Introduce generic_value_print_complex
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 struct value *original_value,
92 int embedded_offset,
93 struct ui_file *stream);
94
95 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
96 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
97
98 struct value_print_options user_print_options =
99 {
100 Val_prettyformat_default, /* prettyformat */
101 0, /* prettyformat_arrays */
102 0, /* prettyformat_structs */
103 0, /* vtblprint */
104 1, /* unionprint */
105 1, /* addressprint */
106 0, /* objectprint */
107 PRINT_MAX_DEFAULT, /* print_max */
108 10, /* repeat_count_threshold */
109 0, /* output_format */
110 0, /* format */
111 0, /* stop_print_at_null */
112 0, /* print_array_indexes */
113 0, /* deref_ref */
114 1, /* static_field_print */
115 1, /* pascal_static_field_print */
116 0, /* raw */
117 0, /* summary */
118 1, /* symbol_print */
119 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
120 1 /* finish_print */
121 };
122
123 /* Initialize *OPTS to be a copy of the user print options. */
124 void
125 get_user_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 }
129
130 /* Initialize *OPTS to be a copy of the user print options, but with
131 pretty-formatting disabled. */
132 void
133 get_no_prettyformat_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 opts->prettyformat = Val_no_prettyformat;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but using
140 FORMAT as the formatting option. */
141 void
142 get_formatted_print_options (struct value_print_options *opts,
143 char format)
144 {
145 *opts = user_print_options;
146 opts->format = format;
147 }
148
149 static void
150 show_print_max (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file,
154 _("Limit on string chars or array "
155 "elements to print is %s.\n"),
156 value);
157 }
158
159
160 /* Default input and output radixes, and output format letter. */
161
162 unsigned input_radix = 10;
163 static void
164 show_input_radix (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file,
168 _("Default input radix for entering numbers is %s.\n"),
169 value);
170 }
171
172 unsigned output_radix = 10;
173 static void
174 show_output_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default output radix for printing of values is %s.\n"),
179 value);
180 }
181
182 /* By default we print arrays without printing the index of each element in
183 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
184
185 static void
186 show_print_array_indexes (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
190 }
191
192 /* Print repeat counts if there are more than this many repetitions of an
193 element in an array. Referenced by the low level language dependent
194 print routines. */
195
196 static void
197 show_repeat_count_threshold (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
201 value);
202 }
203
204 /* If nonzero, stops printing of char arrays at first null. */
205
206 static void
207 show_stop_print_at_null (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Printing of char arrays to stop "
212 "at first null char is %s.\n"),
213 value);
214 }
215
216 /* Controls pretty printing of structures. */
217
218 static void
219 show_prettyformat_structs (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
223 }
224
225 /* Controls pretty printing of arrays. */
226
227 static void
228 show_prettyformat_arrays (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
232 }
233
234 /* If nonzero, causes unions inside structures or other unions to be
235 printed. */
236
237 static void
238 show_unionprint (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Printing of unions interior to structures is %s.\n"),
243 value);
244 }
245
246 /* If nonzero, causes machine addresses to be printed in certain contexts. */
247
248 static void
249 show_addressprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
253 }
254
255 static void
256 show_symbol_print (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258 {
259 fprintf_filtered (file,
260 _("Printing of symbols when printing pointers is %s.\n"),
261 value);
262 }
263
264 \f
265
266 /* A helper function for val_print. When printing in "summary" mode,
267 we want to print scalar arguments, but not aggregate arguments.
268 This function distinguishes between the two. */
269
270 int
271 val_print_scalar_type_p (struct type *type)
272 {
273 type = check_typedef (type);
274 while (TYPE_IS_REFERENCE (type))
275 {
276 type = TYPE_TARGET_TYPE (type);
277 type = check_typedef (type);
278 }
279 switch (TYPE_CODE (type))
280 {
281 case TYPE_CODE_ARRAY:
282 case TYPE_CODE_STRUCT:
283 case TYPE_CODE_UNION:
284 case TYPE_CODE_SET:
285 case TYPE_CODE_STRING:
286 return 0;
287 default:
288 return 1;
289 }
290 }
291
292 /* A helper function for val_print. When printing with limited depth we
293 want to print string and scalar arguments, but not aggregate arguments.
294 This function distinguishes between the two. */
295
296 static bool
297 val_print_scalar_or_string_type_p (struct type *type,
298 const struct language_defn *language)
299 {
300 return (val_print_scalar_type_p (type)
301 || language->la_is_string_type_p (type));
302 }
303
304 /* See its definition in value.h. */
305
306 int
307 valprint_check_validity (struct ui_file *stream,
308 struct type *type,
309 LONGEST embedded_offset,
310 const struct value *val)
311 {
312 type = check_typedef (type);
313
314 if (type_not_associated (type))
315 {
316 val_print_not_associated (stream);
317 return 0;
318 }
319
320 if (type_not_allocated (type))
321 {
322 val_print_not_allocated (stream);
323 return 0;
324 }
325
326 if (TYPE_CODE (type) != TYPE_CODE_UNION
327 && TYPE_CODE (type) != TYPE_CODE_STRUCT
328 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
329 {
330 if (value_bits_any_optimized_out (val,
331 TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 val_print_optimized_out (val, stream);
335 return 0;
336 }
337
338 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
339 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
340 {
341 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
342 int ref_is_addressable = 0;
343
344 if (is_ref)
345 {
346 const struct value *deref_val = coerce_ref_if_computed (val);
347
348 if (deref_val != NULL)
349 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
350 }
351
352 if (!is_ref || !ref_is_addressable)
353 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
354 stream);
355
356 /* C++ references should be valid even if they're synthetic. */
357 return is_ref;
358 }
359
360 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
361 {
362 val_print_unavailable (stream);
363 return 0;
364 }
365 }
366
367 return 1;
368 }
369
370 void
371 val_print_optimized_out (const struct value *val, struct ui_file *stream)
372 {
373 if (val != NULL && value_lval_const (val) == lval_register)
374 val_print_not_saved (stream);
375 else
376 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
377 }
378
379 void
380 val_print_not_saved (struct ui_file *stream)
381 {
382 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
383 }
384
385 void
386 val_print_unavailable (struct ui_file *stream)
387 {
388 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
389 }
390
391 void
392 val_print_invalid_address (struct ui_file *stream)
393 {
394 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
395 }
396
397 /* Print a pointer based on the type of its target.
398
399 Arguments to this functions are roughly the same as those in
400 generic_val_print. A difference is that ADDRESS is the address to print,
401 with embedded_offset already added. ELTTYPE represents
402 the pointed type after check_typedef. */
403
404 static void
405 print_unpacked_pointer (struct type *type, struct type *elttype,
406 CORE_ADDR address, struct ui_file *stream,
407 const struct value_print_options *options)
408 {
409 struct gdbarch *gdbarch = get_type_arch (type);
410
411 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
412 {
413 /* Try to print what function it points to. */
414 print_function_pointer_address (options, gdbarch, address, stream);
415 return;
416 }
417
418 if (options->symbol_print)
419 print_address_demangle (options, gdbarch, address, stream, demangle);
420 else if (options->addressprint)
421 fputs_filtered (paddress (gdbarch, address), stream);
422 }
423
424 /* generic_val_print helper for TYPE_CODE_ARRAY. */
425
426 static void
427 generic_val_print_array (struct type *type,
428 int embedded_offset, CORE_ADDR address,
429 struct ui_file *stream, int recurse,
430 struct value *original_value,
431 const struct value_print_options *options,
432 const struct
433 generic_val_print_decorations *decorations)
434 {
435 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
436 struct type *elttype = check_typedef (unresolved_elttype);
437
438 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
439 {
440 LONGEST low_bound, high_bound;
441
442 if (!get_array_bounds (type, &low_bound, &high_bound))
443 error (_("Could not determine the array high bound"));
444
445 if (options->prettyformat_arrays)
446 {
447 print_spaces_filtered (2 + 2 * recurse, stream);
448 }
449
450 fputs_filtered (decorations->array_start, stream);
451 val_print_array_elements (type, embedded_offset,
452 address, stream,
453 recurse, original_value, options, 0);
454 fputs_filtered (decorations->array_end, stream);
455 }
456 else
457 {
458 /* Array of unspecified length: treat like pointer to first elt. */
459 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
460 options);
461 }
462
463 }
464
465 /* generic_val_print helper for TYPE_CODE_PTR. */
466
467 static void
468 generic_val_print_ptr (struct type *type,
469 int embedded_offset, struct ui_file *stream,
470 struct value *original_value,
471 const struct value_print_options *options)
472 {
473 struct gdbarch *gdbarch = get_type_arch (type);
474 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
475
476 if (options->format && options->format != 's')
477 {
478 val_print_scalar_formatted (type, embedded_offset,
479 original_value, options, 0, stream);
480 }
481 else
482 {
483 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
484 struct type *elttype = check_typedef (unresolved_elttype);
485 const gdb_byte *valaddr = value_contents_for_printing (original_value);
486 CORE_ADDR addr = unpack_pointer (type,
487 valaddr + embedded_offset * unit_size);
488
489 print_unpacked_pointer (type, elttype, addr, stream, options);
490 }
491 }
492
493 /* generic_value_print helper for TYPE_CODE_PTR. */
494
495 static void
496 generic_value_print_ptr (struct value *val, struct ui_file *stream,
497 const struct value_print_options *options)
498 {
499
500 if (options->format && options->format != 's')
501 value_print_scalar_formatted (val, options, 0, stream);
502 else
503 {
504 struct type *type = check_typedef (value_type (val));
505 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
506 const gdb_byte *valaddr = value_contents_for_printing (val);
507 CORE_ADDR addr = unpack_pointer (type, valaddr);
508
509 print_unpacked_pointer (type, elttype, addr, stream, options);
510 }
511 }
512
513
514 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
515
516 static void
517 generic_val_print_memberptr (struct type *type,
518 int embedded_offset, struct ui_file *stream,
519 struct value *original_value,
520 const struct value_print_options *options)
521 {
522 val_print_scalar_formatted (type, embedded_offset,
523 original_value, options, 0, stream);
524 }
525
526 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
527
528 static void
529 print_ref_address (struct type *type, const gdb_byte *address_buffer,
530 int embedded_offset, struct ui_file *stream)
531 {
532 struct gdbarch *gdbarch = get_type_arch (type);
533
534 if (address_buffer != NULL)
535 {
536 CORE_ADDR address
537 = extract_typed_address (address_buffer + embedded_offset, type);
538
539 fprintf_filtered (stream, "@");
540 fputs_filtered (paddress (gdbarch, address), stream);
541 }
542 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
543 }
544
545 /* If VAL is addressable, return the value contents buffer of a value that
546 represents a pointer to VAL. Otherwise return NULL. */
547
548 static const gdb_byte *
549 get_value_addr_contents (struct value *deref_val)
550 {
551 gdb_assert (deref_val != NULL);
552
553 if (value_lval_const (deref_val) == lval_memory)
554 return value_contents_for_printing_const (value_addr (deref_val));
555 else
556 {
557 /* We have a non-addressable value, such as a DW_AT_const_value. */
558 return NULL;
559 }
560 }
561
562 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
563
564 static void
565 generic_val_print_ref (struct type *type,
566 int embedded_offset, struct ui_file *stream, int recurse,
567 struct value *original_value,
568 const struct value_print_options *options)
569 {
570 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
571 struct value *deref_val = NULL;
572 const int value_is_synthetic
573 = value_bits_synthetic_pointer (original_value,
574 TARGET_CHAR_BIT * embedded_offset,
575 TARGET_CHAR_BIT * TYPE_LENGTH (type));
576 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
577 || options->deref_ref);
578 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
579 const gdb_byte *valaddr = value_contents_for_printing (original_value);
580
581 if (must_coerce_ref && type_is_defined)
582 {
583 deref_val = coerce_ref_if_computed (original_value);
584
585 if (deref_val != NULL)
586 {
587 /* More complicated computed references are not supported. */
588 gdb_assert (embedded_offset == 0);
589 }
590 else
591 deref_val = value_at (TYPE_TARGET_TYPE (type),
592 unpack_pointer (type, valaddr + embedded_offset));
593 }
594 /* Else, original_value isn't a synthetic reference or we don't have to print
595 the reference's contents.
596
597 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
598 cause original_value to be a not_lval instead of an lval_computed,
599 which will make value_bits_synthetic_pointer return false.
600 This happens because if options->objectprint is true, c_value_print will
601 overwrite original_value's contents with the result of coercing
602 the reference through value_addr, and then set its type back to
603 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
604 we can simply treat it as non-synthetic and move on. */
605
606 if (options->addressprint)
607 {
608 const gdb_byte *address = (value_is_synthetic && type_is_defined
609 ? get_value_addr_contents (deref_val)
610 : valaddr);
611
612 print_ref_address (type, address, embedded_offset, stream);
613
614 if (options->deref_ref)
615 fputs_filtered (": ", stream);
616 }
617
618 if (options->deref_ref)
619 {
620 if (type_is_defined)
621 common_val_print (deref_val, stream, recurse, options,
622 current_language);
623 else
624 fputs_filtered ("???", stream);
625 }
626 }
627
628 /* Helper function for generic_val_print_enum.
