Factor out decfloat printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* generic_val_print helper for TYPE_CODE_ENUM. */
513
514 static void
515 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519 {
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579 }
580
581 /* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583 static void
584 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589 {
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595 }
596
597 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599 static void
600 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605 {
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624 }
625
626 /* generic_val_print helper for TYPE_CODE_BOOL. */
627
628 static void
629 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
630 int embedded_offset, struct ui_file *stream,
631 const struct value *original_value,
632 const struct value_print_options *options,
633 const struct generic_val_print_decorations *decorations)
634 {
635 LONGEST val;
636
637 if (options->format || options->output_format)
638 {
639 struct value_print_options opts = *options;
640 opts.format = (options->format ? options->format
641 : options->output_format);
642 val_print_scalar_formatted (type, valaddr, embedded_offset,
643 original_value, &opts, 0, stream);
644 }
645 else
646 {
647 val = unpack_long (type, valaddr + embedded_offset);
648 if (val == 0)
649 fputs_filtered (decorations->false_name, stream);
650 else if (val == 1)
651 fputs_filtered (decorations->true_name, stream);
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655 }
656
657 /* generic_val_print helper for TYPE_CODE_INT. */
658
659 static void
660 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
661 int embedded_offset, struct ui_file *stream,
662 const struct value *original_value,
663 const struct value_print_options *options)
664 {
665 if (options->format || options->output_format)
666 {
667 struct value_print_options opts = *options;
668
669 opts.format = (options->format ? options->format
670 : options->output_format);
671 val_print_scalar_formatted (type, valaddr, embedded_offset,
672 original_value, &opts, 0, stream);
673 }
674 else
675 val_print_type_code_int (type, valaddr + embedded_offset, stream);
676 }
677
678 /* generic_val_print helper for TYPE_CODE_CHAR. */
679
680 static void
681 generic_val_print_char (struct type *type, struct type *unresolved_type,
682 const gdb_byte *valaddr, int embedded_offset,
683 struct ui_file *stream,
684 const struct value *original_value,
685 const struct value_print_options *options)
686 {
687 LONGEST val;
688
689 if (options->format || options->output_format)
690 {
691 struct value_print_options opts = *options;
692
693 opts.format = (options->format ? options->format
694 : options->output_format);
695 val_print_scalar_formatted (type, valaddr, embedded_offset,
696 original_value, &opts, 0, stream);
697 }
698 else
699 {
700 val = unpack_long (type, valaddr + embedded_offset);
701 if (TYPE_UNSIGNED (type))
702 fprintf_filtered (stream, "%u", (unsigned int) val);
703 else
704 fprintf_filtered (stream, "%d", (int) val);
705 fputs_filtered (" ", stream);
706 LA_PRINT_CHAR (val, unresolved_type, stream);
707 }
708 }
709
710 /* generic_val_print helper for TYPE_CODE_FLT. */
711
712 static void
713 generic_val_print_float (struct type *type, const gdb_byte *valaddr,
714 int embedded_offset, struct ui_file *stream,
715 const struct value *original_value,
716 const struct value_print_options *options)
717 {
718 if (options->format)
719 {
720 val_print_scalar_formatted (type, valaddr, embedded_offset,
721 original_value, options, 0, stream);
722 }
723 else
724 {
725 print_floating (valaddr + embedded_offset, type, stream);
726 }
727 }
728
729 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
730
731 static void
732 generic_val_print_decfloat (struct type *type, const gdb_byte *valaddr,
733 int embedded_offset, struct ui_file *stream,
734 const struct value *original_value,
735 const struct value_print_options *options)
736 {
737 if (options->format)
738 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
739 options, 0, stream);
740 else
741 print_decimal_floating (valaddr + embedded_offset, type, stream);
742 }
743
744 /* A generic val_print that is suitable for use by language
745 implementations of the la_val_print method. This function can
746 handle most type codes, though not all, notably exception
747 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
748 the caller.
749
750 Most arguments are as to val_print.
751
752 The additional DECORATIONS argument can be used to customize the
753 output in some small, language-specific ways. */
754
755 void
756 generic_val_print (struct type *type, const gdb_byte *valaddr,
757 int embedded_offset, CORE_ADDR address,
758 struct ui_file *stream, int recurse,
759 const struct value *original_value,
760 const struct value_print_options *options,
761 const struct generic_val_print_decorations *decorations)
762 {
763 struct type *unresolved_type = type;
764
765 type = check_typedef (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_ARRAY:
769 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
770 recurse, original_value, options);
771 break;
772
773 case TYPE_CODE_MEMBERPTR:
774 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
775 original_value, options);
776 break;
777
778 case TYPE_CODE_PTR:
779 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
780 original_value, options);
781 break;
782
783 case TYPE_CODE_REF:
784 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
785 original_value, options);
786 break;
787
788 case TYPE_CODE_ENUM:
789 generic_val_print_enum (type, valaddr, embedded_offset, stream,
790 original_value, options);
791 break;
792
793 case TYPE_CODE_FLAGS:
794 generic_val_print_flags (type, valaddr, embedded_offset, stream,
795 original_value, options);
796 break;
797
798 case TYPE_CODE_FUNC:
799 case TYPE_CODE_METHOD:
800 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
801 original_value, options);
802 break;
803
804 case TYPE_CODE_BOOL:
805 generic_val_print_bool (type, valaddr, embedded_offset, stream,
806 original_value, options, decorations);
807 break;
808
809 case TYPE_CODE_RANGE:
810 /* FIXME: create_static_range_type does not set the unsigned bit in a
811 range type (I think it probably should copy it from the
812 target type), so we won't print values which are too large to
813 fit in a signed integer correctly. */
814 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
815 print with the target type, though, because the size of our
816 type and the target type might differ). */
817
818 /* FALLTHROUGH */
819
820 case TYPE_CODE_INT:
821 generic_val_print_int (type, valaddr, embedded_offset, stream,
822 original_value, options);
823 break;
824
825 case TYPE_CODE_CHAR:
826 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
827 stream, original_value, options);
828 break;
829
830 case TYPE_CODE_FLT:
831 generic_val_print_float (type, valaddr, embedded_offset, stream,
832 original_value, options);
833 break;
834
835 case TYPE_CODE_DECFLOAT:
836 generic_val_print_decfloat (type, valaddr, embedded_offset, stream,
837 original_value, options);
838 break;
839
840 case TYPE_CODE_VOID:
841 fputs_filtered (decorations->void_name, stream);
842 break;
843
844 case TYPE_CODE_ERROR:
845 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
846 break;
847
848 case TYPE_CODE_UNDEF:
849 /* This happens (without TYPE_FLAG_STUB set) on systems which
850 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
851 "struct foo *bar" and no complete type for struct foo in that
852 file. */
853 fprintf_filtered (stream, _("<incomplete type>"));
854 break;
855
856 case TYPE_CODE_COMPLEX:
857 fprintf_filtered (stream, "%s", decorations->complex_prefix);
858 if (options->format)
859 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
860 valaddr, embedded_offset,
861 original_value, options, 0, stream);
862 else
863 print_floating (valaddr + embedded_offset,
864 TYPE_TARGET_TYPE (type),
865 stream);
866 fprintf_filtered (stream, "%s", decorations->complex_infix);
867 if (options->format)
868 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
869 valaddr,
870 embedded_offset
871 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
872 original_value,
873 options, 0, stream);
874 else
875 print_floating (valaddr + embedded_offset
876 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
877 TYPE_TARGET_TYPE (type),
878 stream);
879 fprintf_filtered (stream, "%s", decorations->complex_suffix);
880 break;
881
882 case TYPE_CODE_UNION:
883 case TYPE_CODE_STRUCT:
884 case TYPE_CODE_METHODPTR:
885 default:
886 error (_("Unhandled type code %d in symbol table."),
887 TYPE_CODE (type));
888 }
889 gdb_flush (stream);
890 }
891
892 /* Print using the given LANGUAGE the data of type TYPE located at
893 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
894 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
895 STREAM according to OPTIONS. VAL is the whole object that came
896 from ADDRESS. VALADDR must point to the head of VAL's contents
897 buffer.
898
899 The language printers will pass down an adjusted EMBEDDED_OFFSET to
900 further helper subroutines as subfields of TYPE are printed. In
901 such cases, VALADDR is passed down unadjusted, as well as VAL, so
902 that VAL can be queried for metadata about the contents data being
903 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
904 buffer. For example: "has this field been optimized out", or "I'm
905 printing an object while inspecting a traceframe; has this
906 particular piece of data been collected?".
