target_stack -> current_top_target() throughout
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "common/byte-vector.h"
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 /* Command lists for set/show print raw. */
74 struct cmd_list_element *setprintrawlist;
75 struct cmd_list_element *showprintrawlist;
76
77 /* Prototypes for local functions */
78
79 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
80 int len, int *errptr);
81
82 static void set_input_radix_1 (int, unsigned);
83
84 static void set_output_radix_1 (int, unsigned);
85
86 static void val_print_type_code_flags (struct type *type,
87 const gdb_byte *valaddr,
88 struct ui_file *stream);
89
90 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
91
92 struct value_print_options user_print_options =
93 {
94 Val_prettyformat_default, /* prettyformat */
95 0, /* prettyformat_arrays */
96 0, /* prettyformat_structs */
97 0, /* vtblprint */
98 1, /* unionprint */
99 1, /* addressprint */
100 0, /* objectprint */
101 PRINT_MAX_DEFAULT, /* print_max */
102 10, /* repeat_count_threshold */
103 0, /* output_format */
104 0, /* format */
105 0, /* stop_print_at_null */
106 0, /* print_array_indexes */
107 0, /* deref_ref */
108 1, /* static_field_print */
109 1, /* pascal_static_field_print */
110 0, /* raw */
111 0, /* summary */
112 1 /* symbol_print */
113 };
114
115 /* Initialize *OPTS to be a copy of the user print options. */
116 void
117 get_user_print_options (struct value_print_options *opts)
118 {
119 *opts = user_print_options;
120 }
121
122 /* Initialize *OPTS to be a copy of the user print options, but with
123 pretty-formatting disabled. */
124 void
125 get_no_prettyformat_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 opts->prettyformat = Val_no_prettyformat;
129 }
130
131 /* Initialize *OPTS to be a copy of the user print options, but using
132 FORMAT as the formatting option. */
133 void
134 get_formatted_print_options (struct value_print_options *opts,
135 char format)
136 {
137 *opts = user_print_options;
138 opts->format = format;
139 }
140
141 static void
142 show_print_max (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file,
146 _("Limit on string chars or array "
147 "elements to print is %s.\n"),
148 value);
149 }
150
151
152 /* Default input and output radixes, and output format letter. */
153
154 unsigned input_radix = 10;
155 static void
156 show_input_radix (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file,
160 _("Default input radix for entering numbers is %s.\n"),
161 value);
162 }
163
164 unsigned output_radix = 10;
165 static void
166 show_output_radix (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file,
170 _("Default output radix for printing of values is %s.\n"),
171 value);
172 }
173
174 /* By default we print arrays without printing the index of each element in
175 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
176
177 static void
178 show_print_array_indexes (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
182 }
183
184 /* Print repeat counts if there are more than this many repetitions of an
185 element in an array. Referenced by the low level language dependent
186 print routines. */
187
188 static void
189 show_repeat_count_threshold (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
193 value);
194 }
195
196 /* If nonzero, stops printing of char arrays at first null. */
197
198 static void
199 show_stop_print_at_null (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file,
203 _("Printing of char arrays to stop "
204 "at first null char is %s.\n"),
205 value);
206 }
207
208 /* Controls pretty printing of structures. */
209
210 static void
211 show_prettyformat_structs (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
215 }
216
217 /* Controls pretty printing of arrays. */
218
219 static void
220 show_prettyformat_arrays (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
224 }
225
226 /* If nonzero, causes unions inside structures or other unions to be
227 printed. */
228
229 static void
230 show_unionprint (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file,
234 _("Printing of unions interior to structures is %s.\n"),
235 value);
236 }
237
238 /* If nonzero, causes machine addresses to be printed in certain contexts. */
239
240 static void
241 show_addressprint (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
245 }
246
247 static void
248 show_symbol_print (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file,
252 _("Printing of symbols when printing pointers is %s.\n"),
253 value);
254 }
255
256 \f
257
258 /* A helper function for val_print. When printing in "summary" mode,
259 we want to print scalar arguments, but not aggregate arguments.
260 This function distinguishes between the two. */
261
262 int
263 val_print_scalar_type_p (struct type *type)
264 {
265 type = check_typedef (type);
266 while (TYPE_IS_REFERENCE (type))
267 {
268 type = TYPE_TARGET_TYPE (type);
269 type = check_typedef (type);
270 }
271 switch (TYPE_CODE (type))
272 {
273 case TYPE_CODE_ARRAY:
274 case TYPE_CODE_STRUCT:
275 case TYPE_CODE_UNION:
276 case TYPE_CODE_SET:
277 case TYPE_CODE_STRING:
278 return 0;
279 default:
280 return 1;
281 }
282 }
283
284 /* See its definition in value.h. */
285
286 int
287 valprint_check_validity (struct ui_file *stream,
288 struct type *type,
289 LONGEST embedded_offset,
290 const struct value *val)
291 {
292 type = check_typedef (type);
293
294 if (type_not_associated (type))
295 {
296 val_print_not_associated (stream);
297 return 0;
298 }
299
300 if (type_not_allocated (type))
301 {
302 val_print_not_allocated (stream);
303 return 0;
304 }
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
322 int ref_is_addressable = 0;
323
324 if (is_ref)
325 {
326 const struct value *deref_val = coerce_ref_if_computed (val);
327
328 if (deref_val != NULL)
329 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
330 }
331
332 if (!is_ref || !ref_is_addressable)
333 fputs_filtered (_("<synthetic pointer>"), stream);
334
335 /* C++ references should be valid even if they're synthetic. */
336 return is_ref;
337 }
338
339 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
340 {
341 val_print_unavailable (stream);
342 return 0;
343 }
344 }
345
346 return 1;
347 }
348
349 void
350 val_print_optimized_out (const struct value *val, struct ui_file *stream)
351 {
352 if (val != NULL && value_lval_const (val) == lval_register)
353 val_print_not_saved (stream);
354 else
355 fprintf_filtered (stream, _("<optimized out>"));
356 }
357
358 void
359 val_print_not_saved (struct ui_file *stream)
360 {
361 fprintf_filtered (stream, _("<not saved>"));
362 }
363
364 void
365 val_print_unavailable (struct ui_file *stream)
366 {
367 fprintf_filtered (stream, _("<unavailable>"));
368 }
369
370 void
371 val_print_invalid_address (struct ui_file *stream)
372 {
373 fprintf_filtered (stream, _("<invalid address>"));
374 }
375
376 /* Print a pointer based on the type of its target.
377
378 Arguments to this functions are roughly the same as those in
379 generic_val_print. A difference is that ADDRESS is the address to print,
380 with embedded_offset already added. ELTTYPE represents
381 the pointed type after check_typedef. */
382
383 static void
384 print_unpacked_pointer (struct type *type, struct type *elttype,
385 CORE_ADDR address, struct ui_file *stream,
386 const struct value_print_options *options)
387 {
388 struct gdbarch *gdbarch = get_type_arch (type);
389
390 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
391 {
392 /* Try to print what function it points to. */
393 print_function_pointer_address (options, gdbarch, address, stream);
394 return;
395 }
396
397 if (options->symbol_print)
398 print_address_demangle (options, gdbarch, address, stream, demangle);
399 else if (options->addressprint)
400 fputs_filtered (paddress (gdbarch, address), stream);
401 }
402
403 /* generic_val_print helper for TYPE_CODE_ARRAY. */
404
405 static void
406 generic_val_print_array (struct type *type,
407 int embedded_offset, CORE_ADDR address,
408 struct ui_file *stream, int recurse,
409 struct value *original_value,
410 const struct value_print_options *options,
411 const struct
412 generic_val_print_decorations *decorations)
413 {
414 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
415 struct type *elttype = check_typedef (unresolved_elttype);
416
417 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
418 {
419 LONGEST low_bound, high_bound;
420
421 if (!get_array_bounds (type, &low_bound, &high_bound))
422 error (_("Could not determine the array high bound"));
423
424 if (options->prettyformat_arrays)
425 {
426 print_spaces_filtered (2 + 2 * recurse, stream);
427 }
428
429 fputs_filtered (decorations->array_start, stream);
430 val_print_array_elements (type, embedded_offset,
431 address, stream,
432 recurse, original_value, options, 0);
433 fputs_filtered (decorations->array_end, stream);
434 }
435 else
436 {
437 /* Array of unspecified length: treat like pointer to first elt. */
438 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
439 options);
440 }
441
442 }
443
444 /* generic_val_print helper for TYPE_CODE_PTR. */
445
446 static void
447 generic_val_print_ptr (struct type *type,
448 int embedded_offset, struct ui_file *stream,
449 struct value *original_value,
450 const struct value_print_options *options)
451 {
452 struct gdbarch *gdbarch = get_type_arch (type);
453 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
454
455 if (options->format && options->format != 's')
456 {
457 val_print_scalar_formatted (type, embedded_offset,
458 original_value, options, 0, stream);
459 }
460 else
461 {
462 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
463 struct type *elttype = check_typedef (unresolved_elttype);
464 const gdb_byte *valaddr = value_contents_for_printing (original_value);
465 CORE_ADDR addr = unpack_pointer (type,
466 valaddr + embedded_offset * unit_size);
467
468 print_unpacked_pointer (type, elttype, addr, stream, options);
469 }
470 }
471
472
473 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
474
475 static void
476 generic_val_print_memberptr (struct type *type,
477 int embedded_offset, struct ui_file *stream,
478 struct value *original_value,
479 const struct value_print_options *options)
480 {
481 val_print_scalar_formatted (type, embedded_offset,
482 original_value, options, 0, stream);
483 }
484
485 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
486
487 static void
488 print_ref_address (struct type *type, const gdb_byte *address_buffer,
489 int embedded_offset, struct ui_file *stream)
490 {
491 struct gdbarch *gdbarch = get_type_arch (type);
492
493 if (address_buffer != NULL)
494 {
495 CORE_ADDR address
496 = extract_typed_address (address_buffer + embedded_offset, type);
497
498 fprintf_filtered (stream, "@");
499 fputs_filtered (paddress (gdbarch, address), stream);
500 }
501 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
502 }
503
504 /* If VAL is addressable, return the value contents buffer of a value that
505 represents a pointer to VAL. Otherwise return NULL. */
506
507 static const gdb_byte *
508 get_value_addr_contents (struct value *deref_val)
509 {
510 gdb_assert (deref_val != NULL);
511
512 if (value_lval_const (deref_val) == lval_memory)
513 return value_contents_for_printing_const (value_addr (deref_val));
514 else
515 {
516 /* We have a non-addressable value, such as a DW_AT_const_value. */
517 return NULL;
518 }
519 }
520
521 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
522
523 static void
524 generic_val_print_ref (struct type *type,
525 int embedded_offset, struct ui_file *stream, int recurse,
526 struct value *original_value,
527 const struct value_print_options *options)
528 {
529 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
530 struct value *deref_val = NULL;
531 const int value_is_synthetic
532 = value_bits_synthetic_pointer (original_value,
533 TARGET_CHAR_BIT * embedded_offset,
534 TARGET_CHAR_BIT * TYPE_LENGTH (type));
535 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
536 || options->deref_ref);
537 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
538 const gdb_byte *valaddr = value_contents_for_printing (original_value);
539
540 if (must_coerce_ref && type_is_defined)
541 {
542 deref_val = coerce_ref_if_computed (original_value);
543
544 if (deref_val != NULL)
545 {
546 /* More complicated computed references are not supported. */
547 gdb_assert (embedded_offset == 0);
548 }
549 else
550 deref_val = value_at (TYPE_TARGET_TYPE (type),
551 unpack_pointer (type, valaddr + embedded_offset));
552 }
553 /* Else, original_value isn't a synthetic reference or we don't have to print
554 the reference's contents.