629 This is also used to print enums in TYPE_CODE_FLAGS values. */
630
631 static void
632 generic_val_print_enum_1 (struct type *type, LONGEST val,
633 struct ui_file *stream)
634 {
635 unsigned int i;
636 unsigned int len;
637
638 len = TYPE_NFIELDS (type);
639 for (i = 0; i < len; i++)
640 {
641 QUIT;
642 if (val == TYPE_FIELD_ENUMVAL (type, i))
643 {
644 break;
645 }
646 }
647 if (i < len)
648 {
649 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
650 stream);
651 }
652 else if (TYPE_FLAG_ENUM (type))
653 {
654 int first = 1;
655
656 /* We have a "flag" enum, so we try to decompose it into pieces as
657 appropriate. The enum may have multiple enumerators representing
658 the same bit, in which case we choose to only print the first one
659 we find. */
660 for (i = 0; i < len; ++i)
661 {
662 QUIT;
663
664 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
665 int nbits = count_one_bits_ll (enumval);
666
667 gdb_assert (nbits == 0 || nbits == 1);
668
669 if ((val & enumval) != 0)
670 {
671 if (first)
672 {
673 fputs_filtered ("(", stream);
674 first = 0;
675 }
676 else
677 fputs_filtered (" | ", stream);
678
679 val &= ~TYPE_FIELD_ENUMVAL (type, i);
680 fputs_styled (TYPE_FIELD_NAME (type, i),
681 variable_name_style.style (), stream);
682 }
683 }
684
685 if (val != 0)
686 {
687 /* There are leftover bits, print them. */
688 if (first)
689 fputs_filtered ("(", stream);
690 else
691 fputs_filtered (" | ", stream);
692
693 fputs_filtered ("unknown: 0x", stream);
694 print_longest (stream, 'x', 0, val);
695 fputs_filtered (")", stream);
696 }
697 else if (first)
698 {
699 /* Nothing has been printed and the value is 0, the enum value must
700 have been 0. */
701 fputs_filtered ("0", stream);
702 }
703 else
704 {
705 /* Something has been printed, close the parenthesis. */
706 fputs_filtered (")", stream);
707 }
708 }
709 else
710 print_longest (stream, 'd', 0, val);
711 }
712
713 /* generic_val_print helper for TYPE_CODE_ENUM. */
714
715 static void
716 generic_val_print_enum (struct type *type,
717 int embedded_offset, struct ui_file *stream,
718 struct value *original_value,
719 const struct value_print_options *options)
720 {
721 LONGEST val;
722 struct gdbarch *gdbarch = get_type_arch (type);
723 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
724
725 gdb_assert (!options->format);
726
727 const gdb_byte *valaddr = value_contents_for_printing (original_value);
728
729 val = unpack_long (type, valaddr + embedded_offset * unit_size);
730
731 generic_val_print_enum_1 (type, val, stream);
732 }
733
734 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
735
736 static void
737 generic_val_print_func (struct type *type,
738 int embedded_offset, CORE_ADDR address,
739 struct ui_file *stream,
740 struct value *original_value,
741 const struct value_print_options *options)
742 {
743 struct gdbarch *gdbarch = get_type_arch (type);
744
745 gdb_assert (!options->format);
746
747 /* FIXME, we should consider, at least for ANSI C language,
748 eliminating the distinction made between FUNCs and POINTERs to
749 FUNCs. */
750 fprintf_filtered (stream, "{");
751 type_print (type, "", stream, -1);
752 fprintf_filtered (stream, "} ");
753 /* Try to print what function it points to, and its address. */
754 print_address_demangle (options, gdbarch, address, stream, demangle);
755 }
756
757 /* generic_val_print helper for TYPE_CODE_BOOL. */
758
759 static void
760 generic_val_print_bool (struct type *type,
761 int embedded_offset, struct ui_file *stream,
762 struct value *original_value,
763 const struct value_print_options *options,
764 const struct generic_val_print_decorations *decorations)
765 {
766 LONGEST val;
767 struct gdbarch *gdbarch = get_type_arch (type);
768 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
769
770 if (options->format || options->output_format)
771 {
772 struct value_print_options opts = *options;
773 opts.format = (options->format ? options->format
774 : options->output_format);
775 val_print_scalar_formatted (type, embedded_offset,
776 original_value, &opts, 0, stream);
777 }
778 else
779 {
780 const gdb_byte *valaddr = value_contents_for_printing (original_value);
781
782 val = unpack_long (type, valaddr + embedded_offset * unit_size);
783 if (val == 0)
784 fputs_filtered (decorations->false_name, stream);
785 else if (val == 1)
786 fputs_filtered (decorations->true_name, stream);
787 else
788 print_longest (stream, 'd', 0, val);
789 }
790 }
791
792 /* generic_value_print helper for TYPE_CODE_BOOL. */
793
794 static void
795 generic_value_print_bool
796 (struct value *value, struct ui_file *stream,
797 const struct value_print_options *options,
798 const struct generic_val_print_decorations *decorations)
799 {
800 if (options->format || options->output_format)
801 {
802 struct value_print_options opts = *options;
803 opts.format = (options->format ? options->format
804 : options->output_format);
805 value_print_scalar_formatted (value, &opts, 0, stream);
806 }
807 else
808 {
809 const gdb_byte *valaddr = value_contents_for_printing (value);
810 struct type *type = check_typedef (value_type (value));
811 LONGEST val = unpack_long (type, valaddr);
812 if (val == 0)
813 fputs_filtered (decorations->false_name, stream);
814 else if (val == 1)
815 fputs_filtered (decorations->true_name, stream);
816 else
817 print_longest (stream, 'd', 0, val);
818 }
819 }
820
821 /* generic_val_print helper for TYPE_CODE_INT. */
822
823 static void
824 generic_val_print_int (struct type *type,
825 int embedded_offset, struct ui_file *stream,
826 struct value *original_value,
827 const struct value_print_options *options)
828 {
829 struct value_print_options opts = *options;
830
831 opts.format = (options->format ? options->format
832 : options->output_format);
833 val_print_scalar_formatted (type, embedded_offset,
834 original_value, &opts, 0, stream);
835 }
836
837 /* generic_value_print helper for TYPE_CODE_INT. */
838
839 static void
840 generic_value_print_int (struct value *val, struct ui_file *stream,
841 const struct value_print_options *options)
842 {
843 struct value_print_options opts = *options;
844
845 opts.format = (options->format ? options->format
846 : options->output_format);
847 value_print_scalar_formatted (val, &opts, 0, stream);
848 }
849
850 /* generic_val_print helper for TYPE_CODE_CHAR. */
851
852 static void
853 generic_val_print_char (struct type *type, struct type *unresolved_type,
854 int embedded_offset,
855 struct ui_file *stream,
856 struct value *original_value,
857 const struct value_print_options *options)
858 {
859 LONGEST val;
860 struct gdbarch *gdbarch = get_type_arch (type);
861 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
862
863 if (options->format || options->output_format)
864 {
865 struct value_print_options opts = *options;
866
867 opts.format = (options->format ? options->format
868 : options->output_format);
869 val_print_scalar_formatted (type, embedded_offset,
870 original_value, &opts, 0, stream);
871 }
872 else
873 {
874 const gdb_byte *valaddr = value_contents_for_printing (original_value);
875
876 val = unpack_long (type, valaddr + embedded_offset * unit_size);
877 if (TYPE_UNSIGNED (type))
878 fprintf_filtered (stream, "%u", (unsigned int) val);
879 else
880 fprintf_filtered (stream, "%d", (int) val);
881 fputs_filtered (" ", stream);
882 LA_PRINT_CHAR (val, unresolved_type, stream);
883 }
884 }
885
886 /* generic_value_print helper for TYPE_CODE_CHAR. */
887
888 static void
889 generic_value_print_char (struct value *value, struct ui_file *stream,
890 const struct value_print_options *options)
891 {
892 if (options->format || options->output_format)
893 {
894 struct value_print_options opts = *options;
895
896 opts.format = (options->format ? options->format
897 : options->output_format);
898 value_print_scalar_formatted (value, &opts, 0, stream);
899 }
900 else
901 {
902 struct type *unresolved_type = value_type (value);
903 struct type *type = check_typedef (unresolved_type);
904 const gdb_byte *valaddr = value_contents_for_printing (value);
905
906 LONGEST val = unpack_long (type, valaddr);
907 if (TYPE_UNSIGNED (type))
908 fprintf_filtered (stream, "%u", (unsigned int) val);
909 else
910 fprintf_filtered (stream, "%d", (int) val);
911 fputs_filtered (" ", stream);
912 LA_PRINT_CHAR (val, unresolved_type, stream);
913 }
914 }
915
916 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
917
918 static void
919 generic_val_print_float (struct type *type,
920 int embedded_offset, struct ui_file *stream,
921 struct value *original_value,
922 const struct value_print_options *options)
923 {
924 struct gdbarch *gdbarch = get_type_arch (type);
925 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
926
927 gdb_assert (!options->format);
928
929 const gdb_byte *valaddr = value_contents_for_printing (original_value);
930
931 print_floating (valaddr + embedded_offset * unit_size, type, stream);
932 }
933
934 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
935
936 static void
937 generic_val_print_complex (struct type *type,
938 int embedded_offset, struct ui_file *stream,
939 struct value *original_value,
940 const struct value_print_options *options,
941 const struct generic_val_print_decorations
942 *decorations)
943 {
944 struct gdbarch *gdbarch = get_type_arch (type);
945 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
946 const gdb_byte *valaddr = value_contents_for_printing (original_value);
947
948 fprintf_filtered (stream, "%s", decorations->complex_prefix);
949 if (options->format)
950 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
951 embedded_offset, original_value, options, 0,
952 stream);
953 else
954 print_floating (valaddr + embedded_offset * unit_size,
955 TYPE_TARGET_TYPE (type), stream);
956 fprintf_filtered (stream, "%s", decorations->complex_infix);
957 if (options->format)
958 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
959 embedded_offset
960 + type_length_units (TYPE_TARGET_TYPE (type)),
961 original_value, options, 0, stream);
962 else
963 print_floating (valaddr + embedded_offset * unit_size
964 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
965 TYPE_TARGET_TYPE (type), stream);
966 fprintf_filtered (stream, "%s", decorations->complex_suffix);
967 }
968
969 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
970
971 static void
972 generic_value_print_complex (struct value *val, struct ui_file *stream,
973 const struct value_print_options *options,
974 const struct generic_val_print_decorations
975 *decorations)
976 {
977 fprintf_filtered (stream, "%s", decorations->complex_prefix);
978
979 struct type *type = check_typedef (value_type (val));
980 struct value *real_part
981 = value_from_component (val, TYPE_TARGET_TYPE (type), 0);
982 value_print_scalar_formatted (real_part, options, 0, stream);
983 fprintf_filtered (stream, "%s", decorations->complex_infix);
984
985 struct value *imag_part
986 = value_from_component (val, TYPE_TARGET_TYPE (type),
987 TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
988
989 value_print_scalar_formatted (imag_part, options, 0, stream);
990 fprintf_filtered (stream, "%s", decorations->complex_suffix);
991 }
992
993 /* A generic val_print that is suitable for use by language
994 implementations of the la_val_print method. This function can
995 handle most type codes, though not all, notably exception
996 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
997 the caller.