907
908 RECURSE indicates the amount of indentation to supply before
909 continuation lines; this amount is roughly twice the value of
910 RECURSE. */
911
912 void
913 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
914 CORE_ADDR address, struct ui_file *stream, int recurse,
915 const struct value *val,
916 const struct value_print_options *options,
917 const struct language_defn *language)
918 {
919 int ret = 0;
920 struct value_print_options local_opts = *options;
921 struct type *real_type = check_typedef (type);
922
923 if (local_opts.prettyformat == Val_prettyformat_default)
924 local_opts.prettyformat = (local_opts.prettyformat_structs
925 ? Val_prettyformat : Val_no_prettyformat);
926
927 QUIT;
928
929 /* Ensure that the type is complete and not just a stub. If the type is
930 only a stub and we can't find and substitute its complete type, then
931 print appropriate string and return. */
932
933 if (TYPE_STUB (real_type))
934 {
935 fprintf_filtered (stream, _("<incomplete type>"));
936 gdb_flush (stream);
937 return;
938 }
939
940 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
941 return;
942
943 if (!options->raw)
944 {
945 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
946 address, stream, recurse,
947 val, options, language);
948 if (ret)
949 return;
950 }
951
952 /* Handle summary mode. If the value is a scalar, print it;
953 otherwise, print an ellipsis. */
954 if (options->summary && !val_print_scalar_type_p (type))
955 {
956 fprintf_filtered (stream, "...");
957 return;
958 }
959
960 TRY
961 {
962 language->la_val_print (type, valaddr, embedded_offset, address,
963 stream, recurse, val,
964 &local_opts);
965 }
966 CATCH (except, RETURN_MASK_ERROR)
967 {
968 fprintf_filtered (stream, _("<error reading variable>"));
969 }
970 END_CATCH
971 }
972
973 /* Check whether the value VAL is printable. Return 1 if it is;
974 return 0 and print an appropriate error message to STREAM according to
975 OPTIONS if it is not. */
976
977 static int
978 value_check_printable (struct value *val, struct ui_file *stream,
979 const struct value_print_options *options)
980 {
981 if (val == 0)
982 {
983 fprintf_filtered (stream, _("<address of value unknown>"));
984 return 0;
985 }
986
987 if (value_entirely_optimized_out (val))
988 {
989 if (options->summary && !val_print_scalar_type_p (value_type (val)))
990 fprintf_filtered (stream, "...");
991 else
992 val_print_optimized_out (val, stream);
993 return 0;
994 }
995
996 if (value_entirely_unavailable (val))
997 {
998 if (options->summary && !val_print_scalar_type_p (value_type (val)))
999 fprintf_filtered (stream, "...");
1000 else
1001 val_print_unavailable (stream);
1002 return 0;
1003 }
1004
1005 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1006 {
1007 fprintf_filtered (stream, _("<internal function %s>"),
1008 value_internal_function_name (val));
1009 return 0;
1010 }
1011
1012 return 1;
1013 }
1014
1015 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1016 to OPTIONS.
1017
1018 This is a preferable interface to val_print, above, because it uses
1019 GDB's value mechanism. */
1020
1021 void
1022 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1023 const struct value_print_options *options,
1024 const struct language_defn *language)
1025 {
1026 if (!value_check_printable (val, stream, options))
1027 return;
1028
1029 if (language->la_language == language_ada)
1030 /* The value might have a dynamic type, which would cause trouble
1031 below when trying to extract the value contents (since the value
1032 size is determined from the type size which is unknown). So
1033 get a fixed representation of our value. */
1034 val = ada_to_fixed_value (val);
1035
1036 val_print (value_type (val), value_contents_for_printing (val),
1037 value_embedded_offset (val), value_address (val),
1038 stream, recurse,
1039 val, options, language);
1040 }
1041
1042 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1043 is printed using the current_language syntax. */
1044
1045 void
1046 value_print (struct value *val, struct ui_file *stream,
1047 const struct value_print_options *options)
1048 {
1049 if (!value_check_printable (val, stream, options))
1050 return;
1051
1052 if (!options->raw)
1053 {
1054 int r
1055 = apply_ext_lang_val_pretty_printer (value_type (val),
1056 value_contents_for_printing (val),
1057 value_embedded_offset (val),
1058 value_address (val),
1059 stream, 0,
1060 val, options, current_language);
1061
1062 if (r)
1063 return;
1064 }
1065
1066 LA_VALUE_PRINT (val, stream, options);
1067 }
1068
1069 /* Called by various <lang>_val_print routines to print
1070 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1071 value. STREAM is where to print the value. */
1072
1073 void
1074 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1075 struct ui_file *stream)
1076 {
1077 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1078
1079 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1080 {
1081 LONGEST val;
1082
1083 if (TYPE_UNSIGNED (type)
1084 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1085 byte_order, &val))
1086 {
1087 print_longest (stream, 'u', 0, val);
1088 }
1089 else
1090 {
1091 /* Signed, or we couldn't turn an unsigned value into a
1092 LONGEST. For signed values, one could assume two's
1093 complement (a reasonable assumption, I think) and do
1094 better than this. */
1095 print_hex_chars (stream, (unsigned char *) valaddr,
1096 TYPE_LENGTH (type), byte_order);
1097 }
1098 }
1099 else
1100 {
1101 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1102 unpack_long (type, valaddr));
1103 }
1104 }
1105
1106 void
1107 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1108 struct ui_file *stream)
1109 {
1110 ULONGEST val = unpack_long (type, valaddr);
1111 int bitpos, nfields = TYPE_NFIELDS (type);
1112
1113 fputs_filtered ("[ ", stream);
1114 for (bitpos = 0; bitpos < nfields; bitpos++)
1115 {
1116 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1117 && (val & ((ULONGEST)1 << bitpos)))
1118 {
1119 if (TYPE_FIELD_NAME (type, bitpos))
1120 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1121 else
1122 fprintf_filtered (stream, "#%d ", bitpos);
1123 }
1124 }
1125 fputs_filtered ("]", stream);
1126 }
1127
1128 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1129 according to OPTIONS and SIZE on STREAM. Format i is not supported
1130 at this level.
1131
1132 This is how the elements of an array or structure are printed
1133 with a format. */
1134
1135 void
1136 val_print_scalar_formatted (struct type *type,
1137 const gdb_byte *valaddr, int embedded_offset,
1138 const struct value *val,
1139 const struct value_print_options *options,
1140 int size,
1141 struct ui_file *stream)
1142 {
1143 gdb_assert (val != NULL);
1144 gdb_assert (valaddr == value_contents_for_printing_const (val));
1145
1146 /* If we get here with a string format, try again without it. Go
1147 all the way back to the language printers, which may call us
1148 again. */
1149 if (options->format == 's')
1150 {
1151 struct value_print_options opts = *options;
1152 opts.format = 0;
1153 opts.deref_ref = 0;
1154 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1155 current_language);
1156 return;
1157 }
1158
1159 /* A scalar object that does not have all bits available can't be
1160 printed, because all bits contribute to its representation. */
1161 if (value_bits_any_optimized_out (val,
1162 TARGET_CHAR_BIT * embedded_offset,
1163 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1164 val_print_optimized_out (val, stream);
1165 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1166 val_print_unavailable (stream);
1167 else
1168 print_scalar_formatted (valaddr + embedded_offset, type,
1169 options, size, stream);
1170 }
1171
1172 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1173 The raison d'etre of this function is to consolidate printing of
1174 LONG_LONG's into this one function. The format chars b,h,w,g are
1175 from print_scalar_formatted(). Numbers are printed using C
1176 format.
1177
1178 USE_C_FORMAT means to use C format in all cases. Without it,
1179 'o' and 'x' format do not include the standard C radix prefix
1180 (leading 0 or 0x).
1181
1182 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1183 and was intended to request formating according to the current
1184 language and would be used for most integers that GDB prints. The
1185 exceptional cases were things like protocols where the format of
1186 the integer is a protocol thing, not a user-visible thing). The
1187 parameter remains to preserve the information of what things might
1188 be printed with language-specific format, should we ever resurrect
1189 that capability. */
1190
1191 void
1192 print_longest (struct ui_file *stream, int format, int use_c_format,
1193 LONGEST val_long)
1194 {
1195 const char *val;
1196
1197 switch (format)
1198 {
1199 case 'd':
1200 val = int_string (val_long, 10, 1, 0, 1); break;
1201 case 'u':
1202 val = int_string (val_long, 10, 0, 0, 1); break;
1203 case 'x':
1204 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1205 case 'b':
1206 val = int_string (val_long, 16, 0, 2, 1); break;
1207 case 'h':
1208 val = int_string (val_long, 16, 0, 4, 1); break;
1209 case 'w':
1210 val = int_string (val_long, 16, 0, 8, 1); break;
1211 case 'g':
1212 val = int_string (val_long, 16, 0, 16, 1); break;
1213 break;
1214 case 'o':
1215 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1216 default:
1217 internal_error (__FILE__, __LINE__,
1218 _("failed internal consistency check"));
1219 }
1220 fputs_filtered (val, stream);
1221 }
1222
1223 /* This used to be a macro, but I don't think it is called often enough
1224 to merit such treatment. */
1225 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1226 arguments to a function, number in a value history, register number, etc.)
