Constify add_prefix_cmd
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void set_input_radix (char *, int, struct cmd_list_element *);
88
89 static void set_input_radix_1 (int, unsigned);
90
91 static void set_output_radix (char *, int, struct cmd_list_element *);
92
93 static void set_output_radix_1 (int, unsigned);
94
95 static void val_print_type_code_flags (struct type *type,
96 const gdb_byte *valaddr,
97 struct ui_file *stream);
98
99 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
100
101 struct value_print_options user_print_options =
102 {
103 Val_prettyformat_default, /* prettyformat */
104 0, /* prettyformat_arrays */
105 0, /* prettyformat_structs */
106 0, /* vtblprint */
107 1, /* unionprint */
108 1, /* addressprint */
109 0, /* objectprint */
110 PRINT_MAX_DEFAULT, /* print_max */
111 10, /* repeat_count_threshold */
112 0, /* output_format */
113 0, /* format */
114 0, /* stop_print_at_null */
115 0, /* print_array_indexes */
116 0, /* deref_ref */
117 1, /* static_field_print */
118 1, /* pascal_static_field_print */
119 0, /* raw */
120 0, /* summary */
121 1 /* symbol_print */
122 };
123
124 /* Initialize *OPTS to be a copy of the user print options. */
125 void
126 get_user_print_options (struct value_print_options *opts)
127 {
128 *opts = user_print_options;
129 }
130
131 /* Initialize *OPTS to be a copy of the user print options, but with
132 pretty-formatting disabled. */
133 void
134 get_no_prettyformat_print_options (struct value_print_options *opts)
135 {
136 *opts = user_print_options;
137 opts->prettyformat = Val_no_prettyformat;
138 }
139
140 /* Initialize *OPTS to be a copy of the user print options, but using
141 FORMAT as the formatting option. */
142 void
143 get_formatted_print_options (struct value_print_options *opts,
144 char format)
145 {
146 *opts = user_print_options;
147 opts->format = format;
148 }
149
150 static void
151 show_print_max (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153 {
154 fprintf_filtered (file,
155 _("Limit on string chars or array "
156 "elements to print is %s.\n"),
157 value);
158 }
159
160
161 /* Default input and output radixes, and output format letter. */
162
163 unsigned input_radix = 10;
164 static void
165 show_input_radix (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file,
169 _("Default input radix for entering numbers is %s.\n"),
170 value);
171 }
172
173 unsigned output_radix = 10;
174 static void
175 show_output_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Default output radix for printing of values is %s.\n"),
180 value);
181 }
182
183 /* By default we print arrays without printing the index of each element in
184 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
185
186 static void
187 show_print_array_indexes (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189 {
190 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
191 }
192
193 /* Print repeat counts if there are more than this many repetitions of an
194 element in an array. Referenced by the low level language dependent
195 print routines. */
196
197 static void
198 show_repeat_count_threshold (struct ui_file *file, int from_tty,
199 struct cmd_list_element *c, const char *value)
200 {
201 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
202 value);
203 }
204
205 /* If nonzero, stops printing of char arrays at first null. */
206
207 static void
208 show_stop_print_at_null (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file,
212 _("Printing of char arrays to stop "
213 "at first null char is %s.\n"),
214 value);
215 }
216
217 /* Controls pretty printing of structures. */
218
219 static void
220 show_prettyformat_structs (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
224 }
225
226 /* Controls pretty printing of arrays. */
227
228 static void
229 show_prettyformat_arrays (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
233 }
234
235 /* If nonzero, causes unions inside structures or other unions to be
236 printed. */
237
238 static void
239 show_unionprint (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file,
243 _("Printing of unions interior to structures is %s.\n"),
244 value);
245 }
246
247 /* If nonzero, causes machine addresses to be printed in certain contexts. */
248
249 static void
250 show_addressprint (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
254 }
255
256 static void
257 show_symbol_print (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file,
261 _("Printing of symbols when printing pointers is %s.\n"),
262 value);
263 }
264
265 \f
266
267 /* A helper function for val_print. When printing in "summary" mode,
268 we want to print scalar arguments, but not aggregate arguments.
269 This function distinguishes between the two. */
270
271 int
272 val_print_scalar_type_p (struct type *type)
273 {
274 type = check_typedef (type);
275 while (TYPE_IS_REFERENCE (type))
276 {
277 type = TYPE_TARGET_TYPE (type);
278 type = check_typedef (type);
279 }
280 switch (TYPE_CODE (type))
281 {
282 case TYPE_CODE_ARRAY:
283 case TYPE_CODE_STRUCT:
284 case TYPE_CODE_UNION:
285 case TYPE_CODE_SET:
286 case TYPE_CODE_STRING:
287 return 0;
288 default:
289 return 1;
290 }
291 }
292
293 /* See its definition in value.h. */
294
295 int
296 valprint_check_validity (struct ui_file *stream,
297 struct type *type,
298 LONGEST embedded_offset,
299 const struct value *val)
300 {
301 type = check_typedef (type);
302
303 if (type_not_associated (type))
304 {
305 val_print_not_associated (stream);
306 return 0;
307 }
308
309 if (type_not_allocated (type))
310 {
311 val_print_not_allocated (stream);
312 return 0;
313 }
314
315 if (TYPE_CODE (type) != TYPE_CODE_UNION
316 && TYPE_CODE (type) != TYPE_CODE_STRUCT
317 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
318 {
319 if (value_bits_any_optimized_out (val,
320 TARGET_CHAR_BIT * embedded_offset,
321 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
322 {
323 val_print_optimized_out (val, stream);
324 return 0;
325 }
326
327 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
328 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
329 {
330 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
331 int ref_is_addressable = 0;
332
333 if (is_ref)
334 {
335 const struct value *deref_val = coerce_ref_if_computed (val);
336
337 if (deref_val != NULL)
338 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
339 }
340
341 if (!is_ref || !ref_is_addressable)
342 fputs_filtered (_("<synthetic pointer>"), stream);
343
344 /* C++ references should be valid even if they're synthetic. */
345 return is_ref;
346 }
347
348 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
349 {
350 val_print_unavailable (stream);
351 return 0;
352 }
353 }
354
355 return 1;
356 }
357
358 void
359 val_print_optimized_out (const struct value *val, struct ui_file *stream)
360 {
361 if (val != NULL && value_lval_const (val) == lval_register)
362 val_print_not_saved (stream);
363 else
364 fprintf_filtered (stream, _("<optimized out>"));
365 }
366
367 void
368 val_print_not_saved (struct ui_file *stream)
369 {
370 fprintf_filtered (stream, _("<not saved>"));
371 }
372
373 void
374 val_print_unavailable (struct ui_file *stream)
375 {
376 fprintf_filtered (stream, _("<unavailable>"));
377 }
378
379 void
380 val_print_invalid_address (struct ui_file *stream)
381 {
382 fprintf_filtered (stream, _("<invalid address>"));
383 }
384
385 /* Print a pointer based on the type of its target.
386
387 Arguments to this functions are roughly the same as those in
388 generic_val_print. A difference is that ADDRESS is the address to print,
389 with embedded_offset already added. ELTTYPE represents
390 the pointed type after check_typedef. */
391
392 static void
393 print_unpacked_pointer (struct type *type, struct type *elttype,
394 CORE_ADDR address, struct ui_file *stream,
395 const struct value_print_options *options)
396 {
397 struct gdbarch *gdbarch = get_type_arch (type);
398
399 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
400 {
401 /* Try to print what function it points to. */
402 print_function_pointer_address (options, gdbarch, address, stream);
403 return;
404 }
405
406 if (options->symbol_print)
407 print_address_demangle (options, gdbarch, address, stream, demangle);
408 else if (options->addressprint)
409 fputs_filtered (paddress (gdbarch, address), stream);
410 }
411
412 /* generic_val_print helper for TYPE_CODE_ARRAY. */
413
414 static void
415 generic_val_print_array (struct type *type,
416 int embedded_offset, CORE_ADDR address,
417 struct ui_file *stream, int recurse,
418 struct value *original_value,
419 const struct value_print_options *options,
420 const struct
421 generic_val_print_decorations *decorations)
422 {
423 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
424 struct type *elttype = check_typedef (unresolved_elttype);
425
426 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
427 {
428 LONGEST low_bound, high_bound;
429
430 if (!get_array_bounds (type, &low_bound, &high_bound))
431 error (_("Could not determine the array high bound"));
432
433 if (options->prettyformat_arrays)
434 {
435 print_spaces_filtered (2 + 2 * recurse, stream);
436 }
437
438 fputs_filtered (decorations->array_start, stream);
439 val_print_array_elements (type, embedded_offset,
440 address, stream,
441 recurse, original_value, options, 0);
442 fputs_filtered (decorations->array_end, stream);
443 }
444 else
445 {
446 /* Array of unspecified length: treat like pointer to first elt. */
447 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
448 options);
449 }
450
451 }
452
453 /* generic_val_print helper for TYPE_CODE_PTR. */
454
455 static void
456 generic_val_print_ptr (struct type *type,
457 int embedded_offset, struct ui_file *stream,
458 struct value *original_value,
459 const struct value_print_options *options)
460 {
461 struct gdbarch *gdbarch = get_type_arch (type);
462 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
463
464 if (options->format && options->format != 's')
465 {
466 val_print_scalar_formatted (type, embedded_offset,
467 original_value, options, 0, stream);
468 }
469 else
470 {
471 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
472 struct type *elttype = check_typedef (unresolved_elttype);
473 const gdb_byte *valaddr = value_contents_for_printing (original_value);
474 CORE_ADDR addr = unpack_pointer (type,
475 valaddr + embedded_offset * unit_size);
476
477 print_unpacked_pointer (type, elttype, addr, stream, options);
478 }
479 }
480
481
482 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
483
484 static void
485 generic_val_print_memberptr (struct type *type,
486 int embedded_offset, struct ui_file *stream,
487 struct value *original_value,
488 const struct value_print_options *options)
489 {
490 val_print_scalar_formatted (type, embedded_offset,
491 original_value, options, 0, stream);
492 }
493
494 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
495
496 static void
497 print_ref_address (struct type *type, const gdb_byte *address_buffer,
498 int embedded_offset, struct ui_file *stream)
499 {
500 struct gdbarch *gdbarch = get_type_arch (type);
501
502 if (address_buffer != NULL)
503 {
504 CORE_ADDR address
505 = extract_typed_address (address_buffer + embedded_offset, type);
506
507 fprintf_filtered (stream, "@");
508 fputs_filtered (paddress (gdbarch, address), stream);
509 }
510 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
511 }
512
513 /* If VAL is addressable, return the value contents buffer of a value that
514 represents a pointer to VAL. Otherwise return NULL. */
515
516 static const gdb_byte *
517 get_value_addr_contents (struct value *deref_val)
518 {
519 gdb_assert (deref_val != NULL);
520
521 if (value_lval_const (deref_val) == lval_memory)
522 return value_contents_for_printing_const (value_addr (deref_val));
523 else
524 {
525 /* We have a non-addressable value, such as a DW_AT_const_value. */
526 return NULL;
527 }
528 }
529
530 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
531
532 static void
533 generic_val_print_ref (struct type *type,
534 int embedded_offset, struct ui_file *stream, int recurse,
535 struct value *original_value,
536 const struct value_print_options *options)
537 {
538 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
539 struct value *deref_val = NULL;
540 const int value_is_synthetic
541 = value_bits_synthetic_pointer (original_value,
542 TARGET_CHAR_BIT * embedded_offset,
543 TARGET_CHAR_BIT * TYPE_LENGTH (type));
544 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
545 || options->deref_ref);
546 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
547 const gdb_byte *valaddr = value_contents_for_printing (original_value);
548
549 if (must_coerce_ref && type_is_defined)
550 {
551 deref_val = coerce_ref_if_computed (original_value);
552
553 if (deref_val != NULL)
554 {
555 /* More complicated computed references are not supported. */
556 gdb_assert (embedded_offset == 0);
557 }
558 else
559 deref_val = value_at (TYPE_TARGET_TYPE (type),
560 unpack_pointer (type, valaddr + embedded_offset));
561 }
562 /* Else, original_value isn't a synthetic reference or we don't have to print
563 the reference's contents.