998
999 Most arguments are as to val_print.
1000
1001 The additional DECORATIONS argument can be used to customize the
1002 output in some small, language-specific ways. */
1003
1004 void
1005 generic_val_print (struct type *type,
1006 int embedded_offset, CORE_ADDR address,
1007 struct ui_file *stream, int recurse,
1008 struct value *original_value,
1009 const struct value_print_options *options,
1010 const struct generic_val_print_decorations *decorations)
1011 {
1012 struct type *unresolved_type = type;
1013
1014 type = check_typedef (type);
1015 switch (TYPE_CODE (type))
1016 {
1017 case TYPE_CODE_ARRAY:
1018 generic_val_print_array (type, embedded_offset, address, stream,
1019 recurse, original_value, options, decorations);
1020 break;
1021
1022 case TYPE_CODE_MEMBERPTR:
1023 generic_val_print_memberptr (type, embedded_offset, stream,
1024 original_value, options);
1025 break;
1026
1027 case TYPE_CODE_PTR:
1028 generic_val_print_ptr (type, embedded_offset, stream,
1029 original_value, options);
1030 break;
1031
1032 case TYPE_CODE_REF:
1033 case TYPE_CODE_RVALUE_REF:
1034 generic_val_print_ref (type, embedded_offset, stream, recurse,
1035 original_value, options);
1036 break;
1037
1038 case TYPE_CODE_ENUM:
1039 if (options->format)
1040 val_print_scalar_formatted (type, embedded_offset,
1041 original_value, options, 0, stream);
1042 else
1043 generic_val_print_enum (type, embedded_offset, stream,
1044 original_value, options);
1045 break;
1046
1047 case TYPE_CODE_FLAGS:
1048 if (options->format)
1049 val_print_scalar_formatted (type, embedded_offset,
1050 original_value, options, 0, stream);
1051 else
1052 val_print_type_code_flags (type, original_value, embedded_offset,
1053 stream);
1054 break;
1055
1056 case TYPE_CODE_FUNC:
1057 case TYPE_CODE_METHOD:
1058 if (options->format)
1059 val_print_scalar_formatted (type, embedded_offset,
1060 original_value, options, 0, stream);
1061 else
1062 generic_val_print_func (type, embedded_offset, address, stream,
1063 original_value, options);
1064 break;
1065
1066 case TYPE_CODE_BOOL:
1067 generic_val_print_bool (type, embedded_offset, stream,
1068 original_value, options, decorations);
1069 break;
1070
1071 case TYPE_CODE_RANGE:
1072 /* FIXME: create_static_range_type does not set the unsigned bit in a
1073 range type (I think it probably should copy it from the
1074 target type), so we won't print values which are too large to
1075 fit in a signed integer correctly. */
1076 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
1077 print with the target type, though, because the size of our
1078 type and the target type might differ). */
1079
1080 /* FALLTHROUGH */
1081
1082 case TYPE_CODE_INT:
1083 generic_val_print_int (type, embedded_offset, stream,
1084 original_value, options);
1085 break;
1086
1087 case TYPE_CODE_CHAR:
1088 generic_val_print_char (type, unresolved_type, embedded_offset,
1089 stream, original_value, options);
1090 break;
1091
1092 case TYPE_CODE_FLT:
1093 case TYPE_CODE_DECFLOAT:
1094 if (options->format)
1095 val_print_scalar_formatted (type, embedded_offset,
1096 original_value, options, 0, stream);
1097 else
1098 generic_val_print_float (type, embedded_offset, stream,
1099 original_value, options);
1100 break;
1101
1102 case TYPE_CODE_VOID:
1103 fputs_filtered (decorations->void_name, stream);
1104 break;
1105
1106 case TYPE_CODE_ERROR:
1107 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1108 break;
1109
1110 case TYPE_CODE_UNDEF:
1111 /* This happens (without TYPE_STUB set) on systems which don't use
1112 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1113 and no complete type for struct foo in that file. */
1114 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1115 break;
1116
1117 case TYPE_CODE_COMPLEX:
1118 generic_val_print_complex (type, embedded_offset, stream,
1119 original_value, options, decorations);
1120 break;
1121
1122 case TYPE_CODE_UNION:
1123 case TYPE_CODE_STRUCT:
1124 case TYPE_CODE_METHODPTR:
1125 default:
1126 error (_("Unhandled type code %d in symbol table."),
1127 TYPE_CODE (type));
1128 }
1129 }
1130
1131 /* See valprint.h. */
1132
1133 void
1134 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
1135 const struct value_print_options *options,
1136 const struct generic_val_print_decorations *decorations)
1137 {
1138 struct type *type = value_type (val);
1139
1140 type = check_typedef (type);
1141 switch (TYPE_CODE (type))
1142 {
1143 case TYPE_CODE_ARRAY:
1144 generic_val_print_array (type, 0, value_address (val), stream,
1145 recurse, val, options, decorations);
1146 break;
1147
1148 case TYPE_CODE_MEMBERPTR:
1149 value_print_scalar_formatted (val, options, 0, stream);
1150 break;
1151
1152 case TYPE_CODE_PTR:
1153 generic_value_print_ptr (val, stream, options);
1154 break;
1155
1156 case TYPE_CODE_REF:
1157 case TYPE_CODE_RVALUE_REF:
1158 generic_val_print_ref (type, 0, stream, recurse,
1159 val, options);
1160 break;
1161
1162 case TYPE_CODE_ENUM:
1163 if (options->format)
1164 value_print_scalar_formatted (val, options, 0, stream);
1165 else
1166 generic_val_print_enum (type, 0, stream, val, options);
1167 break;
1168
1169 case TYPE_CODE_FLAGS:
1170 if (options->format)
1171 value_print_scalar_formatted (val, options, 0, stream);
1172 else
1173 val_print_type_code_flags (type, val, 0, stream);
1174 break;
1175
1176 case TYPE_CODE_FUNC:
1177 case TYPE_CODE_METHOD:
1178 if (options->format)
1179 value_print_scalar_formatted (val, options, 0, stream);
1180 else
1181 generic_val_print_func (type, 0, value_address (val), stream,
1182 val, options);
1183 break;
1184
1185 case TYPE_CODE_BOOL:
1186 generic_value_print_bool (val, stream, options, decorations);
1187 break;
1188
1189 case TYPE_CODE_RANGE:
1190 /* FIXME: create_static_range_type does not set the unsigned bit in a
1191 range type (I think it probably should copy it from the
1192 target type), so we won't print values which are too large to
1193 fit in a signed integer correctly. */
1194 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
1195 print with the target type, though, because the size of our
1196 type and the target type might differ). */
1197
1198 /* FALLTHROUGH */
1199
1200 case TYPE_CODE_INT:
1201 generic_value_print_int (val, stream, options);
1202 break;
1203
1204 case TYPE_CODE_CHAR:
1205 generic_value_print_char (val, stream, options);
1206 break;
1207
1208 case TYPE_CODE_FLT:
1209 case TYPE_CODE_DECFLOAT:
1210 if (options->format)
1211 value_print_scalar_formatted (val, options, 0, stream);
1212 else
1213 generic_val_print_float (type, 0, stream,
1214 val, options);
1215 break;
1216
1217 case TYPE_CODE_VOID:
1218 fputs_filtered (decorations->void_name, stream);
1219 break;
1220
1221 case TYPE_CODE_ERROR:
1222 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1223 break;
1224
1225 case TYPE_CODE_UNDEF:
1226 /* This happens (without TYPE_STUB set) on systems which don't use
1227 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1228 and no complete type for struct foo in that file. */
1229 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1230 break;
1231
1232 case TYPE_CODE_COMPLEX:
1233 generic_value_print_complex (val, stream, options, decorations);
1234 break;
1235
1236 case TYPE_CODE_UNION:
1237 case TYPE_CODE_STRUCT:
1238 case TYPE_CODE_METHODPTR:
1239 default:
1240 error (_("Unhandled type code %d in symbol table."),
1241 TYPE_CODE (type));
1242 }
1243 }
1244
1245 /* Helper function for val_print and common_val_print that does the
1246 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1247 the value to be printed. */
1248
1249 static void
1250 do_val_print (struct value *full_value,
1251 struct type *type, LONGEST embedded_offset,
1252 CORE_ADDR address, struct ui_file *stream, int recurse,
1253 struct value *val,
1254 const struct value_print_options *options,
1255 const struct language_defn *language)
1256 {
1257 int ret = 0;
1258 struct value_print_options local_opts = *options;
1259 struct type *real_type = check_typedef (type);
1260
1261 if (local_opts.prettyformat == Val_prettyformat_default)
1262 local_opts.prettyformat = (local_opts.prettyformat_structs
1263 ? Val_prettyformat : Val_no_prettyformat);
1264
1265 QUIT;
1266
1267 /* Ensure that the type is complete and not just a stub. If the type is
1268 only a stub and we can't find and substitute its complete type, then
1269 print appropriate string and return. */
1270
1271 if (TYPE_STUB (real_type))
1272 {
1273 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1274 return;
1275 }
1276
1277 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1278 return;
1279
1280 if (!options->raw)
1281 {
1282 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1283 address, stream, recurse,
1284 val, options, language);
1285 if (ret)
1286 return;
1287 }
1288
1289 /* Handle summary mode. If the value is a scalar, print it;
1290 otherwise, print an ellipsis. */
1291 if (options->summary && !val_print_scalar_type_p (type))
1292 {
1293 fprintf_filtered (stream, "...");
1294 return;
1295 }
1296
1297 /* If this value is too deep then don't print it. */
1298 if (!val_print_scalar_or_string_type_p (type, language)
1299 && val_print_check_max_depth (stream, recurse, options, language))
1300 return;
1301
1302 try
1303 {
1304 if (full_value != nullptr && language->la_value_print_inner != nullptr)
1305 language->la_value_print_inner (full_value, stream, recurse,
1306 &local_opts);
1307 else
1308 language->la_val_print (type, embedded_offset, address,
1309 stream, recurse, val,
1310 &local_opts);
1311 }
1312 catch (const gdb_exception_error &except)
1313 {
1314 fprintf_styled (stream, metadata_style.style (),
1315 _("<error reading variable>"));
1316 }
1317 }
1318
1319 /* Print using the given LANGUAGE the data of type TYPE located at
1320 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1321 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1322 stdio stream STREAM according to OPTIONS. VAL is the whole object
1323 that came from ADDRESS.
1324
1325 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1326 further helper subroutines as subfields of TYPE are printed. In
1327 such cases, VAL is passed down unadjusted, so
1328 that VAL can be queried for metadata about the contents data being
1329 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1330 buffer. For example: "has this field been optimized out", or "I'm
1331 printing an object while inspecting a traceframe; has this
1332 particular piece of data been collected?".
1333
1334 RECURSE indicates the amount of indentation to supply before
1335 continuation lines; this amount is roughly twice the value of
1336 RECURSE. */
1337
1338 void
1339 val_print (struct type *type, LONGEST embedded_offset,
1340 CORE_ADDR address, struct ui_file *stream, int recurse,
1341 struct value *val,
1342 const struct value_print_options *options,
1343 const struct language_defn *language)
1344 {
1345 do_val_print (nullptr, type, embedded_offset, address, stream,
1346 recurse, val, options, language);
1347 }
1348
1349 /* See valprint.h. */
1350
1351 bool
1352 val_print_check_max_depth (struct ui_file *stream, int recurse,
1353 const struct value_print_options *options,
1354 const struct language_defn *language)
1355 {
1356 if (options->max_depth > -1 && recurse >= options->max_depth)
1357 {
1358 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1359 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1360 return true;
1361 }
1362
1363 return false;
1364 }
1365
1366 /* Check whether the value VAL is printable. Return 1 if it is;
1367 return 0 and print an appropriate error message to STREAM according to
1368 OPTIONS if it is not. */
1369
1370 static int
1371 value_check_printable (struct value *val, struct ui_file *stream,
1372 const struct value_print_options *options)
1373 {
1374 if (val == 0)
1375 {
1376 fprintf_styled (stream, metadata_style.style (),
1377 _("<address of value unknown>"));
1378 return 0;
1379 }
1380
1381 if (value_entirely_optimized_out (val))
1382 {
1383 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1384 fprintf_filtered (stream, "...");
1385 else
1386 val_print_optimized_out (val, stream);
1387 return 0;
1388 }
1389
1390 if (value_entirely_unavailable (val))
1391 {
1392 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1393 fprintf_filtered (stream, "...");
1394 else
1395 val_print_unavailable (stream);
1396 return 0;
1397 }
1398
1399 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1400 {
1401 fprintf_styled (stream, metadata_style.style (),
1402 _("<internal function %s>"),
1403 value_internal_function_name (val));
1404 return 0;
1405 }
1406
1407 if (type_not_associated (value_type (val)))
1408 {
1409 val_print_not_associated (stream);
1410 return 0;
1411 }
1412
1413 if (type_not_allocated (value_type (val)))
1414 {
1415 val_print_not_allocated (stream);
1416 return 0;
1417 }
1418
1419 return 1;
1420 }
1421
1422 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1423 to OPTIONS.
1424
1425 This is a preferable interface to val_print, above, because it uses
1426 GDB's value mechanism. */
1427
1428 void
1429 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1430 const struct value_print_options *options,
1431 const struct language_defn *language)
1432 {
1433 if (!value_check_printable (val, stream, options))
1434 return;
1435
1436 if (language->la_language == language_ada)
1437 /* The value might have a dynamic type, which would cause trouble
1438 below when trying to extract the value contents (since the value
1439 size is determined from the type size which is unknown). So
1440 get a fixed representation of our value. */
1441 val = ada_to_fixed_value (val);
1442
1443 if (value_lazy (val))
1444 value_fetch_lazy (val);
1445
1446 do_val_print (val, value_type (val),
1447 value_embedded_offset (val), value_address (val),
1448 stream, recurse,
1449 val, options, language);
1450 }
1451
1452 /* See valprint.h. */
1453
1454 void
1455 common_val_print_checked (struct value *val, struct ui_file *stream,
1456 int recurse,
1457 const struct value_print_options *options,
1458 const struct language_defn *language)
1459 {
1460 if (!value_check_printable (val, stream, options))
1461 return;
1462 common_val_print (val, stream, recurse, options, language);
1463 }
1464
1465 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1466 is printed using the current_language syntax. */
1467
1468 void
1469 value_print (struct value *val, struct ui_file *stream,
1470 const struct value_print_options *options)
1471 {
1472 scoped_value_mark free_values;
1473
1474 if (!value_check_printable (val, stream, options))
1475 return;
1476
1477 if (!options->raw)
1478 {
1479 int r
1480 = apply_ext_lang_val_pretty_printer (value_type (val),
1481 value_embedded_offset (val),
1482 value_address (val),
1483 stream, 0,
1484 val, options, current_language);
1485
1486 if (r)
1487 return;
1488 }
1489
1490 LA_VALUE_PRINT (val, stream, options);
1491 }
1492
1493 static void
1494 val_print_type_code_flags (struct type *type, struct value *original_value,
1495 int embedded_offset, struct ui_file *stream)
1496 {
1497 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1498 + embedded_offset);
1499 ULONGEST val = unpack_long (type, valaddr);
1500 int field, nfields = TYPE_NFIELDS (type);
1501 struct gdbarch *gdbarch = get_type_arch (type);
1502 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1503
1504 fputs_filtered ("[", stream);
1505 for (field = 0; field < nfields; field++)
1506 {
1507 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1508 {
1509 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1510
1511 if (field_type == bool_type
1512 /* We require boolean types here to be one bit wide. This is a
1513 problematic place to notify the user of an internal error
1514 though. Instead just fall through and print the field as an
1515 int. */
1516 && TYPE_FIELD_BITSIZE (type, field) == 1)
1517 {
1518 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1519 fprintf_filtered
1520 (stream, " %ps",
1521 styled_string (variable_name_style.style (),
1522 TYPE_FIELD_NAME (type, field)));
1523 }
1524 else
1525 {
1526 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1527 ULONGEST field_val
1528 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1529
1530 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1531 field_val &= ((ULONGEST) 1 << field_len) - 1;
1532 fprintf_filtered (stream, " %ps=",
1533 styled_string (variable_name_style.style (),
1534 TYPE_FIELD_NAME (type, field)));
1535 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1536 generic_val_print_enum_1 (field_type, field_val, stream);
1537 else
1538 print_longest (stream, 'd', 0, field_val);
1539 }
1540 }
1541 }
1542 fputs_filtered (" ]", stream);
1543 }
1544
1545 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1546 according to OPTIONS and SIZE on STREAM. Format i is not supported
1547 at this level.