1227 where the value must not be larger than can fit in an int. */
1228
1229 int
1230 longest_to_int (LONGEST arg)
1231 {
1232 /* Let the compiler do the work. */
1233 int rtnval = (int) arg;
1234
1235 /* Check for overflows or underflows. */
1236 if (sizeof (LONGEST) > sizeof (int))
1237 {
1238 if (rtnval != arg)
1239 {
1240 error (_("Value out of range."));
1241 }
1242 }
1243 return (rtnval);
1244 }
1245
1246 /* Print a floating point value of type TYPE (not always a
1247 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1248
1249 void
1250 print_floating (const gdb_byte *valaddr, struct type *type,
1251 struct ui_file *stream)
1252 {
1253 DOUBLEST doub;
1254 int inv;
1255 const struct floatformat *fmt = NULL;
1256 unsigned len = TYPE_LENGTH (type);
1257 enum float_kind kind;
1258
1259 /* If it is a floating-point, check for obvious problems. */
1260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1261 fmt = floatformat_from_type (type);
1262 if (fmt != NULL)
1263 {
1264 kind = floatformat_classify (fmt, valaddr);
1265 if (kind == float_nan)
1266 {
1267 if (floatformat_is_negative (fmt, valaddr))
1268 fprintf_filtered (stream, "-");
1269 fprintf_filtered (stream, "nan(");
1270 fputs_filtered ("0x", stream);
1271 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1272 fprintf_filtered (stream, ")");
1273 return;
1274 }
1275 else if (kind == float_infinite)
1276 {
1277 if (floatformat_is_negative (fmt, valaddr))
1278 fputs_filtered ("-", stream);
1279 fputs_filtered ("inf", stream);
1280 return;
1281 }
1282 }
1283
1284 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1285 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1286 needs to be used as that takes care of any necessary type
1287 conversions. Such conversions are of course direct to DOUBLEST
1288 and disregard any possible target floating point limitations.
1289 For instance, a u64 would be converted and displayed exactly on a
1290 host with 80 bit DOUBLEST but with loss of information on a host
1291 with 64 bit DOUBLEST. */
1292
1293 doub = unpack_double (type, valaddr, &inv);
1294 if (inv)
1295 {
1296 fprintf_filtered (stream, "<invalid float value>");
1297 return;
1298 }
1299
1300 /* FIXME: kettenis/2001-01-20: The following code makes too much
1301 assumptions about the host and target floating point format. */
1302
1303 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1304 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1305 instead uses the type's length to determine the precision of the
1306 floating-point value being printed. */
1307
1308 if (len < sizeof (double))
1309 fprintf_filtered (stream, "%.9g", (double) doub);
1310 else if (len == sizeof (double))
1311 fprintf_filtered (stream, "%.17g", (double) doub);
1312 else
1313 #ifdef PRINTF_HAS_LONG_DOUBLE
1314 fprintf_filtered (stream, "%.35Lg", doub);
1315 #else
1316 /* This at least wins with values that are representable as
1317 doubles. */
1318 fprintf_filtered (stream, "%.17g", (double) doub);
1319 #endif
1320 }
1321
1322 void
1323 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1324 struct ui_file *stream)
1325 {
1326 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1327 char decstr[MAX_DECIMAL_STRING];
1328 unsigned len = TYPE_LENGTH (type);
1329
1330 decimal_to_string (valaddr, len, byte_order, decstr);
1331 fputs_filtered (decstr, stream);
1332 return;
1333 }
1334
1335 void
1336 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1337 unsigned len, enum bfd_endian byte_order)
1338 {
1339
1340 #define BITS_IN_BYTES 8
1341
1342 const gdb_byte *p;
1343 unsigned int i;
1344 int b;
1345
1346 /* Declared "int" so it will be signed.
1347 This ensures that right shift will shift in zeros. */
1348
1349 const int mask = 0x080;
1350
1351 /* FIXME: We should be not printing leading zeroes in most cases. */
1352
1353 if (byte_order == BFD_ENDIAN_BIG)
1354 {
1355 for (p = valaddr;
1356 p < valaddr + len;
1357 p++)
1358 {
1359 /* Every byte has 8 binary characters; peel off
1360 and print from the MSB end. */
1361
1362 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1363 {
1364 if (*p & (mask >> i))
1365 b = 1;
1366 else
1367 b = 0;
1368
1369 fprintf_filtered (stream, "%1d", b);
1370 }
1371 }
1372 }
1373 else
1374 {
1375 for (p = valaddr + len - 1;
1376 p >= valaddr;
1377 p--)
1378 {
1379 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1380 {
1381 if (*p & (mask >> i))
1382 b = 1;
1383 else
1384 b = 0;
1385
1386 fprintf_filtered (stream, "%1d", b);
1387 }
1388 }
1389 }
1390 }
1391
1392 /* VALADDR points to an integer of LEN bytes.
1393 Print it in octal on stream or format it in buf. */
1394
1395 void
1396 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1397 unsigned len, enum bfd_endian byte_order)
1398 {
1399 const gdb_byte *p;
1400 unsigned char octa1, octa2, octa3, carry;
1401 int cycle;
1402
1403 /* FIXME: We should be not printing leading zeroes in most cases. */
1404
1405
1406 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1407 * the extra bits, which cycle every three bytes:
1408 *
1409 * Byte side: 0 1 2 3
1410 * | | | |
1411 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1412 *
1413 * Octal side: 0 1 carry 3 4 carry ...
1414 *
1415 * Cycle number: 0 1 2
1416 *
1417 * But of course we are printing from the high side, so we have to
1418 * figure out where in the cycle we are so that we end up with no
1419 * left over bits at the end.
1420 */
1421 #define BITS_IN_OCTAL 3
1422 #define HIGH_ZERO 0340
1423 #define LOW_ZERO 0016
1424 #define CARRY_ZERO 0003
1425 #define HIGH_ONE 0200
1426 #define MID_ONE 0160
1427 #define LOW_ONE 0016
1428 #define CARRY_ONE 0001
1429 #define HIGH_TWO 0300
1430 #define MID_TWO 0070
1431 #define LOW_TWO 0007
1432
1433 /* For 32 we start in cycle 2, with two bits and one bit carry;
1434 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1435
1436 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1437 carry = 0;
1438
1439 fputs_filtered ("0", stream);
1440 if (byte_order == BFD_ENDIAN_BIG)
1441 {
1442 for (p = valaddr;
1443 p < valaddr + len;
1444 p++)
1445 {
1446 switch (cycle)
1447 {
1448 case 0:
1449 /* No carry in, carry out two bits. */
1450
1451 octa1 = (HIGH_ZERO & *p) >> 5;
1452 octa2 = (LOW_ZERO & *p) >> 2;
1453 carry = (CARRY_ZERO & *p);
1454 fprintf_filtered (stream, "%o", octa1);
1455 fprintf_filtered (stream, "%o", octa2);
1456 break;
1457
1458 case 1:
1459 /* Carry in two bits, carry out one bit. */
1460
1461 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1462 octa2 = (MID_ONE & *p) >> 4;
1463 octa3 = (LOW_ONE & *p) >> 1;
1464 carry = (CARRY_ONE & *p);
1465 fprintf_filtered (stream, "%o", octa1);
1466 fprintf_filtered (stream, "%o", octa2);
1467 fprintf_filtered (stream, "%o", octa3);
1468 break;
1469
1470 case 2:
1471 /* Carry in one bit, no carry out. */
1472
1473 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1474 octa2 = (MID_TWO & *p) >> 3;
1475 octa3 = (LOW_TWO & *p);
1476 carry = 0;
1477 fprintf_filtered (stream, "%o", octa1);
1478 fprintf_filtered (stream, "%o", octa2);
1479 fprintf_filtered (stream, "%o", octa3);
1480 break;
1481
1482 default:
1483 error (_("Internal error in octal conversion;"));
1484 }
1485
1486 cycle++;
1487 cycle = cycle % BITS_IN_OCTAL;
1488 }
1489 }
1490 else
1491 {
1492 for (p = valaddr + len - 1;
1493 p >= valaddr;
1494 p--)
1495 {
1496 switch (cycle)
1497 {
1498 case 0:
1499 /* Carry out, no carry in */
1500
1501 octa1 = (HIGH_ZERO & *p) >> 5;
1502 octa2 = (LOW_ZERO & *p) >> 2;
1503 carry = (CARRY_ZERO & *p);
1504 fprintf_filtered (stream, "%o", octa1);
1505 fprintf_filtered (stream, "%o", octa2);
1506 break;
1507
1508 case 1:
1509 /* Carry in, carry out */
1510
1511 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1512 octa2 = (MID_ONE & *p) >> 4;
1513 octa3 = (LOW_ONE & *p) >> 1;
1514 carry = (CARRY_ONE & *p);
1515 fprintf_filtered (stream, "%o", octa1);
1516 fprintf_filtered (stream, "%o", octa2);
1517 fprintf_filtered (stream, "%o", octa3);
1518 break;
1519
1520 case 2:
1521 /* Carry in, no carry out */
1522
1523 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1524 octa2 = (MID_TWO & *p) >> 3;
1525 octa3 = (LOW_TWO & *p);
1526 carry = 0;
1527 fprintf_filtered (stream, "%o", octa1);
1528 fprintf_filtered (stream, "%o", octa2);
1529 fprintf_filtered (stream, "%o", octa3);
1530 break;
1531
1532 default:
1533 error (_("Internal error in octal conversion;"));
1534 }
1535
1536 cycle++;
1537 cycle = cycle % BITS_IN_OCTAL;
1538 }
1539 }
1540
1541 }
1542
1543 /* VALADDR points to an integer of LEN bytes.
1544 Print it in decimal on stream or format it in buf. */
1545
1546 void
1547 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1548 unsigned len, enum bfd_endian byte_order)
1549 {
1550 #define TEN 10
1551 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1552 #define CARRY_LEFT( x ) ((x) % TEN)
1553 #define SHIFT( x ) ((x) << 4)
1554 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1555 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1556
1557 const gdb_byte *p;
1558 unsigned char *digits;
1559 int carry;
1560 int decimal_len;
1561 int i, j, decimal_digits;
1562 int dummy;
1563 int flip;
1564
1565 /* Base-ten number is less than twice as many digits
1566 as the base 16 number, which is 2 digits per byte. */
1567
1568 decimal_len = len * 2 * 2;
1569 digits = xmalloc (decimal_len);
1570
1571 for (i = 0; i < decimal_len; i++)
1572 {
1573 digits[i] = 0;
1574 }
1575
1576 /* Ok, we have an unknown number of bytes of data to be printed in
1577 * decimal.
