Fix "info frame" in the outermost frame.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Maximum number of wchars returned from wchar_iterate. */
44 #define MAX_WCHARS 4
45
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 characters. */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49
50 /* Character buffer size saved while iterating over wchars. */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52
53 /* A structure to encapsulate state information from iterated
54 character conversions. */
55 struct converted_character
56 {
57 /* The number of characters converted. */
58 int num_chars;
59
60 /* The result of the conversion. See charset.h for more. */
61 enum wchar_iterate_result result;
62
63 /* The (saved) converted character(s). */
64 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65
66 /* The first converted target byte. */
67 const gdb_byte *buf;
68
69 /* The number of bytes converted. */
70 size_t buflen;
71
72 /* How many times this character(s) is repeated. */
73 int repeat_count;
74 };
75
76 typedef struct converted_character converted_character_d;
77 DEF_VEC_O (converted_character_d);
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void show_print (char *, int);
89
90 static void set_print (char *, int);
91
92 static void set_radix (char *, int);
93
94 static void show_radix (char *, int);
95
96 static void set_input_radix (char *, int, struct cmd_list_element *);
97
98 static void set_input_radix_1 (int, unsigned);
99
100 static void set_output_radix (char *, int, struct cmd_list_element *);
101
102 static void set_output_radix_1 (int, unsigned);
103
104 void _initialize_valprint (void);
105
106 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
107
108 struct value_print_options user_print_options =
109 {
110 Val_prettyformat_default, /* prettyformat */
111 0, /* prettyformat_arrays */
112 0, /* prettyformat_structs */
113 0, /* vtblprint */
114 1, /* unionprint */
115 1, /* addressprint */
116 0, /* objectprint */
117 PRINT_MAX_DEFAULT, /* print_max */
118 10, /* repeat_count_threshold */
119 0, /* output_format */
120 0, /* format */
121 0, /* stop_print_at_null */
122 0, /* print_array_indexes */
123 0, /* deref_ref */
124 1, /* static_field_print */
125 1, /* pascal_static_field_print */
126 0, /* raw */
127 0, /* summary */
128 1 /* symbol_print */
129 };
130
131 /* Initialize *OPTS to be a copy of the user print options. */
132 void
133 get_user_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but with
139 pretty-formatting disabled. */
140 void
141 get_no_prettyformat_print_options (struct value_print_options *opts)
142 {
143 *opts = user_print_options;
144 opts->prettyformat = Val_no_prettyformat;
145 }
146
147 /* Initialize *OPTS to be a copy of the user print options, but using
148 FORMAT as the formatting option. */
149 void
150 get_formatted_print_options (struct value_print_options *opts,
151 char format)
152 {
153 *opts = user_print_options;
154 opts->format = format;
155 }
156
157 static void
158 show_print_max (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file,
162 _("Limit on string chars or array "
163 "elements to print is %s.\n"),
164 value);
165 }
166
167
168 /* Default input and output radixes, and output format letter. */
169
170 unsigned input_radix = 10;
171 static void
172 show_input_radix (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file,
176 _("Default input radix for entering numbers is %s.\n"),
177 value);
178 }
179
180 unsigned output_radix = 10;
181 static void
182 show_output_radix (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file,
186 _("Default output radix for printing of values is %s.\n"),
187 value);
188 }
189
190 /* By default we print arrays without printing the index of each element in
191 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
192
193 static void
194 show_print_array_indexes (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
198 }
199
200 /* Print repeat counts if there are more than this many repetitions of an
201 element in an array. Referenced by the low level language dependent
202 print routines. */
203
204 static void
205 show_repeat_count_threshold (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
209 value);
210 }
211
212 /* If nonzero, stops printing of char arrays at first null. */
213
214 static void
215 show_stop_print_at_null (struct ui_file *file, int from_tty,
216 struct cmd_list_element *c, const char *value)
217 {
218 fprintf_filtered (file,
219 _("Printing of char arrays to stop "
220 "at first null char is %s.\n"),
221 value);
222 }
223
224 /* Controls pretty printing of structures. */
225
226 static void
227 show_prettyformat_structs (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
231 }
232
233 /* Controls pretty printing of arrays. */
234
235 static void
236 show_prettyformat_arrays (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
240 }
241
242 /* If nonzero, causes unions inside structures or other unions to be
243 printed. */
244
245 static void
246 show_unionprint (struct ui_file *file, int from_tty,
247 struct cmd_list_element *c, const char *value)
248 {
249 fprintf_filtered (file,
250 _("Printing of unions interior to structures is %s.\n"),
251 value);
252 }
253
254 /* If nonzero, causes machine addresses to be printed in certain contexts. */
255
256 static void
257 show_addressprint (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
261 }
262
263 static void
264 show_symbol_print (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file,
268 _("Printing of symbols when printing pointers is %s.\n"),
269 value);
270 }
271
272 \f
273
274 /* A helper function for val_print. When printing in "summary" mode,
275 we want to print scalar arguments, but not aggregate arguments.
276 This function distinguishes between the two. */
277
278 int
279 val_print_scalar_type_p (struct type *type)
280 {
281 CHECK_TYPEDEF (type);
282 while (TYPE_CODE (type) == TYPE_CODE_REF)
283 {
284 type = TYPE_TARGET_TYPE (type);
285 CHECK_TYPEDEF (type);
286 }
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_ARRAY:
290 case TYPE_CODE_STRUCT:
291 case TYPE_CODE_UNION:
292 case TYPE_CODE_SET:
293 case TYPE_CODE_STRING:
294 return 0;
295 default:
296 return 1;
297 }
298 }
299
300 /* See its definition in value.h. */
301
302 int
303 valprint_check_validity (struct ui_file *stream,
304 struct type *type,
305 int embedded_offset,
306 const struct value *val)
307 {
308 CHECK_TYPEDEF (type);
309
310 if (TYPE_CODE (type) != TYPE_CODE_UNION
311 && TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
313 {
314 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
315 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
316 {
317 val_print_optimized_out (val, stream);
318 return 0;
319 }
320
321 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
322 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
323 {
324 fputs_filtered (_("<synthetic pointer>"), stream);
325 return 0;
326 }
327
328 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
329 {
330 val_print_unavailable (stream);
331 return 0;
332 }
333 }
334
335 return 1;
336 }
337
338 void
339 val_print_optimized_out (const struct value *val, struct ui_file *stream)
340 {
341 if (val != NULL && value_lval_const (val) == lval_register)
342 val_print_not_saved (stream);
343 else
344 fprintf_filtered (stream, _("<optimized out>"));
345 }
346
347 void
348 val_print_not_saved (struct ui_file *stream)
349 {
350 fprintf_filtered (stream, _("<not saved>"));
351 }
352
353 void
354 val_print_unavailable (struct ui_file *stream)
355 {
356 fprintf_filtered (stream, _("<unavailable>"));
357 }
358
359 void
360 val_print_invalid_address (struct ui_file *stream)
361 {
362 fprintf_filtered (stream, _("<invalid address>"));
363 }
364
365 /* A generic val_print that is suitable for use by language
366 implementations of the la_val_print method. This function can
367 handle most type codes, though not all, notably exception
368 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
369 the caller.
370
371 Most arguments are as to val_print.
372
373 The additional DECORATIONS argument can be used to customize the
374 output in some small, language-specific ways. */
375
376 void
377 generic_val_print (struct type *type, const gdb_byte *valaddr,
378 int embedded_offset, CORE_ADDR address,
379 struct ui_file *stream, int recurse,
380 const struct value *original_value,
381 const struct value_print_options *options,
382 const struct generic_val_print_decorations *decorations)
383 {
384 struct gdbarch *gdbarch = get_type_arch (type);
385 unsigned int i = 0; /* Number of characters printed. */
386 unsigned len;
387 struct type *elttype, *unresolved_elttype;
388 struct type *unresolved_type = type;
389 LONGEST val;
390 CORE_ADDR addr;
391
392 CHECK_TYPEDEF (type);
393 switch (TYPE_CODE (type))
394 {
395 case TYPE_CODE_ARRAY:
396 unresolved_elttype = TYPE_TARGET_TYPE (type);
397 elttype = check_typedef (unresolved_elttype);
398 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
399 {
400 LONGEST low_bound, high_bound;
401
402 if (!get_array_bounds (type, &low_bound, &high_bound))
403 error (_("Could not determine the array high bound"));
404
405 if (options->prettyformat_arrays)
406 {
407 print_spaces_filtered (2 + 2 * recurse, stream);
408 }
409
410 fprintf_filtered (stream, "{");
411 val_print_array_elements (type, valaddr, embedded_offset,
412 address, stream,
413 recurse, original_value, options, 0);
414 fprintf_filtered (stream, "}");
415 break;
416 }
417 /* Array of unspecified length: treat like pointer to first
418 elt. */
419 addr = address + embedded_offset;
420 goto print_unpacked_pointer;
421
422 case TYPE_CODE_MEMBERPTR:
423 val_print_scalar_formatted (type, valaddr, embedded_offset,
424 original_value, options, 0, stream);
425 break;
426
427 case TYPE_CODE_PTR:
428 if (options->format && options->format != 's')
429 {
430 val_print_scalar_formatted (type, valaddr, embedded_offset,
431 original_value, options, 0, stream);
432 break;
433 }
434 unresolved_elttype = TYPE_TARGET_TYPE (type);
435 elttype = check_typedef (unresolved_elttype);
436 {
437 addr = unpack_pointer (type, valaddr + embedded_offset);
438 print_unpacked_pointer:
439
440 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
441 {
442 /* Try to print what function it points to. */
443 print_function_pointer_address (options, gdbarch, addr, stream);
444 return;
445 }
446
447 if (options->symbol_print)
448 print_address_demangle (options, gdbarch, addr, stream, demangle);
449 else if (options->addressprint)
450 fputs_filtered (paddress (gdbarch, addr), stream);
451 }
452 break;
453
454 case TYPE_CODE_REF:
455 elttype = check_typedef (TYPE_TARGET_TYPE (type));
456 if (options->addressprint)
457 {
458 CORE_ADDR addr
459 = extract_typed_address (valaddr + embedded_offset, type);
460
461 fprintf_filtered (stream, "@");
462 fputs_filtered (paddress (gdbarch, addr), stream);
463 if (options->deref_ref)