1548
1549 This is how the elements of an array or structure are printed
1550 with a format. */
1551
1552 void
1553 val_print_scalar_formatted (struct type *type,
1554 LONGEST embedded_offset,
1555 struct value *val,
1556 const struct value_print_options *options,
1557 int size,
1558 struct ui_file *stream)
1559 {
1560 struct gdbarch *arch = get_type_arch (type);
1561 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1562
1563 gdb_assert (val != NULL);
1564
1565 /* If we get here with a string format, try again without it. Go
1566 all the way back to the language printers, which may call us
1567 again. */
1568 if (options->format == 's')
1569 {
1570 struct value_print_options opts = *options;
1571 opts.format = 0;
1572 opts.deref_ref = 0;
1573 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1574 current_language);
1575 return;
1576 }
1577
1578 /* value_contents_for_printing fetches all VAL's contents. They are
1579 needed to check whether VAL is optimized-out or unavailable
1580 below. */
1581 const gdb_byte *valaddr = value_contents_for_printing (val);
1582
1583 /* A scalar object that does not have all bits available can't be
1584 printed, because all bits contribute to its representation. */
1585 if (value_bits_any_optimized_out (val,
1586 TARGET_CHAR_BIT * embedded_offset,
1587 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1588 val_print_optimized_out (val, stream);
1589 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1590 val_print_unavailable (stream);
1591 else
1592 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1593 options, size, stream);
1594 }
1595
1596 /* See valprint.h. */
1597
1598 void
1599 value_print_scalar_formatted (struct value *val,
1600 const struct value_print_options *options,
1601 int size,
1602 struct ui_file *stream)
1603 {
1604 struct type *type = check_typedef (value_type (val));
1605
1606 gdb_assert (val != NULL);
1607
1608 /* If we get here with a string format, try again without it. Go
1609 all the way back to the language printers, which may call us
1610 again. */
1611 if (options->format == 's')
1612 {
1613 struct value_print_options opts = *options;
1614 opts.format = 0;
1615 opts.deref_ref = 0;
1616 common_val_print (val, stream, 0, &opts, current_language);
1617 return;
1618 }
1619
1620 /* value_contents_for_printing fetches all VAL's contents. They are
1621 needed to check whether VAL is optimized-out or unavailable
1622 below. */
1623 const gdb_byte *valaddr = value_contents_for_printing (val);
1624
1625 /* A scalar object that does not have all bits available can't be
1626 printed, because all bits contribute to its representation. */
1627 if (value_bits_any_optimized_out (val, 0,
1628 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1629 val_print_optimized_out (val, stream);
1630 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1631 val_print_unavailable (stream);
1632 else
1633 print_scalar_formatted (valaddr, type, options, size, stream);
1634 }
1635
1636 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1637 The raison d'etre of this function is to consolidate printing of
1638 LONG_LONG's into this one function. The format chars b,h,w,g are
1639 from print_scalar_formatted(). Numbers are printed using C
1640 format.
1641
1642 USE_C_FORMAT means to use C format in all cases. Without it,
1643 'o' and 'x' format do not include the standard C radix prefix
1644 (leading 0 or 0x).
1645
1646 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1647 and was intended to request formatting according to the current
1648 language and would be used for most integers that GDB prints. The
1649 exceptional cases were things like protocols where the format of
1650 the integer is a protocol thing, not a user-visible thing). The
1651 parameter remains to preserve the information of what things might
1652 be printed with language-specific format, should we ever resurrect
1653 that capability. */
1654
1655 void
1656 print_longest (struct ui_file *stream, int format, int use_c_format,
1657 LONGEST val_long)
1658 {
1659 const char *val;
1660
1661 switch (format)
1662 {
1663 case 'd':
1664 val = int_string (val_long, 10, 1, 0, 1); break;
1665 case 'u':
1666 val = int_string (val_long, 10, 0, 0, 1); break;
1667 case 'x':
1668 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1669 case 'b':
1670 val = int_string (val_long, 16, 0, 2, 1); break;
1671 case 'h':
1672 val = int_string (val_long, 16, 0, 4, 1); break;
1673 case 'w':
1674 val = int_string (val_long, 16, 0, 8, 1); break;
1675 case 'g':
1676 val = int_string (val_long, 16, 0, 16, 1); break;
1677 break;
1678 case 'o':
1679 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1680 default:
1681 internal_error (__FILE__, __LINE__,
1682 _("failed internal consistency check"));
1683 }
1684 fputs_filtered (val, stream);
1685 }
1686
1687 /* This used to be a macro, but I don't think it is called often enough
1688 to merit such treatment. */
1689 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1690 arguments to a function, number in a value history, register number, etc.)
1691 where the value must not be larger than can fit in an int. */
1692
1693 int
1694 longest_to_int (LONGEST arg)
1695 {
1696 /* Let the compiler do the work. */
1697 int rtnval = (int) arg;
1698
1699 /* Check for overflows or underflows. */
1700 if (sizeof (LONGEST) > sizeof (int))
1701 {
1702 if (rtnval != arg)
1703 {
1704 error (_("Value out of range."));
1705 }
1706 }
1707 return (rtnval);
1708 }
1709
1710 /* Print a floating point value of floating-point type TYPE,
1711 pointed to in GDB by VALADDR, on STREAM. */
1712
1713 void
1714 print_floating (const gdb_byte *valaddr, struct type *type,
1715 struct ui_file *stream)
1716 {
1717 std::string str = target_float_to_string (valaddr, type);
1718 fputs_filtered (str.c_str (), stream);
1719 }
1720
1721 void
1722 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1723 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1724 {
1725 const gdb_byte *p;
1726 unsigned int i;
1727 int b;
1728 bool seen_a_one = false;
1729
1730 /* Declared "int" so it will be signed.
1731 This ensures that right shift will shift in zeros. */
1732
1733 const int mask = 0x080;
1734
1735 if (byte_order == BFD_ENDIAN_BIG)
1736 {
1737 for (p = valaddr;
1738 p < valaddr + len;
1739 p++)
1740 {
1741 /* Every byte has 8 binary characters; peel off
1742 and print from the MSB end. */
1743
1744 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1745 {
1746 if (*p & (mask >> i))
1747 b = '1';
1748 else
1749 b = '0';
1750
1751 if (zero_pad || seen_a_one || b == '1')
1752 fputc_filtered (b, stream);
1753 if (b == '1')
1754 seen_a_one = true;
1755 }
1756 }
1757 }
1758 else
1759 {
1760 for (p = valaddr + len - 1;
1761 p >= valaddr;
1762 p--)
1763 {
1764 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1765 {
1766 if (*p & (mask >> i))
1767 b = '1';
1768 else
1769 b = '0';
1770
1771 if (zero_pad || seen_a_one || b == '1')
1772 fputc_filtered (b, stream);
1773 if (b == '1')
1774 seen_a_one = true;
1775 }
1776 }
1777 }
1778
1779 /* When not zero-padding, ensure that something is printed when the
1780 input is 0. */
1781 if (!zero_pad && !seen_a_one)
1782 fputc_filtered ('0', stream);
1783 }
1784
1785 /* A helper for print_octal_chars that emits a single octal digit,
1786 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1787
1788 static void
1789 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1790 {
1791 if (*seen_a_one || digit != 0)
1792 fprintf_filtered (stream, "%o", digit);
1793 if (digit != 0)
1794 *seen_a_one = true;
1795 }
1796
1797 /* VALADDR points to an integer of LEN bytes.
1798 Print it in octal on stream or format it in buf. */
1799
1800 void
1801 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1802 unsigned len, enum bfd_endian byte_order)
1803 {
1804 const gdb_byte *p;
1805 unsigned char octa1, octa2, octa3, carry;
1806 int cycle;
1807
1808 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1809 * the extra bits, which cycle every three bytes:
1810 *
1811 * Byte side: 0 1 2 3
1812 * | | | |
1813 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1814 *
1815 * Octal side: 0 1 carry 3 4 carry ...
1816 *
1817 * Cycle number: 0 1 2
1818 *
1819 * But of course we are printing from the high side, so we have to
1820 * figure out where in the cycle we are so that we end up with no
1821 * left over bits at the end.
1822 */
1823 #define BITS_IN_OCTAL 3
1824 #define HIGH_ZERO 0340
1825 #define LOW_ZERO 0034
1826 #define CARRY_ZERO 0003
1827 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1828 "cycle zero constants are wrong");
1829 #define HIGH_ONE 0200
1830 #define MID_ONE 0160
1831 #define LOW_ONE 0016
1832 #define CARRY_ONE 0001
1833 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1834 "cycle one constants are wrong");
1835 #define HIGH_TWO 0300
1836 #define MID_TWO 0070
1837 #define LOW_TWO 0007
1838 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1839 "cycle two constants are wrong");
1840
1841 /* For 32 we start in cycle 2, with two bits and one bit carry;
1842 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1843
1844 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1845 carry = 0;
1846
1847 fputs_filtered ("0", stream);
1848 bool seen_a_one = false;
1849 if (byte_order == BFD_ENDIAN_BIG)
1850 {
1851 for (p = valaddr;
1852 p < valaddr + len;
1853 p++)
1854 {
1855 switch (cycle)
1856 {
1857 case 0:
1858 /* No carry in, carry out two bits. */
1859
1860 octa1 = (HIGH_ZERO & *p) >> 5;
1861 octa2 = (LOW_ZERO & *p) >> 2;
1862 carry = (CARRY_ZERO & *p);
1863 emit_octal_digit (stream, &seen_a_one, octa1);
1864 emit_octal_digit (stream, &seen_a_one, octa2);
1865 break;
1866
1867 case 1:
1868 /* Carry in two bits, carry out one bit. */
1869
1870 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1871 octa2 = (MID_ONE & *p) >> 4;
1872 octa3 = (LOW_ONE & *p) >> 1;
1873 carry = (CARRY_ONE & *p);
1874 emit_octal_digit (stream, &seen_a_one, octa1);
1875 emit_octal_digit (stream, &seen_a_one, octa2);
1876 emit_octal_digit (stream, &seen_a_one, octa3);
1877 break;
1878
1879 case 2:
1880 /* Carry in one bit, no carry out. */
1881
1882 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1883 octa2 = (MID_TWO & *p) >> 3;
1884 octa3 = (LOW_TWO & *p);
1885 carry = 0;
1886 emit_octal_digit (stream, &seen_a_one, octa1);
1887 emit_octal_digit (stream, &seen_a_one, octa2);
1888 emit_octal_digit (stream, &seen_a_one, octa3);
1889 break;
1890
1891 default:
1892 error (_("Internal error in octal conversion;"));
1893 }
1894
1895 cycle++;
1896 cycle = cycle % BITS_IN_OCTAL;
1897 }
1898 }
1899 else
1900 {
1901 for (p = valaddr + len - 1;
1902 p >= valaddr;
1903 p--)
1904 {
1905 switch (cycle)
1906 {
1907 case 0:
1908 /* Carry out, no carry in */
1909
1910 octa1 = (HIGH_ZERO & *p) >> 5;
1911 octa2 = (LOW_ZERO & *p) >> 2;
1912 carry = (CARRY_ZERO & *p);
1913 emit_octal_digit (stream, &seen_a_one, octa1);
1914 emit_octal_digit (stream, &seen_a_one, octa2);
1915 break;
1916
1917 case 1:
1918 /* Carry in, carry out */
1919
1920 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1921 octa2 = (MID_ONE & *p) >> 4;
1922 octa3 = (LOW_ONE & *p) >> 1;
1923 carry = (CARRY_ONE & *p);
1924 emit_octal_digit (stream, &seen_a_one, octa1);
1925 emit_octal_digit (stream, &seen_a_one, octa2);
1926 emit_octal_digit (stream, &seen_a_one, octa3);
1927 break;
1928
1929 case 2:
1930 /* Carry in, no carry out */
1931
1932 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1933 octa2 = (MID_TWO & *p) >> 3;
1934 octa3 = (LOW_TWO & *p);
1935 carry = 0;
1936 emit_octal_digit (stream, &seen_a_one, octa1);
1937 emit_octal_digit (stream, &seen_a_one, octa2);
1938 emit_octal_digit (stream, &seen_a_one, octa3);
1939 break;
1940
1941 default:
1942 error (_("Internal error in octal conversion;"));
1943 }
1944
1945 cycle++;
1946 cycle = cycle % BITS_IN_OCTAL;
1947 }
1948 }
1949
1950 }
1951
1952 /* Possibly negate the integer represented by BYTES. It contains LEN
1953 bytes in the specified byte order. If the integer is negative,
1954 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1955 nothing and return false. */
1956
1957 static bool
1958 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1959 enum bfd_endian byte_order,
1960 gdb::byte_vector *out_vec)
1961 {
1962 gdb_byte sign_byte;
1963 gdb_assert (len > 0);
1964 if (byte_order == BFD_ENDIAN_BIG)
1965 sign_byte = bytes[0];
1966 else
1967 sign_byte = bytes[len - 1];
1968 if ((sign_byte & 0x80) == 0)
1969 return false;
1970
1971 out_vec->resize (len);
1972
1973 /* Compute -x == 1 + ~x. */
1974 if (byte_order == BFD_ENDIAN_LITTLE)
1975 {
1976 unsigned carry = 1;
1977 for (unsigned i = 0; i < len; ++i)
1978 {
1979 unsigned tem = (0xff & ~bytes[i]) + carry;
1980 (*out_vec)[i] = tem & 0xff;
1981 carry = tem / 256;
1982 }
1983 }
1984 else
1985 {
1986 unsigned carry = 1;
1987 for (unsigned i = len; i > 0; --i)
1988 {
1989 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1990 (*out_vec)[i - 1] = tem & 0xff;
1991 carry = tem / 256;
1992 }
1993 }
1994
1995 return true;
1996 }
1997
1998 /* VALADDR points to an integer of LEN bytes.