564
565 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
566 cause original_value to be a not_lval instead of an lval_computed,
567 which will make value_bits_synthetic_pointer return false.
568 This happens because if options->objectprint is true, c_value_print will
569 overwrite original_value's contents with the result of coercing
570 the reference through value_addr, and then set its type back to
571 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
572 we can simply treat it as non-synthetic and move on. */
573
574 if (options->addressprint)
575 {
576 const gdb_byte *address = (value_is_synthetic && type_is_defined
577 ? get_value_addr_contents (deref_val)
578 : valaddr);
579
580 print_ref_address (type, address, embedded_offset, stream);
581
582 if (options->deref_ref)
583 fputs_filtered (": ", stream);
584 }
585
586 if (options->deref_ref)
587 {
588 if (type_is_defined)
589 common_val_print (deref_val, stream, recurse, options,
590 current_language);
591 else
592 fputs_filtered ("???", stream);
593 }
594 }
595
596 /* Helper function for generic_val_print_enum.
597 This is also used to print enums in TYPE_CODE_FLAGS values. */
598
599 static void
600 generic_val_print_enum_1 (struct type *type, LONGEST val,
601 struct ui_file *stream)
602 {
603 unsigned int i;
604 unsigned int len;
605
606 len = TYPE_NFIELDS (type);
607 for (i = 0; i < len; i++)
608 {
609 QUIT;
610 if (val == TYPE_FIELD_ENUMVAL (type, i))
611 {
612 break;
613 }
614 }
615 if (i < len)
616 {
617 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
618 }
619 else if (TYPE_FLAG_ENUM (type))
620 {
621 int first = 1;
622
623 /* We have a "flag" enum, so we try to decompose it into
624 pieces as appropriate. A flag enum has disjoint
625 constants by definition. */
626 fputs_filtered ("(", stream);
627 for (i = 0; i < len; ++i)
628 {
629 QUIT;
630
631 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
632 {
633 if (!first)
634 fputs_filtered (" | ", stream);
635 first = 0;
636
637 val &= ~TYPE_FIELD_ENUMVAL (type, i);
638 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
639 }
640 }
641
642 if (first || val != 0)
643 {
644 if (!first)
645 fputs_filtered (" | ", stream);
646 fputs_filtered ("unknown: ", stream);
647 print_longest (stream, 'd', 0, val);
648 }
649
650 fputs_filtered (")", stream);
651 }
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655
656 /* generic_val_print helper for TYPE_CODE_ENUM. */
657
658 static void
659 generic_val_print_enum (struct type *type,
660 int embedded_offset, struct ui_file *stream,
661 struct value *original_value,
662 const struct value_print_options *options)
663 {
664 LONGEST val;
665 struct gdbarch *gdbarch = get_type_arch (type);
666 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
667
668 if (options->format)
669 {
670 val_print_scalar_formatted (type, embedded_offset,
671 original_value, options, 0, stream);
672 }
673 else
674 {
675 const gdb_byte *valaddr = value_contents_for_printing (original_value);
676
677 val = unpack_long (type, valaddr + embedded_offset * unit_size);
678
679 generic_val_print_enum_1 (type, val, stream);
680 }
681 }
682
683 /* generic_val_print helper for TYPE_CODE_FLAGS. */
684
685 static void
686 generic_val_print_flags (struct type *type,
687 int embedded_offset, struct ui_file *stream,
688 struct value *original_value,
689 const struct value_print_options *options)
690
691 {
692 if (options->format)
693 val_print_scalar_formatted (type, embedded_offset, original_value,
694 options, 0, stream);
695 else
696 {
697 const gdb_byte *valaddr = value_contents_for_printing (original_value);
698
699 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
700 }
701 }
702
703 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
704
705 static void
706 generic_val_print_func (struct type *type,
707 int embedded_offset, CORE_ADDR address,
708 struct ui_file *stream,
709 struct value *original_value,
710 const struct value_print_options *options)
711 {
712 struct gdbarch *gdbarch = get_type_arch (type);
713
714 if (options->format)
715 {
716 val_print_scalar_formatted (type, embedded_offset,
717 original_value, options, 0, stream);
718 }
719 else
720 {
721 /* FIXME, we should consider, at least for ANSI C language,
722 eliminating the distinction made between FUNCs and POINTERs
723 to FUNCs. */
724 fprintf_filtered (stream, "{");
725 type_print (type, "", stream, -1);
726 fprintf_filtered (stream, "} ");
727 /* Try to print what function it points to, and its address. */
728 print_address_demangle (options, gdbarch, address, stream, demangle);
729 }
730 }
731
732 /* generic_val_print helper for TYPE_CODE_BOOL. */
733
734 static void
735 generic_val_print_bool (struct type *type,
736 int embedded_offset, struct ui_file *stream,
737 struct value *original_value,
738 const struct value_print_options *options,
739 const struct generic_val_print_decorations *decorations)
740 {
741 LONGEST val;
742 struct gdbarch *gdbarch = get_type_arch (type);
743 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
744
745 if (options->format || options->output_format)
746 {
747 struct value_print_options opts = *options;
748 opts.format = (options->format ? options->format
749 : options->output_format);
750 val_print_scalar_formatted (type, embedded_offset,
751 original_value, &opts, 0, stream);
752 }
753 else
754 {
755 const gdb_byte *valaddr = value_contents_for_printing (original_value);
756
757 val = unpack_long (type, valaddr + embedded_offset * unit_size);
758 if (val == 0)
759 fputs_filtered (decorations->false_name, stream);
760 else if (val == 1)
761 fputs_filtered (decorations->true_name, stream);
762 else
763 print_longest (stream, 'd', 0, val);
764 }
765 }
766
767 /* generic_val_print helper for TYPE_CODE_INT. */
768
769 static void
770 generic_val_print_int (struct type *type,
771 int embedded_offset, struct ui_file *stream,
772 struct value *original_value,
773 const struct value_print_options *options)
774 {
775 struct value_print_options opts = *options;
776
777 opts.format = (options->format ? options->format
778 : options->output_format);
779 val_print_scalar_formatted (type, embedded_offset,
780 original_value, &opts, 0, stream);
781 }
782
783 /* generic_val_print helper for TYPE_CODE_CHAR. */
784
785 static void
786 generic_val_print_char (struct type *type, struct type *unresolved_type,
787 int embedded_offset,
788 struct ui_file *stream,
789 struct value *original_value,
790 const struct value_print_options *options)
791 {
792 LONGEST val;
793 struct gdbarch *gdbarch = get_type_arch (type);
794 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
795
796 if (options->format || options->output_format)
797 {
798 struct value_print_options opts = *options;
799
800 opts.format = (options->format ? options->format
801 : options->output_format);
802 val_print_scalar_formatted (type, embedded_offset,
803 original_value, &opts, 0, stream);
804 }
805 else
806 {
807 const gdb_byte *valaddr = value_contents_for_printing (original_value);
808
809 val = unpack_long (type, valaddr + embedded_offset * unit_size);
810 if (TYPE_UNSIGNED (type))
811 fprintf_filtered (stream, "%u", (unsigned int) val);
812 else
813 fprintf_filtered (stream, "%d", (int) val);
814 fputs_filtered (" ", stream);
815 LA_PRINT_CHAR (val, unresolved_type, stream);
816 }
817 }
818
819 /* generic_val_print helper for TYPE_CODE_FLT. */
820
821 static void
822 generic_val_print_float (struct type *type,
823 int embedded_offset, struct ui_file *stream,
824 struct value *original_value,
825 const struct value_print_options *options)
826 {
827 struct gdbarch *gdbarch = get_type_arch (type);
828 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
829
830 if (options->format)
831 {
832 val_print_scalar_formatted (type, embedded_offset,
833 original_value, options, 0, stream);
834 }
835 else
836 {
837 const gdb_byte *valaddr = value_contents_for_printing (original_value);
838
839 print_floating (valaddr + embedded_offset * unit_size, type, stream);
840 }
841 }
842
843 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
844
845 static void
846 generic_val_print_decfloat (struct type *type,
847 int embedded_offset, struct ui_file *stream,
848 struct value *original_value,
849 const struct value_print_options *options)
850 {
851 struct gdbarch *gdbarch = get_type_arch (type);
852 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
853
854 if (options->format)
855 val_print_scalar_formatted (type, embedded_offset, original_value,
856 options, 0, stream);
857 else
858 {
859 const gdb_byte *valaddr = value_contents_for_printing (original_value);
860
861 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
862 stream);
863 }
864 }
865
866 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
867
868 static void
869 generic_val_print_complex (struct type *type,
870 int embedded_offset, struct ui_file *stream,
871 struct value *original_value,
872 const struct value_print_options *options,
873 const struct generic_val_print_decorations
874 *decorations)
875 {
876 struct gdbarch *gdbarch = get_type_arch (type);
877 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
878 const gdb_byte *valaddr = value_contents_for_printing (original_value);
879
880 fprintf_filtered (stream, "%s", decorations->complex_prefix);
881 if (options->format)
882 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
883 embedded_offset, original_value, options, 0,
884 stream);
885 else
886 print_floating (valaddr + embedded_offset * unit_size,
887 TYPE_TARGET_TYPE (type), stream);
888 fprintf_filtered (stream, "%s", decorations->complex_infix);
889 if (options->format)
890 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
891 embedded_offset
892 + type_length_units (TYPE_TARGET_TYPE (type)),
893 original_value, options, 0, stream);
894 else
895 print_floating (valaddr + embedded_offset * unit_size
896 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
897 TYPE_TARGET_TYPE (type), stream);
898 fprintf_filtered (stream, "%s", decorations->complex_suffix);
899 }
900
901 /* A generic val_print that is suitable for use by language
902 implementations of the la_val_print method. This function can
903 handle most type codes, though not all, notably exception
904 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
905 the caller.