1578 *
1579 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1580 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1581 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1582 *
1583 * The trick is that "digits" holds a base-10 number, but sometimes
1584 * the individual digits are > 10.
1585 *
1586 * Outer loop is per nibble (hex digit) of input, from MSD end to
1587 * LSD end.
1588 */
1589 decimal_digits = 0; /* Number of decimal digits so far */
1590 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1591 flip = 0;
1592 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1593 {
1594 /*
1595 * Multiply current base-ten number by 16 in place.
1596 * Each digit was between 0 and 9, now is between
1597 * 0 and 144.
1598 */
1599 for (j = 0; j < decimal_digits; j++)
1600 {
1601 digits[j] = SHIFT (digits[j]);
1602 }
1603
1604 /* Take the next nibble off the input and add it to what
1605 * we've got in the LSB position. Bottom 'digit' is now
1606 * between 0 and 159.
1607 *
1608 * "flip" is used to run this loop twice for each byte.
1609 */
1610 if (flip == 0)
1611 {
1612 /* Take top nibble. */
1613
1614 digits[0] += HIGH_NIBBLE (*p);
1615 flip = 1;
1616 }
1617 else
1618 {
1619 /* Take low nibble and bump our pointer "p". */
1620
1621 digits[0] += LOW_NIBBLE (*p);
1622 if (byte_order == BFD_ENDIAN_BIG)
1623 p++;
1624 else
1625 p--;
1626 flip = 0;
1627 }
1628
1629 /* Re-decimalize. We have to do this often enough
1630 * that we don't overflow, but once per nibble is
1631 * overkill. Easier this way, though. Note that the
1632 * carry is often larger than 10 (e.g. max initial
1633 * carry out of lowest nibble is 15, could bubble all
1634 * the way up greater than 10). So we have to do
1635 * the carrying beyond the last current digit.
1636 */
1637 carry = 0;
1638 for (j = 0; j < decimal_len - 1; j++)
1639 {
1640 digits[j] += carry;
1641
1642 /* "/" won't handle an unsigned char with
1643 * a value that if signed would be negative.
1644 * So extend to longword int via "dummy".
1645 */
1646 dummy = digits[j];
1647 carry = CARRY_OUT (dummy);
1648 digits[j] = CARRY_LEFT (dummy);
1649
1650 if (j >= decimal_digits && carry == 0)
1651 {
1652 /*
1653 * All higher digits are 0 and we
1654 * no longer have a carry.
1655 *
1656 * Note: "j" is 0-based, "decimal_digits" is
1657 * 1-based.
1658 */
1659 decimal_digits = j + 1;
1660 break;
1661 }
1662 }
1663 }
1664
1665 /* Ok, now "digits" is the decimal representation, with
1666 the "decimal_digits" actual digits. Print! */
1667
1668 for (i = decimal_digits - 1; i >= 0; i--)
1669 {
1670 fprintf_filtered (stream, "%1d", digits[i]);
1671 }
1672 xfree (digits);
1673 }
1674
1675 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1676
1677 void
1678 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1679 unsigned len, enum bfd_endian byte_order)
1680 {
1681 const gdb_byte *p;
1682
1683 /* FIXME: We should be not printing leading zeroes in most cases. */
1684
1685 fputs_filtered ("0x", stream);
1686 if (byte_order == BFD_ENDIAN_BIG)
1687 {
1688 for (p = valaddr;
1689 p < valaddr + len;
1690 p++)
1691 {
1692 fprintf_filtered (stream, "%02x", *p);
1693 }
1694 }
1695 else
1696 {
1697 for (p = valaddr + len - 1;
1698 p >= valaddr;
1699 p--)
1700 {
1701 fprintf_filtered (stream, "%02x", *p);
1702 }
1703 }
1704 }
1705
1706 /* VALADDR points to a char integer of LEN bytes.
1707 Print it out in appropriate language form on stream.
1708 Omit any leading zero chars. */
1709
1710 void
1711 print_char_chars (struct ui_file *stream, struct type *type,
1712 const gdb_byte *valaddr,
1713 unsigned len, enum bfd_endian byte_order)
1714 {
1715 const gdb_byte *p;
1716
1717 if (byte_order == BFD_ENDIAN_BIG)
1718 {
1719 p = valaddr;
1720 while (p < valaddr + len - 1 && *p == 0)
1721 ++p;
1722
1723 while (p < valaddr + len)
1724 {
1725 LA_EMIT_CHAR (*p, type, stream, '\'');
1726 ++p;
1727 }
1728 }
1729 else
1730 {
1731 p = valaddr + len - 1;
1732 while (p > valaddr && *p == 0)
1733 --p;
1734
1735 while (p >= valaddr)
1736 {
1737 LA_EMIT_CHAR (*p, type, stream, '\'');
1738 --p;
1739 }
1740 }
1741 }
1742
1743 /* Print function pointer with inferior address ADDRESS onto stdio
1744 stream STREAM. */
1745
1746 void
1747 print_function_pointer_address (const struct value_print_options *options,
1748 struct gdbarch *gdbarch,
1749 CORE_ADDR address,
1750 struct ui_file *stream)
1751 {
1752 CORE_ADDR func_addr
1753 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1754 &current_target);
1755
1756 /* If the function pointer is represented by a description, print
1757 the address of the description. */
1758 if (options->addressprint && func_addr != address)
1759 {
1760 fputs_filtered ("@", stream);
1761 fputs_filtered (paddress (gdbarch, address), stream);
1762 fputs_filtered (": ", stream);
1763 }
1764 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1765 }
1766
1767
1768 /* Print on STREAM using the given OPTIONS the index for the element
1769 at INDEX of an array whose index type is INDEX_TYPE. */
1770
1771 void
1772 maybe_print_array_index (struct type *index_type, LONGEST index,
1773 struct ui_file *stream,
1774 const struct value_print_options *options)
1775 {
1776 struct value *index_value;
1777
1778 if (!options->print_array_indexes)
1779 return;
1780
1781 index_value = value_from_longest (index_type, index);
1782
1783 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1784 }
1785
1786 /* Called by various <lang>_val_print routines to print elements of an
1787 array in the form "<elem1>, <elem2>, <elem3>, ...".
1788
1789 (FIXME?) Assumes array element separator is a comma, which is correct
1790 for all languages currently handled.