1999 Print it in decimal on stream or format it in buf. */
2000
2001 void
2002 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
2003 unsigned len, bool is_signed,
2004 enum bfd_endian byte_order)
2005 {
2006 #define TEN 10
2007 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
2008 #define CARRY_LEFT( x ) ((x) % TEN)
2009 #define SHIFT( x ) ((x) << 4)
2010 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
2011 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
2012
2013 const gdb_byte *p;
2014 int carry;
2015 int decimal_len;
2016 int i, j, decimal_digits;
2017 int dummy;
2018 int flip;
2019
2020 gdb::byte_vector negated_bytes;
2021 if (is_signed
2022 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
2023 {
2024 fputs_filtered ("-", stream);
2025 valaddr = negated_bytes.data ();
2026 }
2027
2028 /* Base-ten number is less than twice as many digits
2029 as the base 16 number, which is 2 digits per byte. */
2030
2031 decimal_len = len * 2 * 2;
2032 std::vector<unsigned char> digits (decimal_len, 0);
2033
2034 /* Ok, we have an unknown number of bytes of data to be printed in
2035 * decimal.
2036 *
2037 * Given a hex number (in nibbles) as XYZ, we start by taking X and
2038 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
2039 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
2040 *
2041 * The trick is that "digits" holds a base-10 number, but sometimes
2042 * the individual digits are > 10.
2043 *
2044 * Outer loop is per nibble (hex digit) of input, from MSD end to
2045 * LSD end.
2046 */
2047 decimal_digits = 0; /* Number of decimal digits so far */
2048 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
2049 flip = 0;
2050 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
2051 {
2052 /*
2053 * Multiply current base-ten number by 16 in place.
2054 * Each digit was between 0 and 9, now is between
2055 * 0 and 144.
2056 */
2057 for (j = 0; j < decimal_digits; j++)
2058 {
2059 digits[j] = SHIFT (digits[j]);
2060 }
2061
2062 /* Take the next nibble off the input and add it to what
2063 * we've got in the LSB position. Bottom 'digit' is now
2064 * between 0 and 159.
2065 *
2066 * "flip" is used to run this loop twice for each byte.
2067 */
2068 if (flip == 0)
2069 {
2070 /* Take top nibble. */
2071
2072 digits[0] += HIGH_NIBBLE (*p);
2073 flip = 1;
2074 }
2075 else
2076 {
2077 /* Take low nibble and bump our pointer "p". */
2078
2079 digits[0] += LOW_NIBBLE (*p);
2080 if (byte_order == BFD_ENDIAN_BIG)
2081 p++;
2082 else
2083 p--;
2084 flip = 0;
2085 }
2086
2087 /* Re-decimalize. We have to do this often enough
2088 * that we don't overflow, but once per nibble is
2089 * overkill. Easier this way, though. Note that the
2090 * carry is often larger than 10 (e.g. max initial
2091 * carry out of lowest nibble is 15, could bubble all
2092 * the way up greater than 10). So we have to do
2093 * the carrying beyond the last current digit.
2094 */
2095 carry = 0;
2096 for (j = 0; j < decimal_len - 1; j++)
2097 {
2098 digits[j] += carry;
2099
2100 /* "/" won't handle an unsigned char with
2101 * a value that if signed would be negative.
2102 * So extend to longword int via "dummy".
2103 */
2104 dummy = digits[j];
2105 carry = CARRY_OUT (dummy);
2106 digits[j] = CARRY_LEFT (dummy);
2107
2108 if (j >= decimal_digits && carry == 0)
2109 {
2110 /*
2111 * All higher digits are 0 and we
2112 * no longer have a carry.
2113 *
2114 * Note: "j" is 0-based, "decimal_digits" is
2115 * 1-based.
2116 */
2117 decimal_digits = j + 1;
2118 break;
2119 }
2120 }
2121 }
2122
2123 /* Ok, now "digits" is the decimal representation, with
2124 the "decimal_digits" actual digits. Print! */
2125
2126 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
2127 ;
2128
2129 for (; i >= 0; i--)
2130 {
2131 fprintf_filtered (stream, "%1d", digits[i]);
2132 }
2133 }
2134
2135 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
2136
2137 void
2138 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
2139 unsigned len, enum bfd_endian byte_order,
2140 bool zero_pad)
2141 {
2142 const gdb_byte *p;
2143
2144 fputs_filtered ("0x", stream);
2145 if (byte_order == BFD_ENDIAN_BIG)
2146 {
2147 p = valaddr;
2148
2149 if (!zero_pad)
2150 {
2151 /* Strip leading 0 bytes, but be sure to leave at least a
2152 single byte at the end. */
2153 for (; p < valaddr + len - 1 && !*p; ++p)
2154 ;
2155 }
2156
2157 const gdb_byte *first = p;
2158 for (;
2159 p < valaddr + len;
2160 p++)
2161 {
2162 /* When not zero-padding, use a different format for the
2163 very first byte printed. */
2164 if (!zero_pad && p == first)
2165 fprintf_filtered (stream, "%x", *p);
2166 else
2167 fprintf_filtered (stream, "%02x", *p);
2168 }
2169 }
2170 else
2171 {
2172 p = valaddr + len - 1;
2173
2174 if (!zero_pad)
2175 {
2176 /* Strip leading 0 bytes, but be sure to leave at least a
2177 single byte at the end. */
2178 for (; p >= valaddr + 1 && !*p; --p)
2179 ;
2180 }
2181
2182 const gdb_byte *first = p;
2183 for (;
2184 p >= valaddr;
2185 p--)
2186 {
2187 /* When not zero-padding, use a different format for the
2188 very first byte printed. */
2189 if (!zero_pad && p == first)
2190 fprintf_filtered (stream, "%x", *p);
2191 else
2192 fprintf_filtered (stream, "%02x", *p);
2193 }
2194 }
2195 }
2196
2197 /* VALADDR points to a char integer of LEN bytes.
2198 Print it out in appropriate language form on stream.
2199 Omit any leading zero chars. */
2200
2201 void
2202 print_char_chars (struct ui_file *stream, struct type *type,
2203 const gdb_byte *valaddr,
2204 unsigned len, enum bfd_endian byte_order)
2205 {
2206 const gdb_byte *p;
2207
2208 if (byte_order == BFD_ENDIAN_BIG)
2209 {
2210 p = valaddr;
2211 while (p < valaddr + len - 1 && *p == 0)
2212 ++p;
2213
2214 while (p < valaddr + len)
2215 {
2216 LA_EMIT_CHAR (*p, type, stream, '\'');
2217 ++p;
2218 }
2219 }
2220 else
2221 {
2222 p = valaddr + len - 1;
2223 while (p > valaddr && *p == 0)
2224 --p;
2225
2226 while (p >= valaddr)
2227 {
2228 LA_EMIT_CHAR (*p, type, stream, '\'');
2229 --p;
2230 }
2231 }
2232 }
2233
2234 /* Print function pointer with inferior address ADDRESS onto stdio
2235 stream STREAM. */
2236
2237 void
2238 print_function_pointer_address (const struct value_print_options *options,
2239 struct gdbarch *gdbarch,
2240 CORE_ADDR address,
2241 struct ui_file *stream)
2242 {
2243 CORE_ADDR func_addr
2244 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2245 current_top_target ());
2246
2247 /* If the function pointer is represented by a description, print
2248 the address of the description. */
2249 if (options->addressprint && func_addr != address)
2250 {
2251 fputs_filtered ("@", stream);
2252 fputs_filtered (paddress (gdbarch, address), stream);
2253 fputs_filtered (": ", stream);
2254 }
2255 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2256 }
2257
2258
2259 /* Print on STREAM using the given OPTIONS the index for the element
2260 at INDEX of an array whose index type is INDEX_TYPE. */
2261
2262 void
2263 maybe_print_array_index (struct type *index_type, LONGEST index,
2264 struct ui_file *stream,
2265 const struct value_print_options *options)
2266 {
2267 struct value *index_value;
2268
2269 if (!options->print_array_indexes)
2270 return;
2271
2272 index_value = value_from_longest (index_type, index);
2273
2274 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2275 }
2276
2277 /* Called by various <lang>_val_print routines to print elements of an
2278 array in the form "<elem1>, <elem2>, <elem3>, ...".
2279
2280 (FIXME?) Assumes array element separator is a comma, which is correct
2281 for all languages currently handled.
2282 (FIXME?) Some languages have a notation for repeated array elements,
2283 perhaps we should try to use that notation when appropriate. */
2284
2285 void
2286 val_print_array_elements (struct type *type,
2287 LONGEST embedded_offset,
2288 CORE_ADDR address, struct ui_file *stream,
2289 int recurse,
2290 struct value *val,
2291 const struct value_print_options *options,
2292 unsigned int i)
2293 {
2294 unsigned int things_printed = 0;
2295 unsigned len;
2296 struct type *elttype, *index_type, *base_index_type;
2297 unsigned eltlen;
2298 /* Position of the array element we are examining to see
2299 whether it is repeated. */
2300 unsigned int rep1;
2301 /* Number of repetitions we have detected so far. */
2302 unsigned int reps;
2303 LONGEST low_bound, high_bound;
2304 LONGEST low_pos, high_pos;
2305
2306 elttype = TYPE_TARGET_TYPE (type);
2307 eltlen = type_length_units (check_typedef (elttype));
2308 index_type = TYPE_INDEX_TYPE (type);
2309
2310 if (get_array_bounds (type, &low_bound, &high_bound))
2311 {
2312 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2313 base_index_type = TYPE_TARGET_TYPE (index_type);
2314 else
2315 base_index_type = index_type;
2316
2317 /* Non-contiguous enumerations types can by used as index types
2318 in some languages (e.g. Ada). In this case, the array length
2319 shall be computed from the positions of the first and last
2320 literal in the enumeration type, and not from the values
2321 of these literals. */
2322 if (!discrete_position (base_index_type, low_bound, &low_pos)
2323 || !discrete_position (base_index_type, high_bound, &high_pos))
2324 {
2325 warning (_("unable to get positions in array, use bounds instead"));
2326 low_pos = low_bound;
2327 high_pos = high_bound;
2328 }
2329
2330 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2331 But we have to be a little extra careful, because some languages
2332 such as Ada allow LOW_POS to be greater than HIGH_POS for
2333 empty arrays. In that situation, the array length is just zero,
2334 not negative! */
2335 if (low_pos > high_pos)
2336 len = 0;
2337 else
2338 len = high_pos - low_pos + 1;
2339 }
2340 else
2341 {
2342 warning (_("unable to get bounds of array, assuming null array"));
2343 low_bound = 0;
2344 len = 0;
2345 }
2346
2347 annotate_array_section_begin (i, elttype);
2348
2349 for (; i < len && things_printed < options->print_max; i++)
2350 {
2351 if (i != 0)
2352 {
2353 if (options->prettyformat_arrays)
2354 {
2355 fprintf_filtered (stream, ",\n");
2356 print_spaces_filtered (2 + 2 * recurse, stream);
2357 }
2358 else
2359 {
2360 fprintf_filtered (stream, ", ");
2361 }
2362 }
2363 wrap_here (n_spaces (2 + 2 * recurse));
2364 maybe_print_array_index (index_type, i + low_bound,
2365 stream, options);
2366
2367 rep1 = i + 1;
2368 reps = 1;
2369 /* Only check for reps if repeat_count_threshold is not set to
2370 UINT_MAX (unlimited). */
2371 if (options->repeat_count_threshold < UINT_MAX)
2372 {
2373 while (rep1 < len
2374 && value_contents_eq (val,
2375 embedded_offset + i * eltlen,
2376 val,
2377 (embedded_offset
2378 + rep1 * eltlen),
2379 eltlen))
2380 {
2381 ++reps;
2382 ++rep1;
2383 }
2384 }
2385
2386 if (reps > options->repeat_count_threshold)
2387 {
2388 val_print (elttype, embedded_offset + i * eltlen,
2389 address, stream, recurse + 1, val, options,
2390 current_language);
2391 annotate_elt_rep (reps);
2392 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2393 metadata_style.style ().ptr (), reps, nullptr);
2394 annotate_elt_rep_end ();
2395
2396 i = rep1 - 1;
2397 things_printed += options->repeat_count_threshold;
2398 }
2399 else
2400 {
2401 val_print (elttype, embedded_offset + i * eltlen,
2402 address,
2403 stream, recurse + 1, val, options, current_language);