906
907 Most arguments are as to val_print.
908
909 The additional DECORATIONS argument can be used to customize the
910 output in some small, language-specific ways. */
911
912 void
913 generic_val_print (struct type *type,
914 int embedded_offset, CORE_ADDR address,
915 struct ui_file *stream, int recurse,
916 struct value *original_value,
917 const struct value_print_options *options,
918 const struct generic_val_print_decorations *decorations)
919 {
920 struct type *unresolved_type = type;
921
922 type = check_typedef (type);
923 switch (TYPE_CODE (type))
924 {
925 case TYPE_CODE_ARRAY:
926 generic_val_print_array (type, embedded_offset, address, stream,
927 recurse, original_value, options, decorations);
928 break;
929
930 case TYPE_CODE_MEMBERPTR:
931 generic_val_print_memberptr (type, embedded_offset, stream,
932 original_value, options);
933 break;
934
935 case TYPE_CODE_PTR:
936 generic_val_print_ptr (type, embedded_offset, stream,
937 original_value, options);
938 break;
939
940 case TYPE_CODE_REF:
941 case TYPE_CODE_RVALUE_REF:
942 generic_val_print_ref (type, embedded_offset, stream, recurse,
943 original_value, options);
944 break;
945
946 case TYPE_CODE_ENUM:
947 generic_val_print_enum (type, embedded_offset, stream,
948 original_value, options);
949 break;
950
951 case TYPE_CODE_FLAGS:
952 generic_val_print_flags (type, embedded_offset, stream,
953 original_value, options);
954 break;
955
956 case TYPE_CODE_FUNC:
957 case TYPE_CODE_METHOD:
958 generic_val_print_func (type, embedded_offset, address, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_BOOL:
963 generic_val_print_bool (type, embedded_offset, stream,
964 original_value, options, decorations);
965 break;
966
967 case TYPE_CODE_RANGE:
968 /* FIXME: create_static_range_type does not set the unsigned bit in a
969 range type (I think it probably should copy it from the
970 target type), so we won't print values which are too large to
971 fit in a signed integer correctly. */
972 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
973 print with the target type, though, because the size of our
974 type and the target type might differ). */
975
976 /* FALLTHROUGH */
977
978 case TYPE_CODE_INT:
979 generic_val_print_int (type, embedded_offset, stream,
980 original_value, options);
981 break;
982
983 case TYPE_CODE_CHAR:
984 generic_val_print_char (type, unresolved_type, embedded_offset,
985 stream, original_value, options);
986 break;
987
988 case TYPE_CODE_FLT:
989 generic_val_print_float (type, embedded_offset, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_DECFLOAT:
994 generic_val_print_decfloat (type, embedded_offset, stream,
995 original_value, options);
996 break;
997
998 case TYPE_CODE_VOID:
999 fputs_filtered (decorations->void_name, stream);
1000 break;
1001
1002 case TYPE_CODE_ERROR:
1003 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1004 break;
1005
1006 case TYPE_CODE_UNDEF:
1007 /* This happens (without TYPE_STUB set) on systems which don't use
1008 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1009 and no complete type for struct foo in that file. */
1010 fprintf_filtered (stream, _("<incomplete type>"));
1011 break;
1012
1013 case TYPE_CODE_COMPLEX:
1014 generic_val_print_complex (type, embedded_offset, stream,
1015 original_value, options, decorations);
1016 break;
1017
1018 case TYPE_CODE_UNION:
1019 case TYPE_CODE_STRUCT:
1020 case TYPE_CODE_METHODPTR:
1021 default:
1022 error (_("Unhandled type code %d in symbol table."),
1023 TYPE_CODE (type));
1024 }
1025 gdb_flush (stream);
1026 }
1027
1028 /* Print using the given LANGUAGE the data of type TYPE located at
1029 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1030 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1031 stdio stream STREAM according to OPTIONS. VAL is the whole object
1032 that came from ADDRESS.
1033
1034 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1035 further helper subroutines as subfields of TYPE are printed. In
1036 such cases, VAL is passed down unadjusted, so
1037 that VAL can be queried for metadata about the contents data being
1038 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1039 buffer. For example: "has this field been optimized out", or "I'm
1040 printing an object while inspecting a traceframe; has this
1041 particular piece of data been collected?".
1042
1043 RECURSE indicates the amount of indentation to supply before
1044 continuation lines; this amount is roughly twice the value of
1045 RECURSE. */
1046
1047 void
1048 val_print (struct type *type, LONGEST embedded_offset,
1049 CORE_ADDR address, struct ui_file *stream, int recurse,
1050 struct value *val,
1051 const struct value_print_options *options,
1052 const struct language_defn *language)
1053 {
1054 int ret = 0;
1055 struct value_print_options local_opts = *options;
1056 struct type *real_type = check_typedef (type);
1057
1058 if (local_opts.prettyformat == Val_prettyformat_default)
1059 local_opts.prettyformat = (local_opts.prettyformat_structs
1060 ? Val_prettyformat : Val_no_prettyformat);
1061
1062 QUIT;
1063
1064 /* Ensure that the type is complete and not just a stub. If the type is
1065 only a stub and we can't find and substitute its complete type, then
1066 print appropriate string and return. */
1067
1068 if (TYPE_STUB (real_type))
1069 {
1070 fprintf_filtered (stream, _("<incomplete type>"));
1071 gdb_flush (stream);
1072 return;
1073 }
1074
1075 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1076 return;
1077
1078 if (!options->raw)
1079 {
1080 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1081 address, stream, recurse,
1082 val, options, language);
1083 if (ret)
1084 return;
1085 }
1086
1087 /* Handle summary mode. If the value is a scalar, print it;
1088 otherwise, print an ellipsis. */
1089 if (options->summary && !val_print_scalar_type_p (type))
1090 {
1091 fprintf_filtered (stream, "...");
1092 return;
1093 }
1094
1095 TRY
1096 {
1097 language->la_val_print (type, embedded_offset, address,
1098 stream, recurse, val,
1099 &local_opts);
1100 }
1101 CATCH (except, RETURN_MASK_ERROR)
1102 {
1103 fprintf_filtered (stream, _("<error reading variable>"));
1104 }
1105 END_CATCH
1106 }
1107
1108 /* Check whether the value VAL is printable. Return 1 if it is;
1109 return 0 and print an appropriate error message to STREAM according to
1110 OPTIONS if it is not. */
1111
1112 static int
1113 value_check_printable (struct value *val, struct ui_file *stream,
1114 const struct value_print_options *options)
1115 {
1116 if (val == 0)
1117 {
1118 fprintf_filtered (stream, _("<address of value unknown>"));
1119 return 0;
1120 }
1121
1122 if (value_entirely_optimized_out (val))
1123 {
1124 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1125 fprintf_filtered (stream, "...");
1126 else
1127 val_print_optimized_out (val, stream);
1128 return 0;
1129 }
1130
1131 if (value_entirely_unavailable (val))
1132 {
1133 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1134 fprintf_filtered (stream, "...");
1135 else
1136 val_print_unavailable (stream);
1137 return 0;
1138 }
1139
1140 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1141 {
1142 fprintf_filtered (stream, _("<internal function %s>"),
1143 value_internal_function_name (val));
1144 return 0;
1145 }
1146
1147 if (type_not_associated (value_type (val)))
1148 {
1149 val_print_not_associated (stream);
1150 return 0;
1151 }
1152
1153 if (type_not_allocated (value_type (val)))
1154 {
1155 val_print_not_allocated (stream);
1156 return 0;
1157 }
1158
1159 return 1;
1160 }
1161
1162 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1163 to OPTIONS.
1164
1165 This is a preferable interface to val_print, above, because it uses
1166 GDB's value mechanism. */
1167
1168 void
1169 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1170 const struct value_print_options *options,
1171 const struct language_defn *language)
1172 {
1173 if (!value_check_printable (val, stream, options))
1174 return;
1175
1176 if (language->la_language == language_ada)
1177 /* The value might have a dynamic type, which would cause trouble
1178 below when trying to extract the value contents (since the value
1179 size is determined from the type size which is unknown). So
1180 get a fixed representation of our value. */
1181 val = ada_to_fixed_value (val);
1182
1183 if (value_lazy (val))
1184 value_fetch_lazy (val);
1185
1186 val_print (value_type (val),
1187 value_embedded_offset (val), value_address (val),
1188 stream, recurse,
1189 val, options, language);
1190 }
1191
1192 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1193 is printed using the current_language syntax. */
1194
1195 void
1196 value_print (struct value *val, struct ui_file *stream,
1197 const struct value_print_options *options)
1198 {
1199 if (!value_check_printable (val, stream, options))
1200 return;
1201
1202 if (!options->raw)
1203 {
1204 int r
1205 = apply_ext_lang_val_pretty_printer (value_type (val),
1206 value_embedded_offset (val),
1207 value_address (val),
1208 stream, 0,
1209 val, options, current_language);
1210
1211 if (r)
1212 return;
1213 }
1214
1215 LA_VALUE_PRINT (val, stream, options);
1216 }
1217
1218 static void
1219 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1220 struct ui_file *stream)
1221 {
1222 ULONGEST val = unpack_long (type, valaddr);
1223 int field, nfields = TYPE_NFIELDS (type);
1224 struct gdbarch *gdbarch = get_type_arch (type);
1225 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1226
1227 fputs_filtered ("[", stream);
1228 for (field = 0; field < nfields; field++)
1229 {
1230 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1231 {
1232 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1233
1234 if (field_type == bool_type
1235 /* We require boolean types here to be one bit wide. This is a
1236 problematic place to notify the user of an internal error
1237 though. Instead just fall through and print the field as an
1238 int. */
1239 && TYPE_FIELD_BITSIZE (type, field) == 1)
1240 {
1241 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1242 fprintf_filtered (stream, " %s",
1243 TYPE_FIELD_NAME (type, field));
1244 }
1245 else
1246 {
1247 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1248 ULONGEST field_val
1249 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1250
1251 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1252 field_val &= ((ULONGEST) 1 << field_len) - 1;
1253 fprintf_filtered (stream, " %s=",
1254 TYPE_FIELD_NAME (type, field));
1255 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1256 generic_val_print_enum_1 (field_type, field_val, stream);
1257 else
1258 print_longest (stream, 'd', 0, field_val);
1259 }
1260 }
1261 }
1262 fputs_filtered (" ]", stream);
1263 }
1264
1265 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1266 according to OPTIONS and SIZE on STREAM. Format i is not supported
1267 at this level.
1268
1269 This is how the elements of an array or structure are printed
1270 with a format. */
1271
1272 void
1273 val_print_scalar_formatted (struct type *type,
1274 LONGEST embedded_offset,
1275 struct value *val,
1276 const struct value_print_options *options,
1277 int size,
1278 struct ui_file *stream)
1279 {
1280 struct gdbarch *arch = get_type_arch (type);
1281 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1282
1283 gdb_assert (val != NULL);
1284
1285 /* If we get here with a string format, try again without it. Go
1286 all the way back to the language printers, which may call us
1287 again. */
1288 if (options->format == 's')
1289 {
1290 struct value_print_options opts = *options;
1291 opts.format = 0;
1292 opts.deref_ref = 0;
1293 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1294 current_language);
1295 return;
1296 }
1297
1298 /* value_contents_for_printing fetches all VAL's contents. They are
1299 needed to check whether VAL is optimized-out or unavailable
1300 below. */
1301 const gdb_byte *valaddr = value_contents_for_printing (val);
1302
1303 /* A scalar object that does not have all bits available can't be
1304 printed, because all bits contribute to its representation. */
1305 if (value_bits_any_optimized_out (val,
1306 TARGET_CHAR_BIT * embedded_offset,
1307 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1308 val_print_optimized_out (val, stream);
1309 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1310 val_print_unavailable (stream);
1311 else
1312 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1313 options, size, stream);
1314 }
1315
1316 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1317 The raison d'etre of this function is to consolidate printing of
1318 LONG_LONG's into this one function. The format chars b,h,w,g are
1319 from print_scalar_formatted(). Numbers are printed using C
1320 format.
1321
1322 USE_C_FORMAT means to use C format in all cases. Without it,
1323 'o' and 'x' format do not include the standard C radix prefix
1324 (leading 0 or 0x).