555
556 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
557 cause original_value to be a not_lval instead of an lval_computed,
558 which will make value_bits_synthetic_pointer return false.
559 This happens because if options->objectprint is true, c_value_print will
560 overwrite original_value's contents with the result of coercing
561 the reference through value_addr, and then set its type back to
562 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
563 we can simply treat it as non-synthetic and move on. */
564
565 if (options->addressprint)
566 {
567 const gdb_byte *address = (value_is_synthetic && type_is_defined
568 ? get_value_addr_contents (deref_val)
569 : valaddr);
570
571 print_ref_address (type, address, embedded_offset, stream);
572
573 if (options->deref_ref)
574 fputs_filtered (": ", stream);
575 }
576
577 if (options->deref_ref)
578 {
579 if (type_is_defined)
580 common_val_print (deref_val, stream, recurse, options,
581 current_language);
582 else
583 fputs_filtered ("???", stream);
584 }
585 }
586
587 /* Helper function for generic_val_print_enum.
588 This is also used to print enums in TYPE_CODE_FLAGS values. */
589
590 static void
591 generic_val_print_enum_1 (struct type *type, LONGEST val,
592 struct ui_file *stream)
593 {
594 unsigned int i;
595 unsigned int len;
596
597 len = TYPE_NFIELDS (type);
598 for (i = 0; i < len; i++)
599 {
600 QUIT;
601 if (val == TYPE_FIELD_ENUMVAL (type, i))
602 {
603 break;
604 }
605 }
606 if (i < len)
607 {
608 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
609 }
610 else if (TYPE_FLAG_ENUM (type))
611 {
612 int first = 1;
613
614 /* We have a "flag" enum, so we try to decompose it into
615 pieces as appropriate. A flag enum has disjoint
616 constants by definition. */
617 fputs_filtered ("(", stream);
618 for (i = 0; i < len; ++i)
619 {
620 QUIT;
621
622 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
623 {
624 if (!first)
625 fputs_filtered (" | ", stream);
626 first = 0;
627
628 val &= ~TYPE_FIELD_ENUMVAL (type, i);
629 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
630 }
631 }
632
633 if (first || val != 0)
634 {
635 if (!first)
636 fputs_filtered (" | ", stream);
637 fputs_filtered ("unknown: ", stream);
638 print_longest (stream, 'd', 0, val);
639 }
640
641 fputs_filtered (")", stream);
642 }
643 else
644 print_longest (stream, 'd', 0, val);
645 }
646
647 /* generic_val_print helper for TYPE_CODE_ENUM. */
648
649 static void
650 generic_val_print_enum (struct type *type,
651 int embedded_offset, struct ui_file *stream,
652 struct value *original_value,
653 const struct value_print_options *options)
654 {
655 LONGEST val;
656 struct gdbarch *gdbarch = get_type_arch (type);
657 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
658
659 if (options->format)
660 {
661 val_print_scalar_formatted (type, embedded_offset,
662 original_value, options, 0, stream);
663 }
664 else
665 {
666 const gdb_byte *valaddr = value_contents_for_printing (original_value);
667
668 val = unpack_long (type, valaddr + embedded_offset * unit_size);
669
670 generic_val_print_enum_1 (type, val, stream);
671 }
672 }
673
674 /* generic_val_print helper for TYPE_CODE_FLAGS. */
675
676 static void
677 generic_val_print_flags (struct type *type,
678 int embedded_offset, struct ui_file *stream,
679 struct value *original_value,
680 const struct value_print_options *options)
681
682 {
683 if (options->format)
684 val_print_scalar_formatted (type, embedded_offset, original_value,
685 options, 0, stream);
686 else
687 {
688 const gdb_byte *valaddr = value_contents_for_printing (original_value);
689
690 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
691 }
692 }
693
694 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
695
696 static void
697 generic_val_print_func (struct type *type,
698 int embedded_offset, CORE_ADDR address,
699 struct ui_file *stream,
700 struct value *original_value,
701 const struct value_print_options *options)
702 {
703 struct gdbarch *gdbarch = get_type_arch (type);
704
705 if (options->format)
706 {
707 val_print_scalar_formatted (type, embedded_offset,
708 original_value, options, 0, stream);
709 }
710 else
711 {
712 /* FIXME, we should consider, at least for ANSI C language,
713 eliminating the distinction made between FUNCs and POINTERs
714 to FUNCs. */
715 fprintf_filtered (stream, "{");
716 type_print (type, "", stream, -1);
717 fprintf_filtered (stream, "} ");
718 /* Try to print what function it points to, and its address. */
719 print_address_demangle (options, gdbarch, address, stream, demangle);
720 }
721 }
722
723 /* generic_val_print helper for TYPE_CODE_BOOL. */
724
725 static void
726 generic_val_print_bool (struct type *type,
727 int embedded_offset, struct ui_file *stream,
728 struct value *original_value,
729 const struct value_print_options *options,
730 const struct generic_val_print_decorations *decorations)
731 {
732 LONGEST val;
733 struct gdbarch *gdbarch = get_type_arch (type);
734 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
735
736 if (options->format || options->output_format)
737 {
738 struct value_print_options opts = *options;
739 opts.format = (options->format ? options->format
740 : options->output_format);
741 val_print_scalar_formatted (type, embedded_offset,
742 original_value, &opts, 0, stream);
743 }
744 else
745 {
746 const gdb_byte *valaddr = value_contents_for_printing (original_value);
747
748 val = unpack_long (type, valaddr + embedded_offset * unit_size);
749 if (val == 0)
750 fputs_filtered (decorations->false_name, stream);
751 else if (val == 1)
752 fputs_filtered (decorations->true_name, stream);
753 else
754 print_longest (stream, 'd', 0, val);
755 }
756 }
757
758 /* generic_val_print helper for TYPE_CODE_INT. */
759
760 static void
761 generic_val_print_int (struct type *type,
762 int embedded_offset, struct ui_file *stream,
763 struct value *original_value,
764 const struct value_print_options *options)
765 {
766 struct value_print_options opts = *options;
767
768 opts.format = (options->format ? options->format
769 : options->output_format);
770 val_print_scalar_formatted (type, embedded_offset,
771 original_value, &opts, 0, stream);
772 }
773
774 /* generic_val_print helper for TYPE_CODE_CHAR. */
775
776 static void
777 generic_val_print_char (struct type *type, struct type *unresolved_type,
778 int embedded_offset,
779 struct ui_file *stream,
780 struct value *original_value,
781 const struct value_print_options *options)
782 {
783 LONGEST val;
784 struct gdbarch *gdbarch = get_type_arch (type);
785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
786
787 if (options->format || options->output_format)
788 {
789 struct value_print_options opts = *options;
790
791 opts.format = (options->format ? options->format
792 : options->output_format);
793 val_print_scalar_formatted (type, embedded_offset,
794 original_value, &opts, 0, stream);
795 }
796 else
797 {
798 const gdb_byte *valaddr = value_contents_for_printing (original_value);
799
800 val = unpack_long (type, valaddr + embedded_offset * unit_size);
801 if (TYPE_UNSIGNED (type))
802 fprintf_filtered (stream, "%u", (unsigned int) val);
803 else
804 fprintf_filtered (stream, "%d", (int) val);
805 fputs_filtered (" ", stream);
806 LA_PRINT_CHAR (val, unresolved_type, stream);
807 }
808 }
809
810 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
811
812 static void
813 generic_val_print_float (struct type *type,
814 int embedded_offset, struct ui_file *stream,
815 struct value *original_value,
816 const struct value_print_options *options)
817 {
818 struct gdbarch *gdbarch = get_type_arch (type);
819 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
820
821 if (options->format)
822 {
823 val_print_scalar_formatted (type, embedded_offset,
824 original_value, options, 0, stream);
825 }
826 else
827 {
828 const gdb_byte *valaddr = value_contents_for_printing (original_value);
829
830 print_floating (valaddr + embedded_offset * unit_size, type, stream);
831 }
832 }
833
834 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
835
836 static void
837 generic_val_print_complex (struct type *type,
838 int embedded_offset, struct ui_file *stream,
839 struct value *original_value,
840 const struct value_print_options *options,
841 const struct generic_val_print_decorations
842 *decorations)
843 {
844 struct gdbarch *gdbarch = get_type_arch (type);
845 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
846 const gdb_byte *valaddr = value_contents_for_printing (original_value);
847
848 fprintf_filtered (stream, "%s", decorations->complex_prefix);
849 if (options->format)
850 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
851 embedded_offset, original_value, options, 0,
852 stream);
853 else
854 print_floating (valaddr + embedded_offset * unit_size,
855 TYPE_TARGET_TYPE (type), stream);
856 fprintf_filtered (stream, "%s", decorations->complex_infix);
857 if (options->format)
858 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
859 embedded_offset
860 + type_length_units (TYPE_TARGET_TYPE (type)),
861 original_value, options, 0, stream);
862 else
863 print_floating (valaddr + embedded_offset * unit_size
864 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
865 TYPE_TARGET_TYPE (type), stream);
866 fprintf_filtered (stream, "%s", decorations->complex_suffix);
867 }
868
869 /* A generic val_print that is suitable for use by language
870 implementations of the la_val_print method. This function can
871 handle most type codes, though not all, notably exception
872 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
873 the caller.