2404 annotate_elt ();
2405 things_printed++;
2406 }
2407 }
2408 annotate_array_section_end ();
2409 if (i < len)
2410 {
2411 fprintf_filtered (stream, "...");
2412 }
2413 }
2414
2415 /* See valprint.h. */
2416
2417 void
2418 value_print_array_elements (struct value *val, struct ui_file *stream,
2419 int recurse,
2420 const struct value_print_options *options,
2421 unsigned int i)
2422 {
2423 unsigned int things_printed = 0;
2424 unsigned len;
2425 struct type *elttype, *index_type, *base_index_type;
2426 unsigned eltlen;
2427 /* Position of the array element we are examining to see
2428 whether it is repeated. */
2429 unsigned int rep1;
2430 /* Number of repetitions we have detected so far. */
2431 unsigned int reps;
2432 LONGEST low_bound, high_bound;
2433 LONGEST low_pos, high_pos;
2434
2435 struct type *type = check_typedef (value_type (val));
2436
2437 elttype = TYPE_TARGET_TYPE (type);
2438 eltlen = type_length_units (check_typedef (elttype));
2439 index_type = TYPE_INDEX_TYPE (type);
2440
2441 if (get_array_bounds (type, &low_bound, &high_bound))
2442 {
2443 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2444 base_index_type = TYPE_TARGET_TYPE (index_type);
2445 else
2446 base_index_type = index_type;
2447
2448 /* Non-contiguous enumerations types can by used as index types
2449 in some languages (e.g. Ada). In this case, the array length
2450 shall be computed from the positions of the first and last
2451 literal in the enumeration type, and not from the values
2452 of these literals. */
2453 if (!discrete_position (base_index_type, low_bound, &low_pos)
2454 || !discrete_position (base_index_type, high_bound, &high_pos))
2455 {
2456 warning (_("unable to get positions in array, use bounds instead"));
2457 low_pos = low_bound;
2458 high_pos = high_bound;
2459 }
2460
2461 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2462 But we have to be a little extra careful, because some languages
2463 such as Ada allow LOW_POS to be greater than HIGH_POS for
2464 empty arrays. In that situation, the array length is just zero,
2465 not negative! */
2466 if (low_pos > high_pos)
2467 len = 0;
2468 else
2469 len = high_pos - low_pos + 1;
2470 }
2471 else
2472 {
2473 warning (_("unable to get bounds of array, assuming null array"));
2474 low_bound = 0;
2475 len = 0;
2476 }
2477
2478 annotate_array_section_begin (i, elttype);
2479
2480 for (; i < len && things_printed < options->print_max; i++)
2481 {
2482 scoped_value_mark free_values;
2483
2484 if (i != 0)
2485 {
2486 if (options->prettyformat_arrays)
2487 {
2488 fprintf_filtered (stream, ",\n");
2489 print_spaces_filtered (2 + 2 * recurse, stream);
2490 }
2491 else
2492 fprintf_filtered (stream, ", ");
2493 }
2494 wrap_here (n_spaces (2 + 2 * recurse));
2495 maybe_print_array_index (index_type, i + low_bound,
2496 stream, options);
2497
2498 rep1 = i + 1;
2499 reps = 1;
2500 /* Only check for reps if repeat_count_threshold is not set to
2501 UINT_MAX (unlimited). */
2502 if (options->repeat_count_threshold < UINT_MAX)
2503 {
2504 while (rep1 < len
2505 && value_contents_eq (val, i * eltlen,
2506 val, rep1 * eltlen,
2507 eltlen))
2508 {
2509 ++reps;
2510 ++rep1;
2511 }
2512 }
2513
2514 struct value *element = value_from_component (val, elttype, eltlen * i);
2515 common_val_print (element, stream, recurse + 1, options,
2516 current_language);
2517
2518 if (reps > options->repeat_count_threshold)
2519 {
2520 annotate_elt_rep (reps);
2521 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2522 metadata_style.style ().ptr (), reps, nullptr);
2523 annotate_elt_rep_end ();
2524
2525 i = rep1 - 1;
2526 things_printed += options->repeat_count_threshold;
2527 }
2528 else
2529 {
2530 annotate_elt ();
2531 things_printed++;
2532 }
2533 }
2534 annotate_array_section_end ();
2535 if (i < len)
2536 fprintf_filtered (stream, "...");
2537 }
2538
2539 /* Read LEN bytes of target memory at address MEMADDR, placing the
2540 results in GDB's memory at MYADDR. Returns a count of the bytes
2541 actually read, and optionally a target_xfer_status value in the
2542 location pointed to by ERRPTR if ERRPTR is non-null. */
2543
2544 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2545 function be eliminated. */
2546
2547 static int
2548 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2549 int len, int *errptr)
2550 {
2551 int nread; /* Number of bytes actually read. */
2552 int errcode; /* Error from last read. */
2553
2554 /* First try a complete read. */
2555 errcode = target_read_memory (memaddr, myaddr, len);
2556 if (errcode == 0)
2557 {
2558 /* Got it all. */
2559 nread = len;
2560 }
2561 else
2562 {
2563 /* Loop, reading one byte at a time until we get as much as we can. */
2564 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2565 {
2566 errcode = target_read_memory (memaddr++, myaddr++, 1);
2567 }
2568 /* If an error, the last read was unsuccessful, so adjust count. */
2569 if (errcode != 0)
2570 {
2571 nread--;
2572 }
2573 }
2574 if (errptr != NULL)
2575 {
2576 *errptr = errcode;
2577 }
2578 return (nread);
2579 }
2580
2581 /* Read a string from the inferior, at ADDR, with LEN characters of
2582 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2583 will be set to a newly allocated buffer containing the string, and
2584 BYTES_READ will be set to the number of bytes read. Returns 0 on
2585 success, or a target_xfer_status on failure.
2586
2587 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2588 (including eventual NULs in the middle or end of the string).
2589
2590 If LEN is -1, stops at the first null character (not necessarily
2591 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2592 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2593 the string.
2594
2595 Unless an exception is thrown, BUFFER will always be allocated, even on
2596 failure. In this case, some characters might have been read before the
2597 failure happened. Check BYTES_READ to recognize this situation.
2598
2599 Note: There was a FIXME asking to make this code use target_read_string,
2600 but this function is more general (can read past null characters, up to
2601 given LEN). Besides, it is used much more often than target_read_string
2602 so it is more tested. Perhaps callers of target_read_string should use
2603 this function instead? */
2604
2605 int
2606 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2607 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2608 int *bytes_read)
2609 {
2610 int errcode; /* Errno returned from bad reads. */
2611 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2612 gdb_byte *bufptr; /* Pointer to next available byte in
2613 buffer. */
2614
2615 /* Loop until we either have all the characters, or we encounter
2616 some error, such as bumping into the end of the address space. */
2617
2618 buffer->reset (nullptr);
2619
2620 if (len > 0)
2621 {
2622 /* We want fetchlimit chars, so we might as well read them all in
2623 one operation. */
2624 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2625
2626 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2627 bufptr = buffer->get ();
2628
2629 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2630 / width;
2631 addr += nfetch * width;
2632 bufptr += nfetch * width;
2633 }
2634 else if (len == -1)
2635 {
2636 unsigned long bufsize = 0;
2637 unsigned int chunksize; /* Size of each fetch, in chars. */
2638 int found_nul; /* Non-zero if we found the nul char. */
2639 gdb_byte *limit; /* First location past end of fetch buffer. */
2640
2641 found_nul = 0;
2642 /* We are looking for a NUL terminator to end the fetching, so we
2643 might as well read in blocks that are large enough to be efficient,
2644 but not so large as to be slow if fetchlimit happens to be large.
2645 So we choose the minimum of 8 and fetchlimit. We used to use 200
2646 instead of 8 but 200 is way too big for remote debugging over a
2647 serial line. */
2648 chunksize = std::min (8u, fetchlimit);
2649
2650 do
2651 {
2652 QUIT;
2653 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2654
2655 if (*buffer == NULL)
2656 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2657 else
2658 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2659 (nfetch + bufsize) * width));
2660
2661 bufptr = buffer->get () + bufsize * width;
2662 bufsize += nfetch;
2663
2664 /* Read as much as we can. */
2665 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2666 / width;
2667
2668 /* Scan this chunk for the null character that terminates the string
2669 to print. If found, we don't need to fetch any more. Note
2670 that bufptr is explicitly left pointing at the next character
2671 after the null character, or at the next character after the end
2672 of the buffer. */
2673
2674 limit = bufptr + nfetch * width;
2675 while (bufptr < limit)
2676 {
2677 unsigned long c;
2678
2679 c = extract_unsigned_integer (bufptr, width, byte_order);
2680 addr += width;
2681 bufptr += width;
2682 if (c == 0)
2683 {
2684 /* We don't care about any error which happened after
2685 the NUL terminator. */
2686 errcode = 0;
2687 found_nul = 1;
2688 break;
2689 }
2690 }
2691 }
2692 while (errcode == 0 /* no error */
2693 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2694 && !found_nul); /* haven't found NUL yet */
2695 }
2696 else
2697 { /* Length of string is really 0! */
2698 /* We always allocate *buffer. */
2699 buffer->reset ((gdb_byte *) xmalloc (1));
2700 bufptr = buffer->get ();
2701 errcode = 0;
2702 }
2703
2704 /* bufptr and addr now point immediately beyond the last byte which we
2705 consider part of the string (including a '\0' which ends the string). */
2706 *bytes_read = bufptr - buffer->get ();
2707
2708 QUIT;
2709
2710 return errcode;
2711 }
2712
2713 /* Return true if print_wchar can display W without resorting to a
2714 numeric escape, false otherwise. */
2715
2716 static int
2717 wchar_printable (gdb_wchar_t w)
2718 {
2719 return (gdb_iswprint (w)
2720 || w == LCST ('\a') || w == LCST ('\b')
2721 || w == LCST ('\f') || w == LCST ('\n')
2722 || w == LCST ('\r') || w == LCST ('\t')
2723 || w == LCST ('\v'));
2724 }
2725
2726 /* A helper function that converts the contents of STRING to wide
2727 characters and then appends them to OUTPUT. */
2728
2729 static void
2730 append_string_as_wide (const char *string,
2731 struct obstack *output)
2732 {
2733 for (; *string; ++string)
2734 {
2735 gdb_wchar_t w = gdb_btowc (*string);
2736 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2737 }
2738 }
2739
2740 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2741 original (target) bytes representing the character, ORIG_LEN is the
2742 number of valid bytes. WIDTH is the number of bytes in a base
2743 characters of the type. OUTPUT is an obstack to which wide
2744 characters are emitted. QUOTER is a (narrow) character indicating
2745 the style of quotes surrounding the character to be printed.
2746 NEED_ESCAPE is an in/out flag which is used to track numeric
2747 escapes across calls. */
2748
2749 static void
2750 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2751 int orig_len, int width,
2752 enum bfd_endian byte_order,
2753 struct obstack *output,
2754 int quoter, int *need_escapep)
2755 {
2756 int need_escape = *need_escapep;
2757
2758 *need_escapep = 0;
2759
2760 /* iswprint implementation on Windows returns 1 for tab character.