1325
1326 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1327 and was intended to request formating according to the current
1328 language and would be used for most integers that GDB prints. The
1329 exceptional cases were things like protocols where the format of
1330 the integer is a protocol thing, not a user-visible thing). The
1331 parameter remains to preserve the information of what things might
1332 be printed with language-specific format, should we ever resurrect
1333 that capability. */
1334
1335 void
1336 print_longest (struct ui_file *stream, int format, int use_c_format,
1337 LONGEST val_long)
1338 {
1339 const char *val;
1340
1341 switch (format)
1342 {
1343 case 'd':
1344 val = int_string (val_long, 10, 1, 0, 1); break;
1345 case 'u':
1346 val = int_string (val_long, 10, 0, 0, 1); break;
1347 case 'x':
1348 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1349 case 'b':
1350 val = int_string (val_long, 16, 0, 2, 1); break;
1351 case 'h':
1352 val = int_string (val_long, 16, 0, 4, 1); break;
1353 case 'w':
1354 val = int_string (val_long, 16, 0, 8, 1); break;
1355 case 'g':
1356 val = int_string (val_long, 16, 0, 16, 1); break;
1357 break;
1358 case 'o':
1359 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1360 default:
1361 internal_error (__FILE__, __LINE__,
1362 _("failed internal consistency check"));
1363 }
1364 fputs_filtered (val, stream);
1365 }
1366
1367 /* This used to be a macro, but I don't think it is called often enough
1368 to merit such treatment. */
1369 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1370 arguments to a function, number in a value history, register number, etc.)
1371 where the value must not be larger than can fit in an int. */
1372
1373 int
1374 longest_to_int (LONGEST arg)
1375 {
1376 /* Let the compiler do the work. */
1377 int rtnval = (int) arg;
1378
1379 /* Check for overflows or underflows. */
1380 if (sizeof (LONGEST) > sizeof (int))
1381 {
1382 if (rtnval != arg)
1383 {
1384 error (_("Value out of range."));
1385 }
1386 }
1387 return (rtnval);
1388 }
1389
1390 /* Print a floating point value of type TYPE (not always a
1391 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1392
1393 void
1394 print_floating (const gdb_byte *valaddr, struct type *type,
1395 struct ui_file *stream)
1396 {
1397 DOUBLEST doub;
1398 int inv;
1399 const struct floatformat *fmt = NULL;
1400 unsigned len = TYPE_LENGTH (type);
1401 enum float_kind kind;
1402
1403 /* If it is a floating-point, check for obvious problems. */
1404 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1405 fmt = floatformat_from_type (type);
1406 if (fmt != NULL)
1407 {
1408 kind = floatformat_classify (fmt, valaddr);
1409 if (kind == float_nan)
1410 {
1411 if (floatformat_is_negative (fmt, valaddr))
1412 fprintf_filtered (stream, "-");
1413 fprintf_filtered (stream, "nan(");
1414 fputs_filtered ("0x", stream);
1415 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1416 fprintf_filtered (stream, ")");
1417 return;
1418 }
1419 else if (kind == float_infinite)
1420 {
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fputs_filtered ("-", stream);
1423 fputs_filtered ("inf", stream);
1424 return;
1425 }
1426 }
1427
1428 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1429 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1430 needs to be used as that takes care of any necessary type
1431 conversions. Such conversions are of course direct to DOUBLEST
1432 and disregard any possible target floating point limitations.
1433 For instance, a u64 would be converted and displayed exactly on a
1434 host with 80 bit DOUBLEST but with loss of information on a host
1435 with 64 bit DOUBLEST. */
1436
1437 doub = unpack_double (type, valaddr, &inv);
1438 if (inv)
1439 {
1440 fprintf_filtered (stream, "<invalid float value>");
1441 return;
1442 }
1443
1444 /* FIXME: kettenis/2001-01-20: The following code makes too much
1445 assumptions about the host and target floating point format. */
1446
1447 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1448 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1449 instead uses the type's length to determine the precision of the
1450 floating-point value being printed. */
1451
1452 if (len < sizeof (double))
1453 fprintf_filtered (stream, "%.9g", (double) doub);
1454 else if (len == sizeof (double))
1455 fprintf_filtered (stream, "%.17g", (double) doub);
1456 else
1457 #ifdef PRINTF_HAS_LONG_DOUBLE
1458 fprintf_filtered (stream, "%.35Lg", doub);
1459 #else
1460 /* This at least wins with values that are representable as
1461 doubles. */
1462 fprintf_filtered (stream, "%.17g", (double) doub);
1463 #endif
1464 }
1465
1466 void
1467 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1468 struct ui_file *stream)
1469 {
1470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1471 unsigned len = TYPE_LENGTH (type);
1472
1473 std::string str = decimal_to_string (valaddr, len, byte_order);
1474 fputs_filtered (str.c_str (), stream);
1475 }
1476
1477 void
1478 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1479 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1480 {
1481 const gdb_byte *p;
1482 unsigned int i;
1483 int b;
1484 bool seen_a_one = false;
1485
1486 /* Declared "int" so it will be signed.
1487 This ensures that right shift will shift in zeros. */
1488
1489 const int mask = 0x080;
1490
1491 if (byte_order == BFD_ENDIAN_BIG)
1492 {
1493 for (p = valaddr;
1494 p < valaddr + len;
1495 p++)
1496 {
1497 /* Every byte has 8 binary characters; peel off
1498 and print from the MSB end. */
1499
1500 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1501 {
1502 if (*p & (mask >> i))
1503 b = '1';
1504 else
1505 b = '0';
1506
1507 if (zero_pad || seen_a_one || b == '1')
1508 fputc_filtered (b, stream);
1509 if (b == '1')
1510 seen_a_one = true;
1511 }
1512 }
1513 }
1514 else
1515 {
1516 for (p = valaddr + len - 1;
1517 p >= valaddr;
1518 p--)
1519 {
1520 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1521 {
1522 if (*p & (mask >> i))
1523 b = '1';
1524 else
1525 b = '0';
1526
1527 if (zero_pad || seen_a_one || b == '1')
1528 fputc_filtered (b, stream);
1529 if (b == '1')
1530 seen_a_one = true;
1531 }
1532 }
1533 }
1534
1535 /* When not zero-padding, ensure that something is printed when the
1536 input is 0. */
1537 if (!zero_pad && !seen_a_one)
1538 fputc_filtered ('0', stream);
1539 }
1540
1541 /* A helper for print_octal_chars that emits a single octal digit,
1542 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1543
1544 static void
1545 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1546 {
1547 if (*seen_a_one || digit != 0)
1548 fprintf_filtered (stream, "%o", digit);
1549 if (digit != 0)
1550 *seen_a_one = true;
1551 }
1552
1553 /* VALADDR points to an integer of LEN bytes.
1554 Print it in octal on stream or format it in buf. */
1555
1556 void
1557 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1558 unsigned len, enum bfd_endian byte_order)
1559 {
1560 const gdb_byte *p;
1561 unsigned char octa1, octa2, octa3, carry;
1562 int cycle;
1563
1564 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1565 * the extra bits, which cycle every three bytes:
1566 *
1567 * Byte side: 0 1 2 3
1568 * | | | |
1569 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1570 *
1571 * Octal side: 0 1 carry 3 4 carry ...
1572 *
1573 * Cycle number: 0 1 2
1574 *
1575 * But of course we are printing from the high side, so we have to
1576 * figure out where in the cycle we are so that we end up with no
1577 * left over bits at the end.
1578 */
1579 #define BITS_IN_OCTAL 3
1580 #define HIGH_ZERO 0340
1581 #define LOW_ZERO 0034
1582 #define CARRY_ZERO 0003
1583 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1584 "cycle zero constants are wrong");
1585 #define HIGH_ONE 0200
1586 #define MID_ONE 0160
1587 #define LOW_ONE 0016
1588 #define CARRY_ONE 0001
1589 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1590 "cycle one constants are wrong");
1591 #define HIGH_TWO 0300
1592 #define MID_TWO 0070
1593 #define LOW_TWO 0007
1594 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1595 "cycle two constants are wrong");
1596
1597 /* For 32 we start in cycle 2, with two bits and one bit carry;
1598 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1599
1600 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1601 carry = 0;
1602
1603 fputs_filtered ("0", stream);
1604 bool seen_a_one = false;
1605 if (byte_order == BFD_ENDIAN_BIG)
1606 {
1607 for (p = valaddr;
1608 p < valaddr + len;
1609 p++)
1610 {
1611 switch (cycle)
1612 {
1613 case 0:
1614 /* No carry in, carry out two bits. */
1615
1616 octa1 = (HIGH_ZERO & *p) >> 5;
1617 octa2 = (LOW_ZERO & *p) >> 2;
1618 carry = (CARRY_ZERO & *p);
1619 emit_octal_digit (stream, &seen_a_one, octa1);
1620 emit_octal_digit (stream, &seen_a_one, octa2);
1621 break;
1622
1623 case 1:
1624 /* Carry in two bits, carry out one bit. */
1625
1626 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1627 octa2 = (MID_ONE & *p) >> 4;
1628 octa3 = (LOW_ONE & *p) >> 1;
1629 carry = (CARRY_ONE & *p);
1630 emit_octal_digit (stream, &seen_a_one, octa1);
1631 emit_octal_digit (stream, &seen_a_one, octa2);
1632 emit_octal_digit (stream, &seen_a_one, octa3);
1633 break;
1634
1635 case 2:
1636 /* Carry in one bit, no carry out. */
1637
1638 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1639 octa2 = (MID_TWO & *p) >> 3;
1640 octa3 = (LOW_TWO & *p);
1641 carry = 0;
1642 emit_octal_digit (stream, &seen_a_one, octa1);
1643 emit_octal_digit (stream, &seen_a_one, octa2);
1644 emit_octal_digit (stream, &seen_a_one, octa3);
1645 break;
1646
1647 default:
1648 error (_("Internal error in octal conversion;"));
1649 }
1650
1651 cycle++;
1652 cycle = cycle % BITS_IN_OCTAL;
1653 }
1654 }
1655 else
1656 {
1657 for (p = valaddr + len - 1;
1658 p >= valaddr;
1659 p--)
1660 {
1661 switch (cycle)
1662 {
1663 case 0:
1664 /* Carry out, no carry in */
1665
1666 octa1 = (HIGH_ZERO & *p) >> 5;
1667 octa2 = (LOW_ZERO & *p) >> 2;
1668 carry = (CARRY_ZERO & *p);
1669 emit_octal_digit (stream, &seen_a_one, octa1);
1670 emit_octal_digit (stream, &seen_a_one, octa2);
1671 break;
1672
1673 case 1:
1674 /* Carry in, carry out */
1675
1676 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1677 octa2 = (MID_ONE & *p) >> 4;
1678 octa3 = (LOW_ONE & *p) >> 1;
1679 carry = (CARRY_ONE & *p);
1680 emit_octal_digit (stream, &seen_a_one, octa1);
1681 emit_octal_digit (stream, &seen_a_one, octa2);
1682 emit_octal_digit (stream, &seen_a_one, octa3);
1683 break;
1684
1685 case 2:
1686 /* Carry in, no carry out */
1687
1688 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1689 octa2 = (MID_TWO & *p) >> 3;
1690 octa3 = (LOW_TWO & *p);
1691 carry = 0;
1692 emit_octal_digit (stream, &seen_a_one, octa1);
1693 emit_octal_digit (stream, &seen_a_one, octa2);
1694 emit_octal_digit (stream, &seen_a_one, octa3);
1695 break;
1696
1697 default:
1698 error (_("Internal error in octal conversion;"));
1699 }
1700
1701 cycle++;
1702 cycle = cycle % BITS_IN_OCTAL;
1703 }
1704 }
1705
1706 }
1707
1708 /* Possibly negate the integer represented by BYTES. It contains LEN
1709 bytes in the specified byte order. If the integer is negative,
1710 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1711 nothing and return false. */
1712
1713 static bool
1714 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1715 enum bfd_endian byte_order,
1716 gdb::byte_vector *out_vec)
1717 {
1718 gdb_byte sign_byte;
1719 if (byte_order == BFD_ENDIAN_BIG)
1720 sign_byte = bytes[0];
1721 else
1722 sign_byte = bytes[len - 1];
1723 if ((sign_byte & 0x80) == 0)
1724 return false;
1725
1726 out_vec->resize (len);
1727
1728 /* Compute -x == 1 + ~x. */
1729 if (byte_order == BFD_ENDIAN_LITTLE)
1730 {
1731 unsigned carry = 1;
1732 for (unsigned i = 0; i < len; ++i)
1733 {
1734 unsigned tem = (0xff & ~bytes[i]) + carry;
1735 (*out_vec)[i] = tem & 0xff;
1736 carry = tem / 256;
1737 }
1738 }
1739 else
1740 {
1741 unsigned carry = 1;
1742 for (unsigned i = len; i > 0; --i)
1743 {
1744 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1745 (*out_vec)[i - 1] = tem & 0xff;
1746 carry = tem / 256;
1747 }
1748 }
1749
1750 return true;
1751 }
1752
1753 /* VALADDR points to an integer of LEN bytes.