464 fputs_filtered (": ", stream);
465 }
466 /* De-reference the reference. */
467 if (options->deref_ref)
468 {
469 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
470 {
471 struct value *deref_val;
472
473 deref_val = coerce_ref_if_computed (original_value);
474 if (deref_val != NULL)
475 {
476 /* More complicated computed references are not supported. */
477 gdb_assert (embedded_offset == 0);
478 }
479 else
480 deref_val = value_at (TYPE_TARGET_TYPE (type),
481 unpack_pointer (type,
482 (valaddr
483 + embedded_offset)));
484
485 common_val_print (deref_val, stream, recurse, options,
486 current_language);
487 }
488 else
489 fputs_filtered ("???", stream);
490 }
491 break;
492
493 case TYPE_CODE_ENUM:
494 if (options->format)
495 {
496 val_print_scalar_formatted (type, valaddr, embedded_offset,
497 original_value, options, 0, stream);
498 break;
499 }
500 len = TYPE_NFIELDS (type);
501 val = unpack_long (type, valaddr + embedded_offset);
502 for (i = 0; i < len; i++)
503 {
504 QUIT;
505 if (val == TYPE_FIELD_ENUMVAL (type, i))
506 {
507 break;
508 }
509 }
510 if (i < len)
511 {
512 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
513 }
514 else if (TYPE_FLAG_ENUM (type))
515 {
516 int first = 1;
517
518 /* We have a "flag" enum, so we try to decompose it into
519 pieces as appropriate. A flag enum has disjoint
520 constants by definition. */
521 fputs_filtered ("(", stream);
522 for (i = 0; i < len; ++i)
523 {
524 QUIT;
525
526 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
527 {
528 if (!first)
529 fputs_filtered (" | ", stream);
530 first = 0;
531
532 val &= ~TYPE_FIELD_ENUMVAL (type, i);
533 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
534 }
535 }
536
537 if (first || val != 0)
538 {
539 if (!first)
540 fputs_filtered (" | ", stream);
541 fputs_filtered ("unknown: ", stream);
542 print_longest (stream, 'd', 0, val);
543 }
544
545 fputs_filtered (")", stream);
546 }
547 else
548 print_longest (stream, 'd', 0, val);
549 break;
550
551 case TYPE_CODE_FLAGS:
552 if (options->format)
553 val_print_scalar_formatted (type, valaddr, embedded_offset,
554 original_value, options, 0, stream);
555 else
556 val_print_type_code_flags (type, valaddr + embedded_offset,
557 stream);
558 break;
559
560 case TYPE_CODE_FUNC:
561 case TYPE_CODE_METHOD:
562 if (options->format)
563 {
564 val_print_scalar_formatted (type, valaddr, embedded_offset,
565 original_value, options, 0, stream);
566 break;
567 }
568 /* FIXME, we should consider, at least for ANSI C language,
569 eliminating the distinction made between FUNCs and POINTERs
570 to FUNCs. */
571 fprintf_filtered (stream, "{");
572 type_print (type, "", stream, -1);
573 fprintf_filtered (stream, "} ");
574 /* Try to print what function it points to, and its address. */
575 print_address_demangle (options, gdbarch, address, stream, demangle);
576 break;
577
578 case TYPE_CODE_BOOL:
579 if (options->format || options->output_format)
580 {
581 struct value_print_options opts = *options;
582 opts.format = (options->format ? options->format
583 : options->output_format);
584 val_print_scalar_formatted (type, valaddr, embedded_offset,
585 original_value, &opts, 0, stream);
586 }
587 else
588 {
589 val = unpack_long (type, valaddr + embedded_offset);
590 if (val == 0)
591 fputs_filtered (decorations->false_name, stream);
592 else if (val == 1)
593 fputs_filtered (decorations->true_name, stream);
594 else
595 print_longest (stream, 'd', 0, val);
596 }
597 break;
598
599 case TYPE_CODE_RANGE:
600 /* FIXME: create_range_type does not set the unsigned bit in a
601 range type (I think it probably should copy it from the
602 target type), so we won't print values which are too large to
603 fit in a signed integer correctly. */
604 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
605 print with the target type, though, because the size of our
606 type and the target type might differ). */
607
608 /* FALLTHROUGH */
609
610 case TYPE_CODE_INT:
611 if (options->format || options->output_format)
612 {
613 struct value_print_options opts = *options;
614
615 opts.format = (options->format ? options->format
616 : options->output_format);
617 val_print_scalar_formatted (type, valaddr, embedded_offset,
618 original_value, &opts, 0, stream);
619 }
620 else
621 val_print_type_code_int (type, valaddr + embedded_offset, stream);
622 break;
623
624 case TYPE_CODE_CHAR:
625 if (options->format || options->output_format)
626 {
627 struct value_print_options opts = *options;
628
629 opts.format = (options->format ? options->format
630 : options->output_format);
631 val_print_scalar_formatted (type, valaddr, embedded_offset,
632 original_value, &opts, 0, stream);
633 }
634 else
635 {
636 val = unpack_long (type, valaddr + embedded_offset);
637 if (TYPE_UNSIGNED (type))
638 fprintf_filtered (stream, "%u", (unsigned int) val);
639 else
640 fprintf_filtered (stream, "%d", (int) val);
641 fputs_filtered (" ", stream);
642 LA_PRINT_CHAR (val, unresolved_type, stream);
643 }
644 break;
645
646 case TYPE_CODE_FLT:
647 if (options->format)
648 {
649 val_print_scalar_formatted (type, valaddr, embedded_offset,
650 original_value, options, 0, stream);
651 }
652 else
653 {
654 print_floating (valaddr + embedded_offset, type, stream);
655 }
656 break;
657
658 case TYPE_CODE_DECFLOAT:
659 if (options->format)
660 val_print_scalar_formatted (type, valaddr, embedded_offset,
661 original_value, options, 0, stream);
662 else
663 print_decimal_floating (valaddr + embedded_offset,
664 type, stream);
665 break;
666
667 case TYPE_CODE_VOID:
668 fputs_filtered (decorations->void_name, stream);
669 break;
670
671 case TYPE_CODE_ERROR:
672 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
673 break;
674
675 case TYPE_CODE_UNDEF:
676 /* This happens (without TYPE_FLAG_STUB set) on systems which
677 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
678 "struct foo *bar" and no complete type for struct foo in that
679 file. */
680 fprintf_filtered (stream, _("<incomplete type>"));
681 break;
682
683 case TYPE_CODE_COMPLEX:
684 fprintf_filtered (stream, "%s", decorations->complex_prefix);
685 if (options->format)
686 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
687 valaddr, embedded_offset,
688 original_value, options, 0, stream);
689 else
690 print_floating (valaddr + embedded_offset,
691 TYPE_TARGET_TYPE (type),
692 stream);
693 fprintf_filtered (stream, "%s", decorations->complex_infix);
694 if (options->format)
695 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
696 valaddr,
697 embedded_offset
698 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
699 original_value,
700 options, 0, stream);
701 else
702 print_floating (valaddr + embedded_offset
703 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
704 TYPE_TARGET_TYPE (type),
705 stream);
706 fprintf_filtered (stream, "%s", decorations->complex_suffix);
707 break;
708
709 case TYPE_CODE_UNION:
710 case TYPE_CODE_STRUCT:
711 case TYPE_CODE_METHODPTR:
712 default:
713 error (_("Unhandled type code %d in symbol table."),
714 TYPE_CODE (type));
715 }
716 gdb_flush (stream);
717 }
718
719 /* Print using the given LANGUAGE the data of type TYPE located at
720 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
721 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
722 STREAM according to OPTIONS. VAL is the whole object that came
723 from ADDRESS. VALADDR must point to the head of VAL's contents
724 buffer.
725
726 The language printers will pass down an adjusted EMBEDDED_OFFSET to
727 further helper subroutines as subfields of TYPE are printed. In
728 such cases, VALADDR is passed down unadjusted, as well as VAL, so
729 that VAL can be queried for metadata about the contents data being
730 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
731 buffer. For example: "has this field been optimized out", or "I'm
732 printing an object while inspecting a traceframe; has this
733 particular piece of data been collected?".
734
735 RECURSE indicates the amount of indentation to supply before
736 continuation lines; this amount is roughly twice the value of
737 RECURSE. */
738
739 void
740 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
741 CORE_ADDR address, struct ui_file *stream, int recurse,
742 const struct value *val,
743 const struct value_print_options *options,
744 const struct language_defn *language)
745 {
746 volatile struct gdb_exception except;
747 int ret = 0;
748 struct value_print_options local_opts = *options;
749 struct type *real_type = check_typedef (type);
750
751 if (local_opts.prettyformat == Val_prettyformat_default)
752 local_opts.prettyformat = (local_opts.prettyformat_structs
753 ? Val_prettyformat : Val_no_prettyformat);
754
755 QUIT;
756
757 /* Ensure that the type is complete and not just a stub. If the type is
758 only a stub and we can't find and substitute its complete type, then
759 print appropriate string and return. */
760
761 if (TYPE_STUB (real_type))
762 {
763 fprintf_filtered (stream, _("<incomplete type>"));
764 gdb_flush (stream);
765 return;
766 }
767
768 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
769 return;
770
771 if (!options->raw)
772 {
773 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
774 address, stream, recurse,
775 val, options, language);
776 if (ret)
777 return;
778 }
779
780 /* Handle summary mode. If the value is a scalar, print it;
781 otherwise, print an ellipsis. */
782 if (options->summary && !val_print_scalar_type_p (type))
783 {
784 fprintf_filtered (stream, "...");
785 return;
786 }
787
788 TRY_CATCH (except, RETURN_MASK_ERROR)
789 {
790 language->la_val_print (type, valaddr, embedded_offset, address,
791 stream, recurse, val,
792 &local_opts);
793 }
794 if (except.reason < 0)
795 fprintf_filtered (stream, _("<error reading variable>"));
796 }
797
798 /* Check whether the value VAL is printable. Return 1 if it is;
799 return 0 and print an appropriate error message to STREAM according to
800 OPTIONS if it is not. */
801
802 static int
803 value_check_printable (struct value *val, struct ui_file *stream,
804 const struct value_print_options *options)
805 {
806 if (val == 0)
807 {
808 fprintf_filtered (stream, _("<address of value unknown>"));
809 return 0;
810 }
811
812 if (value_entirely_optimized_out (val))
813 {
814 if (options->summary && !val_print_scalar_type_p (value_type (val)))
815 fprintf_filtered (stream, "...");
816 else
817 val_print_optimized_out (val, stream);
818 return 0;
819 }
820
821 if (value_entirely_unavailable (val))
822 {
823 if (options->summary && !val_print_scalar_type_p (value_type (val)))
824 fprintf_filtered (stream, "...");
825 else
826 val_print_unavailable (stream);
827 return 0;
828 }
829
830 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
831 {
832 fprintf_filtered (stream, _("<internal function %s>"),
833 value_internal_function_name (val));
834 return 0;
835 }
836
837 return 1;
838 }
839
840 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
841 to OPTIONS.