1791 (FIXME?) Some languages have a notation for repeated array elements,
1792 perhaps we should try to use that notation when appropriate. */
1793
1794 void
1795 val_print_array_elements (struct type *type,
1796 const gdb_byte *valaddr, int embedded_offset,
1797 CORE_ADDR address, struct ui_file *stream,
1798 int recurse,
1799 const struct value *val,
1800 const struct value_print_options *options,
1801 unsigned int i)
1802 {
1803 unsigned int things_printed = 0;
1804 unsigned len;
1805 struct type *elttype, *index_type, *base_index_type;
1806 unsigned eltlen;
1807 /* Position of the array element we are examining to see
1808 whether it is repeated. */
1809 unsigned int rep1;
1810 /* Number of repetitions we have detected so far. */
1811 unsigned int reps;
1812 LONGEST low_bound, high_bound;
1813 LONGEST low_pos, high_pos;
1814
1815 elttype = TYPE_TARGET_TYPE (type);
1816 eltlen = TYPE_LENGTH (check_typedef (elttype));
1817 index_type = TYPE_INDEX_TYPE (type);
1818
1819 if (get_array_bounds (type, &low_bound, &high_bound))
1820 {
1821 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1822 base_index_type = TYPE_TARGET_TYPE (index_type);
1823 else
1824 base_index_type = index_type;
1825
1826 /* Non-contiguous enumerations types can by used as index types
1827 in some languages (e.g. Ada). In this case, the array length
1828 shall be computed from the positions of the first and last
1829 literal in the enumeration type, and not from the values
1830 of these literals. */
1831 if (!discrete_position (base_index_type, low_bound, &low_pos)
1832 || !discrete_position (base_index_type, high_bound, &high_pos))
1833 {
1834 warning (_("unable to get positions in array, use bounds instead"));
1835 low_pos = low_bound;
1836 high_pos = high_bound;
1837 }
1838
1839 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1840 But we have to be a little extra careful, because some languages
1841 such as Ada allow LOW_POS to be greater than HIGH_POS for
1842 empty arrays. In that situation, the array length is just zero,
1843 not negative! */
1844 if (low_pos > high_pos)
1845 len = 0;
1846 else
1847 len = high_pos - low_pos + 1;
1848 }
1849 else
1850 {
1851 warning (_("unable to get bounds of array, assuming null array"));
1852 low_bound = 0;
1853 len = 0;
1854 }
1855
1856 annotate_array_section_begin (i, elttype);
1857
1858 for (; i < len && things_printed < options->print_max; i++)
1859 {
1860 if (i != 0)
1861 {
1862 if (options->prettyformat_arrays)
1863 {
1864 fprintf_filtered (stream, ",\n");
1865 print_spaces_filtered (2 + 2 * recurse, stream);
1866 }
1867 else
1868 {
1869 fprintf_filtered (stream, ", ");
1870 }
1871 }
1872 wrap_here (n_spaces (2 + 2 * recurse));
1873 maybe_print_array_index (index_type, i + low_bound,
1874 stream, options);
1875
1876 rep1 = i + 1;
1877 reps = 1;
1878 /* Only check for reps if repeat_count_threshold is not set to
1879 UINT_MAX (unlimited). */
1880 if (options->repeat_count_threshold < UINT_MAX)
1881 {
1882 while (rep1 < len
1883 && value_contents_eq (val,
1884 embedded_offset + i * eltlen,
1885 val,
1886 (embedded_offset
1887 + rep1 * eltlen),
1888 eltlen))
1889 {
1890 ++reps;
1891 ++rep1;
1892 }
1893 }
1894
1895 if (reps > options->repeat_count_threshold)
1896 {
1897 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1898 address, stream, recurse + 1, val, options,
1899 current_language);
1900 annotate_elt_rep (reps);
1901 fprintf_filtered (stream, " <repeats %u times>", reps);
1902 annotate_elt_rep_end ();
1903
1904 i = rep1 - 1;
1905 things_printed += options->repeat_count_threshold;
1906 }
1907 else
1908 {
1909 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1910 address,
1911 stream, recurse + 1, val, options, current_language);
1912 annotate_elt ();
1913 things_printed++;
1914 }
1915 }
1916 annotate_array_section_end ();
1917 if (i < len)
1918 {
1919 fprintf_filtered (stream, "...");
1920 }
1921 }
1922
1923 /* Read LEN bytes of target memory at address MEMADDR, placing the
1924 results in GDB's memory at MYADDR. Returns a count of the bytes
1925 actually read, and optionally a target_xfer_status value in the
1926 location pointed to by ERRPTR if ERRPTR is non-null. */
1927
1928 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1929 function be eliminated. */
1930
1931 static int
1932 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1933 int len, int *errptr)
1934 {
1935 int nread; /* Number of bytes actually read. */
1936 int errcode; /* Error from last read. */
1937
1938 /* First try a complete read. */
1939 errcode = target_read_memory (memaddr, myaddr, len);
1940 if (errcode == 0)
1941 {
1942 /* Got it all. */
1943 nread = len;
1944 }
1945 else
1946 {
1947 /* Loop, reading one byte at a time until we get as much as we can. */
1948 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1949 {
1950 errcode = target_read_memory (memaddr++, myaddr++, 1);
1951 }
1952 /* If an error, the last read was unsuccessful, so adjust count. */
1953 if (errcode != 0)
1954 {
1955 nread--;
1956 }
1957 }
1958 if (errptr != NULL)
1959 {
1960 *errptr = errcode;
1961 }
1962 return (nread);
1963 }
1964
1965 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1966 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1967 allocated buffer containing the string, which the caller is responsible to
1968 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1969 success, or a target_xfer_status on failure.
1970
1971 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1972 (including eventual NULs in the middle or end of the string).
1973
1974 If LEN is -1, stops at the first null character (not necessarily
1975 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1976 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1977 the string.
1978
1979 Unless an exception is thrown, BUFFER will always be allocated, even on
1980 failure. In this case, some characters might have been read before the
1981 failure happened. Check BYTES_READ to recognize this situation.
1982
1983 Note: There was a FIXME asking to make this code use target_read_string,
1984 but this function is more general (can read past null characters, up to
1985 given LEN). Besides, it is used much more often than target_read_string
1986 so it is more tested. Perhaps callers of target_read_string should use
1987 this function instead? */
1988
1989 int
1990 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1991 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1992 {
1993 int errcode; /* Errno returned from bad reads. */
1994 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1995 gdb_byte *bufptr; /* Pointer to next available byte in
1996 buffer. */
1997 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1998
1999 /* Loop until we either have all the characters, or we encounter
2000 some error, such as bumping into the end of the address space. */
2001
2002 *buffer = NULL;
2003
2004 old_chain = make_cleanup (free_current_contents, buffer);
2005
2006 if (len > 0)
2007 {
2008 /* We want fetchlimit chars, so we might as well read them all in
2009 one operation. */
2010 unsigned int fetchlen = min (len, fetchlimit);
2011
2012 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2013 bufptr = *buffer;
2014
2015 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2016 / width;
2017 addr += nfetch * width;
2018 bufptr += nfetch * width;
2019 }
2020 else if (len == -1)
2021 {
2022 unsigned long bufsize = 0;
2023 unsigned int chunksize; /* Size of each fetch, in chars. */
2024 int found_nul; /* Non-zero if we found the nul char. */
2025 gdb_byte *limit; /* First location past end of fetch buffer. */
2026
2027 found_nul = 0;
2028 /* We are looking for a NUL terminator to end the fetching, so we
2029 might as well read in blocks that are large enough to be efficient,
2030 but not so large as to be slow if fetchlimit happens to be large.
2031 So we choose the minimum of 8 and fetchlimit. We used to use 200
2032 instead of 8 but 200 is way too big for remote debugging over a
2033 serial line. */
2034 chunksize = min (8, fetchlimit);
2035
2036 do
2037 {
2038 QUIT;
2039 nfetch = min (chunksize, fetchlimit - bufsize);
2040
2041 if (*buffer == NULL)
2042 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2043 else
2044 *buffer = (gdb_byte *) xrealloc (*buffer,
2045 (nfetch + bufsize) * width);
2046
2047 bufptr = *buffer + bufsize * width;
2048 bufsize += nfetch;
2049
2050 /* Read as much as we can. */
2051 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2052 / width;
2053
2054 /* Scan this chunk for the null character that terminates the string
2055 to print. If found, we don't need to fetch any more. Note
2056 that bufptr is explicitly left pointing at the next character
2057 after the null character, or at the next character after the end
2058 of the buffer. */
2059
2060 limit = bufptr + nfetch * width;
2061 while (bufptr < limit)
2062 {
2063 unsigned long c;
2064
2065 c = extract_unsigned_integer (bufptr, width, byte_order);
2066 addr += width;
2067 bufptr += width;
2068 if (c == 0)
2069 {
2070 /* We don't care about any error which happened after
2071 the NUL terminator. */
2072 errcode = 0;
2073 found_nul = 1;
2074 break;
2075 }
2076 }
2077 }
2078 while (errcode == 0 /* no error */
2079 && bufptr - *buffer < fetchlimit * width /* no overrun */
2080 && !found_nul); /* haven't found NUL yet */
2081 }
2082 else
2083 { /* Length of string is really 0! */
2084 /* We always allocate *buffer. */
2085 *buffer = bufptr = xmalloc (1);
2086 errcode = 0;
2087 }
2088
2089 /* bufptr and addr now point immediately beyond the last byte which we
2090 consider part of the string (including a '\0' which ends the string). */
2091 *bytes_read = bufptr - *buffer;
2092
2093 QUIT;
2094
2095 discard_cleanups (old_chain);
2096
2097 return errcode;
2098 }
2099
2100 /* Return true if print_wchar can display W without resorting to a
2101 numeric escape, false otherwise. */
2102
2103 static int
2104 wchar_printable (gdb_wchar_t w)
2105 {
2106 return (gdb_iswprint (w)
2107 || w == LCST ('\a') || w == LCST ('\b')
2108 || w == LCST ('\f') || w == LCST ('\n')
2109 || w == LCST ('\r') || w == LCST ('\t')
2110 || w == LCST ('\v'));
2111 }
2112
2113 /* A helper function that converts the contents of STRING to wide
2114 characters and then appends them to OUTPUT. */
2115
2116 static void
2117 append_string_as_wide (const char *string,
2118 struct obstack *output)
2119 {
2120 for (; *string; ++string)
2121 {
2122 gdb_wchar_t w = gdb_btowc (*string);
2123 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2124 }
2125 }
2126
2127 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2128 original (target) bytes representing the character, ORIG_LEN is the
2129 number of valid bytes. WIDTH is the number of bytes in a base
2130 characters of the type. OUTPUT is an obstack to which wide
2131 characters are emitted. QUOTER is a (narrow) character indicating
2132 the style of quotes surrounding the character to be printed.
2133 NEED_ESCAPE is an in/out flag which is used to track numeric
2134 escapes across calls. */
2135
2136 static void
2137 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2138 int orig_len, int width,
2139 enum bfd_endian byte_order,
2140 struct obstack *output,
2141 int quoter, int *need_escapep)
2142 {
2143 int need_escape = *need_escapep;
2144
2145 *need_escapep = 0;
2146
2147 /* iswprint implementation on Windows returns 1 for tab character.