2761 In order to avoid different printout on this host, we explicitly
2762 use wchar_printable function. */
2763 switch (w)
2764 {
2765 case LCST ('\a'):
2766 obstack_grow_wstr (output, LCST ("\\a"));
2767 break;
2768 case LCST ('\b'):
2769 obstack_grow_wstr (output, LCST ("\\b"));
2770 break;
2771 case LCST ('\f'):
2772 obstack_grow_wstr (output, LCST ("\\f"));
2773 break;
2774 case LCST ('\n'):
2775 obstack_grow_wstr (output, LCST ("\\n"));
2776 break;
2777 case LCST ('\r'):
2778 obstack_grow_wstr (output, LCST ("\\r"));
2779 break;
2780 case LCST ('\t'):
2781 obstack_grow_wstr (output, LCST ("\\t"));
2782 break;
2783 case LCST ('\v'):
2784 obstack_grow_wstr (output, LCST ("\\v"));
2785 break;
2786 default:
2787 {
2788 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2789 && w != LCST ('8')
2790 && w != LCST ('9'))))
2791 {
2792 gdb_wchar_t wchar = w;
2793
2794 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2795 obstack_grow_wstr (output, LCST ("\\"));
2796 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2797 }
2798 else
2799 {
2800 int i;
2801
2802 for (i = 0; i + width <= orig_len; i += width)
2803 {
2804 char octal[30];
2805 ULONGEST value;
2806
2807 value = extract_unsigned_integer (&orig[i], width,
2808 byte_order);
2809 /* If the value fits in 3 octal digits, print it that
2810 way. Otherwise, print it as a hex escape. */
2811 if (value <= 0777)
2812 xsnprintf (octal, sizeof (octal), "\\%.3o",
2813 (int) (value & 0777));
2814 else
2815 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2816 append_string_as_wide (octal, output);
2817 }
2818 /* If we somehow have extra bytes, print them now. */
2819 while (i < orig_len)
2820 {
2821 char octal[5];
2822
2823 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2824 append_string_as_wide (octal, output);
2825 ++i;
2826 }
2827
2828 *need_escapep = 1;
2829 }
2830 break;
2831 }
2832 }
2833 }
2834
2835 /* Print the character C on STREAM as part of the contents of a
2836 literal string whose delimiter is QUOTER. ENCODING names the
2837 encoding of C. */
2838
2839 void
2840 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2841 int quoter, const char *encoding)
2842 {
2843 enum bfd_endian byte_order
2844 = type_byte_order (type);
2845 gdb_byte *c_buf;
2846 int need_escape = 0;
2847
2848 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2849 pack_long (c_buf, type, c);
2850
2851 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2852
2853 /* This holds the printable form of the wchar_t data. */
2854 auto_obstack wchar_buf;
2855
2856 while (1)
2857 {
2858 int num_chars;
2859 gdb_wchar_t *chars;
2860 const gdb_byte *buf;
2861 size_t buflen;
2862 int print_escape = 1;
2863 enum wchar_iterate_result result;
2864
2865 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2866 if (num_chars < 0)
2867 break;
2868 if (num_chars > 0)
2869 {
2870 /* If all characters are printable, print them. Otherwise,
2871 we're going to have to print an escape sequence. We
2872 check all characters because we want to print the target
2873 bytes in the escape sequence, and we don't know character
2874 boundaries there. */
2875 int i;
2876
2877 print_escape = 0;
2878 for (i = 0; i < num_chars; ++i)
2879 if (!wchar_printable (chars[i]))
2880 {
2881 print_escape = 1;
2882 break;
2883 }
2884
2885 if (!print_escape)
2886 {
2887 for (i = 0; i < num_chars; ++i)
2888 print_wchar (chars[i], buf, buflen,
2889 TYPE_LENGTH (type), byte_order,
2890 &wchar_buf, quoter, &need_escape);
2891 }
2892 }
2893
2894 /* This handles the NUM_CHARS == 0 case as well. */
2895 if (print_escape)
2896 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2897 byte_order, &wchar_buf, quoter, &need_escape);
2898 }
2899
2900 /* The output in the host encoding. */
2901 auto_obstack output;
2902
2903 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2904 (gdb_byte *) obstack_base (&wchar_buf),
2905 obstack_object_size (&wchar_buf),
2906 sizeof (gdb_wchar_t), &output, translit_char);
2907 obstack_1grow (&output, '\0');
2908
2909 fputs_filtered ((const char *) obstack_base (&output), stream);
2910 }
2911
2912 /* Return the repeat count of the next character/byte in ITER,
2913 storing the result in VEC. */
2914
2915 static int
2916 count_next_character (wchar_iterator *iter,
2917 std::vector<converted_character> *vec)
2918 {
2919 struct converted_character *current;
2920
2921 if (vec->empty ())
2922 {
2923 struct converted_character tmp;
2924 gdb_wchar_t *chars;
2925
2926 tmp.num_chars
2927 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2928 if (tmp.num_chars > 0)
2929 {
2930 gdb_assert (tmp.num_chars < MAX_WCHARS);
2931 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2932 }
2933 vec->push_back (tmp);
2934 }
2935
2936 current = &vec->back ();
2937
2938 /* Count repeated characters or bytes. */
2939 current->repeat_count = 1;
2940 if (current->num_chars == -1)
2941 {
2942 /* EOF */
2943 return -1;
2944 }
2945 else
2946 {
2947 gdb_wchar_t *chars;
2948 struct converted_character d;
2949 int repeat;
2950
2951 d.repeat_count = 0;
2952
2953 while (1)
2954 {
2955 /* Get the next character. */
2956 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2957
2958 /* If a character was successfully converted, save the character
2959 into the converted character. */
2960 if (d.num_chars > 0)
2961 {
2962 gdb_assert (d.num_chars < MAX_WCHARS);
2963 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2964 }
2965
2966 /* Determine if the current character is the same as this
2967 new character. */
2968 if (d.num_chars == current->num_chars && d.result == current->result)
2969 {
2970 /* There are two cases to consider:
2971
2972 1) Equality of converted character (num_chars > 0)
2973 2) Equality of non-converted character (num_chars == 0) */
2974 if ((current->num_chars > 0
2975 && memcmp (current->chars, d.chars,
2976 WCHAR_BUFLEN (current->num_chars)) == 0)
2977 || (current->num_chars == 0
2978 && current->buflen == d.buflen
2979 && memcmp (current->buf, d.buf, current->buflen) == 0))
2980 ++current->repeat_count;
2981 else
2982 break;
2983 }
2984 else
2985 break;
2986 }
2987
2988 /* Push this next converted character onto the result vector. */
2989 repeat = current->repeat_count;
2990 vec->push_back (d);
2991 return repeat;
2992 }
2993 }
2994
2995 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2996 character to use with string output. WIDTH is the size of the output
2997 character type. BYTE_ORDER is the target byte order. OPTIONS
2998 is the user's print options. */
2999
3000 static void
3001 print_converted_chars_to_obstack (struct obstack *obstack,
3002 const std::vector<converted_character> &chars,
3003 int quote_char, int width,
3004 enum bfd_endian byte_order,
3005 const struct value_print_options *options)
3006 {
3007 unsigned int idx;
3008 const converted_character *elem;
3009 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
3010 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
3011 int need_escape = 0;
3012
3013 /* Set the start state. */
3014 idx = 0;
3015 last = state = START;
3016 elem = NULL;
3017
3018 while (1)
3019 {
3020 switch (state)
3021 {
3022 case START:
3023 /* Nothing to do. */
3024 break;
3025
3026 case SINGLE:
3027 {
3028 int j;
3029
3030 /* We are outputting a single character
3031 (< options->repeat_count_threshold). */
3032
3033 if (last != SINGLE)
3034 {
3035 /* We were outputting some other type of content, so we
3036 must output and a comma and a quote. */
3037 if (last != START)
3038 obstack_grow_wstr (obstack, LCST (", "));
3039 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3040 }
3041 /* Output the character. */
3042 for (j = 0; j < elem->repeat_count; ++j)
3043 {
3044 if (elem->result == wchar_iterate_ok)
3045 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
3046 byte_order, obstack, quote_char, &need_escape);
3047 else
3048 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
3049 byte_order, obstack, quote_char, &need_escape);
3050 }
3051 }
3052 break;
3053
3054 case REPEAT:
3055 {
3056 int j;
3057
3058 /* We are outputting a character with a repeat count
3059 greater than options->repeat_count_threshold. */
3060
3061 if (last == SINGLE)
3062 {
3063 /* We were outputting a single string. Terminate the
3064 string. */
3065 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3066 }
3067 if (last != START)
3068 obstack_grow_wstr (obstack, LCST (", "));
3069
3070 /* Output the character and repeat string. */
3071 obstack_grow_wstr (obstack, LCST ("'"));
3072 if (elem->result == wchar_iterate_ok)
3073 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
3074 byte_order, obstack, quote_char, &need_escape);
3075 else
3076 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
3077 byte_order, obstack, quote_char, &need_escape);
3078 obstack_grow_wstr (obstack, LCST ("'"));
3079 std::string s = string_printf (_(" <repeats %u times>"),
3080 elem->repeat_count);
3081 for (j = 0; s[j]; ++j)
3082 {
3083 gdb_wchar_t w = gdb_btowc (s[j]);
3084 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
3085 }
3086 }
3087 break;
3088
3089 case INCOMPLETE:
3090 /* We are outputting an incomplete sequence. */
3091 if (last == SINGLE)
3092 {
3093 /* If we were outputting a string of SINGLE characters,
3094 terminate the quote. */
3095 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3096 }
3097 if (last != START)
3098 obstack_grow_wstr (obstack, LCST (", "));
3099
3100 /* Output the incomplete sequence string. */
3101 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
3102 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
3103 obstack, 0, &need_escape);
3104 obstack_grow_wstr (obstack, LCST (">"));
3105
3106 /* We do not attempt to output anything after this. */
3107 state = FINISH;
3108 break;
3109
3110 case FINISH:
3111 /* All done. If we were outputting a string of SINGLE
3112 characters, the string must be terminated. Otherwise,
3113 REPEAT and INCOMPLETE are always left properly terminated. */
3114 if (last == SINGLE)
3115 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3116
3117 return;
3118 }
3119
3120 /* Get the next element and state. */
3121 last = state;
3122 if (state != FINISH)
3123 {
3124 elem = &chars[idx++];
3125 switch (elem->result)
3126 {
3127 case wchar_iterate_ok:
3128 case wchar_iterate_invalid:
3129 if (elem->repeat_count > options->repeat_count_threshold)
3130 state = REPEAT;
3131 else
3132 state = SINGLE;
3133 break;
3134
3135 case wchar_iterate_incomplete:
3136 state = INCOMPLETE;
3137 break;
3138
3139 case wchar_iterate_eof:
3140 state = FINISH;
3141 break;
3142 }
3143 }
3144 }
3145 }
3146
3147 /* Print the character string STRING, printing at most LENGTH
3148 characters. LENGTH is -1 if the string is nul terminated. TYPE is
3149 the type of each character. OPTIONS holds the printing options;
3150 printing stops early if the number hits print_max; repeat counts
3151 are printed as appropriate. Print ellipses at the end if we had to
3152 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
3153 QUOTE_CHAR is the character to print at each end of the string. If
3154 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
3155 omitted. */
3156
3157 void
3158 generic_printstr (struct ui_file *stream, struct type *type,
3159 const gdb_byte *string, unsigned int length,
3160 const char *encoding, int force_ellipses,
3161 int quote_char, int c_style_terminator,
3162 const struct value_print_options *options)
3163 {
3164 enum bfd_endian byte_order = type_byte_order (type);
3165 unsigned int i;
3166 int width = TYPE_LENGTH (type);
3167 int finished = 0;
3168 struct converted_character *last;
3169
3170 if (length == -1)
3171 {
3172 unsigned long current_char = 1;
3173
3174 for (i = 0; current_char; ++i)
3175 {
3176 QUIT;
3177 current_char = extract_unsigned_integer (string + i * width,
3178 width, byte_order);
3179 }
3180 length = i;
3181 }
3182
3183 /* If the string was not truncated due to `set print elements', and
3184 the last byte of it is a null, we don't print that, in
3185 traditional C style. */
3186 if (c_style_terminator
3187 && !force_ellipses
3188 && length > 0
3189 && (extract_unsigned_integer (string + (length - 1) * width,
3190 width, byte_order) == 0))
3191 length--;
3192
3193 if (length == 0)
3194 {
3195 fputs_filtered ("\"\"", stream);
3196 return;
3197 }
3198
3199 /* Arrange to iterate over the characters, in wchar_t form. */
3200 wchar_iterator iter (string, length * width, encoding, width);
3201 std::vector<converted_character> converted_chars;
3202
3203 /* Convert characters until the string is over or the maximum
3204 number of printed characters has been reached. */
3205 i = 0;
3206 while (i < options->print_max)
3207 {
3208 int r;
3209
3210 QUIT;
3211
3212 /* Grab the next character and repeat count. */
3213 r = count_next_character (&iter, &converted_chars);
3214
3215 /* If less than zero, the end of the input string was reached. */
3216 if (r < 0)
3217 break;
3218
3219 /* Otherwise, add the count to the total print count and get
3220 the next character. */
3221 i += r;
3222 }
3223
3224 /* Get the last element and determine if the entire string was
3225 processed. */
3226 last = &converted_chars.back ();
3227 finished = (last->result == wchar_iterate_eof);
3228
3229 /* Ensure that CONVERTED_CHARS is terminated. */
3230 last->result = wchar_iterate_eof;
3231
3232 /* WCHAR_BUF is the obstack we use to represent the string in
3233 wchar_t form. */
3234 auto_obstack wchar_buf;
3235
3236 /* Print the output string to the obstack. */
3237 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
3238 width, byte_order, options);
3239
3240 if (force_ellipses || !finished)
3241 obstack_grow_wstr (&wchar_buf, LCST ("..."));
3242
3243 /* OUTPUT is where we collect `char's for printing. */
3244 auto_obstack output;
3245
3246 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
3247 (gdb_byte *) obstack_base (&wchar_buf),
3248 obstack_object_size (&wchar_buf),
3249 sizeof (gdb_wchar_t), &output, translit_char);
3250 obstack_1grow (&output, '\0');
3251
3252 fputs_filtered ((const char *) obstack_base (&output), stream);
3253 }
3254
3255 /* Print a string from the inferior, starting at ADDR and printing up to LEN
3256 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
3257 stops at the first null byte, otherwise printing proceeds (including null
3258 bytes) until either print_max or LEN characters have been printed,
3259 whichever is smaller. ENCODING is the name of the string's
3260 encoding. It can be NULL, in which case the target encoding is
3261 assumed. */
3262
3263 int
3264 val_print_string (struct type *elttype, const char *encoding,
3265 CORE_ADDR addr, int len,
3266 struct ui_file *stream,
3267 const struct value_print_options *options)
3268 {
3269 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
3270 int err; /* Non-zero if we got a bad read. */
3271 int found_nul; /* Non-zero if we found the nul char. */
3272 unsigned int fetchlimit; /* Maximum number of chars to print. */
3273 int bytes_read;
3274 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
3275 struct gdbarch *gdbarch = get_type_arch (elttype);
3276 enum bfd_endian byte_order = type_byte_order (elttype);
3277 int width = TYPE_LENGTH (elttype);
3278
3279 /* First we need to figure out the limit on the number of characters we are
3280 going to attempt to fetch and print. This is actually pretty simple. If
3281 LEN >= zero, then the limit is the minimum of LEN and print_max. If
3282 LEN is -1, then the limit is print_max. This is true regardless of
3283 whether print_max is zero, UINT_MAX (unlimited), or something in between,
3284 because finding the null byte (or available memory) is what actually
3285 limits the fetch. */
3286
3287 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
3288 options->print_max));
3289
3290 err = read_string (addr, len, width, fetchlimit, byte_order,
3291 &buffer, &bytes_read);
3292
3293 addr += bytes_read;
3294
3295 /* We now have either successfully filled the buffer to fetchlimit,
3296 or terminated early due to an error or finding a null char when
3297 LEN is -1. */
3298
3299 /* Determine found_nul by looking at the last character read. */
3300 found_nul = 0;
3301 if (bytes_read >= width)
3302 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
3303 width, byte_order) == 0;
3304 if (len == -1 && !found_nul)
3305 {
3306 gdb_byte *peekbuf;
3307
3308 /* We didn't find a NUL terminator we were looking for. Attempt
3309 to peek at the next character. If not successful, or it is not
3310 a null byte, then force ellipsis to be printed. */
3311
3312 peekbuf = (gdb_byte *) alloca (width);
3313
3314 if (target_read_memory (addr, peekbuf, width) == 0
3315 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
3316 force_ellipsis = 1;
3317 }
3318 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
3319 {
3320 /* Getting an error when we have a requested length, or fetching less
3321 than the number of characters actually requested, always make us
3322 print ellipsis. */
3323 force_ellipsis = 1;
3324 }
3325
3326 /* If we get an error before fetching anything, don't print a string.
3327 But if we fetch something and then get an error, print the string
3328 and then the error message. */
3329 if (err == 0 || bytes_read > 0)
3330 {
3331 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
3332 encoding, force_ellipsis, options);
3333 }
3334
3335 if (err != 0)
3336 {
3337 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
3338
3339 fprintf_filtered (stream, _("<error: %ps>"),
3340 styled_string (metadata_style.style (),
3341 str.c_str ()));
3342 }
3343
3344 return (bytes_read / width);
3345 }
3346
3347 /* Handle 'show print max-depth'. */
3348
3349 static void
3350 show_print_max_depth (struct ui_file *file, int from_tty,
3351 struct cmd_list_element *c, const char *value)
3352 {
3353 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
3354 }
3355 \f
3356
3357 /* The 'set input-radix' command writes to this auxiliary variable.