842
843 This is a preferable interface to val_print, above, because it uses
844 GDB's value mechanism. */
845
846 void
847 common_val_print (struct value *val, struct ui_file *stream, int recurse,
848 const struct value_print_options *options,
849 const struct language_defn *language)
850 {
851 if (!value_check_printable (val, stream, options))
852 return;
853
854 if (language->la_language == language_ada)
855 /* The value might have a dynamic type, which would cause trouble
856 below when trying to extract the value contents (since the value
857 size is determined from the type size which is unknown). So
858 get a fixed representation of our value. */
859 val = ada_to_fixed_value (val);
860
861 val_print (value_type (val), value_contents_for_printing (val),
862 value_embedded_offset (val), value_address (val),
863 stream, recurse,
864 val, options, language);
865 }
866
867 /* Print on stream STREAM the value VAL according to OPTIONS. The value
868 is printed using the current_language syntax. */
869
870 void
871 value_print (struct value *val, struct ui_file *stream,
872 const struct value_print_options *options)
873 {
874 if (!value_check_printable (val, stream, options))
875 return;
876
877 if (!options->raw)
878 {
879 int r = apply_val_pretty_printer (value_type (val),
880 value_contents_for_printing (val),
881 value_embedded_offset (val),
882 value_address (val),
883 stream, 0,
884 val, options, current_language);
885
886 if (r)
887 return;
888 }
889
890 LA_VALUE_PRINT (val, stream, options);
891 }
892
893 /* Called by various <lang>_val_print routines to print
894 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
895 value. STREAM is where to print the value. */
896
897 void
898 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
899 struct ui_file *stream)
900 {
901 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
902
903 if (TYPE_LENGTH (type) > sizeof (LONGEST))
904 {
905 LONGEST val;
906
907 if (TYPE_UNSIGNED (type)
908 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
909 byte_order, &val))
910 {
911 print_longest (stream, 'u', 0, val);
912 }
913 else
914 {
915 /* Signed, or we couldn't turn an unsigned value into a
916 LONGEST. For signed values, one could assume two's
917 complement (a reasonable assumption, I think) and do
918 better than this. */
919 print_hex_chars (stream, (unsigned char *) valaddr,
920 TYPE_LENGTH (type), byte_order);
921 }
922 }
923 else
924 {
925 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
926 unpack_long (type, valaddr));
927 }
928 }
929
930 void
931 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
932 struct ui_file *stream)
933 {
934 ULONGEST val = unpack_long (type, valaddr);
935 int bitpos, nfields = TYPE_NFIELDS (type);
936
937 fputs_filtered ("[ ", stream);
938 for (bitpos = 0; bitpos < nfields; bitpos++)
939 {
940 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
941 && (val & ((ULONGEST)1 << bitpos)))
942 {
943 if (TYPE_FIELD_NAME (type, bitpos))
944 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
945 else
946 fprintf_filtered (stream, "#%d ", bitpos);
947 }
948 }
949 fputs_filtered ("]", stream);
950 }
951
952 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
953 according to OPTIONS and SIZE on STREAM. Format i is not supported
954 at this level.
955
956 This is how the elements of an array or structure are printed
957 with a format. */
958
959 void
960 val_print_scalar_formatted (struct type *type,
961 const gdb_byte *valaddr, int embedded_offset,
962 const struct value *val,
963 const struct value_print_options *options,
964 int size,
965 struct ui_file *stream)
966 {
967 gdb_assert (val != NULL);
968 gdb_assert (valaddr == value_contents_for_printing_const (val));
969
970 /* If we get here with a string format, try again without it. Go
971 all the way back to the language printers, which may call us
972 again. */
973 if (options->format == 's')
974 {
975 struct value_print_options opts = *options;
976 opts.format = 0;
977 opts.deref_ref = 0;
978 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
979 current_language);
980 return;
981 }
982
983 /* A scalar object that does not have all bits available can't be
984 printed, because all bits contribute to its representation. */
985 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
986 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
987 val_print_optimized_out (val, stream);
988 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
989 val_print_unavailable (stream);
990 else
991 print_scalar_formatted (valaddr + embedded_offset, type,
992 options, size, stream);
993 }
994
995 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
996 The raison d'etre of this function is to consolidate printing of
997 LONG_LONG's into this one function. The format chars b,h,w,g are
998 from print_scalar_formatted(). Numbers are printed using C
999 format.
1000
1001 USE_C_FORMAT means to use C format in all cases. Without it,
1002 'o' and 'x' format do not include the standard C radix prefix
1003 (leading 0 or 0x).
1004
1005 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1006 and was intended to request formating according to the current
1007 language and would be used for most integers that GDB prints. The
1008 exceptional cases were things like protocols where the format of
1009 the integer is a protocol thing, not a user-visible thing). The
1010 parameter remains to preserve the information of what things might
1011 be printed with language-specific format, should we ever resurrect
1012 that capability. */
1013
1014 void
1015 print_longest (struct ui_file *stream, int format, int use_c_format,
1016 LONGEST val_long)
1017 {
1018 const char *val;
1019
1020 switch (format)
1021 {
1022 case 'd':
1023 val = int_string (val_long, 10, 1, 0, 1); break;
1024 case 'u':
1025 val = int_string (val_long, 10, 0, 0, 1); break;
1026 case 'x':
1027 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1028 case 'b':
1029 val = int_string (val_long, 16, 0, 2, 1); break;
1030 case 'h':
1031 val = int_string (val_long, 16, 0, 4, 1); break;
1032 case 'w':
1033 val = int_string (val_long, 16, 0, 8, 1); break;
1034 case 'g':
1035 val = int_string (val_long, 16, 0, 16, 1); break;
1036 break;
1037 case 'o':
1038 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1039 default:
1040 internal_error (__FILE__, __LINE__,
1041 _("failed internal consistency check"));
1042 }
1043 fputs_filtered (val, stream);
1044 }
1045
1046 /* This used to be a macro, but I don't think it is called often enough
1047 to merit such treatment. */
1048 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1049 arguments to a function, number in a value history, register number, etc.)
1050 where the value must not be larger than can fit in an int. */
1051
1052 int
1053 longest_to_int (LONGEST arg)
1054 {
1055 /* Let the compiler do the work. */
1056 int rtnval = (int) arg;
1057
1058 /* Check for overflows or underflows. */
1059 if (sizeof (LONGEST) > sizeof (int))
1060 {
1061 if (rtnval != arg)
1062 {
1063 error (_("Value out of range."));
1064 }
1065 }
1066 return (rtnval);
1067 }
1068
1069 /* Print a floating point value of type TYPE (not always a
1070 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1071
1072 void
1073 print_floating (const gdb_byte *valaddr, struct type *type,
1074 struct ui_file *stream)
1075 {
1076 DOUBLEST doub;
1077 int inv;
1078 const struct floatformat *fmt = NULL;
1079 unsigned len = TYPE_LENGTH (type);
1080 enum float_kind kind;
1081
1082 /* If it is a floating-point, check for obvious problems. */
1083 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1084 fmt = floatformat_from_type (type);
1085 if (fmt != NULL)
1086 {
1087 kind = floatformat_classify (fmt, valaddr);
1088 if (kind == float_nan)
1089 {
1090 if (floatformat_is_negative (fmt, valaddr))
1091 fprintf_filtered (stream, "-");
1092 fprintf_filtered (stream, "nan(");
1093 fputs_filtered ("0x", stream);
1094 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1095 fprintf_filtered (stream, ")");
1096 return;
1097 }
1098 else if (kind == float_infinite)
1099 {
1100 if (floatformat_is_negative (fmt, valaddr))
1101 fputs_filtered ("-", stream);
1102 fputs_filtered ("inf", stream);
1103 return;
1104 }
1105 }
1106
1107 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1108 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1109 needs to be used as that takes care of any necessary type
1110 conversions. Such conversions are of course direct to DOUBLEST
1111 and disregard any possible target floating point limitations.
1112 For instance, a u64 would be converted and displayed exactly on a
1113 host with 80 bit DOUBLEST but with loss of information on a host
1114 with 64 bit DOUBLEST. */
1115
1116 doub = unpack_double (type, valaddr, &inv);
1117 if (inv)
1118 {
1119 fprintf_filtered (stream, "<invalid float value>");
1120 return;
1121 }
1122
1123 /* FIXME: kettenis/2001-01-20: The following code makes too much
1124 assumptions about the host and target floating point format. */
1125
1126 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1127 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1128 instead uses the type's length to determine the precision of the
1129 floating-point value being printed. */
1130
1131 if (len < sizeof (double))
1132 fprintf_filtered (stream, "%.9g", (double) doub);
1133 else if (len == sizeof (double))
1134 fprintf_filtered (stream, "%.17g", (double) doub);
1135 else
1136 #ifdef PRINTF_HAS_LONG_DOUBLE
1137 fprintf_filtered (stream, "%.35Lg", doub);
1138 #else
1139 /* This at least wins with values that are representable as
1140 doubles. */
1141 fprintf_filtered (stream, "%.17g", (double) doub);
1142 #endif
1143 }
1144
1145 void
1146 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1147 struct ui_file *stream)
1148 {
1149 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1150 char decstr[MAX_DECIMAL_STRING];
1151 unsigned len = TYPE_LENGTH (type);
1152
1153 decimal_to_string (valaddr, len, byte_order, decstr);
1154 fputs_filtered (decstr, stream);
1155 return;
1156 }
1157
1158 void
1159 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1160 unsigned len, enum bfd_endian byte_order)
1161 {
1162
1163 #define BITS_IN_BYTES 8
1164
1165 const gdb_byte *p;
1166 unsigned int i;
1167 int b;
1168
1169 /* Declared "int" so it will be signed.