2148 In order to avoid different printout on this host, we explicitly
2149 use wchar_printable function. */
2150 switch (w)
2151 {
2152 case LCST ('\a'):
2153 obstack_grow_wstr (output, LCST ("\\a"));
2154 break;
2155 case LCST ('\b'):
2156 obstack_grow_wstr (output, LCST ("\\b"));
2157 break;
2158 case LCST ('\f'):
2159 obstack_grow_wstr (output, LCST ("\\f"));
2160 break;
2161 case LCST ('\n'):
2162 obstack_grow_wstr (output, LCST ("\\n"));
2163 break;
2164 case LCST ('\r'):
2165 obstack_grow_wstr (output, LCST ("\\r"));
2166 break;
2167 case LCST ('\t'):
2168 obstack_grow_wstr (output, LCST ("\\t"));
2169 break;
2170 case LCST ('\v'):
2171 obstack_grow_wstr (output, LCST ("\\v"));
2172 break;
2173 default:
2174 {
2175 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2176 && w != LCST ('8')
2177 && w != LCST ('9'))))
2178 {
2179 gdb_wchar_t wchar = w;
2180
2181 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2182 obstack_grow_wstr (output, LCST ("\\"));
2183 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2184 }
2185 else
2186 {
2187 int i;
2188
2189 for (i = 0; i + width <= orig_len; i += width)
2190 {
2191 char octal[30];
2192 ULONGEST value;
2193
2194 value = extract_unsigned_integer (&orig[i], width,
2195 byte_order);
2196 /* If the value fits in 3 octal digits, print it that
2197 way. Otherwise, print it as a hex escape. */
2198 if (value <= 0777)
2199 xsnprintf (octal, sizeof (octal), "\\%.3o",
2200 (int) (value & 0777));
2201 else
2202 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2203 append_string_as_wide (octal, output);
2204 }
2205 /* If we somehow have extra bytes, print them now. */
2206 while (i < orig_len)
2207 {
2208 char octal[5];
2209
2210 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2211 append_string_as_wide (octal, output);
2212 ++i;
2213 }
2214
2215 *need_escapep = 1;
2216 }
2217 break;
2218 }
2219 }
2220 }
2221
2222 /* Print the character C on STREAM as part of the contents of a
2223 literal string whose delimiter is QUOTER. ENCODING names the
2224 encoding of C. */
2225
2226 void
2227 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2228 int quoter, const char *encoding)
2229 {
2230 enum bfd_endian byte_order
2231 = gdbarch_byte_order (get_type_arch (type));
2232 struct obstack wchar_buf, output;
2233 struct cleanup *cleanups;
2234 gdb_byte *buf;
2235 struct wchar_iterator *iter;
2236 int need_escape = 0;
2237
2238 buf = alloca (TYPE_LENGTH (type));
2239 pack_long (buf, type, c);
2240
2241 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2242 encoding, TYPE_LENGTH (type));
2243 cleanups = make_cleanup_wchar_iterator (iter);
2244
2245 /* This holds the printable form of the wchar_t data. */
2246 obstack_init (&wchar_buf);
2247 make_cleanup_obstack_free (&wchar_buf);
2248
2249 while (1)
2250 {
2251 int num_chars;
2252 gdb_wchar_t *chars;
2253 const gdb_byte *buf;
2254 size_t buflen;
2255 int print_escape = 1;
2256 enum wchar_iterate_result result;
2257
2258 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2259 if (num_chars < 0)
2260 break;
2261 if (num_chars > 0)
2262 {
2263 /* If all characters are printable, print them. Otherwise,
2264 we're going to have to print an escape sequence. We
2265 check all characters because we want to print the target
2266 bytes in the escape sequence, and we don't know character
2267 boundaries there. */
2268 int i;
2269
2270 print_escape = 0;
2271 for (i = 0; i < num_chars; ++i)
2272 if (!wchar_printable (chars[i]))
2273 {
2274 print_escape = 1;
2275 break;
2276 }
2277
2278 if (!print_escape)
2279 {
2280 for (i = 0; i < num_chars; ++i)
2281 print_wchar (chars[i], buf, buflen,
2282 TYPE_LENGTH (type), byte_order,
2283 &wchar_buf, quoter, &need_escape);
2284 }
2285 }
2286
2287 /* This handles the NUM_CHARS == 0 case as well. */
2288 if (print_escape)
2289 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2290 byte_order, &wchar_buf, quoter, &need_escape);
2291 }
2292
2293 /* The output in the host encoding. */
2294 obstack_init (&output);
2295 make_cleanup_obstack_free (&output);
2296
2297 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2298 (gdb_byte *) obstack_base (&wchar_buf),
2299 obstack_object_size (&wchar_buf),
2300 sizeof (gdb_wchar_t), &output, translit_char);
2301 obstack_1grow (&output, '\0');
2302
2303 fputs_filtered (obstack_base (&output), stream);
2304
2305 do_cleanups (cleanups);
2306 }
2307
2308 /* Return the repeat count of the next character/byte in ITER,
2309 storing the result in VEC. */
2310
2311 static int
2312 count_next_character (struct wchar_iterator *iter,
2313 VEC (converted_character_d) **vec)
2314 {
2315 struct converted_character *current;
2316
2317 if (VEC_empty (converted_character_d, *vec))
2318 {
2319 struct converted_character tmp;
2320 gdb_wchar_t *chars;
2321
2322 tmp.num_chars
2323 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2324 if (tmp.num_chars > 0)
2325 {
2326 gdb_assert (tmp.num_chars < MAX_WCHARS);
2327 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2328 }
2329 VEC_safe_push (converted_character_d, *vec, &tmp);
2330 }
2331
2332 current = VEC_last (converted_character_d, *vec);
2333
2334 /* Count repeated characters or bytes. */
2335 current->repeat_count = 1;
2336 if (current->num_chars == -1)
2337 {
2338 /* EOF */
2339 return -1;
2340 }
2341 else
2342 {
2343 gdb_wchar_t *chars;
2344 struct converted_character d;
2345 int repeat;
2346
2347 d.repeat_count = 0;
2348
2349 while (1)
2350 {
2351 /* Get the next character. */
2352 d.num_chars
2353 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2354
2355 /* If a character was successfully converted, save the character
2356 into the converted character. */
2357 if (d.num_chars > 0)
2358 {
2359 gdb_assert (d.num_chars < MAX_WCHARS);
2360 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2361 }
2362
2363 /* Determine if the current character is the same as this
2364 new character. */
2365 if (d.num_chars == current->num_chars && d.result == current->result)
2366 {
2367 /* There are two cases to consider:
2368
2369 1) Equality of converted character (num_chars > 0)
2370 2) Equality of non-converted character (num_chars == 0) */
2371 if ((current->num_chars > 0
2372 && memcmp (current->chars, d.chars,
2373 WCHAR_BUFLEN (current->num_chars)) == 0)
2374 || (current->num_chars == 0
2375 && current->buflen == d.buflen
2376 && memcmp (current->buf, d.buf, current->buflen) == 0))
2377 ++current->repeat_count;
2378 else
2379 break;
2380 }
2381 else
2382 break;
2383 }
2384
2385 /* Push this next converted character onto the result vector. */
2386 repeat = current->repeat_count;
2387 VEC_safe_push (converted_character_d, *vec, &d);
2388 return repeat;
2389 }
2390 }
2391
2392 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2393 character to use with string output. WIDTH is the size of the output
2394 character type. BYTE_ORDER is the the target byte order. OPTIONS
2395 is the user's print options. */
2396
2397 static void
2398 print_converted_chars_to_obstack (struct obstack *obstack,
2399 VEC (converted_character_d) *chars,
2400 int quote_char, int width,
2401 enum bfd_endian byte_order,
2402 const struct value_print_options *options)
2403 {
2404 unsigned int idx;
2405 struct converted_character *elem;
2406 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2407 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2408 int need_escape = 0;
2409
2410 /* Set the start state. */
2411 idx = 0;
2412 last = state = START;
2413 elem = NULL;
2414
2415 while (1)
2416 {
2417 switch (state)
2418 {
2419 case START:
2420 /* Nothing to do. */
2421 break;
2422
2423 case SINGLE:
2424 {
2425 int j;
2426
2427 /* We are outputting a single character
2428 (< options->repeat_count_threshold). */
2429
2430 if (last != SINGLE)
2431 {
2432 /* We were outputting some other type of content, so we
2433 must output and a comma and a quote. */
2434 if (last != START)
2435 obstack_grow_wstr (obstack, LCST (", "));
2436 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2437 }
2438 /* Output the character. */
2439 for (j = 0; j < elem->repeat_count; ++j)
2440 {
2441 if (elem->result == wchar_iterate_ok)
2442 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2443 byte_order, obstack, quote_char, &need_escape);
2444 else
2445 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2446 byte_order, obstack, quote_char, &need_escape);
2447 }
2448 }
2449 break;
2450
2451 case REPEAT:
2452 {
2453 int j;
2454 char *s;
2455
2456 /* We are outputting a character with a repeat count
2457 greater than options->repeat_count_threshold. */
2458
2459 if (last == SINGLE)
2460 {
2461 /* We were outputting a single string. Terminate the
2462 string. */
2463 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2464 }
2465 if (last != START)
2466 obstack_grow_wstr (obstack, LCST (", "));
2467
2468 /* Output the character and repeat string. */
2469 obstack_grow_wstr (obstack, LCST ("'"));
2470 if (elem->result == wchar_iterate_ok)
2471 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2472 byte_order, obstack, quote_char, &need_escape);
2473 else
2474 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2475 byte_order, obstack, quote_char, &need_escape);
2476 obstack_grow_wstr (obstack, LCST ("'"));
2477 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2478 for (j = 0; s[j]; ++j)
2479 {
2480 gdb_wchar_t w = gdb_btowc (s[j]);
2481 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2482 }
2483 xfree (s);
2484 }
2485 break;
2486
2487 case INCOMPLETE:
2488 /* We are outputting an incomplete sequence. */
2489 if (last == SINGLE)
2490 {
2491 /* If we were outputting a string of SINGLE characters,
2492 terminate the quote. */
2493 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2494 }
2495 if (last != START)