874
875 Most arguments are as to val_print.
876
877 The additional DECORATIONS argument can be used to customize the
878 output in some small, language-specific ways. */
879
880 void
881 generic_val_print (struct type *type,
882 int embedded_offset, CORE_ADDR address,
883 struct ui_file *stream, int recurse,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations *decorations)
887 {
888 struct type *unresolved_type = type;
889
890 type = check_typedef (type);
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_ARRAY:
894 generic_val_print_array (type, embedded_offset, address, stream,
895 recurse, original_value, options, decorations);
896 break;
897
898 case TYPE_CODE_MEMBERPTR:
899 generic_val_print_memberptr (type, embedded_offset, stream,
900 original_value, options);
901 break;
902
903 case TYPE_CODE_PTR:
904 generic_val_print_ptr (type, embedded_offset, stream,
905 original_value, options);
906 break;
907
908 case TYPE_CODE_REF:
909 case TYPE_CODE_RVALUE_REF:
910 generic_val_print_ref (type, embedded_offset, stream, recurse,
911 original_value, options);
912 break;
913
914 case TYPE_CODE_ENUM:
915 generic_val_print_enum (type, embedded_offset, stream,
916 original_value, options);
917 break;
918
919 case TYPE_CODE_FLAGS:
920 generic_val_print_flags (type, embedded_offset, stream,
921 original_value, options);
922 break;
923
924 case TYPE_CODE_FUNC:
925 case TYPE_CODE_METHOD:
926 generic_val_print_func (type, embedded_offset, address, stream,
927 original_value, options);
928 break;
929
930 case TYPE_CODE_BOOL:
931 generic_val_print_bool (type, embedded_offset, stream,
932 original_value, options, decorations);
933 break;
934
935 case TYPE_CODE_RANGE:
936 /* FIXME: create_static_range_type does not set the unsigned bit in a
937 range type (I think it probably should copy it from the
938 target type), so we won't print values which are too large to
939 fit in a signed integer correctly. */
940 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
941 print with the target type, though, because the size of our
942 type and the target type might differ). */
943
944 /* FALLTHROUGH */
945
946 case TYPE_CODE_INT:
947 generic_val_print_int (type, embedded_offset, stream,
948 original_value, options);
949 break;
950
951 case TYPE_CODE_CHAR:
952 generic_val_print_char (type, unresolved_type, embedded_offset,
953 stream, original_value, options);
954 break;
955
956 case TYPE_CODE_FLT:
957 case TYPE_CODE_DECFLOAT:
958 generic_val_print_float (type, embedded_offset, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_VOID:
963 fputs_filtered (decorations->void_name, stream);
964 break;
965
966 case TYPE_CODE_ERROR:
967 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
968 break;
969
970 case TYPE_CODE_UNDEF:
971 /* This happens (without TYPE_STUB set) on systems which don't use
972 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
973 and no complete type for struct foo in that file. */
974 fprintf_filtered (stream, _("<incomplete type>"));
975 break;
976
977 case TYPE_CODE_COMPLEX:
978 generic_val_print_complex (type, embedded_offset, stream,
979 original_value, options, decorations);
980 break;
981
982 case TYPE_CODE_UNION:
983 case TYPE_CODE_STRUCT:
984 case TYPE_CODE_METHODPTR:
985 default:
986 error (_("Unhandled type code %d in symbol table."),
987 TYPE_CODE (type));
988 }
989 gdb_flush (stream);
990 }
991
992 /* Print using the given LANGUAGE the data of type TYPE located at
993 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
994 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
995 stdio stream STREAM according to OPTIONS. VAL is the whole object
996 that came from ADDRESS.
997
998 The language printers will pass down an adjusted EMBEDDED_OFFSET to
999 further helper subroutines as subfields of TYPE are printed. In
1000 such cases, VAL is passed down unadjusted, so
1001 that VAL can be queried for metadata about the contents data being
1002 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1003 buffer. For example: "has this field been optimized out", or "I'm
1004 printing an object while inspecting a traceframe; has this
1005 particular piece of data been collected?".
1006
1007 RECURSE indicates the amount of indentation to supply before
1008 continuation lines; this amount is roughly twice the value of
1009 RECURSE. */
1010
1011 void
1012 val_print (struct type *type, LONGEST embedded_offset,
1013 CORE_ADDR address, struct ui_file *stream, int recurse,
1014 struct value *val,
1015 const struct value_print_options *options,
1016 const struct language_defn *language)
1017 {
1018 int ret = 0;
1019 struct value_print_options local_opts = *options;
1020 struct type *real_type = check_typedef (type);
1021
1022 if (local_opts.prettyformat == Val_prettyformat_default)
1023 local_opts.prettyformat = (local_opts.prettyformat_structs
1024 ? Val_prettyformat : Val_no_prettyformat);
1025
1026 QUIT;
1027
1028 /* Ensure that the type is complete and not just a stub. If the type is
1029 only a stub and we can't find and substitute its complete type, then
1030 print appropriate string and return. */
1031
1032 if (TYPE_STUB (real_type))
1033 {
1034 fprintf_filtered (stream, _("<incomplete type>"));
1035 gdb_flush (stream);
1036 return;
1037 }
1038
1039 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1040 return;
1041
1042 if (!options->raw)
1043 {
1044 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1045 address, stream, recurse,
1046 val, options, language);
1047 if (ret)
1048 return;
1049 }
1050
1051 /* Handle summary mode. If the value is a scalar, print it;
1052 otherwise, print an ellipsis. */
1053 if (options->summary && !val_print_scalar_type_p (type))
1054 {
1055 fprintf_filtered (stream, "...");
1056 return;
1057 }
1058
1059 TRY
1060 {
1061 language->la_val_print (type, embedded_offset, address,
1062 stream, recurse, val,
1063 &local_opts);
1064 }
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
1067 fprintf_filtered (stream, _("<error reading variable>"));
1068 }
1069 END_CATCH
1070 }
1071
1072 /* Check whether the value VAL is printable. Return 1 if it is;
1073 return 0 and print an appropriate error message to STREAM according to
1074 OPTIONS if it is not. */
1075
1076 static int
1077 value_check_printable (struct value *val, struct ui_file *stream,
1078 const struct value_print_options *options)
1079 {
1080 if (val == 0)
1081 {
1082 fprintf_filtered (stream, _("<address of value unknown>"));
1083 return 0;
1084 }
1085
1086 if (value_entirely_optimized_out (val))
1087 {
1088 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1089 fprintf_filtered (stream, "...");
1090 else
1091 val_print_optimized_out (val, stream);
1092 return 0;
1093 }
1094
1095 if (value_entirely_unavailable (val))
1096 {
1097 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1098 fprintf_filtered (stream, "...");
1099 else
1100 val_print_unavailable (stream);
1101 return 0;
1102 }
1103
1104 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1105 {
1106 fprintf_filtered (stream, _("<internal function %s>"),
1107 value_internal_function_name (val));
1108 return 0;
1109 }
1110
1111 if (type_not_associated (value_type (val)))
1112 {
1113 val_print_not_associated (stream);
1114 return 0;
1115 }
1116
1117 if (type_not_allocated (value_type (val)))
1118 {
1119 val_print_not_allocated (stream);
1120 return 0;
1121 }
1122
1123 return 1;
1124 }
1125
1126 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1127 to OPTIONS.
1128
1129 This is a preferable interface to val_print, above, because it uses
1130 GDB's value mechanism. */
1131
1132 void
1133 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1134 const struct value_print_options *options,
1135 const struct language_defn *language)
1136 {
1137 if (!value_check_printable (val, stream, options))
1138 return;
1139
1140 if (language->la_language == language_ada)
1141 /* The value might have a dynamic type, which would cause trouble
1142 below when trying to extract the value contents (since the value
1143 size is determined from the type size which is unknown). So
1144 get a fixed representation of our value. */
1145 val = ada_to_fixed_value (val);
1146
1147 if (value_lazy (val))
1148 value_fetch_lazy (val);
1149
1150 val_print (value_type (val),
1151 value_embedded_offset (val), value_address (val),
1152 stream, recurse,
1153 val, options, language);
1154 }
1155
1156 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1157 is printed using the current_language syntax. */
1158
1159 void
1160 value_print (struct value *val, struct ui_file *stream,
1161 const struct value_print_options *options)
1162 {
1163 if (!value_check_printable (val, stream, options))
1164 return;
1165
1166 if (!options->raw)
1167 {
1168 int r
1169 = apply_ext_lang_val_pretty_printer (value_type (val),
1170 value_embedded_offset (val),
1171 value_address (val),
1172 stream, 0,
1173 val, options, current_language);
1174
1175 if (r)
1176 return;
1177 }
1178
1179 LA_VALUE_PRINT (val, stream, options);
1180 }
1181
1182 static void
1183 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1184 struct ui_file *stream)
1185 {
1186 ULONGEST val = unpack_long (type, valaddr);
1187 int field, nfields = TYPE_NFIELDS (type);
1188 struct gdbarch *gdbarch = get_type_arch (type);
1189 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1190
1191 fputs_filtered ("[", stream);
1192 for (field = 0; field < nfields; field++)
1193 {
1194 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1195 {
1196 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1197
1198 if (field_type == bool_type
1199 /* We require boolean types here to be one bit wide. This is a
1200 problematic place to notify the user of an internal error
1201 though. Instead just fall through and print the field as an
1202 int. */
1203 && TYPE_FIELD_BITSIZE (type, field) == 1)
1204 {
1205 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1206 fprintf_filtered (stream, " %s",
1207 TYPE_FIELD_NAME (type, field));
1208 }
1209 else
1210 {
1211 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1212 ULONGEST field_val
1213 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1214
1215 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1216 field_val &= ((ULONGEST) 1 << field_len) - 1;
1217 fprintf_filtered (stream, " %s=",
1218 TYPE_FIELD_NAME (type, field));
1219 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1220 generic_val_print_enum_1 (field_type, field_val, stream);
1221 else
1222 print_longest (stream, 'd', 0, field_val);
1223 }
1224 }
1225 }
1226 fputs_filtered (" ]", stream);
1227 }
1228
1229 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1230 according to OPTIONS and SIZE on STREAM. Format i is not supported
1231 at this level.
1232
1233 This is how the elements of an array or structure are printed
1234 with a format. */
1235
1236 void
1237 val_print_scalar_formatted (struct type *type,
1238 LONGEST embedded_offset,
1239 struct value *val,
1240 const struct value_print_options *options,
1241 int size,
1242 struct ui_file *stream)
1243 {
1244 struct gdbarch *arch = get_type_arch (type);
1245 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1246
1247 gdb_assert (val != NULL);
1248
1249 /* If we get here with a string format, try again without it. Go
1250 all the way back to the language printers, which may call us
1251 again. */
1252 if (options->format == 's')
1253 {
1254 struct value_print_options opts = *options;
1255 opts.format = 0;
1256 opts.deref_ref = 0;
1257 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1258 current_language);
1259 return;
1260 }
1261
1262 /* value_contents_for_printing fetches all VAL's contents. They are
1263 needed to check whether VAL is optimized-out or unavailable
1264 below. */
1265 const gdb_byte *valaddr = value_contents_for_printing (val);
1266
1267 /* A scalar object that does not have all bits available can't be
1268 printed, because all bits contribute to its representation. */
1269 if (value_bits_any_optimized_out (val,
1270 TARGET_CHAR_BIT * embedded_offset,
1271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1272 val_print_optimized_out (val, stream);
1273 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1274 val_print_unavailable (stream);
1275 else
1276 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1277 options, size, stream);
1278 }
1279
1280 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1281 The raison d'etre of this function is to consolidate printing of
1282 LONG_LONG's into this one function. The format chars b,h,w,g are
1283 from print_scalar_formatted(). Numbers are printed using C
1284 format.
1285
1286 USE_C_FORMAT means to use C format in all cases. Without it,
1287 'o' and 'x' format do not include the standard C radix prefix
1288 (leading 0 or 0x).
1289
1290 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1291 and was intended to request formating according to the current
1292 language and would be used for most integers that GDB prints. The
1293 exceptional cases were things like protocols where the format of
1294 the integer is a protocol thing, not a user-visible thing). The
1295 parameter remains to preserve the information of what things might
1296 be printed with language-specific format, should we ever resurrect
1297 that capability. */
1298
1299 void
1300 print_longest (struct ui_file *stream, int format, int use_c_format,
1301 LONGEST val_long)
1302 {
1303 const char *val;
1304
1305 switch (format)
1306 {
1307 case 'd':
1308 val = int_string (val_long, 10, 1, 0, 1); break;
1309 case 'u':
1310 val = int_string (val_long, 10, 0, 0, 1); break;
1311 case 'x':
1312 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1313 case 'b':
1314 val = int_string (val_long, 16, 0, 2, 1); break;
1315 case 'h':
1316 val = int_string (val_long, 16, 0, 4, 1); break;
1317 case 'w':
1318 val = int_string (val_long, 16, 0, 8, 1); break;
1319 case 'g':
1320 val = int_string (val_long, 16, 0, 16, 1); break;
1321 break;
1322 case 'o':
1323 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1324 default:
1325 internal_error (__FILE__, __LINE__,
1326 _("failed internal consistency check"));
1327 }
1328 fputs_filtered (val, stream);
1329 }
1330
1331 /* This used to be a macro, but I don't think it is called often enough
1332 to merit such treatment. */
1333 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1334 arguments to a function, number in a value history, register number, etc.)
