("\
2977 Set default input and output number radices.\n\
2978 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2979 Without an argument, sets both radices back to the default value of 10."),
2980 &setlist);
2981 add_cmd ("radix", class_support, show_radix, _("\
2982 Show the default input and output number radices.\n\
2983 Use 'show input-radix' or 'show output-radix' to independently show each."),
2984 &showlist);
2985
2986 add_setshow_boolean_cmd ("array-indexes", class_support,
2987 &user_print_options.print_array_indexes, _("\
2988 Set printing of array indexes."), _("\
2989 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2990 &setprintlist, &showprintlist);
2991 }
This page took 0.090023 seconds and 5 git commands to generate.