2496 obstack_grow_wstr (obstack, LCST (", "));
2497
2498 /* Output the incomplete sequence string. */
2499 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2500 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2501 obstack, 0, &need_escape);
2502 obstack_grow_wstr (obstack, LCST (">"));
2503
2504 /* We do not attempt to outupt anything after this. */
2505 state = FINISH;
2506 break;
2507
2508 case FINISH:
2509 /* All done. If we were outputting a string of SINGLE
2510 characters, the string must be terminated. Otherwise,
2511 REPEAT and INCOMPLETE are always left properly terminated. */
2512 if (last == SINGLE)
2513 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2514
2515 return;
2516 }
2517
2518 /* Get the next element and state. */
2519 last = state;
2520 if (state != FINISH)
2521 {
2522 elem = VEC_index (converted_character_d, chars, idx++);
2523 switch (elem->result)
2524 {
2525 case wchar_iterate_ok:
2526 case wchar_iterate_invalid:
2527 if (elem->repeat_count > options->repeat_count_threshold)
2528 state = REPEAT;
2529 else
2530 state = SINGLE;
2531 break;
2532
2533 case wchar_iterate_incomplete:
2534 state = INCOMPLETE;
2535 break;
2536
2537 case wchar_iterate_eof:
2538 state = FINISH;
2539 break;
2540 }
2541 }
2542 }
2543 }
2544
2545 /* Print the character string STRING, printing at most LENGTH
2546 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2547 the type of each character. OPTIONS holds the printing options;
2548 printing stops early if the number hits print_max; repeat counts
2549 are printed as appropriate. Print ellipses at the end if we had to
2550 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2551 QUOTE_CHAR is the character to print at each end of the string. If
2552 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2553 omitted. */
2554
2555 void
2556 generic_printstr (struct ui_file *stream, struct type *type,
2557 const gdb_byte *string, unsigned int length,
2558 const char *encoding, int force_ellipses,
2559 int quote_char, int c_style_terminator,
2560 const struct value_print_options *options)
2561 {
2562 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2563 unsigned int i;
2564 int width = TYPE_LENGTH (type);
2565 struct obstack wchar_buf, output;
2566 struct cleanup *cleanup;
2567 struct wchar_iterator *iter;
2568 int finished = 0;
2569 struct converted_character *last;
2570 VEC (converted_character_d) *converted_chars;
2571
2572 if (length == -1)
2573 {
2574 unsigned long current_char = 1;
2575
2576 for (i = 0; current_char; ++i)
2577 {
2578 QUIT;
2579 current_char = extract_unsigned_integer (string + i * width,
2580 width, byte_order);
2581 }
2582 length = i;
2583 }
2584
2585 /* If the string was not truncated due to `set print elements', and
2586 the last byte of it is a null, we don't print that, in
2587 traditional C style. */
2588 if (c_style_terminator
2589 && !force_ellipses
2590 && length > 0
2591 && (extract_unsigned_integer (string + (length - 1) * width,
2592 width, byte_order) == 0))
2593 length--;
2594
2595 if (length == 0)
2596 {
2597 fputs_filtered ("\"\"", stream);
2598 return;
2599 }
2600
2601 /* Arrange to iterate over the characters, in wchar_t form. */
2602 iter = make_wchar_iterator (string, length * width, encoding, width);
2603 cleanup = make_cleanup_wchar_iterator (iter);
2604 converted_chars = NULL;
2605 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2606
2607 /* Convert characters until the string is over or the maximum
2608 number of printed characters has been reached. */
2609 i = 0;
2610 while (i < options->print_max)
2611 {
2612 int r;
2613
2614 QUIT;
2615
2616 /* Grab the next character and repeat count. */
2617 r = count_next_character (iter, &converted_chars);
2618
2619 /* If less than zero, the end of the input string was reached. */
2620 if (r < 0)
2621 break;
2622
2623 /* Otherwise, add the count to the total print count and get
2624 the next character. */
2625 i += r;
2626 }
2627
2628 /* Get the last element and determine if the entire string was
2629 processed. */
2630 last = VEC_last (converted_character_d, converted_chars);
2631 finished = (last->result == wchar_iterate_eof);
2632
2633 /* Ensure that CONVERTED_CHARS is terminated. */
2634 last->result = wchar_iterate_eof;
2635
2636 /* WCHAR_BUF is the obstack we use to represent the string in
2637 wchar_t form. */
2638 obstack_init (&wchar_buf);
2639 make_cleanup_obstack_free (&wchar_buf);
2640
2641 /* Print the output string to the obstack. */
2642 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2643 width, byte_order, options);
2644
2645 if (force_ellipses || !finished)
2646 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2647
2648 /* OUTPUT is where we collect `char's for printing. */
2649 obstack_init (&output);
2650 make_cleanup_obstack_free (&output);
2651
2652 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2653 (gdb_byte *) obstack_base (&wchar_buf),
2654 obstack_object_size (&wchar_buf),
2655 sizeof (gdb_wchar_t), &output, translit_char);
2656 obstack_1grow (&output, '\0');
2657
2658 fputs_filtered (obstack_base (&output), stream);
2659
2660 do_cleanups (cleanup);
2661 }
2662
2663 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2664 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2665 stops at the first null byte, otherwise printing proceeds (including null
2666 bytes) until either print_max or LEN characters have been printed,
2667 whichever is smaller. ENCODING is the name of the string's
2668 encoding. It can be NULL, in which case the target encoding is
2669 assumed. */
2670
2671 int
2672 val_print_string (struct type *elttype, const char *encoding,
2673 CORE_ADDR addr, int len,
2674 struct ui_file *stream,
2675 const struct value_print_options *options)
2676 {
2677 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2678 int errcode; /* Errno returned from bad reads. */
2679 int found_nul; /* Non-zero if we found the nul char. */
2680 unsigned int fetchlimit; /* Maximum number of chars to print. */
2681 int bytes_read;
2682 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2683 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2684 struct gdbarch *gdbarch = get_type_arch (elttype);
2685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2686 int width = TYPE_LENGTH (elttype);
2687
2688 /* First we need to figure out the limit on the number of characters we are
2689 going to attempt to fetch and print. This is actually pretty simple. If
2690 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2691 LEN is -1, then the limit is print_max. This is true regardless of
2692 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2693 because finding the null byte (or available memory) is what actually
2694 limits the fetch. */
2695
2696 fetchlimit = (len == -1 ? options->print_max : min (len,
2697 options->print_max));
2698
2699 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2700 &buffer, &bytes_read);
2701 old_chain = make_cleanup (xfree, buffer);
2702
2703 addr += bytes_read;
2704
2705 /* We now have either successfully filled the buffer to fetchlimit,
2706 or terminated early due to an error or finding a null char when
2707 LEN is -1. */
2708
2709 /* Determine found_nul by looking at the last character read. */
2710 found_nul = 0;
2711 if (bytes_read >= width)
2712 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2713 byte_order) == 0;
2714 if (len == -1 && !found_nul)
2715 {
2716 gdb_byte *peekbuf;
2717
2718 /* We didn't find a NUL terminator we were looking for. Attempt
2719 to peek at the next character. If not successful, or it is not
2720 a null byte, then force ellipsis to be printed. */
2721
2722 peekbuf = (gdb_byte *) alloca (width);
2723
2724 if (target_read_memory (addr, peekbuf, width) == 0
2725 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2726 force_ellipsis = 1;
2727 }
2728 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2729 {
2730 /* Getting an error when we have a requested length, or fetching less
2731 than the number of characters actually requested, always make us
2732 print ellipsis. */
2733 force_ellipsis = 1;
2734 }
2735
2736 /* If we get an error before fetching anything, don't print a string.
2737 But if we fetch something and then get an error, print the string
2738 and then the error message. */
2739 if (errcode == 0 || bytes_read > 0)
2740 {
2741 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2742 encoding, force_ellipsis, options);
2743 }
2744
2745 if (errcode != 0)
2746 {
2747 char *str;
2748
2749 str = memory_error_message (errcode, gdbarch, addr);
2750 make_cleanup (xfree, str);
2751
2752 fprintf_filtered (stream, "<error: ");
2753 fputs_filtered (str, stream);
2754 fprintf_filtered (stream, ">");
2755 }
2756
2757 gdb_flush (stream);
2758 do_cleanups (old_chain);
2759
2760 return (bytes_read / width);
2761 }
2762 \f
2763
2764 /* The 'set input-radix' command writes to this auxiliary variable.
2765 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2766 it is left unchanged. */
2767
2768 static unsigned input_radix_1 = 10;
2769
2770 /* Validate an input or output radix setting, and make sure the user
2771 knows what they really did here. Radix setting is confusing, e.g.
2772 setting the input radix to "10" never changes it! */
2773
2774 static void
2775 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2776 {
2777 set_input_radix_1 (from_tty, input_radix_1);
2778 }
2779
2780 static void
2781 set_input_radix_1 (int from_tty, unsigned radix)
2782 {
2783 /* We don't currently disallow any input radix except 0 or 1, which don't
2784 make any mathematical sense. In theory, we can deal with any input
2785 radix greater than 1, even if we don't have unique digits for every
2786 value from 0 to radix-1, but in practice we lose on large radix values.