1335 where the value must not be larger than can fit in an int. */
1336
1337 int
1338 longest_to_int (LONGEST arg)
1339 {
1340 /* Let the compiler do the work. */
1341 int rtnval = (int) arg;
1342
1343 /* Check for overflows or underflows. */
1344 if (sizeof (LONGEST) > sizeof (int))
1345 {
1346 if (rtnval != arg)
1347 {
1348 error (_("Value out of range."));
1349 }
1350 }
1351 return (rtnval);
1352 }
1353
1354 /* Print a floating point value of floating-point type TYPE,
1355 pointed to in GDB by VALADDR, on STREAM. */
1356
1357 void
1358 print_floating (const gdb_byte *valaddr, struct type *type,
1359 struct ui_file *stream)
1360 {
1361 std::string str = target_float_to_string (valaddr, type);
1362 fputs_filtered (str.c_str (), stream);
1363 }
1364
1365 void
1366 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1367 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1368 {
1369 const gdb_byte *p;
1370 unsigned int i;
1371 int b;
1372 bool seen_a_one = false;
1373
1374 /* Declared "int" so it will be signed.
1375 This ensures that right shift will shift in zeros. */
1376
1377 const int mask = 0x080;
1378
1379 if (byte_order == BFD_ENDIAN_BIG)
1380 {
1381 for (p = valaddr;
1382 p < valaddr + len;
1383 p++)
1384 {
1385 /* Every byte has 8 binary characters; peel off
1386 and print from the MSB end. */
1387
1388 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1389 {
1390 if (*p & (mask >> i))
1391 b = '1';
1392 else
1393 b = '0';
1394
1395 if (zero_pad || seen_a_one || b == '1')
1396 fputc_filtered (b, stream);
1397 if (b == '1')
1398 seen_a_one = true;
1399 }
1400 }
1401 }
1402 else
1403 {
1404 for (p = valaddr + len - 1;
1405 p >= valaddr;
1406 p--)
1407 {
1408 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1409 {
1410 if (*p & (mask >> i))
1411 b = '1';
1412 else
1413 b = '0';
1414
1415 if (zero_pad || seen_a_one || b == '1')
1416 fputc_filtered (b, stream);
1417 if (b == '1')
1418 seen_a_one = true;
1419 }
1420 }
1421 }
1422
1423 /* When not zero-padding, ensure that something is printed when the
1424 input is 0. */
1425 if (!zero_pad && !seen_a_one)
1426 fputc_filtered ('0', stream);
1427 }
1428
1429 /* A helper for print_octal_chars that emits a single octal digit,
1430 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1431
1432 static void
1433 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1434 {
1435 if (*seen_a_one || digit != 0)
1436 fprintf_filtered (stream, "%o", digit);
1437 if (digit != 0)
1438 *seen_a_one = true;
1439 }
1440
1441 /* VALADDR points to an integer of LEN bytes.
1442 Print it in octal on stream or format it in buf. */
1443
1444 void
1445 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1446 unsigned len, enum bfd_endian byte_order)
1447 {
1448 const gdb_byte *p;
1449 unsigned char octa1, octa2, octa3, carry;
1450 int cycle;
1451
1452 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1453 * the extra bits, which cycle every three bytes:
1454 *
1455 * Byte side: 0 1 2 3
1456 * | | | |
1457 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1458 *
1459 * Octal side: 0 1 carry 3 4 carry ...
1460 *
1461 * Cycle number: 0 1 2
1462 *
1463 * But of course we are printing from the high side, so we have to
1464 * figure out where in the cycle we are so that we end up with no
1465 * left over bits at the end.
1466 */
1467 #define BITS_IN_OCTAL 3
1468 #define HIGH_ZERO 0340
1469 #define LOW_ZERO 0034
1470 #define CARRY_ZERO 0003
1471 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1472 "cycle zero constants are wrong");
1473 #define HIGH_ONE 0200
1474 #define MID_ONE 0160
1475 #define LOW_ONE 0016
1476 #define CARRY_ONE 0001
1477 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1478 "cycle one constants are wrong");
1479 #define HIGH_TWO 0300
1480 #define MID_TWO 0070
1481 #define LOW_TWO 0007
1482 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1483 "cycle two constants are wrong");
1484
1485 /* For 32 we start in cycle 2, with two bits and one bit carry;
1486 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1487
1488 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1489 carry = 0;
1490
1491 fputs_filtered ("0", stream);
1492 bool seen_a_one = false;
1493 if (byte_order == BFD_ENDIAN_BIG)
1494 {
1495 for (p = valaddr;
1496 p < valaddr + len;
1497 p++)
1498 {
1499 switch (cycle)
1500 {
1501 case 0:
1502 /* No carry in, carry out two bits. */
1503
1504 octa1 = (HIGH_ZERO & *p) >> 5;
1505 octa2 = (LOW_ZERO & *p) >> 2;
1506 carry = (CARRY_ZERO & *p);
1507 emit_octal_digit (stream, &seen_a_one, octa1);
1508 emit_octal_digit (stream, &seen_a_one, octa2);
1509 break;
1510
1511 case 1:
1512 /* Carry in two bits, carry out one bit. */
1513
1514 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1515 octa2 = (MID_ONE & *p) >> 4;
1516 octa3 = (LOW_ONE & *p) >> 1;
1517 carry = (CARRY_ONE & *p);
1518 emit_octal_digit (stream, &seen_a_one, octa1);
1519 emit_octal_digit (stream, &seen_a_one, octa2);
1520 emit_octal_digit (stream, &seen_a_one, octa3);
1521 break;
1522
1523 case 2:
1524 /* Carry in one bit, no carry out. */
1525
1526 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1527 octa2 = (MID_TWO & *p) >> 3;
1528 octa3 = (LOW_TWO & *p);
1529 carry = 0;
1530 emit_octal_digit (stream, &seen_a_one, octa1);
1531 emit_octal_digit (stream, &seen_a_one, octa2);
1532 emit_octal_digit (stream, &seen_a_one, octa3);
1533 break;
1534
1535 default:
1536 error (_("Internal error in octal conversion;"));
1537 }
1538
1539 cycle++;
1540 cycle = cycle % BITS_IN_OCTAL;
1541 }
1542 }
1543 else
1544 {
1545 for (p = valaddr + len - 1;
1546 p >= valaddr;
1547 p--)
1548 {
1549 switch (cycle)
1550 {
1551 case 0:
1552 /* Carry out, no carry in */
1553
1554 octa1 = (HIGH_ZERO & *p) >> 5;
1555 octa2 = (LOW_ZERO & *p) >> 2;
1556 carry = (CARRY_ZERO & *p);
1557 emit_octal_digit (stream, &seen_a_one, octa1);
1558 emit_octal_digit (stream, &seen_a_one, octa2);
1559 break;
1560
1561 case 1:
1562 /* Carry in, carry out */
1563
1564 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1565 octa2 = (MID_ONE & *p) >> 4;
1566 octa3 = (LOW_ONE & *p) >> 1;
1567 carry = (CARRY_ONE & *p);
1568 emit_octal_digit (stream, &seen_a_one, octa1);
1569 emit_octal_digit (stream, &seen_a_one, octa2);
1570 emit_octal_digit (stream, &seen_a_one, octa3);
1571 break;
1572
1573 case 2:
1574 /* Carry in, no carry out */
1575
1576 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1577 octa2 = (MID_TWO & *p) >> 3;
1578 octa3 = (LOW_TWO & *p);
1579 carry = 0;
1580 emit_octal_digit (stream, &seen_a_one, octa1);
1581 emit_octal_digit (stream, &seen_a_one, octa2);
1582 emit_octal_digit (stream, &seen_a_one, octa3);
1583 break;
1584
1585 default:
1586 error (_("Internal error in octal conversion;"));
1587 }
1588
1589 cycle++;
1590 cycle = cycle % BITS_IN_OCTAL;
1591 }
1592 }
1593
1594 }
1595
1596 /* Possibly negate the integer represented by BYTES. It contains LEN
1597 bytes in the specified byte order. If the integer is negative,
1598 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1599 nothing and return false. */
1600
1601 static bool
1602 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1603 enum bfd_endian byte_order,
1604 gdb::byte_vector *out_vec)
1605 {
1606 gdb_byte sign_byte;
1607 if (byte_order == BFD_ENDIAN_BIG)
1608 sign_byte = bytes[0];
1609 else
1610 sign_byte = bytes[len - 1];
1611 if ((sign_byte & 0x80) == 0)
1612 return false;
1613
1614 out_vec->resize (len);
1615
1616 /* Compute -x == 1 + ~x. */
1617 if (byte_order == BFD_ENDIAN_LITTLE)
1618 {
1619 unsigned carry = 1;
1620 for (unsigned i = 0; i < len; ++i)
1621 {
1622 unsigned tem = (0xff & ~bytes[i]) + carry;
1623 (*out_vec)[i] = tem & 0xff;
1624 carry = tem / 256;
1625 }
1626 }
1627 else
1628 {
1629 unsigned carry = 1;
1630 for (unsigned i = len; i > 0; --i)
1631 {
1632 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1633 (*out_vec)[i - 1] = tem & 0xff;
1634 carry = tem / 256;
1635 }
1636 }
1637
1638 return true;
1639 }
1640
1641 /* VALADDR points to an integer of LEN bytes.
1642 Print it in decimal on stream or format it in buf. */
1643
1644 void
1645 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1646 unsigned len, bool is_signed,
1647 enum bfd_endian byte_order)
1648 {
1649 #define TEN 10
1650 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1651 #define CARRY_LEFT( x ) ((x) % TEN)
1652 #define SHIFT( x ) ((x) << 4)
1653 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1654 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1655
1656 const gdb_byte *p;
1657 int carry;
1658 int decimal_len;
1659 int i, j, decimal_digits;
1660 int dummy;
1661 int flip;
1662
1663 gdb::byte_vector negated_bytes;
1664 if (is_signed
1665 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1666 {
1667 fputs_filtered ("-", stream);
1668 valaddr = negated_bytes.data ();
1669 }
1670
1671 /* Base-ten number is less than twice as many digits
1672 as the base 16 number, which is 2 digits per byte. */
1673
1674 decimal_len = len * 2 * 2;
1675 std::vector<unsigned char> digits (decimal_len, 0);
1676
1677 /* Ok, we have an unknown number of bytes of data to be printed in
1678 * decimal.
1679 *
1680 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1681 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1682 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1683 *
1684 * The trick is that "digits" holds a base-10 number, but sometimes
1685 * the individual digits are > 10.
1686 *
1687 * Outer loop is per nibble (hex digit) of input, from MSD end to
1688 * LSD end.
1689 */
1690 decimal_digits = 0; /* Number of decimal digits so far */
1691 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1692 flip = 0;
1693 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1694 {
1695 /*
1696 * Multiply current base-ten number by 16 in place.