1170 This ensures that right shift will shift in zeros. */
1171
1172 const int mask = 0x080;
1173
1174 /* FIXME: We should be not printing leading zeroes in most cases. */
1175
1176 if (byte_order == BFD_ENDIAN_BIG)
1177 {
1178 for (p = valaddr;
1179 p < valaddr + len;
1180 p++)
1181 {
1182 /* Every byte has 8 binary characters; peel off
1183 and print from the MSB end. */
1184
1185 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1186 {
1187 if (*p & (mask >> i))
1188 b = 1;
1189 else
1190 b = 0;
1191
1192 fprintf_filtered (stream, "%1d", b);
1193 }
1194 }
1195 }
1196 else
1197 {
1198 for (p = valaddr + len - 1;
1199 p >= valaddr;
1200 p--)
1201 {
1202 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1203 {
1204 if (*p & (mask >> i))
1205 b = 1;
1206 else
1207 b = 0;
1208
1209 fprintf_filtered (stream, "%1d", b);
1210 }
1211 }
1212 }
1213 }
1214
1215 /* VALADDR points to an integer of LEN bytes.
1216 Print it in octal on stream or format it in buf. */
1217
1218 void
1219 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1220 unsigned len, enum bfd_endian byte_order)
1221 {
1222 const gdb_byte *p;
1223 unsigned char octa1, octa2, octa3, carry;
1224 int cycle;
1225
1226 /* FIXME: We should be not printing leading zeroes in most cases. */
1227
1228
1229 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1230 * the extra bits, which cycle every three bytes:
1231 *
1232 * Byte side: 0 1 2 3
1233 * | | | |
1234 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1235 *
1236 * Octal side: 0 1 carry 3 4 carry ...
1237 *
1238 * Cycle number: 0 1 2
1239 *
1240 * But of course we are printing from the high side, so we have to
1241 * figure out where in the cycle we are so that we end up with no
1242 * left over bits at the end.
1243 */
1244 #define BITS_IN_OCTAL 3
1245 #define HIGH_ZERO 0340
1246 #define LOW_ZERO 0016
1247 #define CARRY_ZERO 0003
1248 #define HIGH_ONE 0200
1249 #define MID_ONE 0160
1250 #define LOW_ONE 0016
1251 #define CARRY_ONE 0001
1252 #define HIGH_TWO 0300
1253 #define MID_TWO 0070
1254 #define LOW_TWO 0007
1255
1256 /* For 32 we start in cycle 2, with two bits and one bit carry;
1257 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1258
1259 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1260 carry = 0;
1261
1262 fputs_filtered ("0", stream);
1263 if (byte_order == BFD_ENDIAN_BIG)
1264 {
1265 for (p = valaddr;
1266 p < valaddr + len;
1267 p++)
1268 {
1269 switch (cycle)
1270 {
1271 case 0:
1272 /* No carry in, carry out two bits. */
1273
1274 octa1 = (HIGH_ZERO & *p) >> 5;
1275 octa2 = (LOW_ZERO & *p) >> 2;
1276 carry = (CARRY_ZERO & *p);
1277 fprintf_filtered (stream, "%o", octa1);
1278 fprintf_filtered (stream, "%o", octa2);
1279 break;
1280
1281 case 1:
1282 /* Carry in two bits, carry out one bit. */
1283
1284 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1285 octa2 = (MID_ONE & *p) >> 4;
1286 octa3 = (LOW_ONE & *p) >> 1;
1287 carry = (CARRY_ONE & *p);
1288 fprintf_filtered (stream, "%o", octa1);
1289 fprintf_filtered (stream, "%o", octa2);
1290 fprintf_filtered (stream, "%o", octa3);
1291 break;
1292
1293 case 2:
1294 /* Carry in one bit, no carry out. */
1295
1296 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1297 octa2 = (MID_TWO & *p) >> 3;
1298 octa3 = (LOW_TWO & *p);
1299 carry = 0;
1300 fprintf_filtered (stream, "%o", octa1);
1301 fprintf_filtered (stream, "%o", octa2);
1302 fprintf_filtered (stream, "%o", octa3);
1303 break;
1304
1305 default:
1306 error (_("Internal error in octal conversion;"));
1307 }
1308
1309 cycle++;
1310 cycle = cycle % BITS_IN_OCTAL;
1311 }
1312 }
1313 else
1314 {
1315 for (p = valaddr + len - 1;
1316 p >= valaddr;
1317 p--)
1318 {
1319 switch (cycle)
1320 {
1321 case 0:
1322 /* Carry out, no carry in */
1323
1324 octa1 = (HIGH_ZERO & *p) >> 5;
1325 octa2 = (LOW_ZERO & *p) >> 2;
1326 carry = (CARRY_ZERO & *p);
1327 fprintf_filtered (stream, "%o", octa1);
1328 fprintf_filtered (stream, "%o", octa2);
1329 break;
1330
1331 case 1:
1332 /* Carry in, carry out */
1333
1334 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1335 octa2 = (MID_ONE & *p) >> 4;
1336 octa3 = (LOW_ONE & *p) >> 1;
1337 carry = (CARRY_ONE & *p);
1338 fprintf_filtered (stream, "%o", octa1);
1339 fprintf_filtered (stream, "%o", octa2);
1340 fprintf_filtered (stream, "%o", octa3);
1341 break;
1342
1343 case 2:
1344 /* Carry in, no carry out */
1345
1346 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1347 octa2 = (MID_TWO & *p) >> 3;
1348 octa3 = (LOW_TWO & *p);
1349 carry = 0;
1350 fprintf_filtered (stream, "%o", octa1);
1351 fprintf_filtered (stream, "%o", octa2);
1352 fprintf_filtered (stream, "%o", octa3);
1353 break;
1354
1355 default:
1356 error (_("Internal error in octal conversion;"));
1357 }
1358
1359 cycle++;
1360 cycle = cycle % BITS_IN_OCTAL;
1361 }
1362 }
1363
1364 }
1365
1366 /* VALADDR points to an integer of LEN bytes.
1367 Print it in decimal on stream or format it in buf. */
1368
1369 void
1370 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1371 unsigned len, enum bfd_endian byte_order)
1372 {
1373 #define TEN 10
1374 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1375 #define CARRY_LEFT( x ) ((x) % TEN)
1376 #define SHIFT( x ) ((x) << 4)
1377 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1378 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1379
1380 const gdb_byte *p;
1381 unsigned char *digits;
1382 int carry;
1383 int decimal_len;
1384 int i, j, decimal_digits;
1385 int dummy;
1386 int flip;
1387
1388 /* Base-ten number is less than twice as many digits
1389 as the base 16 number, which is 2 digits per byte. */
1390
1391 decimal_len = len * 2 * 2;
1392 digits = xmalloc (decimal_len);
1393
1394 for (i = 0; i < decimal_len; i++)
1395 {
1396 digits[i] = 0;
1397 }
1398
1399 /* Ok, we have an unknown number of bytes of data to be printed in
1400 * decimal.
1401 *
1402 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1403 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1404 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1405 *
1406 * The trick is that "digits" holds a base-10 number, but sometimes
1407 * the individual digits are > 10.
1408 *
1409 * Outer loop is per nibble (hex digit) of input, from MSD end to
1410 * LSD end.
1411 */
1412 decimal_digits = 0; /* Number of decimal digits so far */
1413 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1414 flip = 0;
1415 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1416 {
1417 /*
1418 * Multiply current base-ten number by 16 in place.
1419 * Each digit was between 0 and 9, now is between
1420 * 0 and 144.
1421 */
1422 for (j = 0; j < decimal_digits; j++)
1423 {
1424 digits[j] = SHIFT (digits[j]);
1425 }
1426
1427 /* Take the next nibble off the input and add it to what
1428 * we've got in the LSB position. Bottom 'digit' is now
1429 * between 0 and 159.
1430 *
1431 * "flip" is used to run this loop twice for each byte.
1432 */
1433 if (flip == 0)
1434 {
1435 /* Take top nibble. */
1436
1437 digits[0] += HIGH_NIBBLE (*p);
1438 flip = 1;
1439 }
1440 else
1441 {
1442 /* Take low nibble and bump our pointer "p". */
1443
1444 digits[0] += LOW_NIBBLE (*p);
1445 if (byte_order == BFD_ENDIAN_BIG)
1446 p++;
1447 else
1448 p--;
1449 flip = 0;
1450 }
1451
1452 /* Re-decimalize. We have to do this often enough
1453 * that we don't overflow, but once per nibble is
1454 * overkill. Easier this way, though. Note that the
1455 * carry is often larger than 10 (e.g. max initial
1456 * carry out of lowest nibble is 15, could bubble all
1457 * the way up greater than 10). So we have to do
1458 * the carrying beyond the last current digit.
1459 */
1460 carry = 0;
1461 for (j = 0; j < decimal_len - 1; j++)
1462 {
1463 digits[j] += carry;
1464
1465 /* "/" won't handle an unsigned char with
1466 * a value that if signed would be negative.
1467 * So extend to longword int via "dummy".
1468 */
1469 dummy = digits[j];
1470 carry = CARRY_OUT (dummy);
1471 digits[j] = CARRY_LEFT (dummy);
1472
1473 if (j >= decimal_digits && carry == 0)
1474 {
1475 /*
1476 * All higher digits are 0 and we
1477 * no longer have a carry.
1478 *
1479 * Note: "j" is 0-based, "decimal_digits" is
1480 * 1-based.
1481 */
1482 decimal_digits = j + 1;
1483 break;
1484 }
1485 }
1486 }
1487
1488 /* Ok, now "digits" is the decimal representation, with
1489 the "decimal_digits" actual digits. Print! */
1490
1491 for (i = decimal_digits - 1; i >= 0; i--)
1492 {
1493 fprintf_filtered (stream, "%1d", digits[i]);
1494 }
1495 xfree (digits);
1496 }
1497
1498 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1499
1500 void
1501 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1502 unsigned len, enum bfd_endian byte_order)
1503 {
1504 const gdb_byte *p;
1505
1506 /* FIXME: We should be not printing leading zeroes in most cases. */
1507
1508 fputs_filtered ("0x", stream);
1509 if (byte_order == BFD_ENDIAN_BIG)
1510 {
1511 for (p = valaddr;
1512 p < valaddr + len;
1513 p++)
1514 {
1515 fprintf_filtered (stream, "%02x", *p);
1516 }
1517 }
1518 else
1519 {
1520 for (p = valaddr + len - 1;
1521 p >= valaddr;
1522 p--)
1523 {
1524 fprintf_filtered (stream, "%02x", *p);
1525 }
1526 }
1527 }
1528
1529 /* VALADDR points to a char integer of LEN bytes.