3358 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3359 it is left unchanged. */
3360
3361 static unsigned input_radix_1 = 10;
3362
3363 /* Validate an input or output radix setting, and make sure the user
3364 knows what they really did here. Radix setting is confusing, e.g.
3365 setting the input radix to "10" never changes it! */
3366
3367 static void
3368 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
3369 {
3370 set_input_radix_1 (from_tty, input_radix_1);
3371 }
3372
3373 static void
3374 set_input_radix_1 (int from_tty, unsigned radix)
3375 {
3376 /* We don't currently disallow any input radix except 0 or 1, which don't
3377 make any mathematical sense. In theory, we can deal with any input
3378 radix greater than 1, even if we don't have unique digits for every
3379 value from 0 to radix-1, but in practice we lose on large radix values.
3380 We should either fix the lossage or restrict the radix range more.
3381 (FIXME). */
3382
3383 if (radix < 2)
3384 {
3385 input_radix_1 = input_radix;
3386 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3387 radix);
3388 }
3389 input_radix_1 = input_radix = radix;
3390 if (from_tty)
3391 {
3392 printf_filtered (_("Input radix now set to "
3393 "decimal %u, hex %x, octal %o.\n"),
3394 radix, radix, radix);
3395 }
3396 }
3397
3398 /* The 'set output-radix' command writes to this auxiliary variable.
3399 If the requested radix is valid, OUTPUT_RADIX is updated,
3400 otherwise, it is left unchanged. */
3401
3402 static unsigned output_radix_1 = 10;
3403
3404 static void
3405 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3406 {
3407 set_output_radix_1 (from_tty, output_radix_1);
3408 }
3409
3410 static void
3411 set_output_radix_1 (int from_tty, unsigned radix)
3412 {
3413 /* Validate the radix and disallow ones that we aren't prepared to
3414 handle correctly, leaving the radix unchanged. */
3415 switch (radix)
3416 {
3417 case 16:
3418 user_print_options.output_format = 'x'; /* hex */
3419 break;
3420 case 10:
3421 user_print_options.output_format = 0; /* decimal */
3422 break;
3423 case 8:
3424 user_print_options.output_format = 'o'; /* octal */
3425 break;
3426 default:
3427 output_radix_1 = output_radix;
3428 error (_("Unsupported output radix ``decimal %u''; "
3429 "output radix unchanged."),
3430 radix);
3431 }
3432 output_radix_1 = output_radix = radix;
3433 if (from_tty)
3434 {
3435 printf_filtered (_("Output radix now set to "
3436 "decimal %u, hex %x, octal %o.\n"),
3437 radix, radix, radix);
3438 }
3439 }
3440
3441 /* Set both the input and output radix at once. Try to set the output radix
3442 first, since it has the most restrictive range. An radix that is valid as
3443 an output radix is also valid as an input radix.
3444
3445 It may be useful to have an unusual input radix. If the user wishes to
3446 set an input radix that is not valid as an output radix, he needs to use
3447 the 'set input-radix' command. */
3448
3449 static void
3450 set_radix (const char *arg, int from_tty)
3451 {
3452 unsigned radix;
3453
3454 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3455 set_output_radix_1 (0, radix);
3456 set_input_radix_1 (0, radix);
3457 if (from_tty)
3458 {
3459 printf_filtered (_("Input and output radices now set to "
3460 "decimal %u, hex %x, octal %o.\n"),
3461 radix, radix, radix);
3462 }
3463 }
3464
3465 /* Show both the input and output radices. */
3466
3467 static void
3468 show_radix (const char *arg, int from_tty)
3469 {
3470 if (from_tty)
3471 {
3472 if (input_radix == output_radix)
3473 {
3474 printf_filtered (_("Input and output radices set to "
3475 "decimal %u, hex %x, octal %o.\n"),
3476 input_radix, input_radix, input_radix);
3477 }
3478 else
3479 {
3480 printf_filtered (_("Input radix set to decimal "
3481 "%u, hex %x, octal %o.\n"),
3482 input_radix, input_radix, input_radix);
3483 printf_filtered (_("Output radix set to decimal "
3484 "%u, hex %x, octal %o.\n"),
3485 output_radix, output_radix, output_radix);
3486 }
3487 }
3488 }
3489 \f
3490
3491 static void
3492 set_print (const char *arg, int from_tty)
3493 {
3494 printf_unfiltered (
3495 "\"set print\" must be followed by the name of a print subcommand.\n");
3496 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3497 }
3498
3499 static void
3500 show_print (const char *args, int from_tty)
3501 {
3502 cmd_show_list (showprintlist, from_tty, "");
3503 }
3504
3505 static void
3506 set_print_raw (const char *arg, int from_tty)
3507 {
3508 printf_unfiltered (
3509 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3510 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3511 }
3512
3513 static void
3514 show_print_raw (const char *args, int from_tty)
3515 {
3516 cmd_show_list (showprintrawlist, from_tty, "");
3517 }
3518
3519 /* Controls printing of vtbl's. */
3520 static void
3521 show_vtblprint (struct ui_file *file, int from_tty,
3522 struct cmd_list_element *c, const char *value)
3523 {
3524 fprintf_filtered (file, _("\
3525 Printing of C++ virtual function tables is %s.\n"),
3526 value);
3527 }
3528
3529 /* Controls looking up an object's derived type using what we find in
3530 its vtables. */
3531 static void
3532 show_objectprint (struct ui_file *file, int from_tty,
3533 struct cmd_list_element *c,
3534 const char *value)
3535 {
3536 fprintf_filtered (file, _("\
3537 Printing of object's derived type based on vtable info is %s.\n"),
3538 value);
3539 }
3540
3541 static void
3542 show_static_field_print (struct ui_file *file, int from_tty,
3543 struct cmd_list_element *c,
3544 const char *value)
3545 {
3546 fprintf_filtered (file,
3547 _("Printing of C++ static members is %s.\n"),
3548 value);
3549 }
3550
3551 \f
3552
3553 /* A couple typedefs to make writing the options a bit more
3554 convenient. */
3555 using boolean_option_def
3556 = gdb::option::boolean_option_def<value_print_options>;
3557 using uinteger_option_def
3558 = gdb::option::uinteger_option_def<value_print_options>;
3559 using zuinteger_unlimited_option_def
3560 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3561
3562 /* Definitions of options for the "print" and "compile print"
3563 commands. */
3564 static const gdb::option::option_def value_print_option_defs[] = {
3565
3566 boolean_option_def {
3567 "address",
3568 [] (value_print_options *opt) { return &opt->addressprint; },
3569 show_addressprint, /* show_cmd_cb */
3570 N_("Set printing of addresses."),
3571 N_("Show printing of addresses."),
3572 NULL, /* help_doc */
3573 },
3574
3575 boolean_option_def {
3576 "array",
3577 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3578 show_prettyformat_arrays, /* show_cmd_cb */
3579 N_("Set pretty formatting of arrays."),
3580 N_("Show pretty formatting of arrays."),
3581 NULL, /* help_doc */
3582 },
3583
3584 boolean_option_def {
3585 "array-indexes",
3586 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3587 show_print_array_indexes, /* show_cmd_cb */
3588 N_("Set printing of array indexes."),
3589 N_("Show printing of array indexes."),
3590 NULL, /* help_doc */
3591 },
3592
3593 uinteger_option_def {
3594 "elements",
3595 [] (value_print_options *opt) { return &opt->print_max; },
3596 show_print_max, /* show_cmd_cb */
3597 N_("Set limit on string chars or array elements to print."),
3598 N_("Show limit on string chars or array elements to print."),
3599 N_("\"unlimited\" causes there to be no limit."),
3600 },
3601
3602 zuinteger_unlimited_option_def {
3603 "max-depth",
3604 [] (value_print_options *opt) { return &opt->max_depth; },
3605 show_print_max_depth, /* show_cmd_cb */
3606 N_("Set maximum print depth for nested structures, unions and arrays."),
3607 N_("Show maximum print depth for nested structures, unions, and arrays."),
3608 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3609 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3610 Use \"unlimited\" to print the complete structure.")
3611 },
3612
3613 boolean_option_def {
3614 "null-stop",
3615 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3616 show_stop_print_at_null, /* show_cmd_cb */
3617 N_("Set printing of char arrays to stop at first null char."),
3618 N_("Show printing of char arrays to stop at first null char."),
3619 NULL, /* help_doc */
3620 },
3621
3622 boolean_option_def {
3623 "object",
3624 [] (value_print_options *opt) { return &opt->objectprint; },
3625 show_objectprint, /* show_cmd_cb */
3626 _("Set printing of C++ virtual function tables."),
3627 _("Show printing of C++ virtual function tables."),
3628 NULL, /* help_doc */
3629 },
3630
3631 boolean_option_def {
3632 "pretty",
3633 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3634 show_prettyformat_structs, /* show_cmd_cb */
3635 N_("Set pretty formatting of structures."),
3636 N_("Show pretty formatting of structures."),
3637 NULL, /* help_doc */
3638 },
3639
3640 boolean_option_def {
3641 "raw-values",
3642 [] (value_print_options *opt) { return &opt->raw; },
3643 NULL, /* show_cmd_cb */
3644 N_("Set whether to print values in raw form."),
3645 N_("Show whether to print values in raw form."),
3646 N_("If set, values are printed in raw form, bypassing any\n\
3647 pretty-printers for that value.")
3648 },
3649
3650 uinteger_option_def {
3651 "repeats",
3652 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3653 show_repeat_count_threshold, /* show_cmd_cb */
3654 N_("Set threshold for repeated print elements."),
3655 N_("Show threshold for repeated print elements."),
3656 N_("\"unlimited\" causes all elements to be individually printed."),
3657 },
3658
3659 boolean_option_def {
3660 "static-members",
3661 [] (value_print_options *opt) { return &opt->static_field_print; },
3662 show_static_field_print, /* show_cmd_cb */
3663 N_("Set printing of C++ static members."),
3664 N_("Show printing of C++ static members."),
3665 NULL, /* help_doc */
3666 },
3667
3668 boolean_option_def {
3669 "symbol",
3670 [] (value_print_options *opt) { return &opt->symbol_print; },
3671 show_symbol_print, /* show_cmd_cb */
3672 N_("Set printing of symbol names when printing pointers."),
3673 N_("Show printing of symbol names when printing pointers."),
3674 NULL, /* help_doc */
3675 },
3676
3677 boolean_option_def {
3678 "union",
3679 [] (value_print_options *opt) { return &opt->unionprint; },
3680 show_unionprint, /* show_cmd_cb */
3681 N_("Set printing of unions interior to structures."),
3682 N_("Show printing of unions interior to structures."),
3683 NULL, /* help_doc */
3684 },
3685
3686 boolean_option_def {
3687 "vtbl",
3688 [] (value_print_options *opt) { return &opt->vtblprint; },
3689 show_vtblprint, /* show_cmd_cb */
3690 N_("Set printing of C++ virtual function tables."),
3691 N_("Show printing of C++ virtual function tables."),
3692 NULL, /* help_doc */
3693 },
3694 };
3695
3696 /* See valprint.h. */
3697
3698 gdb::option::option_def_group
3699 make_value_print_options_def_group (value_print_options *opts)
3700 {
3701 return {{value_print_option_defs}, opts};
3702 }
3703
3704 void _initialize_valprint ();
3705 void
3706 _initialize_valprint ()
3707 {
3708 cmd_list_element *cmd;
3709
3710 add_prefix_cmd ("print", no_class, set_print,
3711 _("Generic command for setting how things print."),
3712 &setprintlist, "set print ", 0, &setlist);
3713 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3714 /* Prefer set print to set prompt. */
3715 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3716
3717 add_prefix_cmd ("print", no_class, show_print,
3718 _("Generic command for showing print settings."),
3719 &showprintlist, "show print ", 0, &showlist);
3720 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3721 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3722
3723 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3724 _("\
3725 Generic command for setting what things to print in \"raw\" mode."),
3726 &setprintrawlist, "set print raw ", 0,
3727 &setprintlist);
3728 deprecate_cmd (cmd, nullptr);
3729
3730 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3731 _("Generic command for showing \"print raw\" settings."),
3732 &showprintrawlist, "show print raw ", 0,
3733 &showprintlist);
3734 deprecate_cmd (cmd, nullptr);
3735
3736 gdb::option::add_setshow_cmds_for_options
3737 (class_support, &user_print_options, value_print_option_defs,
3738 &setprintlist, &showprintlist);
3739
3740 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3741 _("\
3742 Set default input radix for entering numbers."), _("\
3743 Show default input radix for entering numbers."), NULL,
3744 set_input_radix,
3745 show_input_radix,
3746 &setlist, &showlist);
3747
3748 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3749 _("\
3750 Set default output radix for printing of values."), _("\
3751 Show default output radix for printing of values."), NULL,
3752 set_output_radix,
3753 show_output_radix,
3754 &setlist, &showlist);
3755
3756 /* The "set radix" and "show radix" commands are special in that
3757 they are like normal set and show commands but allow two normally
3758 independent variables to be either set or shown with a single
3759 command. So the usual deprecated_add_set_cmd() and [deleted]
3760 add_show_from_set() commands aren't really appropriate. */
3761 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3762 longer true - show can display anything. */
3763 add_cmd ("radix", class_support, set_radix, _("\
3764 Set default input and output number radices.\n\
3765 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3766 Without an argument, sets both radices back to the default value of 10."),
3767 &setlist);
3768 add_cmd ("radix", class_support, show_radix, _("\
3769 Show the default input and output number radices.\n\
3770 Use 'show input-radix' or 'show output-radix' to independently show each."),
3771 &showlist);
3772 }
This page took 0.102744 seconds and 5 git commands to generate.