1697 * Each digit was between 0 and 9, now is between
1698 * 0 and 144.
1699 */
1700 for (j = 0; j < decimal_digits; j++)
1701 {
1702 digits[j] = SHIFT (digits[j]);
1703 }
1704
1705 /* Take the next nibble off the input and add it to what
1706 * we've got in the LSB position. Bottom 'digit' is now
1707 * between 0 and 159.
1708 *
1709 * "flip" is used to run this loop twice for each byte.
1710 */
1711 if (flip == 0)
1712 {
1713 /* Take top nibble. */
1714
1715 digits[0] += HIGH_NIBBLE (*p);
1716 flip = 1;
1717 }
1718 else
1719 {
1720 /* Take low nibble and bump our pointer "p". */
1721
1722 digits[0] += LOW_NIBBLE (*p);
1723 if (byte_order == BFD_ENDIAN_BIG)
1724 p++;
1725 else
1726 p--;
1727 flip = 0;
1728 }
1729
1730 /* Re-decimalize. We have to do this often enough
1731 * that we don't overflow, but once per nibble is
1732 * overkill. Easier this way, though. Note that the
1733 * carry is often larger than 10 (e.g. max initial
1734 * carry out of lowest nibble is 15, could bubble all
1735 * the way up greater than 10). So we have to do
1736 * the carrying beyond the last current digit.
1737 */
1738 carry = 0;
1739 for (j = 0; j < decimal_len - 1; j++)
1740 {
1741 digits[j] += carry;
1742
1743 /* "/" won't handle an unsigned char with
1744 * a value that if signed would be negative.
1745 * So extend to longword int via "dummy".
1746 */
1747 dummy = digits[j];
1748 carry = CARRY_OUT (dummy);
1749 digits[j] = CARRY_LEFT (dummy);
1750
1751 if (j >= decimal_digits && carry == 0)
1752 {
1753 /*
1754 * All higher digits are 0 and we
1755 * no longer have a carry.
1756 *
1757 * Note: "j" is 0-based, "decimal_digits" is
1758 * 1-based.
1759 */
1760 decimal_digits = j + 1;
1761 break;
1762 }
1763 }
1764 }
1765
1766 /* Ok, now "digits" is the decimal representation, with
1767 the "decimal_digits" actual digits. Print! */
1768
1769 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1770 ;
1771
1772 for (; i >= 0; i--)
1773 {
1774 fprintf_filtered (stream, "%1d", digits[i]);
1775 }
1776 }
1777
1778 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1779
1780 void
1781 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1782 unsigned len, enum bfd_endian byte_order,
1783 bool zero_pad)
1784 {
1785 const gdb_byte *p;
1786
1787 fputs_filtered ("0x", stream);
1788 if (byte_order == BFD_ENDIAN_BIG)
1789 {
1790 p = valaddr;
1791
1792 if (!zero_pad)
1793 {
1794 /* Strip leading 0 bytes, but be sure to leave at least a
1795 single byte at the end. */
1796 for (; p < valaddr + len - 1 && !*p; ++p)
1797 ;
1798 }
1799
1800 const gdb_byte *first = p;
1801 for (;
1802 p < valaddr + len;
1803 p++)
1804 {
1805 /* When not zero-padding, use a different format for the
1806 very first byte printed. */
1807 if (!zero_pad && p == first)
1808 fprintf_filtered (stream, "%x", *p);
1809 else
1810 fprintf_filtered (stream, "%02x", *p);
1811 }
1812 }
1813 else
1814 {
1815 p = valaddr + len - 1;
1816
1817 if (!zero_pad)
1818 {
1819 /* Strip leading 0 bytes, but be sure to leave at least a
1820 single byte at the end. */
1821 for (; p >= valaddr + 1 && !*p; --p)
1822 ;
1823 }
1824
1825 const gdb_byte *first = p;
1826 for (;
1827 p >= valaddr;
1828 p--)
1829 {
1830 /* When not zero-padding, use a different format for the
1831 very first byte printed. */
1832 if (!zero_pad && p == first)
1833 fprintf_filtered (stream, "%x", *p);
1834 else
1835 fprintf_filtered (stream, "%02x", *p);
1836 }
1837 }
1838 }
1839
1840 /* VALADDR points to a char integer of LEN bytes.
1841 Print it out in appropriate language form on stream.
1842 Omit any leading zero chars. */
1843
1844 void
1845 print_char_chars (struct ui_file *stream, struct type *type,
1846 const gdb_byte *valaddr,
1847 unsigned len, enum bfd_endian byte_order)
1848 {
1849 const gdb_byte *p;
1850
1851 if (byte_order == BFD_ENDIAN_BIG)
1852 {
1853 p = valaddr;
1854 while (p < valaddr + len - 1 && *p == 0)
1855 ++p;
1856
1857 while (p < valaddr + len)
1858 {
1859 LA_EMIT_CHAR (*p, type, stream, '\'');
1860 ++p;
1861 }
1862 }
1863 else
1864 {
1865 p = valaddr + len - 1;
1866 while (p > valaddr && *p == 0)
1867 --p;
1868
1869 while (p >= valaddr)
1870 {
1871 LA_EMIT_CHAR (*p, type, stream, '\'');
1872 --p;
1873 }
1874 }
1875 }
1876
1877 /* Print function pointer with inferior address ADDRESS onto stdio
1878 stream STREAM. */
1879
1880 void
1881 print_function_pointer_address (const struct value_print_options *options,
1882 struct gdbarch *gdbarch,
1883 CORE_ADDR address,
1884 struct ui_file *stream)
1885 {
1886 CORE_ADDR func_addr
1887 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1888 current_top_target ());
1889
1890 /* If the function pointer is represented by a description, print
1891 the address of the description. */
1892 if (options->addressprint && func_addr != address)
1893 {
1894 fputs_filtered ("@", stream);
1895 fputs_filtered (paddress (gdbarch, address), stream);
1896 fputs_filtered (": ", stream);
1897 }
1898 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1899 }
1900
1901
1902 /* Print on STREAM using the given OPTIONS the index for the element
1903 at INDEX of an array whose index type is INDEX_TYPE. */
1904
1905 void
1906 maybe_print_array_index (struct type *index_type, LONGEST index,
1907 struct ui_file *stream,
1908 const struct value_print_options *options)
1909 {
1910 struct value *index_value;
1911
1912 if (!options->print_array_indexes)
1913 return;
1914
1915 index_value = value_from_longest (index_type, index);
1916
1917 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1918 }
1919
1920 /* Called by various <lang>_val_print routines to print elements of an
1921 array in the form "<elem1>, <elem2>, <elem3>, ...".
1922
1923 (FIXME?) Assumes array element separator is a comma, which is correct
1924 for all languages currently handled.
1925 (FIXME?) Some languages have a notation for repeated array elements,
1926 perhaps we should try to use that notation when appropriate. */
1927
1928 void
1929 val_print_array_elements (struct type *type,
1930 LONGEST embedded_offset,
1931 CORE_ADDR address, struct ui_file *stream,
1932 int recurse,
1933 struct value *val,
1934 const struct value_print_options *options,
1935 unsigned int i)
1936 {
1937 unsigned int things_printed = 0;
1938 unsigned len;
1939 struct type *elttype, *index_type, *base_index_type;
1940 unsigned eltlen;
1941 /* Position of the array element we are examining to see
1942 whether it is repeated. */
1943 unsigned int rep1;
1944 /* Number of repetitions we have detected so far. */
1945 unsigned int reps;
1946 LONGEST low_bound, high_bound;
1947 LONGEST low_pos, high_pos;
1948
1949 elttype = TYPE_TARGET_TYPE (type);
1950 eltlen = type_length_units (check_typedef (elttype));
1951 index_type = TYPE_INDEX_TYPE (type);
1952
1953 if (get_array_bounds (type, &low_bound, &high_bound))
1954 {
1955 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1956 base_index_type = TYPE_TARGET_TYPE (index_type);
1957 else
1958 base_index_type = index_type;
1959
1960 /* Non-contiguous enumerations types can by used as index types
1961 in some languages (e.g. Ada). In this case, the array length
1962 shall be computed from the positions of the first and last
1963 literal in the enumeration type, and not from the values
1964 of these literals. */
1965 if (!discrete_position (base_index_type, low_bound, &low_pos)
1966 || !discrete_position (base_index_type, high_bound, &high_pos))
1967 {
1968 warning (_("unable to get positions in array, use bounds instead"));
1969 low_pos = low_bound;
1970 high_pos = high_bound;
1971 }
1972
1973 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1974 But we have to be a little extra careful, because some languages
1975 such as Ada allow LOW_POS to be greater than HIGH_POS for
1976 empty arrays. In that situation, the array length is just zero,
1977 not negative! */
1978 if (low_pos > high_pos)
1979 len = 0;
1980 else
1981 len = high_pos - low_pos + 1;
1982 }
1983 else
1984 {
1985 warning (_("unable to get bounds of array, assuming null array"));
1986 low_bound = 0;
1987 len = 0;
1988 }
1989
1990 annotate_array_section_begin (i, elttype);
1991
1992 for (; i < len && things_printed < options->print_max; i++)
1993 {
1994 if (i != 0)
1995 {
1996 if (options->prettyformat_arrays)
1997 {
1998 fprintf_filtered (stream, ",\n");
1999 print_spaces_filtered (2 + 2 * recurse, stream);
2000 }
2001 else
2002 {
2003 fprintf_filtered (stream, ", ");
2004 }
2005 }
2006 wrap_here (n_spaces (2 + 2 * recurse));
2007 maybe_print_array_index (index_type, i + low_bound,
2008 stream, options);
2009
2010 rep1 = i + 1;
2011 reps = 1;
2012 /* Only check for reps if repeat_count_threshold is not set to
2013 UINT_MAX (unlimited). */
2014 if (options->repeat_count_threshold < UINT_MAX)
2015 {
2016 while (rep1 < len
2017 && value_contents_eq (val,
2018 embedded_offset + i * eltlen,
2019 val,
2020 (embedded_offset
2021 + rep1 * eltlen),
2022 eltlen))
2023 {
2024 ++reps;
2025 ++rep1;
2026 }
2027 }
2028
2029 if (reps > options->repeat_count_threshold)
2030 {
2031 val_print (elttype, embedded_offset + i * eltlen,
2032 address, stream, recurse + 1, val, options,
2033 current_language);
2034 annotate_elt_rep (reps);
2035 fprintf_filtered (stream, " <repeats %u times>", reps);
2036 annotate_elt_rep_end ();
2037
2038 i = rep1 - 1;
2039 things_printed += options->repeat_count_threshold;
2040 }
2041 else
2042 {
2043 val_print (elttype, embedded_offset + i * eltlen,
2044 address,
2045 stream, recurse + 1, val, options, current_language);
2046 annotate_elt ();
2047 things_printed++;
2048 }
2049 }
2050 annotate_array_section_end ();
2051 if (i < len)
2052 {
2053 fprintf_filtered (stream, "...");
2054 }
2055 }
2056
2057 /* Read LEN bytes of target memory at address MEMADDR, placing the
2058 results in GDB's memory at MYADDR. Returns a count of the bytes
2059 actually read, and optionally a target_xfer_status value in the
2060 location pointed to by ERRPTR if ERRPTR is non-null. */
2061
2062 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2063 function be eliminated. */
2064
2065 static int
2066 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2067 int len, int *errptr)
2068 {
2069 int nread; /* Number of bytes actually read. */
2070 int errcode; /* Error from last read. */
2071
2072 /* First try a complete read. */
2073 errcode = target_read_memory (memaddr, myaddr, len);
2074 if (errcode == 0)
2075 {
2076 /* Got it all. */
2077 nread = len;
2078 }
2079 else
2080 {
2081 /* Loop, reading one byte at a time until we get as much as we can. */
2082 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2083 {
2084 errcode = target_read_memory (memaddr++, myaddr++, 1);
2085 }
2086 /* If an error, the last read was unsuccessful, so adjust count. */
2087 if (errcode != 0)
2088 {
2089 nread--;
2090 }
2091 }
2092 if (errptr != NULL)
2093 {
2094 *errptr = errcode;
2095 }
2096 return (nread);
2097 }
2098
2099 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2100 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2101 allocated buffer containing the string, which the caller is responsible to
2102 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2103 success, or a target_xfer_status on failure.