1530 Print it out in appropriate language form on stream.
1531 Omit any leading zero chars. */
1532
1533 void
1534 print_char_chars (struct ui_file *stream, struct type *type,
1535 const gdb_byte *valaddr,
1536 unsigned len, enum bfd_endian byte_order)
1537 {
1538 const gdb_byte *p;
1539
1540 if (byte_order == BFD_ENDIAN_BIG)
1541 {
1542 p = valaddr;
1543 while (p < valaddr + len - 1 && *p == 0)
1544 ++p;
1545
1546 while (p < valaddr + len)
1547 {
1548 LA_EMIT_CHAR (*p, type, stream, '\'');
1549 ++p;
1550 }
1551 }
1552 else
1553 {
1554 p = valaddr + len - 1;
1555 while (p > valaddr && *p == 0)
1556 --p;
1557
1558 while (p >= valaddr)
1559 {
1560 LA_EMIT_CHAR (*p, type, stream, '\'');
1561 --p;
1562 }
1563 }
1564 }
1565
1566 /* Print function pointer with inferior address ADDRESS onto stdio
1567 stream STREAM. */
1568
1569 void
1570 print_function_pointer_address (const struct value_print_options *options,
1571 struct gdbarch *gdbarch,
1572 CORE_ADDR address,
1573 struct ui_file *stream)
1574 {
1575 CORE_ADDR func_addr
1576 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1577 &current_target);
1578
1579 /* If the function pointer is represented by a description, print
1580 the address of the description. */
1581 if (options->addressprint && func_addr != address)
1582 {
1583 fputs_filtered ("@", stream);
1584 fputs_filtered (paddress (gdbarch, address), stream);
1585 fputs_filtered (": ", stream);
1586 }
1587 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1588 }
1589
1590
1591 /* Print on STREAM using the given OPTIONS the index for the element
1592 at INDEX of an array whose index type is INDEX_TYPE. */
1593
1594 void
1595 maybe_print_array_index (struct type *index_type, LONGEST index,
1596 struct ui_file *stream,
1597 const struct value_print_options *options)
1598 {
1599 struct value *index_value;
1600
1601 if (!options->print_array_indexes)
1602 return;
1603
1604 index_value = value_from_longest (index_type, index);
1605
1606 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1607 }
1608
1609 /* Called by various <lang>_val_print routines to print elements of an
1610 array in the form "<elem1>, <elem2>, <elem3>, ...".
1611
1612 (FIXME?) Assumes array element separator is a comma, which is correct
1613 for all languages currently handled.
1614 (FIXME?) Some languages have a notation for repeated array elements,
1615 perhaps we should try to use that notation when appropriate. */
1616
1617 void
1618 val_print_array_elements (struct type *type,
1619 const gdb_byte *valaddr, int embedded_offset,
1620 CORE_ADDR address, struct ui_file *stream,
1621 int recurse,
1622 const struct value *val,
1623 const struct value_print_options *options,
1624 unsigned int i)
1625 {
1626 unsigned int things_printed = 0;
1627 unsigned len;
1628 struct type *elttype, *index_type;
1629 unsigned eltlen;
1630 /* Position of the array element we are examining to see
1631 whether it is repeated. */
1632 unsigned int rep1;
1633 /* Number of repetitions we have detected so far. */
1634 unsigned int reps;
1635 LONGEST low_bound, high_bound;
1636
1637 elttype = TYPE_TARGET_TYPE (type);
1638 eltlen = TYPE_LENGTH (check_typedef (elttype));
1639 index_type = TYPE_INDEX_TYPE (type);
1640
1641 if (get_array_bounds (type, &low_bound, &high_bound))
1642 {
1643 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1644 But we have to be a little extra careful, because some languages
1645 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1646 empty arrays. In that situation, the array length is just zero,
1647 not negative! */
1648 if (low_bound > high_bound)
1649 len = 0;
1650 else
1651 len = high_bound - low_bound + 1;
1652 }
1653 else
1654 {
1655 warning (_("unable to get bounds of array, assuming null array"));
1656 low_bound = 0;
1657 len = 0;
1658 }
1659
1660 annotate_array_section_begin (i, elttype);
1661
1662 for (; i < len && things_printed < options->print_max; i++)
1663 {
1664 if (i != 0)
1665 {
1666 if (options->prettyformat_arrays)
1667 {
1668 fprintf_filtered (stream, ",\n");
1669 print_spaces_filtered (2 + 2 * recurse, stream);
1670 }
1671 else
1672 {
1673 fprintf_filtered (stream, ", ");
1674 }
1675 }
1676 wrap_here (n_spaces (2 + 2 * recurse));
1677 maybe_print_array_index (index_type, i + low_bound,
1678 stream, options);
1679
1680 rep1 = i + 1;
1681 reps = 1;
1682 /* Only check for reps if repeat_count_threshold is not set to
1683 UINT_MAX (unlimited). */
1684 if (options->repeat_count_threshold < UINT_MAX)
1685 {
1686 while (rep1 < len
1687 && value_available_contents_eq (val,
1688 embedded_offset + i * eltlen,
1689 val,
1690 (embedded_offset
1691 + rep1 * eltlen),
1692 eltlen))
1693 {
1694 ++reps;
1695 ++rep1;
1696 }
1697 }
1698
1699 if (reps > options->repeat_count_threshold)
1700 {
1701 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1702 address, stream, recurse + 1, val, options,
1703 current_language);
1704 annotate_elt_rep (reps);
1705 fprintf_filtered (stream, " <repeats %u times>", reps);
1706 annotate_elt_rep_end ();
1707
1708 i = rep1 - 1;
1709 things_printed += options->repeat_count_threshold;
1710 }
1711 else
1712 {
1713 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1714 address,
1715 stream, recurse + 1, val, options, current_language);
1716 annotate_elt ();
1717 things_printed++;
1718 }
1719 }
1720 annotate_array_section_end ();
1721 if (i < len)
1722 {
1723 fprintf_filtered (stream, "...");
1724 }
1725 }
1726
1727 /* Read LEN bytes of target memory at address MEMADDR, placing the
1728 results in GDB's memory at MYADDR. Returns a count of the bytes
1729 actually read, and optionally a target_xfer_error value in the
1730 location pointed to by ERRPTR if ERRPTR is non-null. */
1731
1732 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1733 function be eliminated. */
1734
1735 static int
1736 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1737 int len, int *errptr)
1738 {
1739 int nread; /* Number of bytes actually read. */
1740 int errcode; /* Error from last read. */
1741
1742 /* First try a complete read. */
1743 errcode = target_read_memory (memaddr, myaddr, len);
1744 if (errcode == 0)
1745 {
1746 /* Got it all. */
1747 nread = len;
1748 }
1749 else
1750 {
1751 /* Loop, reading one byte at a time until we get as much as we can. */
1752 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1753 {
1754 errcode = target_read_memory (memaddr++, myaddr++, 1);
1755 }
1756 /* If an error, the last read was unsuccessful, so adjust count. */
1757 if (errcode != 0)
1758 {
1759 nread--;
1760 }
1761 }
1762 if (errptr != NULL)
1763 {
1764 *errptr = errcode;
1765 }
1766 return (nread);
1767 }
1768
1769 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1770 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1771 allocated buffer containing the string, which the caller is responsible to
1772 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1773 success, or a target_xfer_error on failure.
1774
1775 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1776 (including eventual NULs in the middle or end of the string).
1777
1778 If LEN is -1, stops at the first null character (not necessarily
1779 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1780 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1781 the string.
1782
1783 Unless an exception is thrown, BUFFER will always be allocated, even on
1784 failure. In this case, some characters might have been read before the
1785 failure happened. Check BYTES_READ to recognize this situation.
1786
1787 Note: There was a FIXME asking to make this code use target_read_string,
1788 but this function is more general (can read past null characters, up to
1789 given LEN). Besides, it is used much more often than target_read_string
1790 so it is more tested. Perhaps callers of target_read_string should use
1791 this function instead? */
1792
1793 int
1794 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1795 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1796 {
1797 int found_nul; /* Non-zero if we found the nul char. */
1798 int errcode; /* Errno returned from bad reads. */
1799 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1800 unsigned int chunksize; /* Size of each fetch, in chars. */
1801 gdb_byte *bufptr; /* Pointer to next available byte in
1802 buffer. */
1803 gdb_byte *limit; /* First location past end of fetch buffer. */
1804 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1805
1806 /* Decide how large of chunks to try to read in one operation. This
1807 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1808 so we might as well read them all in one operation. If LEN is -1, we
1809 are looking for a NUL terminator to end the fetching, so we might as
1810 well read in blocks that are large enough to be efficient, but not so
1811 large as to be slow if fetchlimit happens to be large. So we choose the
1812 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1813 200 is way too big for remote debugging over a serial line. */
1814
1815 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1816
1817 /* Loop until we either have all the characters, or we encounter
1818 some error, such as bumping into the end of the address space. */
1819
1820 found_nul = 0;
1821 *buffer = NULL;
1822
1823 old_chain = make_cleanup (free_current_contents, buffer);
1824
1825 if (len > 0)
1826 {
1827 unsigned int fetchlen = min (len, fetchlimit);
1828
1829 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1830 bufptr = *buffer;
1831
1832 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1833 / width;
1834 addr += nfetch * width;
1835 bufptr += nfetch * width;
1836 }
1837 else if (len == -1)
1838 {
1839 unsigned long bufsize = 0;
1840
1841 do
1842 {
1843 QUIT;
1844 nfetch = min (chunksize, fetchlimit - bufsize);
1845
1846 if (*buffer == NULL)
1847 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1848 else
1849 *buffer = (gdb_byte *) xrealloc (*buffer,
1850 (nfetch + bufsize) * width);
1851
1852 bufptr = *buffer + bufsize * width;
1853 bufsize += nfetch;
1854
1855 /* Read as much as we can. */
1856 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1857 / width;
1858
1859 /* Scan this chunk for the null character that terminates the string
1860 to print. If found, we don't need to fetch any more. Note
1861 that bufptr is explicitly left pointing at the next character
1862 after the null character, or at the next character after the end
1863 of the buffer. */
1864
1865 limit = bufptr + nfetch * width;
1866 while (bufptr < limit)
1867 {
1868 unsigned long c;
1869
1870 c = extract_unsigned_integer (bufptr, width, byte_order);
1871 addr += width;
1872 bufptr += width;
1873 if (c == 0)
1874 {
1875 /* We don't care about any error which happened after
1876 the NUL terminator. */
1877 errcode = 0;
1878 found_nul = 1;
1879 break;
1880 }
1881 }
1882 }
1883 while (errcode == 0 /* no error */
1884 && bufptr - *buffer < fetchlimit * width /* no overrun */
1885 && !found_nul); /* haven't found NUL yet */
1886 }
1887 else
1888 { /* Length of string is really 0! */
1889 /* We always allocate *buffer. */
1890 *buffer = bufptr = xmalloc (1);
1891 errcode = 0;
1892 }
1893
1894 /* bufptr and addr now point immediately beyond the last byte which we
1895 consider part of the string (including a '\0' which ends the string). */
1896 *bytes_read = bufptr - *buffer;
1897
1898 QUIT;
1899
1900 discard_cleanups (old_chain);
1901
1902 return errcode;
1903 }
1904
1905 /* Return true if print_wchar can display W without resorting to a
1906 numeric escape, false otherwise. */
1907
1908 static int
1909 wchar_printable (gdb_wchar_t w)
1910 {
1911 return (gdb_iswprint (w)
1912 || w == LCST ('\a') || w == LCST ('\b')
1913 || w == LCST ('\f') || w == LCST ('\n')
1914 || w == LCST ('\r') || w == LCST ('\t')
1915 || w == LCST ('\v'));
1916 }
1917
1918 /* A helper function that converts the contents of STRING to wide
1919 characters and then appends them to OUTPUT. */
1920
1921 static void
1922 append_string_as_wide (const char *string,
1923 struct obstack *output)
1924 {
1925 for (; *string; ++string)
1926 {
1927 gdb_wchar_t w = gdb_btowc (*string);
1928 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1929 }
1930 }
1931
1932 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1933 original (target) bytes representing the character, ORIG_LEN is the
1934 number of valid bytes. WIDTH is the number of bytes in a base
1935 characters of the type. OUTPUT is an obstack to which wide
1936 characters are emitted. QUOTER is a (narrow) character indicating
1937 the style of quotes surrounding the character to be printed.