1754 Print it in decimal on stream or format it in buf. */
1755
1756 void
1757 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1758 unsigned len, bool is_signed,
1759 enum bfd_endian byte_order)
1760 {
1761 #define TEN 10
1762 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1763 #define CARRY_LEFT( x ) ((x) % TEN)
1764 #define SHIFT( x ) ((x) << 4)
1765 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1766 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1767
1768 const gdb_byte *p;
1769 int carry;
1770 int decimal_len;
1771 int i, j, decimal_digits;
1772 int dummy;
1773 int flip;
1774
1775 gdb::byte_vector negated_bytes;
1776 if (is_signed
1777 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1778 {
1779 fputs_filtered ("-", stream);
1780 valaddr = negated_bytes.data ();
1781 }
1782
1783 /* Base-ten number is less than twice as many digits
1784 as the base 16 number, which is 2 digits per byte. */
1785
1786 decimal_len = len * 2 * 2;
1787 std::vector<unsigned char> digits (decimal_len, 0);
1788
1789 /* Ok, we have an unknown number of bytes of data to be printed in
1790 * decimal.
1791 *
1792 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1793 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1794 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1795 *
1796 * The trick is that "digits" holds a base-10 number, but sometimes
1797 * the individual digits are > 10.
1798 *
1799 * Outer loop is per nibble (hex digit) of input, from MSD end to
1800 * LSD end.
1801 */
1802 decimal_digits = 0; /* Number of decimal digits so far */
1803 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1804 flip = 0;
1805 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1806 {
1807 /*
1808 * Multiply current base-ten number by 16 in place.
1809 * Each digit was between 0 and 9, now is between
1810 * 0 and 144.
1811 */
1812 for (j = 0; j < decimal_digits; j++)
1813 {
1814 digits[j] = SHIFT (digits[j]);
1815 }
1816
1817 /* Take the next nibble off the input and add it to what
1818 * we've got in the LSB position. Bottom 'digit' is now
1819 * between 0 and 159.
1820 *
1821 * "flip" is used to run this loop twice for each byte.
1822 */
1823 if (flip == 0)
1824 {
1825 /* Take top nibble. */
1826
1827 digits[0] += HIGH_NIBBLE (*p);
1828 flip = 1;
1829 }
1830 else
1831 {
1832 /* Take low nibble and bump our pointer "p". */
1833
1834 digits[0] += LOW_NIBBLE (*p);
1835 if (byte_order == BFD_ENDIAN_BIG)
1836 p++;
1837 else
1838 p--;
1839 flip = 0;
1840 }
1841
1842 /* Re-decimalize. We have to do this often enough
1843 * that we don't overflow, but once per nibble is
1844 * overkill. Easier this way, though. Note that the
1845 * carry is often larger than 10 (e.g. max initial
1846 * carry out of lowest nibble is 15, could bubble all
1847 * the way up greater than 10). So we have to do
1848 * the carrying beyond the last current digit.
1849 */
1850 carry = 0;
1851 for (j = 0; j < decimal_len - 1; j++)
1852 {
1853 digits[j] += carry;
1854
1855 /* "/" won't handle an unsigned char with
1856 * a value that if signed would be negative.
1857 * So extend to longword int via "dummy".
1858 */
1859 dummy = digits[j];
1860 carry = CARRY_OUT (dummy);
1861 digits[j] = CARRY_LEFT (dummy);
1862
1863 if (j >= decimal_digits && carry == 0)
1864 {
1865 /*
1866 * All higher digits are 0 and we
1867 * no longer have a carry.
1868 *
1869 * Note: "j" is 0-based, "decimal_digits" is
1870 * 1-based.
1871 */
1872 decimal_digits = j + 1;
1873 break;
1874 }
1875 }
1876 }
1877
1878 /* Ok, now "digits" is the decimal representation, with
1879 the "decimal_digits" actual digits. Print! */
1880
1881 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1882 ;
1883
1884 for (; i >= 0; i--)
1885 {
1886 fprintf_filtered (stream, "%1d", digits[i]);
1887 }
1888 }
1889
1890 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1891
1892 void
1893 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1894 unsigned len, enum bfd_endian byte_order,
1895 bool zero_pad)
1896 {
1897 const gdb_byte *p;
1898
1899 fputs_filtered ("0x", stream);
1900 if (byte_order == BFD_ENDIAN_BIG)
1901 {
1902 p = valaddr;
1903
1904 if (!zero_pad)
1905 {
1906 /* Strip leading 0 bytes, but be sure to leave at least a
1907 single byte at the end. */
1908 for (; p < valaddr + len - 1 && !*p; ++p)
1909 ;
1910 }
1911
1912 const gdb_byte *first = p;
1913 for (;
1914 p < valaddr + len;
1915 p++)
1916 {
1917 /* When not zero-padding, use a different format for the
1918 very first byte printed. */
1919 if (!zero_pad && p == first)
1920 fprintf_filtered (stream, "%x", *p);
1921 else
1922 fprintf_filtered (stream, "%02x", *p);
1923 }
1924 }
1925 else
1926 {
1927 p = valaddr + len - 1;
1928
1929 if (!zero_pad)
1930 {
1931 /* Strip leading 0 bytes, but be sure to leave at least a
1932 single byte at the end. */
1933 for (; p >= valaddr + 1 && !*p; --p)
1934 ;
1935 }
1936
1937 const gdb_byte *first = p;
1938 for (;
1939 p >= valaddr;
1940 p--)
1941 {
1942 /* When not zero-padding, use a different format for the
1943 very first byte printed. */
1944 if (!zero_pad && p == first)
1945 fprintf_filtered (stream, "%x", *p);
1946 else
1947 fprintf_filtered (stream, "%02x", *p);
1948 }
1949 }
1950 }
1951
1952 /* VALADDR points to a char integer of LEN bytes.
1953 Print it out in appropriate language form on stream.
1954 Omit any leading zero chars. */
1955
1956 void
1957 print_char_chars (struct ui_file *stream, struct type *type,
1958 const gdb_byte *valaddr,
1959 unsigned len, enum bfd_endian byte_order)
1960 {
1961 const gdb_byte *p;
1962
1963 if (byte_order == BFD_ENDIAN_BIG)
1964 {
1965 p = valaddr;
1966 while (p < valaddr + len - 1 && *p == 0)
1967 ++p;
1968
1969 while (p < valaddr + len)
1970 {
1971 LA_EMIT_CHAR (*p, type, stream, '\'');
1972 ++p;
1973 }
1974 }
1975 else
1976 {
1977 p = valaddr + len - 1;
1978 while (p > valaddr && *p == 0)
1979 --p;
1980
1981 while (p >= valaddr)
1982 {
1983 LA_EMIT_CHAR (*p, type, stream, '\'');
1984 --p;
1985 }
1986 }
1987 }
1988
1989 /* Print function pointer with inferior address ADDRESS onto stdio
1990 stream STREAM. */
1991
1992 void
1993 print_function_pointer_address (const struct value_print_options *options,
1994 struct gdbarch *gdbarch,
1995 CORE_ADDR address,
1996 struct ui_file *stream)
1997 {
1998 CORE_ADDR func_addr
1999 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2000 &current_target);
2001
2002 /* If the function pointer is represented by a description, print
2003 the address of the description. */
2004 if (options->addressprint && func_addr != address)
2005 {
2006 fputs_filtered ("@", stream);
2007 fputs_filtered (paddress (gdbarch, address), stream);
2008 fputs_filtered (": ", stream);
2009 }
2010 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2011 }
2012
2013
2014 /* Print on STREAM using the given OPTIONS the index for the element
2015 at INDEX of an array whose index type is INDEX_TYPE. */
2016
2017 void
2018 maybe_print_array_index (struct type *index_type, LONGEST index,
2019 struct ui_file *stream,
2020 const struct value_print_options *options)
2021 {
2022 struct value *index_value;
2023
2024 if (!options->print_array_indexes)
2025 return;
2026
2027 index_value = value_from_longest (index_type, index);
2028
2029 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2030 }
2031
2032 /* Called by various <lang>_val_print routines to print elements of an
2033 array in the form "<elem1>, <elem2>, <elem3>, ...".
2034
2035 (FIXME?) Assumes array element separator is a comma, which is correct
2036 for all languages currently handled.