2104
2105 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2106 (including eventual NULs in the middle or end of the string).
2107
2108 If LEN is -1, stops at the first null character (not necessarily
2109 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2110 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2111 the string.
2112
2113 Unless an exception is thrown, BUFFER will always be allocated, even on
2114 failure. In this case, some characters might have been read before the
2115 failure happened. Check BYTES_READ to recognize this situation.
2116
2117 Note: There was a FIXME asking to make this code use target_read_string,
2118 but this function is more general (can read past null characters, up to
2119 given LEN). Besides, it is used much more often than target_read_string
2120 so it is more tested. Perhaps callers of target_read_string should use
2121 this function instead? */
2122
2123 int
2124 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2125 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2126 {
2127 int errcode; /* Errno returned from bad reads. */
2128 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2129 gdb_byte *bufptr; /* Pointer to next available byte in
2130 buffer. */
2131 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2132
2133 /* Loop until we either have all the characters, or we encounter
2134 some error, such as bumping into the end of the address space. */
2135
2136 *buffer = NULL;
2137
2138 old_chain = make_cleanup (free_current_contents, buffer);
2139
2140 if (len > 0)
2141 {
2142 /* We want fetchlimit chars, so we might as well read them all in
2143 one operation. */
2144 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2145
2146 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2147 bufptr = *buffer;
2148
2149 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2150 / width;
2151 addr += nfetch * width;
2152 bufptr += nfetch * width;
2153 }
2154 else if (len == -1)
2155 {
2156 unsigned long bufsize = 0;
2157 unsigned int chunksize; /* Size of each fetch, in chars. */
2158 int found_nul; /* Non-zero if we found the nul char. */
2159 gdb_byte *limit; /* First location past end of fetch buffer. */
2160
2161 found_nul = 0;
2162 /* We are looking for a NUL terminator to end the fetching, so we
2163 might as well read in blocks that are large enough to be efficient,
2164 but not so large as to be slow if fetchlimit happens to be large.
2165 So we choose the minimum of 8 and fetchlimit. We used to use 200
2166 instead of 8 but 200 is way too big for remote debugging over a
2167 serial line. */
2168 chunksize = std::min (8u, fetchlimit);
2169
2170 do
2171 {
2172 QUIT;
2173 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2174
2175 if (*buffer == NULL)
2176 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2177 else
2178 *buffer = (gdb_byte *) xrealloc (*buffer,
2179 (nfetch + bufsize) * width);
2180
2181 bufptr = *buffer + bufsize * width;
2182 bufsize += nfetch;
2183
2184 /* Read as much as we can. */
2185 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2186 / width;
2187
2188 /* Scan this chunk for the null character that terminates the string
2189 to print. If found, we don't need to fetch any more. Note
2190 that bufptr is explicitly left pointing at the next character
2191 after the null character, or at the next character after the end
2192 of the buffer. */
2193
2194 limit = bufptr + nfetch * width;
2195 while (bufptr < limit)
2196 {
2197 unsigned long c;
2198
2199 c = extract_unsigned_integer (bufptr, width, byte_order);
2200 addr += width;
2201 bufptr += width;
2202 if (c == 0)
2203 {
2204 /* We don't care about any error which happened after
2205 the NUL terminator. */
2206 errcode = 0;
2207 found_nul = 1;
2208 break;
2209 }
2210 }
2211 }
2212 while (errcode == 0 /* no error */
2213 && bufptr - *buffer < fetchlimit * width /* no overrun */
2214 && !found_nul); /* haven't found NUL yet */
2215 }
2216 else
2217 { /* Length of string is really 0! */
2218 /* We always allocate *buffer. */
2219 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2220 errcode = 0;
2221 }
2222
2223 /* bufptr and addr now point immediately beyond the last byte which we
2224 consider part of the string (including a '\0' which ends the string). */
2225 *bytes_read = bufptr - *buffer;
2226
2227 QUIT;
2228
2229 discard_cleanups (old_chain);
2230
2231 return errcode;
2232 }
2233
2234 /* Return true if print_wchar can display W without resorting to a
2235 numeric escape, false otherwise. */
2236
2237 static int
2238 wchar_printable (gdb_wchar_t w)
2239 {
2240 return (gdb_iswprint (w)
2241 || w == LCST ('\a') || w == LCST ('\b')
2242 || w == LCST ('\f') || w == LCST ('\n')
2243 || w == LCST ('\r') || w == LCST ('\t')
2244 || w == LCST ('\v'));
2245 }
2246
2247 /* A helper function that converts the contents of STRING to wide
2248 characters and then appends them to OUTPUT. */
2249
2250 static void
2251 append_string_as_wide (const char *string,
2252 struct obstack *output)
2253 {
2254 for (; *string; ++string)
2255 {
2256 gdb_wchar_t w = gdb_btowc (*string);
2257 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2258 }
2259 }
2260
2261 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2262 original (target) bytes representing the character, ORIG_LEN is the
2263 number of valid bytes. WIDTH is the number of bytes in a base
2264 characters of the type. OUTPUT is an obstack to which wide
2265 characters are emitted. QUOTER is a (narrow) character indicating
2266 the style of quotes surrounding the character to be printed.
2267 NEED_ESCAPE is an in/out flag which is used to track numeric
2268 escapes across calls. */
2269
2270 static void
2271 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2272 int orig_len, int width,
2273 enum bfd_endian byte_order,
2274 struct obstack *output,
2275 int quoter, int *need_escapep)
2276 {
2277 int need_escape = *need_escapep;
2278
2279 *need_escapep = 0;
2280
2281 /* iswprint implementation on Windows returns 1 for tab character.
2282 In order to avoid different printout on this host, we explicitly
2283 use wchar_printable function. */
2284 switch (w)
2285 {
2286 case LCST ('\a'):
2287 obstack_grow_wstr (output, LCST ("\\a"));
2288 break;
2289 case LCST ('\b'):
2290 obstack_grow_wstr (output, LCST ("\\b"));
2291 break;
2292 case LCST ('\f'):
2293 obstack_grow_wstr (output, LCST ("\\f"));
2294 break;
2295 case LCST ('\n'):
2296 obstack_grow_wstr (output, LCST ("\\n"));
2297 break;
2298 case LCST ('\r'):
2299 obstack_grow_wstr (output, LCST ("\\r"));
2300 break;
2301 case LCST ('\t'):
2302 obstack_grow_wstr (output, LCST ("\\t"));
2303 break;
2304 case LCST ('\v'):
2305 obstack_grow_wstr (output, LCST ("\\v"));
2306 break;
2307 default:
2308 {
2309 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2310 && w != LCST ('8')
2311 && w != LCST ('9'))))
2312 {
2313 gdb_wchar_t wchar = w;
2314
2315 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2316 obstack_grow_wstr (output, LCST ("\\"));
2317 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2318 }
2319 else
2320 {
2321 int i;
2322
2323 for (i = 0; i + width <= orig_len; i += width)
2324 {
2325 char octal[30];
2326 ULONGEST value;
2327
2328 value = extract_unsigned_integer (&orig[i], width,
2329 byte_order);
2330 /* If the value fits in 3 octal digits, print it that
2331 way. Otherwise, print it as a hex escape. */
2332 if (value <= 0777)
2333 xsnprintf (octal, sizeof (octal), "\\%.3o",
2334 (int) (value & 0777));
2335 else
2336 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2337 append_string_as_wide (octal, output);
2338 }
2339 /* If we somehow have extra bytes, print them now. */
2340 while (i < orig_len)
2341 {
2342 char octal[5];
2343
2344 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2345 append_string_as_wide (octal, output);
2346 ++i;
2347 }
2348
2349 *need_escapep = 1;
2350 }
2351 break;
2352 }
2353 }
2354 }
2355
2356 /* Print the character C on STREAM as part of the contents of a
2357 literal string whose delimiter is QUOTER. ENCODING names the
2358 encoding of C. */
2359
2360 void
2361 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2362 int quoter, const char *encoding)
2363 {
2364 enum bfd_endian byte_order
2365 = gdbarch_byte_order (get_type_arch (type));
2366 gdb_byte *buf;
2367 int need_escape = 0;
2368
2369 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2370 pack_long (buf, type, c);
2371
2372 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2373
2374 /* This holds the printable form of the wchar_t data. */
2375 auto_obstack wchar_buf;
2376
2377 while (1)
2378 {
2379 int num_chars;
2380 gdb_wchar_t *chars;
2381 const gdb_byte *buf;
2382 size_t buflen;
2383 int print_escape = 1;
2384 enum wchar_iterate_result result;
2385
2386 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2387 if (num_chars < 0)
2388 break;
2389 if (num_chars > 0)
2390 {
2391 /* If all characters are printable, print them. Otherwise,
2392 we're going to have to print an escape sequence. We
2393 check all characters because we want to print the target
2394 bytes in the escape sequence, and we don't know character
2395 boundaries there. */
2396 int i;
2397
2398 print_escape = 0;
2399 for (i = 0; i < num_chars; ++i)
2400 if (!wchar_printable (chars[i]))
2401 {
2402 print_escape = 1;
2403 break;
2404 }
2405
2406 if (!print_escape)
2407 {
2408 for (i = 0; i < num_chars; ++i)
2409 print_wchar (chars[i], buf, buflen,
2410 TYPE_LENGTH (type), byte_order,
2411 &wchar_buf, quoter, &need_escape);
2412 }
2413 }
2414
2415 /* This handles the NUM_CHARS == 0 case as well. */
2416 if (print_escape)
2417 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2418 byte_order, &wchar_buf, quoter, &need_escape);
2419 }
2420
2421 /* The output in the host encoding. */
2422 auto_obstack output;
2423
2424 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2425 (gdb_byte *) obstack_base (&wchar_buf),
2426 obstack_object_size (&wchar_buf),
2427 sizeof (gdb_wchar_t), &output, translit_char);
2428 obstack_1grow (&output, '\0');
2429
2430 fputs_filtered ((const char *) obstack_base (&output), stream);
2431 }
2432
2433 /* Return the repeat count of the next character/byte in ITER,
2434 storing the result in VEC. */
2435
2436 static int
2437 count_next_character (wchar_iterator *iter,
2438 std::vector<converted_character> *vec)
2439 {
2440 struct converted_character *current;
2441
2442 if (vec->empty ())
2443 {
2444 struct converted_character tmp;
2445 gdb_wchar_t *chars;
2446
2447 tmp.num_chars
2448 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2449 if (tmp.num_chars > 0)
2450 {
2451 gdb_assert (tmp.num_chars < MAX_WCHARS);
2452 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2453 }
2454 vec->push_back (tmp);
2455 }
2456
2457 current = &vec->back ();
2458
2459 /* Count repeated characters or bytes. */
2460 current->repeat_count = 1;
2461 if (current->num_chars == -1)
2462 {
2463 /* EOF */
2464 return -1;
2465 }
2466 else
2467 {
2468 gdb_wchar_t *chars;
2469 struct converted_character d;
2470 int repeat;
2471
2472 d.repeat_count = 0;
2473
2474 while (1)
2475 {
2476 /* Get the next character. */
2477 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2478
2479 /* If a character was successfully converted, save the character
2480 into the converted character. */
2481 if (d.num_chars > 0)
2482 {
2483 gdb_assert (d.num_chars < MAX_WCHARS);
2484 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2485 }
2486
2487 /* Determine if the current character is the same as this
2488 new character. */