1938 NEED_ESCAPE is an in/out flag which is used to track numeric
1939 escapes across calls. */
1940
1941 static void
1942 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1943 int orig_len, int width,
1944 enum bfd_endian byte_order,
1945 struct obstack *output,
1946 int quoter, int *need_escapep)
1947 {
1948 int need_escape = *need_escapep;
1949
1950 *need_escapep = 0;
1951 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1952 && w != LCST ('8')
1953 && w != LCST ('9'))))
1954 {
1955 gdb_wchar_t wchar = w;
1956
1957 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1958 obstack_grow_wstr (output, LCST ("\\"));
1959 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1960 }
1961 else
1962 {
1963 switch (w)
1964 {
1965 case LCST ('\a'):
1966 obstack_grow_wstr (output, LCST ("\\a"));
1967 break;
1968 case LCST ('\b'):
1969 obstack_grow_wstr (output, LCST ("\\b"));
1970 break;
1971 case LCST ('\f'):
1972 obstack_grow_wstr (output, LCST ("\\f"));
1973 break;
1974 case LCST ('\n'):
1975 obstack_grow_wstr (output, LCST ("\\n"));
1976 break;
1977 case LCST ('\r'):
1978 obstack_grow_wstr (output, LCST ("\\r"));
1979 break;
1980 case LCST ('\t'):
1981 obstack_grow_wstr (output, LCST ("\\t"));
1982 break;
1983 case LCST ('\v'):
1984 obstack_grow_wstr (output, LCST ("\\v"));
1985 break;
1986 default:
1987 {
1988 int i;
1989
1990 for (i = 0; i + width <= orig_len; i += width)
1991 {
1992 char octal[30];
1993 ULONGEST value;
1994
1995 value = extract_unsigned_integer (&orig[i], width,
1996 byte_order);
1997 /* If the value fits in 3 octal digits, print it that
1998 way. Otherwise, print it as a hex escape. */
1999 if (value <= 0777)
2000 xsnprintf (octal, sizeof (octal), "\\%.3o",
2001 (int) (value & 0777));
2002 else
2003 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2004 append_string_as_wide (octal, output);
2005 }
2006 /* If we somehow have extra bytes, print them now. */
2007 while (i < orig_len)
2008 {
2009 char octal[5];
2010
2011 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2012 append_string_as_wide (octal, output);
2013 ++i;
2014 }
2015
2016 *need_escapep = 1;
2017 }
2018 break;
2019 }
2020 }
2021 }
2022
2023 /* Print the character C on STREAM as part of the contents of a
2024 literal string whose delimiter is QUOTER. ENCODING names the
2025 encoding of C. */
2026
2027 void
2028 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2029 int quoter, const char *encoding)
2030 {
2031 enum bfd_endian byte_order
2032 = gdbarch_byte_order (get_type_arch (type));
2033 struct obstack wchar_buf, output;
2034 struct cleanup *cleanups;
2035 gdb_byte *buf;
2036 struct wchar_iterator *iter;
2037 int need_escape = 0;
2038
2039 buf = alloca (TYPE_LENGTH (type));
2040 pack_long (buf, type, c);
2041
2042 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2043 encoding, TYPE_LENGTH (type));
2044 cleanups = make_cleanup_wchar_iterator (iter);
2045
2046 /* This holds the printable form of the wchar_t data. */
2047 obstack_init (&wchar_buf);
2048 make_cleanup_obstack_free (&wchar_buf);
2049
2050 while (1)
2051 {
2052 int num_chars;
2053 gdb_wchar_t *chars;
2054 const gdb_byte *buf;
2055 size_t buflen;
2056 int print_escape = 1;
2057 enum wchar_iterate_result result;
2058
2059 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2060 if (num_chars < 0)
2061 break;
2062 if (num_chars > 0)
2063 {
2064 /* If all characters are printable, print them. Otherwise,
2065 we're going to have to print an escape sequence. We
2066 check all characters because we want to print the target
2067 bytes in the escape sequence, and we don't know character
2068 boundaries there. */
2069 int i;
2070
2071 print_escape = 0;
2072 for (i = 0; i < num_chars; ++i)
2073 if (!wchar_printable (chars[i]))
2074 {
2075 print_escape = 1;
2076 break;
2077 }
2078
2079 if (!print_escape)
2080 {
2081 for (i = 0; i < num_chars; ++i)
2082 print_wchar (chars[i], buf, buflen,
2083 TYPE_LENGTH (type), byte_order,
2084 &wchar_buf, quoter, &need_escape);
2085 }
2086 }
2087
2088 /* This handles the NUM_CHARS == 0 case as well. */
2089 if (print_escape)
2090 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2091 byte_order, &wchar_buf, quoter, &need_escape);
2092 }
2093
2094 /* The output in the host encoding. */
2095 obstack_init (&output);
2096 make_cleanup_obstack_free (&output);
2097
2098 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2099 (gdb_byte *) obstack_base (&wchar_buf),
2100 obstack_object_size (&wchar_buf),
2101 sizeof (gdb_wchar_t), &output, translit_char);
2102 obstack_1grow (&output, '\0');
2103
2104 fputs_filtered (obstack_base (&output), stream);
2105
2106 do_cleanups (cleanups);
2107 }
2108
2109 /* Return the repeat count of the next character/byte in ITER,
2110 storing the result in VEC. */
2111
2112 static int
2113 count_next_character (struct wchar_iterator *iter,
2114 VEC (converted_character_d) **vec)
2115 {
2116 struct converted_character *current;
2117
2118 if (VEC_empty (converted_character_d, *vec))
2119 {
2120 struct converted_character tmp;
2121 gdb_wchar_t *chars;
2122
2123 tmp.num_chars
2124 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2125 if (tmp.num_chars > 0)
2126 {
2127 gdb_assert (tmp.num_chars < MAX_WCHARS);
2128 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2129 }
2130 VEC_safe_push (converted_character_d, *vec, &tmp);
2131 }
2132
2133 current = VEC_last (converted_character_d, *vec);
2134
2135 /* Count repeated characters or bytes. */
2136 current->repeat_count = 1;
2137 if (current->num_chars == -1)
2138 {
2139 /* EOF */
2140 return -1;
2141 }
2142 else
2143 {
2144 gdb_wchar_t *chars;
2145 struct converted_character d;
2146 int repeat;
2147
2148 d.repeat_count = 0;
2149
2150 while (1)
2151 {
2152 /* Get the next character. */
2153 d.num_chars
2154 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2155
2156 /* If a character was successfully converted, save the character
2157 into the converted character. */
2158 if (d.num_chars > 0)
2159 {
2160 gdb_assert (d.num_chars < MAX_WCHARS);
2161 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2162 }
2163
2164 /* Determine if the current character is the same as this
2165 new character. */
2166 if (d.num_chars == current->num_chars && d.result == current->result)
2167 {
2168 /* There are two cases to consider:
2169
2170 1) Equality of converted character (num_chars > 0)
2171 2) Equality of non-converted character (num_chars == 0) */
2172 if ((current->num_chars > 0
2173 && memcmp (current->chars, d.chars,
2174 WCHAR_BUFLEN (current->num_chars)) == 0)
2175 || (current->num_chars == 0
2176 && current->buflen == d.buflen
2177 && memcmp (current->buf, d.buf, current->buflen) == 0))
2178 ++current->repeat_count;
2179 else
2180 break;
2181 }
2182 else
2183 break;
2184 }
2185
2186 /* Push this next converted character onto the result vector. */
2187 repeat = current->repeat_count;
2188 VEC_safe_push (converted_character_d, *vec, &d);
2189 return repeat;
2190 }
2191 }
2192
2193 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2194 character to use with string output. WIDTH is the size of the output
2195 character type. BYTE_ORDER is the the target byte order. OPTIONS
2196 is the user's print options. */
2197
2198 static void
2199 print_converted_chars_to_obstack (struct obstack *obstack,
2200 VEC (converted_character_d) *chars,
2201 int quote_char, int width,
2202 enum bfd_endian byte_order,
2203 const struct value_print_options *options)
2204 {
2205 unsigned int idx;
2206 struct converted_character *elem;
2207 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2208 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2209 int need_escape = 0;
2210
2211 /* Set the start state. */
2212 idx = 0;
2213 last = state = START;
2214 elem = NULL;
2215
2216 while (1)
2217 {
2218 switch (state)
2219 {
2220 case START:
2221 /* Nothing to do. */
2222 break;
2223
2224 case SINGLE:
2225 {
2226 int j;
2227
2228 /* We are outputting a single character
2229 (< options->repeat_count_threshold). */
2230
2231 if (last != SINGLE)
2232 {
2233 /* We were outputting some other type of content, so we
2234 must output and a comma and a quote. */
2235 if (last != START)
2236 obstack_grow_wstr (obstack, LCST (", "));
2237 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2238 }
2239 /* Output the character. */
2240 for (j = 0; j < elem->repeat_count; ++j)
2241 {
2242 if (elem->result == wchar_iterate_ok)
2243 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2244 byte_order, obstack, quote_char, &need_escape);
2245 else
2246 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2247 byte_order, obstack, quote_char, &need_escape);
2248 }
2249 }
2250 break;
2251
2252 case REPEAT:
2253 {
2254 int j;
2255 char *s;
2256
2257 /* We are outputting a character with a repeat count
2258 greater than options->repeat_count_threshold. */
2259
2260 if (last == SINGLE)
2261 {
2262 /* We were outputting a single string. Terminate the
2263 string. */
2264 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2265 }
2266 if (last != START)
2267 obstack_grow_wstr (obstack, LCST (", "));
2268
2269 /* Output the character and repeat string. */
2270 obstack_grow_wstr (obstack, LCST ("'"));
2271 if (elem->result == wchar_iterate_ok)
2272 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2273 byte_order, obstack, quote_char, &need_escape);
2274 else
2275 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2276 byte_order, obstack, quote_char, &need_escape);