2037 (FIXME?) Some languages have a notation for repeated array elements,
2038 perhaps we should try to use that notation when appropriate. */
2039
2040 void
2041 val_print_array_elements (struct type *type,
2042 LONGEST embedded_offset,
2043 CORE_ADDR address, struct ui_file *stream,
2044 int recurse,
2045 struct value *val,
2046 const struct value_print_options *options,
2047 unsigned int i)
2048 {
2049 unsigned int things_printed = 0;
2050 unsigned len;
2051 struct type *elttype, *index_type, *base_index_type;
2052 unsigned eltlen;
2053 /* Position of the array element we are examining to see
2054 whether it is repeated. */
2055 unsigned int rep1;
2056 /* Number of repetitions we have detected so far. */
2057 unsigned int reps;
2058 LONGEST low_bound, high_bound;
2059 LONGEST low_pos, high_pos;
2060
2061 elttype = TYPE_TARGET_TYPE (type);
2062 eltlen = type_length_units (check_typedef (elttype));
2063 index_type = TYPE_INDEX_TYPE (type);
2064
2065 if (get_array_bounds (type, &low_bound, &high_bound))
2066 {
2067 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2068 base_index_type = TYPE_TARGET_TYPE (index_type);
2069 else
2070 base_index_type = index_type;
2071
2072 /* Non-contiguous enumerations types can by used as index types
2073 in some languages (e.g. Ada). In this case, the array length
2074 shall be computed from the positions of the first and last
2075 literal in the enumeration type, and not from the values
2076 of these literals. */
2077 if (!discrete_position (base_index_type, low_bound, &low_pos)
2078 || !discrete_position (base_index_type, high_bound, &high_pos))
2079 {
2080 warning (_("unable to get positions in array, use bounds instead"));
2081 low_pos = low_bound;
2082 high_pos = high_bound;
2083 }
2084
2085 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2086 But we have to be a little extra careful, because some languages
2087 such as Ada allow LOW_POS to be greater than HIGH_POS for
2088 empty arrays. In that situation, the array length is just zero,
2089 not negative! */
2090 if (low_pos > high_pos)
2091 len = 0;
2092 else
2093 len = high_pos - low_pos + 1;
2094 }
2095 else
2096 {
2097 warning (_("unable to get bounds of array, assuming null array"));
2098 low_bound = 0;
2099 len = 0;
2100 }
2101
2102 annotate_array_section_begin (i, elttype);
2103
2104 for (; i < len && things_printed < options->print_max; i++)
2105 {
2106 if (i != 0)
2107 {
2108 if (options->prettyformat_arrays)
2109 {
2110 fprintf_filtered (stream, ",\n");
2111 print_spaces_filtered (2 + 2 * recurse, stream);
2112 }
2113 else
2114 {
2115 fprintf_filtered (stream, ", ");
2116 }
2117 }
2118 wrap_here (n_spaces (2 + 2 * recurse));
2119 maybe_print_array_index (index_type, i + low_bound,
2120 stream, options);
2121
2122 rep1 = i + 1;
2123 reps = 1;
2124 /* Only check for reps if repeat_count_threshold is not set to
2125 UINT_MAX (unlimited). */
2126 if (options->repeat_count_threshold < UINT_MAX)
2127 {
2128 while (rep1 < len
2129 && value_contents_eq (val,
2130 embedded_offset + i * eltlen,
2131 val,
2132 (embedded_offset
2133 + rep1 * eltlen),
2134 eltlen))
2135 {
2136 ++reps;
2137 ++rep1;
2138 }
2139 }
2140
2141 if (reps > options->repeat_count_threshold)
2142 {
2143 val_print (elttype, embedded_offset + i * eltlen,
2144 address, stream, recurse + 1, val, options,
2145 current_language);
2146 annotate_elt_rep (reps);
2147 fprintf_filtered (stream, " <repeats %u times>", reps);
2148 annotate_elt_rep_end ();
2149
2150 i = rep1 - 1;
2151 things_printed += options->repeat_count_threshold;
2152 }
2153 else
2154 {
2155 val_print (elttype, embedded_offset + i * eltlen,
2156 address,
2157 stream, recurse + 1, val, options, current_language);
2158 annotate_elt ();
2159 things_printed++;
2160 }
2161 }
2162 annotate_array_section_end ();
2163 if (i < len)
2164 {
2165 fprintf_filtered (stream, "...");
2166 }
2167 }
2168
2169 /* Read LEN bytes of target memory at address MEMADDR, placing the
2170 results in GDB's memory at MYADDR. Returns a count of the bytes
2171 actually read, and optionally a target_xfer_status value in the
2172 location pointed to by ERRPTR if ERRPTR is non-null. */
2173
2174 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2175 function be eliminated. */
2176
2177 static int
2178 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2179 int len, int *errptr)
2180 {
2181 int nread; /* Number of bytes actually read. */
2182 int errcode; /* Error from last read. */
2183
2184 /* First try a complete read. */
2185 errcode = target_read_memory (memaddr, myaddr, len);
2186 if (errcode == 0)
2187 {
2188 /* Got it all. */
2189 nread = len;
2190 }
2191 else
2192 {
2193 /* Loop, reading one byte at a time until we get as much as we can. */
2194 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2195 {
2196 errcode = target_read_memory (memaddr++, myaddr++, 1);
2197 }
2198 /* If an error, the last read was unsuccessful, so adjust count. */
2199 if (errcode != 0)
2200 {
2201 nread--;
2202 }
2203 }
2204 if (errptr != NULL)
2205 {
2206 *errptr = errcode;
2207 }
2208 return (nread);
2209 }
2210
2211 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2212 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2213 allocated buffer containing the string, which the caller is responsible to
2214 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2215 success, or a target_xfer_status on failure.
2216
2217 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2218 (including eventual NULs in the middle or end of the string).
2219
2220 If LEN is -1, stops at the first null character (not necessarily
2221 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2222 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2223 the string.
2224
2225 Unless an exception is thrown, BUFFER will always be allocated, even on
2226 failure. In this case, some characters might have been read before the
2227 failure happened. Check BYTES_READ to recognize this situation.
2228
2229 Note: There was a FIXME asking to make this code use target_read_string,
2230 but this function is more general (can read past null characters, up to
2231 given LEN). Besides, it is used much more often than target_read_string
2232 so it is more tested. Perhaps callers of target_read_string should use
2233 this function instead? */
2234
2235 int
2236 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2237 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2238 {
2239 int errcode; /* Errno returned from bad reads. */
2240 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2241 gdb_byte *bufptr; /* Pointer to next available byte in
2242 buffer. */
2243 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2244
2245 /* Loop until we either have all the characters, or we encounter
2246 some error, such as bumping into the end of the address space. */
2247
2248 *buffer = NULL;
2249
2250 old_chain = make_cleanup (free_current_contents, buffer);
2251
2252 if (len > 0)
2253 {
2254 /* We want fetchlimit chars, so we might as well read them all in
2255 one operation. */
2256 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2257
2258 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2259 bufptr = *buffer;
2260
2261 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2262 / width;
2263 addr += nfetch * width;
2264 bufptr += nfetch * width;
2265 }
2266 else if (len == -1)
2267 {
2268 unsigned long bufsize = 0;
2269 unsigned int chunksize; /* Size of each fetch, in chars. */
2270 int found_nul; /* Non-zero if we found the nul char. */
2271 gdb_byte *limit; /* First location past end of fetch buffer. */
2272
2273 found_nul = 0;
2274 /* We are looking for a NUL terminator to end the fetching, so we
2275 might as well read in blocks that are large enough to be efficient,
2276 but not so large as to be slow if fetchlimit happens to be large.
2277 So we choose the minimum of 8 and fetchlimit. We used to use 200
2278 instead of 8 but 200 is way too big for remote debugging over a
2279 serial line. */
2280 chunksize = std::min (8u, fetchlimit);
2281
2282 do
2283 {
2284 QUIT;
2285 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2286
2287 if (*buffer == NULL)
2288 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2289 else
2290 *buffer = (gdb_byte *) xrealloc (*buffer,
2291 (nfetch + bufsize) * width);
2292
2293 bufptr = *buffer + bufsize * width;
2294 bufsize += nfetch;
2295
2296 /* Read as much as we can. */
2297 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2298 / width;
2299
2300 /* Scan this chunk for the null character that terminates the string
2301 to print. If found, we don't need to fetch any more. Note
2302 that bufptr is explicitly left pointing at the next character
2303 after the null character, or at the next character after the end
2304 of the buffer. */
2305
2306 limit = bufptr + nfetch * width;
2307 while (bufptr < limit)
2308 {
2309 unsigned long c;
2310
2311 c = extract_unsigned_integer (bufptr, width, byte_order);
2312 addr += width;
2313 bufptr += width;
2314 if (c == 0)
2315 {
2316 /* We don't care about any error which happened after
2317 the NUL terminator. */
2318 errcode = 0;
2319 found_nul = 1;
2320 break;
2321 }
2322 }
2323 }
2324 while (errcode == 0 /* no error */
2325 && bufptr - *buffer < fetchlimit * width /* no overrun */
2326 && !found_nul); /* haven't found NUL yet */
2327 }
2328 else
2329 { /* Length of string is really 0! */
2330 /* We always allocate *buffer. */
2331 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2332 errcode = 0;
2333 }
2334
2335 /* bufptr and addr now point immediately beyond the last byte which we
2336 consider part of the string (including a '\0' which ends the string). */
2337 *bytes_read = bufptr - *buffer;
2338
2339 QUIT;
2340
2341 discard_cleanups (old_chain);
2342
2343 return errcode;
2344 }
2345
2346 /* Return true if print_wchar can display W without resorting to a
2347 numeric escape, false otherwise. */
2348
2349 static int
2350 wchar_printable (gdb_wchar_t w)
2351 {
2352 return (gdb_iswprint (w)
2353 || w == LCST ('\a') || w == LCST ('\b')
2354 || w == LCST ('\f') || w == LCST ('\n')
2355 || w == LCST ('\r') || w == LCST ('\t')
2356 || w == LCST ('\v'));
2357 }
2358
2359 /* A helper function that converts the contents of STRING to wide
2360 characters and then appends them to OUTPUT. */
2361
2362 static void
2363 append_string_as_wide (const char *string,
2364 struct obstack *output)
2365 {
2366 for (; *string; ++string)
2367 {
2368 gdb_wchar_t w = gdb_btowc (*string);
2369 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2370 }
2371 }
2372
2373 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2374 original (target) bytes representing the character, ORIG_LEN is the
2375 number of valid bytes. WIDTH is the number of bytes in a base
2376 characters of the type. OUTPUT is an obstack to which wide
2377 characters are emitted. QUOTER is a (narrow) character indicating
2378 the style of quotes surrounding the character to be printed.
2379 NEED_ESCAPE is an in/out flag which is used to track numeric
2380 escapes across calls. */
2381
2382 static void
2383 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2384 int orig_len, int width,
2385 enum bfd_endian byte_order,
2386 struct obstack *output,
2387 int quoter, int *need_escapep)
2388 {
2389 int need_escape = *need_escapep;
2390
2391 *need_escapep = 0;
2392
2393 /* iswprint implementation on Windows returns 1 for tab character.