2489 if (d.num_chars == current->num_chars && d.result == current->result)
2490 {
2491 /* There are two cases to consider:
2492
2493 1) Equality of converted character (num_chars > 0)
2494 2) Equality of non-converted character (num_chars == 0) */
2495 if ((current->num_chars > 0
2496 && memcmp (current->chars, d.chars,
2497 WCHAR_BUFLEN (current->num_chars)) == 0)
2498 || (current->num_chars == 0
2499 && current->buflen == d.buflen
2500 && memcmp (current->buf, d.buf, current->buflen) == 0))
2501 ++current->repeat_count;
2502 else
2503 break;
2504 }
2505 else
2506 break;
2507 }
2508
2509 /* Push this next converted character onto the result vector. */
2510 repeat = current->repeat_count;
2511 vec->push_back (d);
2512 return repeat;
2513 }
2514 }
2515
2516 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2517 character to use with string output. WIDTH is the size of the output
2518 character type. BYTE_ORDER is the the target byte order. OPTIONS
2519 is the user's print options. */
2520
2521 static void
2522 print_converted_chars_to_obstack (struct obstack *obstack,
2523 const std::vector<converted_character> &chars,
2524 int quote_char, int width,
2525 enum bfd_endian byte_order,
2526 const struct value_print_options *options)
2527 {
2528 unsigned int idx;
2529 const converted_character *elem;
2530 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2531 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2532 int need_escape = 0;
2533
2534 /* Set the start state. */
2535 idx = 0;
2536 last = state = START;
2537 elem = NULL;
2538
2539 while (1)
2540 {
2541 switch (state)
2542 {
2543 case START:
2544 /* Nothing to do. */
2545 break;
2546
2547 case SINGLE:
2548 {
2549 int j;
2550
2551 /* We are outputting a single character
2552 (< options->repeat_count_threshold). */
2553
2554 if (last != SINGLE)
2555 {
2556 /* We were outputting some other type of content, so we
2557 must output and a comma and a quote. */
2558 if (last != START)
2559 obstack_grow_wstr (obstack, LCST (", "));
2560 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2561 }
2562 /* Output the character. */
2563 for (j = 0; j < elem->repeat_count; ++j)
2564 {
2565 if (elem->result == wchar_iterate_ok)
2566 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2567 byte_order, obstack, quote_char, &need_escape);
2568 else
2569 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2570 byte_order, obstack, quote_char, &need_escape);
2571 }
2572 }
2573 break;
2574
2575 case REPEAT:
2576 {
2577 int j;
2578 char *s;
2579
2580 /* We are outputting a character with a repeat count
2581 greater than options->repeat_count_threshold. */
2582
2583 if (last == SINGLE)
2584 {
2585 /* We were outputting a single string. Terminate the
2586 string. */
2587 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2588 }
2589 if (last != START)
2590 obstack_grow_wstr (obstack, LCST (", "));
2591
2592 /* Output the character and repeat string. */
2593 obstack_grow_wstr (obstack, LCST ("'"));
2594 if (elem->result == wchar_iterate_ok)
2595 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2596 byte_order, obstack, quote_char, &need_escape);
2597 else
2598 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2599 byte_order, obstack, quote_char, &need_escape);
2600 obstack_grow_wstr (obstack, LCST ("'"));
2601 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2602 for (j = 0; s[j]; ++j)
2603 {
2604 gdb_wchar_t w = gdb_btowc (s[j]);
2605 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2606 }
2607 xfree (s);
2608 }
2609 break;
2610
2611 case INCOMPLETE:
2612 /* We are outputting an incomplete sequence. */
2613 if (last == SINGLE)
2614 {
2615 /* If we were outputting a string of SINGLE characters,
2616 terminate the quote. */
2617 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2618 }
2619 if (last != START)
2620 obstack_grow_wstr (obstack, LCST (", "));
2621
2622 /* Output the incomplete sequence string. */
2623 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2624 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2625 obstack, 0, &need_escape);
2626 obstack_grow_wstr (obstack, LCST (">"));
2627
2628 /* We do not attempt to outupt anything after this. */
2629 state = FINISH;
2630 break;
2631
2632 case FINISH:
2633 /* All done. If we were outputting a string of SINGLE
2634 characters, the string must be terminated. Otherwise,
2635 REPEAT and INCOMPLETE are always left properly terminated. */
2636 if (last == SINGLE)
2637 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2638
2639 return;
2640 }
2641
2642 /* Get the next element and state. */
2643 last = state;
2644 if (state != FINISH)
2645 {
2646 elem = &chars[idx++];
2647 switch (elem->result)
2648 {
2649 case wchar_iterate_ok:
2650 case wchar_iterate_invalid:
2651 if (elem->repeat_count > options->repeat_count_threshold)
2652 state = REPEAT;
2653 else
2654 state = SINGLE;
2655 break;
2656
2657 case wchar_iterate_incomplete:
2658 state = INCOMPLETE;
2659 break;
2660
2661 case wchar_iterate_eof:
2662 state = FINISH;
2663 break;
2664 }
2665 }
2666 }
2667 }
2668
2669 /* Print the character string STRING, printing at most LENGTH
2670 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2671 the type of each character. OPTIONS holds the printing options;
2672 printing stops early if the number hits print_max; repeat counts
2673 are printed as appropriate. Print ellipses at the end if we had to
2674 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2675 QUOTE_CHAR is the character to print at each end of the string. If
2676 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2677 omitted. */
2678
2679 void
2680 generic_printstr (struct ui_file *stream, struct type *type,
2681 const gdb_byte *string, unsigned int length,
2682 const char *encoding, int force_ellipses,
2683 int quote_char, int c_style_terminator,
2684 const struct value_print_options *options)
2685 {
2686 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2687 unsigned int i;
2688 int width = TYPE_LENGTH (type);
2689 int finished = 0;
2690 struct converted_character *last;
2691
2692 if (length == -1)
2693 {
2694 unsigned long current_char = 1;
2695
2696 for (i = 0; current_char; ++i)
2697 {
2698 QUIT;
2699 current_char = extract_unsigned_integer (string + i * width,
2700 width, byte_order);
2701 }
2702 length = i;
2703 }
2704
2705 /* If the string was not truncated due to `set print elements', and
2706 the last byte of it is a null, we don't print that, in
2707 traditional C style. */
2708 if (c_style_terminator
2709 && !force_ellipses
2710 && length > 0
2711 && (extract_unsigned_integer (string + (length - 1) * width,
2712 width, byte_order) == 0))
2713 length--;
2714
2715 if (length == 0)
2716 {
2717 fputs_filtered ("\"\"", stream);
2718 return;
2719 }
2720
2721 /* Arrange to iterate over the characters, in wchar_t form. */
2722 wchar_iterator iter (string, length * width, encoding, width);
2723 std::vector<converted_character> converted_chars;
2724
2725 /* Convert characters until the string is over or the maximum
2726 number of printed characters has been reached. */
2727 i = 0;
2728 while (i < options->print_max)
2729 {
2730 int r;
2731
2732 QUIT;
2733
2734 /* Grab the next character and repeat count. */
2735 r = count_next_character (&iter, &converted_chars);
2736
2737 /* If less than zero, the end of the input string was reached. */
2738 if (r < 0)
2739 break;
2740
2741 /* Otherwise, add the count to the total print count and get
2742 the next character. */
2743 i += r;
2744 }
2745
2746 /* Get the last element and determine if the entire string was
2747 processed. */
2748 last = &converted_chars.back ();
2749 finished = (last->result == wchar_iterate_eof);
2750
2751 /* Ensure that CONVERTED_CHARS is terminated. */
2752 last->result = wchar_iterate_eof;
2753
2754 /* WCHAR_BUF is the obstack we use to represent the string in
2755 wchar_t form. */
2756 auto_obstack wchar_buf;
2757
2758 /* Print the output string to the obstack. */
2759 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2760 width, byte_order, options);
2761
2762 if (force_ellipses || !finished)
2763 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2764
2765 /* OUTPUT is where we collect `char's for printing. */
2766 auto_obstack output;
2767
2768 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2769 (gdb_byte *) obstack_base (&wchar_buf),
2770 obstack_object_size (&wchar_buf),
2771 sizeof (gdb_wchar_t), &output, translit_char);
2772 obstack_1grow (&output, '\0');
2773
2774 fputs_filtered ((const char *) obstack_base (&output), stream);
2775 }
2776
2777 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2778 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2779 stops at the first null byte, otherwise printing proceeds (including null
2780 bytes) until either print_max or LEN characters have been printed,
2781 whichever is smaller. ENCODING is the name of the string's
2782 encoding. It can be NULL, in which case the target encoding is
2783 assumed. */
2784
2785 int
2786 val_print_string (struct type *elttype, const char *encoding,
2787 CORE_ADDR addr, int len,
2788 struct ui_file *stream,
2789 const struct value_print_options *options)
2790 {
2791 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2792 int err; /* Non-zero if we got a bad read. */
2793 int found_nul; /* Non-zero if we found the nul char. */
2794 unsigned int fetchlimit; /* Maximum number of chars to print. */
2795 int bytes_read;
2796 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2797 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2798 struct gdbarch *gdbarch = get_type_arch (elttype);
2799 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2800 int width = TYPE_LENGTH (elttype);
2801
2802 /* First we need to figure out the limit on the number of characters we are
2803 going to attempt to fetch and print. This is actually pretty simple. If
2804 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2805 LEN is -1, then the limit is print_max. This is true regardless of
2806 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2807 because finding the null byte (or available memory) is what actually
2808 limits the fetch. */
2809
2810 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2811 options->print_max));
2812
2813 err = read_string (addr, len, width, fetchlimit, byte_order,
2814 &buffer, &bytes_read);
2815 old_chain = make_cleanup (xfree, buffer);
2816
2817 addr += bytes_read;
2818
2819 /* We now have either successfully filled the buffer to fetchlimit,
2820 or terminated early due to an error or finding a null char when
2821 LEN is -1. */
2822
2823 /* Determine found_nul by looking at the last character read. */
2824 found_nul = 0;
2825 if (bytes_read >= width)
2826 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2827 byte_order) == 0;
2828 if (len == -1 && !found_nul)
2829 {
2830 gdb_byte *peekbuf;
2831
2832 /* We didn't find a NUL terminator we were looking for. Attempt
2833 to peek at the next character. If not successful, or it is not
2834 a null byte, then force ellipsis to be printed. */
2835
2836 peekbuf = (gdb_byte *) alloca (width);
2837
2838 if (target_read_memory (addr, peekbuf, width) == 0
2839 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2840 force_ellipsis = 1;
2841 }
2842 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2843 {
2844 /* Getting an error when we have a requested length, or fetching less
2845 than the number of characters actually requested, always make us
2846 print ellipsis. */
2847 force_ellipsis = 1;
2848 }
2849
2850 /* If we get an error before fetching anything, don't print a string.