2787 We should either fix the lossage or restrict the radix range more.
2788 (FIXME). */
2789
2790 if (radix < 2)
2791 {
2792 input_radix_1 = input_radix;
2793 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2794 radix);
2795 }
2796 input_radix_1 = input_radix = radix;
2797 if (from_tty)
2798 {
2799 printf_filtered (_("Input radix now set to "
2800 "decimal %u, hex %x, octal %o.\n"),
2801 radix, radix, radix);
2802 }
2803 }
2804
2805 /* The 'set output-radix' command writes to this auxiliary variable.
2806 If the requested radix is valid, OUTPUT_RADIX is updated,
2807 otherwise, it is left unchanged. */
2808
2809 static unsigned output_radix_1 = 10;
2810
2811 static void
2812 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2813 {
2814 set_output_radix_1 (from_tty, output_radix_1);
2815 }
2816
2817 static void
2818 set_output_radix_1 (int from_tty, unsigned radix)
2819 {
2820 /* Validate the radix and disallow ones that we aren't prepared to
2821 handle correctly, leaving the radix unchanged. */
2822 switch (radix)
2823 {
2824 case 16:
2825 user_print_options.output_format = 'x'; /* hex */
2826 break;
2827 case 10:
2828 user_print_options.output_format = 0; /* decimal */
2829 break;
2830 case 8:
2831 user_print_options.output_format = 'o'; /* octal */
2832 break;
2833 default:
2834 output_radix_1 = output_radix;
2835 error (_("Unsupported output radix ``decimal %u''; "
2836 "output radix unchanged."),
2837 radix);
2838 }
2839 output_radix_1 = output_radix = radix;
2840 if (from_tty)
2841 {
2842 printf_filtered (_("Output radix now set to "
2843 "decimal %u, hex %x, octal %o.\n"),
2844 radix, radix, radix);
2845 }
2846 }
2847
2848 /* Set both the input and output radix at once. Try to set the output radix
2849 first, since it has the most restrictive range. An radix that is valid as
2850 an output radix is also valid as an input radix.
2851
2852 It may be useful to have an unusual input radix. If the user wishes to
2853 set an input radix that is not valid as an output radix, he needs to use
2854 the 'set input-radix' command. */
2855
2856 static void
2857 set_radix (char *arg, int from_tty)
2858 {
2859 unsigned radix;
2860
2861 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2862 set_output_radix_1 (0, radix);
2863 set_input_radix_1 (0, radix);
2864 if (from_tty)
2865 {
2866 printf_filtered (_("Input and output radices now set to "
2867 "decimal %u, hex %x, octal %o.\n"),
2868 radix, radix, radix);
2869 }
2870 }
2871
2872 /* Show both the input and output radices. */
2873
2874 static void
2875 show_radix (char *arg, int from_tty)
2876 {
2877 if (from_tty)
2878 {
2879 if (input_radix == output_radix)
2880 {
2881 printf_filtered (_("Input and output radices set to "
2882 "decimal %u, hex %x, octal %o.\n"),
2883 input_radix, input_radix, input_radix);
2884 }
2885 else
2886 {
2887 printf_filtered (_("Input radix set to decimal "
2888 "%u, hex %x, octal %o.\n"),
2889 input_radix, input_radix, input_radix);
2890 printf_filtered (_("Output radix set to decimal "
2891 "%u, hex %x, octal %o.\n"),
2892 output_radix, output_radix, output_radix);
2893 }
2894 }
2895 }
2896 \f
2897
2898 static void
2899 set_print (char *arg, int from_tty)
2900 {
2901 printf_unfiltered (
2902 "\"set print\" must be followed by the name of a print subcommand.\n");
2903 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2904 }
2905
2906 static void
2907 show_print (char *args, int from_tty)
2908 {
2909 cmd_show_list (showprintlist, from_tty, "");
2910 }
2911
2912 static void
2913 set_print_raw (char *arg, int from_tty)
2914 {
2915 printf_unfiltered (
2916 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2917 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2918 }
2919
2920 static void
2921 show_print_raw (char *args, int from_tty)
2922 {
2923 cmd_show_list (showprintrawlist, from_tty, "");
2924 }
2925
2926 \f
2927 void
2928 _initialize_valprint (void)
2929 {
2930 add_prefix_cmd ("print", no_class, set_print,
2931 _("Generic command for setting how things print."),
2932 &setprintlist, "set print ", 0, &setlist);
2933 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2934 /* Prefer set print to set prompt. */
2935 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2936
2937 add_prefix_cmd ("print", no_class, show_print,
2938 _("Generic command for showing print settings."),
2939 &showprintlist, "show print ", 0, &showlist);
2940 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2941 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2942
2943 add_prefix_cmd ("raw", no_class, set_print_raw,
2944 _("\
2945 Generic command for setting what things to print in \"raw\" mode."),
2946 &setprintrawlist, "set print raw ", 0, &setprintlist);
2947 add_prefix_cmd ("raw", no_class, show_print_raw,
2948 _("Generic command for showing \"print raw\" settings."),
2949 &showprintrawlist, "show print raw ", 0, &showprintlist);
2950
2951 add_setshow_uinteger_cmd ("elements", no_class,
2952 &user_print_options.print_max, _("\
2953 Set limit on string chars or array elements to print."), _("\
2954 Show limit on string chars or array elements to print."), _("\
2955 \"set print elements unlimited\" causes there to be no limit."),
2956 NULL,
2957 show_print_max,
2958 &setprintlist, &showprintlist);
2959
2960 add_setshow_boolean_cmd ("null-stop", no_class,
2961 &user_print_options.stop_print_at_null, _("\
2962 Set printing of char arrays to stop at first null char."), _("\
2963 Show printing of char arrays to stop at first null char."), NULL,
2964 NULL,
2965 show_stop_print_at_null,
2966 &setprintlist, &showprintlist);
2967
2968 add_setshow_uinteger_cmd ("repeats", no_class,
2969 &user_print_options.repeat_count_threshold, _("\
2970 Set threshold for repeated print elements."), _("\
2971 Show threshold for repeated print elements."), _("\
2972 \"set print repeats unlimited\" causes all elements to be individually printed."),
2973 NULL,
2974 show_repeat_count_threshold,
2975 &setprintlist, &showprintlist);
2976
2977 add_setshow_boolean_cmd ("pretty", class_support,
2978 &user_print_options.prettyformat_structs, _("\
2979 Set pretty formatting of structures."), _("\
2980 Show pretty formatting of structures."), NULL,
2981 NULL,
2982 show_prettyformat_structs,
2983 &setprintlist, &showprintlist);
2984
2985 add_setshow_boolean_cmd ("union", class_support,
2986 &user_print_options.unionprint, _("\
2987 Set printing of unions interior to structures."), _("\
2988 Show printing of unions interior to structures."), NULL,
2989 NULL,
2990 show_unionprint,
2991 &setprintlist, &showprintlist);
2992
2993 add_setshow_boolean_cmd ("array", class_support,
2994 &user_print_options.prettyformat_arrays, _("\
2995 Set pretty formatting of arrays."), _("\
2996 Show pretty formatting of arrays."), NULL,
2997 NULL,
2998 show_prettyformat_arrays,
2999 &setprintlist, &showprintlist);
3000
3001 add_setshow_boolean_cmd ("address", class_support,
3002 &user_print_options.addressprint, _("\
3003 Set printing of addresses."), _("\
3004 Show printing of addresses."), NULL,
3005 NULL,
3006 show_addressprint,
3007 &setprintlist, &showprintlist);
3008
3009 add_setshow_boolean_cmd ("symbol", class_support,
3010 &user_print_options.symbol_print, _("\
3011 Set printing of symbol names when printing pointers."), _("\
3012 Show printing of symbol names when printing pointers."),
3013 NULL, NULL,
3014 show_symbol_print,
3015 &setprintlist, &showprintlist);
3016
3017 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3018 _("\
3019 Set default input radix for entering numbers."), _("\
3020 Show default input radix for entering numbers."), NULL,
3021 set_input_radix,
3022 show_input_radix,
3023 &setlist, &showlist);
3024
3025 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3026 _("\
3027 Set default output radix for printing of values."), _("\
3028 Show default output radix for printing of values."), NULL,
3029 set_output_radix,
3030 show_output_radix,
3031 &setlist, &showlist);
3032
3033 /* The "set radix" and "show radix" commands are special in that
3034 they are like normal set and show commands but allow two normally
3035 independent variables to be either set or shown with a single
3036 command. So the usual deprecated_add_set_cmd() and [deleted]
3037 add_show_from_set() commands aren't really appropriate. */
3038 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3039 longer true - show can display anything. */
3040 add_cmd ("radix", class_support, set_radix, _("\
3041 Set default input and output number radices.\n\
3042 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3043 Without an argument, sets both radices back to the default value of 10."),
3044 &setlist);
3045 add_cmd ("radix", class_support, show_radix, _("\
3046 Show the default input and output number radices.\n\
3047 Use 'show input-radix' or 'show output-radix' to independently show each."),
3048 &showlist);
3049
3050 add_setshow_boolean_cmd ("array-indexes", class_support,
3051 &user_print_options.print_array_indexes, _("\
3052 Set printing of array indexes."), _("\
3053 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3054 &setprintlist, &showprintlist);
3055 }
This page took 0.089454 seconds and 5 git commands to generate.