2394 In order to avoid different printout on this host, we explicitly
2395 use wchar_printable function. */
2396 switch (w)
2397 {
2398 case LCST ('\a'):
2399 obstack_grow_wstr (output, LCST ("\\a"));
2400 break;
2401 case LCST ('\b'):
2402 obstack_grow_wstr (output, LCST ("\\b"));
2403 break;
2404 case LCST ('\f'):
2405 obstack_grow_wstr (output, LCST ("\\f"));
2406 break;
2407 case LCST ('\n'):
2408 obstack_grow_wstr (output, LCST ("\\n"));
2409 break;
2410 case LCST ('\r'):
2411 obstack_grow_wstr (output, LCST ("\\r"));
2412 break;
2413 case LCST ('\t'):
2414 obstack_grow_wstr (output, LCST ("\\t"));
2415 break;
2416 case LCST ('\v'):
2417 obstack_grow_wstr (output, LCST ("\\v"));
2418 break;
2419 default:
2420 {
2421 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2422 && w != LCST ('8')
2423 && w != LCST ('9'))))
2424 {
2425 gdb_wchar_t wchar = w;
2426
2427 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2428 obstack_grow_wstr (output, LCST ("\\"));
2429 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2430 }
2431 else
2432 {
2433 int i;
2434
2435 for (i = 0; i + width <= orig_len; i += width)
2436 {
2437 char octal[30];
2438 ULONGEST value;
2439
2440 value = extract_unsigned_integer (&orig[i], width,
2441 byte_order);
2442 /* If the value fits in 3 octal digits, print it that
2443 way. Otherwise, print it as a hex escape. */
2444 if (value <= 0777)
2445 xsnprintf (octal, sizeof (octal), "\\%.3o",
2446 (int) (value & 0777));
2447 else
2448 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2449 append_string_as_wide (octal, output);
2450 }
2451 /* If we somehow have extra bytes, print them now. */
2452 while (i < orig_len)
2453 {
2454 char octal[5];
2455
2456 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2457 append_string_as_wide (octal, output);
2458 ++i;
2459 }
2460
2461 *need_escapep = 1;
2462 }
2463 break;
2464 }
2465 }
2466 }
2467
2468 /* Print the character C on STREAM as part of the contents of a
2469 literal string whose delimiter is QUOTER. ENCODING names the
2470 encoding of C. */
2471
2472 void
2473 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2474 int quoter, const char *encoding)
2475 {
2476 enum bfd_endian byte_order
2477 = gdbarch_byte_order (get_type_arch (type));
2478 gdb_byte *buf;
2479 int need_escape = 0;
2480
2481 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2482 pack_long (buf, type, c);
2483
2484 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2485
2486 /* This holds the printable form of the wchar_t data. */
2487 auto_obstack wchar_buf;
2488
2489 while (1)
2490 {
2491 int num_chars;
2492 gdb_wchar_t *chars;
2493 const gdb_byte *buf;
2494 size_t buflen;
2495 int print_escape = 1;
2496 enum wchar_iterate_result result;
2497
2498 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2499 if (num_chars < 0)
2500 break;
2501 if (num_chars > 0)
2502 {
2503 /* If all characters are printable, print them. Otherwise,
2504 we're going to have to print an escape sequence. We
2505 check all characters because we want to print the target
2506 bytes in the escape sequence, and we don't know character
2507 boundaries there. */
2508 int i;
2509
2510 print_escape = 0;
2511 for (i = 0; i < num_chars; ++i)
2512 if (!wchar_printable (chars[i]))
2513 {
2514 print_escape = 1;
2515 break;
2516 }
2517
2518 if (!print_escape)
2519 {
2520 for (i = 0; i < num_chars; ++i)
2521 print_wchar (chars[i], buf, buflen,
2522 TYPE_LENGTH (type), byte_order,
2523 &wchar_buf, quoter, &need_escape);
2524 }
2525 }
2526
2527 /* This handles the NUM_CHARS == 0 case as well. */
2528 if (print_escape)
2529 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2530 byte_order, &wchar_buf, quoter, &need_escape);
2531 }
2532
2533 /* The output in the host encoding. */
2534 auto_obstack output;
2535
2536 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2537 (gdb_byte *) obstack_base (&wchar_buf),
2538 obstack_object_size (&wchar_buf),
2539 sizeof (gdb_wchar_t), &output, translit_char);
2540 obstack_1grow (&output, '\0');
2541
2542 fputs_filtered ((const char *) obstack_base (&output), stream);
2543 }
2544
2545 /* Return the repeat count of the next character/byte in ITER,
2546 storing the result in VEC. */
2547
2548 static int
2549 count_next_character (wchar_iterator *iter,
2550 VEC (converted_character_d) **vec)
2551 {
2552 struct converted_character *current;
2553
2554 if (VEC_empty (converted_character_d, *vec))
2555 {
2556 struct converted_character tmp;
2557 gdb_wchar_t *chars;
2558
2559 tmp.num_chars
2560 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2561 if (tmp.num_chars > 0)
2562 {
2563 gdb_assert (tmp.num_chars < MAX_WCHARS);
2564 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2565 }
2566 VEC_safe_push (converted_character_d, *vec, &tmp);
2567 }
2568
2569 current = VEC_last (converted_character_d, *vec);
2570
2571 /* Count repeated characters or bytes. */
2572 current->repeat_count = 1;
2573 if (current->num_chars == -1)
2574 {
2575 /* EOF */
2576 return -1;
2577 }
2578 else
2579 {
2580 gdb_wchar_t *chars;
2581 struct converted_character d;
2582 int repeat;
2583
2584 d.repeat_count = 0;
2585
2586 while (1)
2587 {
2588 /* Get the next character. */
2589 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2590
2591 /* If a character was successfully converted, save the character
2592 into the converted character. */
2593 if (d.num_chars > 0)
2594 {
2595 gdb_assert (d.num_chars < MAX_WCHARS);
2596 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2597 }
2598
2599 /* Determine if the current character is the same as this
2600 new character. */
2601 if (d.num_chars == current->num_chars && d.result == current->result)
2602 {
2603 /* There are two cases to consider:
2604
2605 1) Equality of converted character (num_chars > 0)
2606 2) Equality of non-converted character (num_chars == 0) */
2607 if ((current->num_chars > 0
2608 && memcmp (current->chars, d.chars,
2609 WCHAR_BUFLEN (current->num_chars)) == 0)
2610 || (current->num_chars == 0
2611 && current->buflen == d.buflen
2612 && memcmp (current->buf, d.buf, current->buflen) == 0))
2613 ++current->repeat_count;
2614 else
2615 break;
2616 }
2617 else
2618 break;
2619 }
2620
2621 /* Push this next converted character onto the result vector. */
2622 repeat = current->repeat_count;
2623 VEC_safe_push (converted_character_d, *vec, &d);
2624 return repeat;
2625 }
2626 }
2627
2628 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2629 character to use with string output. WIDTH is the size of the output
2630 character type. BYTE_ORDER is the the target byte order. OPTIONS
2631 is the user's print options. */
2632
2633 static void
2634 print_converted_chars_to_obstack (struct obstack *obstack,
2635 VEC (converted_character_d) *chars,
2636 int quote_char, int width,
2637 enum bfd_endian byte_order,
2638 const struct value_print_options *options)
2639 {
2640 unsigned int idx;
2641 struct converted_character *elem;
2642 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2643 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2644 int need_escape = 0;
2645
2646 /* Set the start state. */
2647 idx = 0;
2648 last = state = START;
2649 elem = NULL;
2650
2651 while (1)
2652 {
2653 switch (state)
2654 {
2655 case START:
2656 /* Nothing to do. */
2657 break;
2658
2659 case SINGLE:
2660 {
2661 int j;
2662
2663 /* We are outputting a single character
2664 (< options->repeat_count_threshold). */
2665
2666 if (last != SINGLE)
2667 {
2668 /* We were outputting some other type of content, so we
2669 must output and a comma and a quote. */
2670 if (last != START)
2671 obstack_grow_wstr (obstack, LCST (", "));
2672 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2673 }
2674 /* Output the character. */
2675 for (j = 0; j < elem->repeat_count; ++j)
2676 {
2677 if (elem->result == wchar_iterate_ok)
2678 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2679 byte_order, obstack, quote_char, &need_escape);
2680 else
2681 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2682 byte_order, obstack, quote_char, &need_escape);
2683 }
2684 }
2685 break;
2686
2687 case REPEAT:
2688 {
2689 int j;
2690 char *s;
2691
2692 /* We are outputting a character with a repeat count
2693 greater than options->repeat_count_threshold. */
2694
2695 if (last == SINGLE)
2696 {
2697 /* We were outputting a single string. Terminate the
2698 string. */
2699 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2700 }
2701 if (last != START)
2702 obstack_grow_wstr (obstack, LCST (", "));
2703
2704 /* Output the character and repeat string. */
2705 obstack_grow_wstr (obstack, LCST ("'"));
2706 if (elem->result == wchar_iterate_ok)
2707 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2708 byte_order, obstack, quote_char, &need_escape);
2709 else
2710 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2711 byte_order, obstack, quote_char, &need_escape);
2712 obstack_grow_wstr (obstack, LCST ("'"));
2713 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2714 for (j = 0; s[j]; ++j)
2715 {
2716 gdb_wchar_t w = gdb_btowc (s[j]);
2717 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2718 }
2719 xfree (s);
2720 }
2721 break;
2722
2723 case INCOMPLETE:
2724 /* We are outputting an incomplete sequence. */
2725 if (last == SINGLE)
2726 {
2727 /* If we were outputting a string of SINGLE characters,
2728 terminate the quote. */
2729 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2730 }
2731 if (last != START)
2732 obstack_grow_wstr (obstack, LCST (", "));
2733
2734 /* Output the incomplete sequence string. */
2735 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2736 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2737 obstack, 0, &need_escape);
2738 obstack_grow_wstr (obstack, LCST (">"));
2739
2740 /* We do not attempt to outupt anything after this. */
2741 state = FINISH;
2742 break;
2743
2744 case FINISH:
2745 /* All done. If we were outputting a string of SINGLE
2746 characters, the string must be terminated. Otherwise,
2747 REPEAT and INCOMPLETE are always left properly terminated. */
2748 if (last == SINGLE)
2749 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2750
2751 return;
2752 }
2753
2754 /* Get the next element and state. */
2755 last = state;
2756 if (state != FINISH)
2757 {
2758 elem = VEC_index (converted_character_d, chars, idx++);
2759 switch (elem->result)
2760 {
2761 case wchar_iterate_ok:
2762 case wchar_iterate_invalid:
2763 if (elem->repeat_count > options->repeat_count_threshold)
2764 state = REPEAT;
2765 else
2766 state = SINGLE;
2767 break;
2768
2769 case wchar_iterate_incomplete:
2770 state = INCOMPLETE;
2771 break;
2772
2773 case wchar_iterate_eof:
2774 state = FINISH;
2775 break;
2776 }
2777 }
2778 }
2779 }
2780
2781 /* Print the character string STRING, printing at most LENGTH
2782 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2783 the type of each character. OPTIONS holds the printing options;
2784 printing stops early if the number hits print_max; repeat counts
2785 are printed as appropriate. Print ellipses at the end if we had to
2786 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2787 QUOTE_CHAR is the character to print at each end of the string. If
2788 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2789 omitted. */
2790
2791 void
2792 generic_printstr (struct ui_file *stream, struct type *type,
2793 const gdb_byte *string, unsigned int length,
2794 const char *encoding, int force_ellipses,
2795 int quote_char, int c_style_terminator,
2796 const struct value_print_options *options)
2797 {
2798 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2799 unsigned int i;
2800 int width = TYPE_LENGTH (type);
2801 struct cleanup *cleanup;
2802 int finished = 0;
2803 struct converted_character *last;
2804 VEC (converted_character_d) *converted_chars;
2805
2806 if (length == -1)
2807 {
2808 unsigned long current_char = 1;
2809
2810 for (i = 0; current_char; ++i)
2811 {
2812 QUIT;
2813 current_char = extract_unsigned_integer (string + i * width,
2814 width, byte_order);
2815 }
2816 length = i;
2817 }
2818
2819 /* If the string was not truncated due to `set print elements', and
2820 the last byte of it is a null, we don't print that, in
2821 traditional C style. */
2822 if (c_style_terminator
2823 && !force_ellipses
2824 && length > 0
2825 && (extract_unsigned_integer (string + (length - 1) * width,
2826 width, byte_order) == 0))
2827 length--;
2828
2829 if (length == 0)
2830 {
2831 fputs_filtered ("\"\"", stream);
2832 return;
2833 }
2834