2851 But if we fetch something and then get an error, print the string
2852 and then the error message. */
2853 if (err == 0 || bytes_read > 0)
2854 {
2855 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2856 encoding, force_ellipsis, options);
2857 }
2858
2859 if (err != 0)
2860 {
2861 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2862
2863 fprintf_filtered (stream, "<error: ");
2864 fputs_filtered (str.c_str (), stream);
2865 fprintf_filtered (stream, ">");
2866 }
2867
2868 gdb_flush (stream);
2869 do_cleanups (old_chain);
2870
2871 return (bytes_read / width);
2872 }
2873 \f
2874
2875 /* The 'set input-radix' command writes to this auxiliary variable.
2876 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2877 it is left unchanged. */
2878
2879 static unsigned input_radix_1 = 10;
2880
2881 /* Validate an input or output radix setting, and make sure the user
2882 knows what they really did here. Radix setting is confusing, e.g.
2883 setting the input radix to "10" never changes it! */
2884
2885 static void
2886 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2887 {
2888 set_input_radix_1 (from_tty, input_radix_1);
2889 }
2890
2891 static void
2892 set_input_radix_1 (int from_tty, unsigned radix)
2893 {
2894 /* We don't currently disallow any input radix except 0 or 1, which don't
2895 make any mathematical sense. In theory, we can deal with any input
2896 radix greater than 1, even if we don't have unique digits for every
2897 value from 0 to radix-1, but in practice we lose on large radix values.
2898 We should either fix the lossage or restrict the radix range more.
2899 (FIXME). */
2900
2901 if (radix < 2)
2902 {
2903 input_radix_1 = input_radix;
2904 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2905 radix);
2906 }
2907 input_radix_1 = input_radix = radix;
2908 if (from_tty)
2909 {
2910 printf_filtered (_("Input radix now set to "
2911 "decimal %u, hex %x, octal %o.\n"),
2912 radix, radix, radix);
2913 }
2914 }
2915
2916 /* The 'set output-radix' command writes to this auxiliary variable.
2917 If the requested radix is valid, OUTPUT_RADIX is updated,
2918 otherwise, it is left unchanged. */
2919
2920 static unsigned output_radix_1 = 10;
2921
2922 static void
2923 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2924 {
2925 set_output_radix_1 (from_tty, output_radix_1);
2926 }
2927
2928 static void
2929 set_output_radix_1 (int from_tty, unsigned radix)
2930 {
2931 /* Validate the radix and disallow ones that we aren't prepared to
2932 handle correctly, leaving the radix unchanged. */
2933 switch (radix)
2934 {
2935 case 16:
2936 user_print_options.output_format = 'x'; /* hex */
2937 break;
2938 case 10:
2939 user_print_options.output_format = 0; /* decimal */
2940 break;
2941 case 8:
2942 user_print_options.output_format = 'o'; /* octal */
2943 break;
2944 default:
2945 output_radix_1 = output_radix;
2946 error (_("Unsupported output radix ``decimal %u''; "
2947 "output radix unchanged."),
2948 radix);
2949 }
2950 output_radix_1 = output_radix = radix;
2951 if (from_tty)
2952 {
2953 printf_filtered (_("Output radix now set to "
2954 "decimal %u, hex %x, octal %o.\n"),
2955 radix, radix, radix);
2956 }
2957 }
2958
2959 /* Set both the input and output radix at once. Try to set the output radix
2960 first, since it has the most restrictive range. An radix that is valid as
2961 an output radix is also valid as an input radix.
2962
2963 It may be useful to have an unusual input radix. If the user wishes to
2964 set an input radix that is not valid as an output radix, he needs to use
2965 the 'set input-radix' command. */
2966
2967 static void
2968 set_radix (const char *arg, int from_tty)
2969 {
2970 unsigned radix;
2971
2972 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2973 set_output_radix_1 (0, radix);
2974 set_input_radix_1 (0, radix);
2975 if (from_tty)
2976 {
2977 printf_filtered (_("Input and output radices now set to "
2978 "decimal %u, hex %x, octal %o.\n"),
2979 radix, radix, radix);
2980 }
2981 }
2982
2983 /* Show both the input and output radices. */
2984
2985 static void
2986 show_radix (const char *arg, int from_tty)
2987 {
2988 if (from_tty)
2989 {
2990 if (input_radix == output_radix)
2991 {
2992 printf_filtered (_("Input and output radices set to "
2993 "decimal %u, hex %x, octal %o.\n"),
2994 input_radix, input_radix, input_radix);
2995 }
2996 else
2997 {
2998 printf_filtered (_("Input radix set to decimal "
2999 "%u, hex %x, octal %o.\n"),
3000 input_radix, input_radix, input_radix);
3001 printf_filtered (_("Output radix set to decimal "
3002 "%u, hex %x, octal %o.\n"),
3003 output_radix, output_radix, output_radix);
3004 }
3005 }
3006 }
3007 \f
3008
3009 static void
3010 set_print (const char *arg, int from_tty)
3011 {
3012 printf_unfiltered (
3013 "\"set print\" must be followed by the name of a print subcommand.\n");
3014 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3015 }
3016
3017 static void
3018 show_print (const char *args, int from_tty)
3019 {
3020 cmd_show_list (showprintlist, from_tty, "");
3021 }
3022
3023 static void
3024 set_print_raw (const char *arg, int from_tty)
3025 {
3026 printf_unfiltered (
3027 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3028 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3029 }
3030
3031 static void
3032 show_print_raw (const char *args, int from_tty)
3033 {
3034 cmd_show_list (showprintrawlist, from_tty, "");
3035 }
3036
3037 \f
3038 void
3039 _initialize_valprint (void)
3040 {
3041 add_prefix_cmd ("print", no_class, set_print,
3042 _("Generic command for setting how things print."),
3043 &setprintlist, "set print ", 0, &setlist);
3044 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3045 /* Prefer set print to set prompt. */
3046 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3047
3048 add_prefix_cmd ("print", no_class, show_print,
3049 _("Generic command for showing print settings."),
3050 &showprintlist, "show print ", 0, &showlist);
3051 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3052 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3053
3054 add_prefix_cmd ("raw", no_class, set_print_raw,
3055 _("\
3056 Generic command for setting what things to print in \"raw\" mode."),
3057 &setprintrawlist, "set print raw ", 0, &setprintlist);
3058 add_prefix_cmd ("raw", no_class, show_print_raw,
3059 _("Generic command for showing \"print raw\" settings."),
3060 &showprintrawlist, "show print raw ", 0, &showprintlist);
3061
3062 add_setshow_uinteger_cmd ("elements", no_class,
3063 &user_print_options.print_max, _("\
3064 Set limit on string chars or array elements to print."), _("\
3065 Show limit on string chars or array elements to print."), _("\
3066 \"set print elements unlimited\" causes there to be no limit."),
3067 NULL,
3068 show_print_max,
3069 &setprintlist, &showprintlist);
3070
3071 add_setshow_boolean_cmd ("null-stop", no_class,
3072 &user_print_options.stop_print_at_null, _("\
3073 Set printing of char arrays to stop at first null char."), _("\
3074 Show printing of char arrays to stop at first null char."), NULL,
3075 NULL,
3076 show_stop_print_at_null,
3077 &setprintlist, &showprintlist);
3078
3079 add_setshow_uinteger_cmd ("repeats", no_class,
3080 &user_print_options.repeat_count_threshold, _("\
3081 Set threshold for repeated print elements."), _("\
3082 Show threshold for repeated print elements."), _("\
3083 \"set print repeats unlimited\" causes all elements to be individually printed."),
3084 NULL,
3085 show_repeat_count_threshold,
3086 &setprintlist, &showprintlist);
3087
3088 add_setshow_boolean_cmd ("pretty", class_support,
3089 &user_print_options.prettyformat_structs, _("\
3090 Set pretty formatting of structures."), _("\
3091 Show pretty formatting of structures."), NULL,
3092 NULL,
3093 show_prettyformat_structs,
3094 &setprintlist, &showprintlist);
3095
3096 add_setshow_boolean_cmd ("union", class_support,
3097 &user_print_options.unionprint, _("\
3098 Set printing of unions interior to structures."), _("\
3099 Show printing of unions interior to structures."), NULL,
3100 NULL,
3101 show_unionprint,
3102 &setprintlist, &showprintlist);
3103
3104 add_setshow_boolean_cmd ("array", class_support,
3105 &user_print_options.prettyformat_arrays, _("\
3106 Set pretty formatting of arrays."), _("\
3107 Show pretty formatting of arrays."), NULL,
3108 NULL,
3109 show_prettyformat_arrays,
3110 &setprintlist, &showprintlist);
3111
3112 add_setshow_boolean_cmd ("address", class_support,
3113 &user_print_options.addressprint, _("\
3114 Set printing of addresses."), _("\
3115 Show printing of addresses."), NULL,
3116 NULL,
3117 show_addressprint,
3118 &setprintlist, &showprintlist);
3119
3120 add_setshow_boolean_cmd ("symbol", class_support,
3121 &user_print_options.symbol_print, _("\
3122 Set printing of symbol names when printing pointers."), _("\
3123 Show printing of symbol names when printing pointers."),
3124 NULL, NULL,
3125 show_symbol_print,
3126 &setprintlist, &showprintlist);
3127
3128 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3129 _("\
3130 Set default input radix for entering numbers."), _("\
3131 Show default input radix for entering numbers."), NULL,
3132 set_input_radix,
3133 show_input_radix,
3134 &setlist, &showlist);
3135
3136 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3137 _("\
3138 Set default output radix for printing of values."), _("\
3139 Show default output radix for printing of values."), NULL,
3140 set_output_radix,
3141 show_output_radix,
3142 &setlist, &showlist);
3143
3144 /* The "set radix" and "show radix" commands are special in that
3145 they are like normal set and show commands but allow two normally
3146 independent variables to be either set or shown with a single
3147 command. So the usual deprecated_add_set_cmd() and [deleted]
3148 add_show_from_set() commands aren't really appropriate. */
3149 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3150 longer true - show can display anything. */
3151 add_cmd ("radix", class_support, set_radix, _("\
3152 Set default input and output number radices.\n\
3153 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3154 Without an argument, sets both radices back to the default value of 10."),
3155 &setlist);
3156 add_cmd ("radix", class_support, show_radix, _("\
3157 Show the default input and output number radices.\n\
3158 Use 'show input-radix' or 'show output-radix' to independently show each."),
3159 &showlist);
3160
3161 add_setshow_boolean_cmd ("array-indexes", class_support,
3162 &user_print_options.print_array_indexes, _("\
3163 Set printing of array indexes."), _("\
3164 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3165 &setprintlist, &showprintlist);
3166 }
This page took 0.150577 seconds and 5 git commands to generate.