2277 obstack_grow_wstr (obstack, LCST ("'"));
2278 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2279 for (j = 0; s[j]; ++j)
2280 {
2281 gdb_wchar_t w = gdb_btowc (s[j]);
2282 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2283 }
2284 xfree (s);
2285 }
2286 break;
2287
2288 case INCOMPLETE:
2289 /* We are outputting an incomplete sequence. */
2290 if (last == SINGLE)
2291 {
2292 /* If we were outputting a string of SINGLE characters,
2293 terminate the quote. */
2294 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2295 }
2296 if (last != START)
2297 obstack_grow_wstr (obstack, LCST (", "));
2298
2299 /* Output the incomplete sequence string. */
2300 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2301 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2302 obstack, 0, &need_escape);
2303 obstack_grow_wstr (obstack, LCST (">"));
2304
2305 /* We do not attempt to outupt anything after this. */
2306 state = FINISH;
2307 break;
2308
2309 case FINISH:
2310 /* All done. If we were outputting a string of SINGLE
2311 characters, the string must be terminated. Otherwise,
2312 REPEAT and INCOMPLETE are always left properly terminated. */
2313 if (last == SINGLE)
2314 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2315
2316 return;
2317 }
2318
2319 /* Get the next element and state. */
2320 last = state;
2321 if (state != FINISH)
2322 {
2323 elem = VEC_index (converted_character_d, chars, idx++);
2324 switch (elem->result)
2325 {
2326 case wchar_iterate_ok:
2327 case wchar_iterate_invalid:
2328 if (elem->repeat_count > options->repeat_count_threshold)
2329 state = REPEAT;
2330 else
2331 state = SINGLE;
2332 break;
2333
2334 case wchar_iterate_incomplete:
2335 state = INCOMPLETE;
2336 break;
2337
2338 case wchar_iterate_eof:
2339 state = FINISH;
2340 break;
2341 }
2342 }
2343 }
2344 }
2345
2346 /* Print the character string STRING, printing at most LENGTH
2347 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2348 the type of each character. OPTIONS holds the printing options;
2349 printing stops early if the number hits print_max; repeat counts
2350 are printed as appropriate. Print ellipses at the end if we had to
2351 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2352 QUOTE_CHAR is the character to print at each end of the string. If
2353 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2354 omitted. */
2355
2356 void
2357 generic_printstr (struct ui_file *stream, struct type *type,
2358 const gdb_byte *string, unsigned int length,
2359 const char *encoding, int force_ellipses,
2360 int quote_char, int c_style_terminator,
2361 const struct value_print_options *options)
2362 {
2363 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2364 unsigned int i;
2365 int width = TYPE_LENGTH (type);
2366 struct obstack wchar_buf, output;
2367 struct cleanup *cleanup;
2368 struct wchar_iterator *iter;
2369 int finished = 0;
2370 struct converted_character *last;
2371 VEC (converted_character_d) *converted_chars;
2372
2373 if (length == -1)
2374 {
2375 unsigned long current_char = 1;
2376
2377 for (i = 0; current_char; ++i)
2378 {
2379 QUIT;
2380 current_char = extract_unsigned_integer (string + i * width,
2381 width, byte_order);
2382 }
2383 length = i;
2384 }
2385
2386 /* If the string was not truncated due to `set print elements', and
2387 the last byte of it is a null, we don't print that, in
2388 traditional C style. */
2389 if (c_style_terminator
2390 && !force_ellipses
2391 && length > 0
2392 && (extract_unsigned_integer (string + (length - 1) * width,
2393 width, byte_order) == 0))
2394 length--;
2395
2396 if (length == 0)
2397 {
2398 fputs_filtered ("\"\"", stream);
2399 return;
2400 }
2401
2402 /* Arrange to iterate over the characters, in wchar_t form. */
2403 iter = make_wchar_iterator (string, length * width, encoding, width);
2404 cleanup = make_cleanup_wchar_iterator (iter);
2405 converted_chars = NULL;
2406 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2407
2408 /* Convert characters until the string is over or the maximum
2409 number of printed characters has been reached. */
2410 i = 0;
2411 while (i < options->print_max)
2412 {
2413 int r;
2414
2415 QUIT;
2416
2417 /* Grab the next character and repeat count. */
2418 r = count_next_character (iter, &converted_chars);
2419
2420 /* If less than zero, the end of the input string was reached. */
2421 if (r < 0)
2422 break;
2423
2424 /* Otherwise, add the count to the total print count and get
2425 the next character. */
2426 i += r;
2427 }
2428
2429 /* Get the last element and determine if the entire string was
2430 processed. */
2431 last = VEC_last (converted_character_d, converted_chars);
2432 finished = (last->result == wchar_iterate_eof);
2433
2434 /* Ensure that CONVERTED_CHARS is terminated. */
2435 last->result = wchar_iterate_eof;
2436
2437 /* WCHAR_BUF is the obstack we use to represent the string in
2438 wchar_t form. */
2439 obstack_init (&wchar_buf);
2440 make_cleanup_obstack_free (&wchar_buf);
2441
2442 /* Print the output string to the obstack. */
2443 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2444 width, byte_order, options);
2445
2446 if (force_ellipses || !finished)
2447 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2448
2449 /* OUTPUT is where we collect `char's for printing. */
2450 obstack_init (&output);
2451 make_cleanup_obstack_free (&output);
2452
2453 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2454 (gdb_byte *) obstack_base (&wchar_buf),
2455 obstack_object_size (&wchar_buf),
2456 sizeof (gdb_wchar_t), &output, translit_char);
2457 obstack_1grow (&output, '\0');
2458
2459 fputs_filtered (obstack_base (&output), stream);
2460
2461 do_cleanups (cleanup);
2462 }
2463
2464 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2465 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2466 stops at the first null byte, otherwise printing proceeds (including null
2467 bytes) until either print_max or LEN characters have been printed,
2468 whichever is smaller. ENCODING is the name of the string's
2469 encoding. It can be NULL, in which case the target encoding is
2470 assumed. */
2471
2472 int
2473 val_print_string (struct type *elttype, const char *encoding,
2474 CORE_ADDR addr, int len,
2475 struct ui_file *stream,
2476 const struct value_print_options *options)
2477 {
2478 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2479 int errcode; /* Errno returned from bad reads. */
2480 int found_nul; /* Non-zero if we found the nul char. */
2481 unsigned int fetchlimit; /* Maximum number of chars to print. */
2482 int bytes_read;
2483 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2484 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2485 struct gdbarch *gdbarch = get_type_arch (elttype);
2486 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2487 int width = TYPE_LENGTH (elttype);
2488
2489 /* First we need to figure out the limit on the number of characters we are
2490 going to attempt to fetch and print. This is actually pretty simple. If
2491 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2492 LEN is -1, then the limit is print_max. This is true regardless of
2493 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2494 because finding the null byte (or available memory) is what actually
2495 limits the fetch. */
2496
2497 fetchlimit = (len == -1 ? options->print_max : min (len,
2498 options->print_max));
2499
2500 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2501 &buffer, &bytes_read);
2502 old_chain = make_cleanup (xfree, buffer);
2503
2504 addr += bytes_read;
2505
2506 /* We now have either successfully filled the buffer to fetchlimit,
2507 or terminated early due to an error or finding a null char when
2508 LEN is -1. */
2509
2510 /* Determine found_nul by looking at the last character read. */
2511 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2512 byte_order) == 0;
2513 if (len == -1 && !found_nul)
2514 {
2515 gdb_byte *peekbuf;
2516
2517 /* We didn't find a NUL terminator we were looking for. Attempt
2518 to peek at the next character. If not successful, or it is not
2519 a null byte, then force ellipsis to be printed. */
2520
2521 peekbuf = (gdb_byte *) alloca (width);
2522
2523 if (target_read_memory (addr, peekbuf, width) == 0
2524 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2525 force_ellipsis = 1;
2526 }
2527 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2528 {
2529 /* Getting an error when we have a requested length, or fetching less
2530 than the number of characters actually requested, always make us
2531 print ellipsis. */
2532 force_ellipsis = 1;
2533 }
2534
2535 /* If we get an error before fetching anything, don't print a string.
2536 But if we fetch something and then get an error, print the string
2537 and then the error message. */
2538 if (errcode == 0 || bytes_read > 0)
2539 {
2540 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2541 encoding, force_ellipsis, options);
2542 }
2543
2544 if (errcode != 0)
2545 {
2546 char *str;
2547
2548 str = memory_error_message (errcode, gdbarch, addr);
2549 make_cleanup (xfree, str);
2550
2551 fprintf_filtered (stream, "<error: ");
2552 fputs_filtered (str, stream);
2553 fprintf_filtered (stream, ">");
2554 }
2555
2556 gdb_flush (stream);
2557 do_cleanups (old_chain);
2558
2559 return (bytes_read / width);
2560 }
2561 \f
2562
2563 /* The 'set input-radix' command writes to this auxiliary variable.
2564 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2565 it is left unchanged. */
2566
2567 static unsigned input_radix_1 = 10;
2568
2569 /* Validate an input or output radix setting, and make sure the user
2570 knows what they really did here. Radix setting is confusing, e.g.
2571 setting the input radix to "10" never changes it! */
2572
2573 static void
2574 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2575 {
2576 set_input_radix_1 (from_tty, input_radix_1);
2577 }
2578
2579 static void
2580 set_input_radix_1 (int from_tty, unsigned radix)
2581 {
2582 /* We don't currently disallow any input radix except 0 or 1, which don't
2583 make any mathematical sense. In theory, we can deal with any input
2584 radix greater than 1, even if we don't have unique digits for every
2585 value from 0 to radix-1, but in practice we lose on large radix values.
2586 We should either fix the lossage or restrict the radix range more.
2587 (FIXME). */
2588
2589 if (radix < 2)
2590 {
2591 input_radix_1 = input_radix;
2592 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2593 radix);
2594 }
2595 input_radix_1 = input_radix = radix;
2596 if (from_tty)
2597 {
2598 printf_filtered (_("Input radix now set to "
2599 "decimal %u, hex %x, octal %o.\n"),
2600 radix, radix, radix);
2601 }
2602 }
2603
2604 /* The 'set output-radix' command writes to this auxiliary variable.
2605 If the requested radix is valid, OUTPUT_RADIX is updated,
2606 otherwise, it is left unchanged. */
2607
2608 static unsigned output_radix_1 = 10;
2609
2610 static void
2611 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2612 {
2613 set_output_radix_1 (from_tty, output_radix_1);
2614 }
2615
2616 static void
2617 set_output_radix_1 (int from_tty, unsigned radix)
2618 {
2619 /* Validate the radix and disallow ones that we aren't prepared to
2620 handle correctly, leaving the radix unchanged. */
2621 switch (radix)
2622 {
2623 case 16:
2624 user_print_options.output_format = 'x'; /* hex */
2625 break;
2626 case 10:
2627 user_print_options.output_format = 0; /* decimal */
2628 break;
2629 case 8:
2630 user_print_options.output_format = 'o'; /* octal */
2631 break;
2632 default:
2633 output_radix_1 = output_radix;
2634 error (_("Unsupported output radix ``decimal %u''; "
2635 "output radix unchanged."),
2636 radix);
2637 }
2638 output_radix_1 = output_radix = radix;
2639 if (from_tty)
2640 {
2641 printf_filtered (_("Output radix now set to "
2642 "decimal %u, hex %x, octal %o.\n"),
2643 radix, radix, radix);
2644 }
2645 }
2646
2647 /* Set both the input and output radix at once. Try to set the output radix
2648 first, since it has the most restrictive range. An radix that is valid as
2649 an output radix is also valid as an input radix.
2650
2651 It may be useful to have an unusual input radix. If the user wishes to
2652 set an input radix that is not valid as an output radix, he needs to use
2653 the 'set input-radix' command. */
2654
2655 static void
2656 set_radix (char *arg, int from_tty)
2657 {
2658 unsigned radix;
2659
2660 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2661 set_output_radix_1 (0, radix);
2662 set_input_radix_1 (0, radix);
2663 if (from_tty)
2664 {
2665 printf_filtered (_("Input and output radices now set to "
2666 "decimal %u, hex %x, octal %o.\n"),
2667 radix, radix, radix);
2668 }
2669 }
2670
2671 /* Show both the input and output radices. */
2672
2673 static void
2674 show_radix (char *arg, int from_tty)
2675 {
2676 if (from_tty)
2677 {
2678 if (input_radix == output_radix)
2679 {
2680 printf_filtered (_("Input and output radices set to "
2681 "decimal %u, hex %x, octal %o.\n"),
2682 input_radix, input_radix, input_radix);
2683 }
2684 else
2685 {
2686 printf_filtered (_("Input radix set to decimal "
2687 "%u, hex %x, octal %o.\n"),
2688 input_radix, input_radix, input_radix);
2689 printf_filtered (_("Output radix set to decimal "
2690 "%u, hex %x, octal %o.\n"),
2691 output_radix, output_radix, output_radix);
2692 }
2693 }
2694 }
2695 \f
2696
2697 static void
2698 set_print (char *arg, int from_tty)
2699 {
2700 printf_unfiltered (
2701 "\"set print\" must be followed by the name of a print subcommand.\n");
2702 help_list (setprintlist, "set print ", -1, gdb_stdout);
2703 }
2704
2705 static void
2706 show_print (char *args, int from_tty)
2707 {
2708 cmd_show_list (showprintlist, from_tty, "");
2709 }
2710
2711 static void
2712 set_print_raw (char *arg, int from_tty)
2713 {
2714 printf_unfiltered (
2715 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2716 help_list (setprintrawlist, "set print raw ", -1, gdb_stdout);
2717 }
2718
2719 static void
2720 show_print_raw (char *args, int from_tty)
2721 {
2722 cmd_show_list (showprintrawlist, from_tty, "");
2723 }
2724
2725 \f
2726 void
2727 _initialize_valprint (void)
2728 {
2729 add_prefix_cmd ("print", no_class, set_print,
2730 _("Generic command for setting how things print."),
2731 &setprintlist, "set print ", 0, &setlist);
2732 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2733 /* Prefer set print to set prompt. */
2734 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2735
2736 add_prefix_cmd ("print", no_class, show_print,
2737 _("Generic command for showing print settings."),
2738 &showprintlist, "show print ", 0, &showlist);
2739 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2740 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2741
2742 add_prefix_cmd ("raw", no_class, set_print_raw,
2743 _("\
2744 Generic command for setting what things to print in \"raw\" mode."),
2745 &setprintrawlist, "set print raw ", 0, &setprintlist);
2746 add_prefix_cmd ("raw", no_class, show_print_raw,
2747 _("Generic command for showing \"print raw\" settings."),
2748 &showprintrawlist, "show print raw ", 0, &showprintlist);
2749
2750 add_setshow_uinteger_cmd ("elements", no_class,
2751 &user_print_options.print_max, _("\
2752 Set limit on string chars or array elements to print."), _("\
2753 Show limit on string chars or array elements to print."), _("\
2754 \"set print elements unlimited\" causes there to be no limit."),
2755 NULL,
2756 show_print_max,
2757 &setprintlist, &showprintlist);
2758
2759 add_setshow_boolean_cmd ("null-stop", no_class,
2760 &user_print_options.stop_print_at_null, _("\
2761 Set printing of char arrays to stop at first null char."), _("\
2762 Show printing of char arrays to stop at first null char."), NULL,
2763 NULL,
2764 show_stop_print_at_null,
2765 &setprintlist, &showprintlist);
2766
2767 add_setshow_uinteger_cmd ("repeats", no_class,
2768 &user_print_options.repeat_count_threshold, _("\
2769 Set threshold for repeated print elements."), _("\
2770 Show threshold for repeated print elements."), _("\
2771 \"set print repeats unlimited\" causes all elements to be individually printed."),
2772 NULL,
2773 show_repeat_count_threshold,
2774 &setprintlist, &showprintlist);
2775
2776 add_setshow_boolean_cmd ("pretty", class_support,
2777 &user_print_options.prettyformat_structs, _("\
2778 Set pretty formatting of structures."), _("\
2779 Show pretty formatting of structures."), NULL,
2780 NULL,
2781 show_prettyformat_structs,
2782 &setprintlist, &showprintlist);
2783
2784 add_setshow_boolean_cmd ("union", class_support,
2785 &user_print_options.unionprint, _("\
2786 Set printing of unions interior to structures."), _("\
2787 Show printing of unions interior to structures."), NULL,
2788 NULL,
2789 show_unionprint,
2790 &setprintlist, &showprintlist);
2791
2792 add_setshow_boolean_cmd ("array", class_support,
2793 &user_print_options.prettyformat_arrays, _("\
2794 Set pretty formatting of arrays."), _("\
2795 Show pretty formatting of arrays."), NULL,
2796 NULL,
2797 show_prettyformat_arrays,
2798 &setprintlist, &showprintlist);
2799
2800 add_setshow_boolean_cmd ("address", class_support,
2801 &user_print_options.addressprint, _("\
2802 Set printing of addresses."), _("\
2803 Show printing of addresses."), NULL,
2804 NULL,
2805 show_addressprint,
2806 &setprintlist, &showprintlist);
2807
2808 add_setshow_boolean_cmd ("symbol", class_support,
2809 &user_print_options.symbol_print, _("\
2810 Set printing of symbol names when printing pointers."), _("\
2811 Show printing of symbol names when printing pointers."),
2812 NULL, NULL,
2813 show_symbol_print,
2814 &setprintlist, &showprintlist);
2815
2816 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2817 _("\
2818 Set default input radix for entering numbers."), _("\
2819 Show default input radix for entering numbers."), NULL,
2820 set_input_radix,
2821 show_input_radix,
2822 &setlist, &showlist);
2823
2824 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2825 _("\
2826 Set default output radix for printing of values."), _("\
2827 Show default output radix for printing of values."), NULL,
2828 set_output_radix,
2829 show_output_radix,
2830 &setlist, &showlist);
2831
2832 /* The "set radix" and "show radix" commands are special in that
2833 they are like normal set and show commands but allow two normally
2834 independent variables to be either set or shown with a single
2835 command. So the usual deprecated_add_set_cmd() and [deleted]
2836 add_show_from_set() commands aren't really appropriate. */
2837 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2838 longer true - show can display anything. */
2839 add_cmd ("radix", class_support, set_radix, _("\
2840 Set default input and output number radices.\n\
2841 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2842 Without an argument, sets both radices back to the default value of 10."),
2843 &setlist);
2844 add_cmd ("radix", class_support, show_radix, _("\
2845 Show the default input and output number radices.\n\
2846 Use 'show input-radix' or 'show output-radix' to independently show each."),
2847 &showlist);
2848
2849 add_setshow_boolean_cmd ("array-indexes", class_support,
2850 &user_print_options.print_array_indexes, _("\
2851 Set printing of array indexes."), _("\
2852 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2853 &setprintlist, &showprintlist);
2854 }
This page took 0.085106 seconds and 5 git commands to generate.