2835 /* Arrange to iterate over the characters, in wchar_t form. */
2836 wchar_iterator iter (string, length * width, encoding, width);
2837 converted_chars = NULL;
2838 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2839 &converted_chars);
2840
2841 /* Convert characters until the string is over or the maximum
2842 number of printed characters has been reached. */
2843 i = 0;
2844 while (i < options->print_max)
2845 {
2846 int r;
2847
2848 QUIT;
2849
2850 /* Grab the next character and repeat count. */
2851 r = count_next_character (&iter, &converted_chars);
2852
2853 /* If less than zero, the end of the input string was reached. */
2854 if (r < 0)
2855 break;
2856
2857 /* Otherwise, add the count to the total print count and get
2858 the next character. */
2859 i += r;
2860 }
2861
2862 /* Get the last element and determine if the entire string was
2863 processed. */
2864 last = VEC_last (converted_character_d, converted_chars);
2865 finished = (last->result == wchar_iterate_eof);
2866
2867 /* Ensure that CONVERTED_CHARS is terminated. */
2868 last->result = wchar_iterate_eof;
2869
2870 /* WCHAR_BUF is the obstack we use to represent the string in
2871 wchar_t form. */
2872 auto_obstack wchar_buf;
2873
2874 /* Print the output string to the obstack. */
2875 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2876 width, byte_order, options);
2877
2878 if (force_ellipses || !finished)
2879 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2880
2881 /* OUTPUT is where we collect `char's for printing. */
2882 auto_obstack output;
2883
2884 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2885 (gdb_byte *) obstack_base (&wchar_buf),
2886 obstack_object_size (&wchar_buf),
2887 sizeof (gdb_wchar_t), &output, translit_char);
2888 obstack_1grow (&output, '\0');
2889
2890 fputs_filtered ((const char *) obstack_base (&output), stream);
2891
2892 do_cleanups (cleanup);
2893 }
2894
2895 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2896 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2897 stops at the first null byte, otherwise printing proceeds (including null
2898 bytes) until either print_max or LEN characters have been printed,
2899 whichever is smaller. ENCODING is the name of the string's
2900 encoding. It can be NULL, in which case the target encoding is
2901 assumed. */
2902
2903 int
2904 val_print_string (struct type *elttype, const char *encoding,
2905 CORE_ADDR addr, int len,
2906 struct ui_file *stream,
2907 const struct value_print_options *options)
2908 {
2909 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2910 int err; /* Non-zero if we got a bad read. */
2911 int found_nul; /* Non-zero if we found the nul char. */
2912 unsigned int fetchlimit; /* Maximum number of chars to print. */
2913 int bytes_read;
2914 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2915 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2916 struct gdbarch *gdbarch = get_type_arch (elttype);
2917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2918 int width = TYPE_LENGTH (elttype);
2919
2920 /* First we need to figure out the limit on the number of characters we are
2921 going to attempt to fetch and print. This is actually pretty simple. If
2922 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2923 LEN is -1, then the limit is print_max. This is true regardless of
2924 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2925 because finding the null byte (or available memory) is what actually
2926 limits the fetch. */
2927
2928 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2929 options->print_max));
2930
2931 err = read_string (addr, len, width, fetchlimit, byte_order,
2932 &buffer, &bytes_read);
2933 old_chain = make_cleanup (xfree, buffer);
2934
2935 addr += bytes_read;
2936
2937 /* We now have either successfully filled the buffer to fetchlimit,
2938 or terminated early due to an error or finding a null char when
2939 LEN is -1. */
2940
2941 /* Determine found_nul by looking at the last character read. */
2942 found_nul = 0;
2943 if (bytes_read >= width)
2944 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2945 byte_order) == 0;
2946 if (len == -1 && !found_nul)
2947 {
2948 gdb_byte *peekbuf;
2949
2950 /* We didn't find a NUL terminator we were looking for. Attempt
2951 to peek at the next character. If not successful, or it is not
2952 a null byte, then force ellipsis to be printed. */
2953
2954 peekbuf = (gdb_byte *) alloca (width);
2955
2956 if (target_read_memory (addr, peekbuf, width) == 0
2957 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2958 force_ellipsis = 1;
2959 }
2960 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2961 {
2962 /* Getting an error when we have a requested length, or fetching less
2963 than the number of characters actually requested, always make us
2964 print ellipsis. */
2965 force_ellipsis = 1;
2966 }
2967
2968 /* If we get an error before fetching anything, don't print a string.
2969 But if we fetch something and then get an error, print the string
2970 and then the error message. */
2971 if (err == 0 || bytes_read > 0)
2972 {
2973 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2974 encoding, force_ellipsis, options);
2975 }
2976
2977 if (err != 0)
2978 {
2979 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2980
2981 fprintf_filtered (stream, "<error: ");
2982 fputs_filtered (str.c_str (), stream);
2983 fprintf_filtered (stream, ">");
2984 }
2985
2986 gdb_flush (stream);
2987 do_cleanups (old_chain);
2988
2989 return (bytes_read / width);
2990 }
2991 \f
2992
2993 /* The 'set input-radix' command writes to this auxiliary variable.
2994 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2995 it is left unchanged. */
2996
2997 static unsigned input_radix_1 = 10;
2998
2999 /* Validate an input or output radix setting, and make sure the user
3000 knows what they really did here. Radix setting is confusing, e.g.
3001 setting the input radix to "10" never changes it! */
3002
3003 static void
3004 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3005 {
3006 set_input_radix_1 (from_tty, input_radix_1);
3007 }
3008
3009 static void
3010 set_input_radix_1 (int from_tty, unsigned radix)
3011 {
3012 /* We don't currently disallow any input radix except 0 or 1, which don't
3013 make any mathematical sense. In theory, we can deal with any input
3014 radix greater than 1, even if we don't have unique digits for every
3015 value from 0 to radix-1, but in practice we lose on large radix values.
3016 We should either fix the lossage or restrict the radix range more.
3017 (FIXME). */
3018
3019 if (radix < 2)
3020 {
3021 input_radix_1 = input_radix;
3022 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3023 radix);
3024 }
3025 input_radix_1 = input_radix = radix;
3026 if (from_tty)
3027 {
3028 printf_filtered (_("Input radix now set to "
3029 "decimal %u, hex %x, octal %o.\n"),
3030 radix, radix, radix);
3031 }
3032 }
3033
3034 /* The 'set output-radix' command writes to this auxiliary variable.
3035 If the requested radix is valid, OUTPUT_RADIX is updated,
3036 otherwise, it is left unchanged. */
3037
3038 static unsigned output_radix_1 = 10;
3039
3040 static void
3041 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3042 {
3043 set_output_radix_1 (from_tty, output_radix_1);
3044 }
3045
3046 static void
3047 set_output_radix_1 (int from_tty, unsigned radix)
3048 {
3049 /* Validate the radix and disallow ones that we aren't prepared to
3050 handle correctly, leaving the radix unchanged. */
3051 switch (radix)
3052 {
3053 case 16:
3054 user_print_options.output_format = 'x'; /* hex */
3055 break;
3056 case 10:
3057 user_print_options.output_format = 0; /* decimal */
3058 break;
3059 case 8:
3060 user_print_options.output_format = 'o'; /* octal */
3061 break;
3062 default:
3063 output_radix_1 = output_radix;
3064 error (_("Unsupported output radix ``decimal %u''; "
3065 "output radix unchanged."),
3066 radix);
3067 }
3068 output_radix_1 = output_radix = radix;
3069 if (from_tty)
3070 {
3071 printf_filtered (_("Output radix now set to "
3072 "decimal %u, hex %x, octal %o.\n"),
3073 radix, radix, radix);
3074 }
3075 }
3076
3077 /* Set both the input and output radix at once. Try to set the output radix
3078 first, since it has the most restrictive range. An radix that is valid as
3079 an output radix is also valid as an input radix.
3080
3081 It may be useful to have an unusual input radix. If the user wishes to
3082 set an input radix that is not valid as an output radix, he needs to use
3083 the 'set input-radix' command. */
3084
3085 static void
3086 set_radix (const char *arg, int from_tty)
3087 {
3088 unsigned radix;
3089
3090 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3091 set_output_radix_1 (0, radix);
3092 set_input_radix_1 (0, radix);
3093 if (from_tty)
3094 {
3095 printf_filtered (_("Input and output radices now set to "
3096 "decimal %u, hex %x, octal %o.\n"),
3097 radix, radix, radix);
3098 }
3099 }
3100
3101 /* Show both the input and output radices. */
3102
3103 static void
3104 show_radix (const char *arg, int from_tty)
3105 {
3106 if (from_tty)
3107 {
3108 if (input_radix == output_radix)
3109 {
3110 printf_filtered (_("Input and output radices set to "
3111 "decimal %u, hex %x, octal %o.\n"),
3112 input_radix, input_radix, input_radix);
3113 }
3114 else
3115 {
3116 printf_filtered (_("Input radix set to decimal "
3117 "%u, hex %x, octal %o.\n"),
3118 input_radix, input_radix, input_radix);
3119 printf_filtered (_("Output radix set to decimal "
3120 "%u, hex %x, octal %o.\n"),
3121 output_radix, output_radix, output_radix);
3122 }
3123 }
3124 }
3125 \f
3126
3127 static void
3128 set_print (const char *arg, int from_tty)
3129 {
3130 printf_unfiltered (
3131 "\"set print\" must be followed by the name of a print subcommand.\n");
3132 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3133 }
3134
3135 static void
3136 show_print (const char *args, int from_tty)
3137 {
3138 cmd_show_list (showprintlist, from_tty, "");
3139 }
3140
3141 static void
3142 set_print_raw (const char *arg, int from_tty)
3143 {
3144 printf_unfiltered (
3145 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3146 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3147 }
3148
3149 static void
3150 show_print_raw (const char *args, int from_tty)
3151 {
3152 cmd_show_list (showprintrawlist, from_tty, "");
3153 }
3154
3155 \f
3156 void
3157 _initialize_valprint (void)
3158 {
3159 add_prefix_cmd ("print", no_class, set_print,
3160 _("Generic command for setting how things print."),
3161 &setprintlist, "set print ", 0, &setlist);
3162 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3163 /* Prefer set print to set prompt. */
3164 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3165
3166 add_prefix_cmd ("print", no_class, show_print,
3167 _("Generic command for showing print settings."),
3168 &showprintlist, "show print ", 0, &showlist);
3169 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3170 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3171
3172 add_prefix_cmd ("raw", no_class, set_print_raw,
3173 _("\
3174 Generic command for setting what things to print in \"raw\" mode."),
3175 &setprintrawlist, "set print raw ", 0, &setprintlist);
3176 add_prefix_cmd ("raw", no_class, show_print_raw,
3177 _("Generic command for showing \"print raw\" settings."),
3178 &showprintrawlist, "show print raw ", 0, &showprintlist);
3179
3180 add_setshow_uinteger_cmd ("elements", no_class,
3181 &user_print_options.print_max, _("\
3182 Set limit on string chars or array elements to print."), _("\
3183 Show limit on string chars or array elements to print."), _("\
3184 \"set print elements unlimited\" causes there to be no limit."),
3185 NULL,
3186 show_print_max,
3187 &setprintlist, &showprintlist);
3188
3189 add_setshow_boolean_cmd ("null-stop", no_class,
3190 &user_print_options.stop_print_at_null, _("\
3191 Set printing of char arrays to stop at first null char."), _("\
3192 Show printing of char arrays to stop at first null char."), NULL,
3193 NULL,
3194 show_stop_print_at_null,
3195 &setprintlist, &showprintlist);
3196
3197 add_setshow_uinteger_cmd ("repeats", no_class,
3198 &user_print_options.repeat_count_threshold, _("\
3199 Set threshold for repeated print elements."), _("\
3200 Show threshold for repeated print elements."), _("\
3201 \"set print repeats unlimited\" causes all elements to be individually printed."),
3202 NULL,
3203 show_repeat_count_threshold,
3204 &setprintlist, &showprintlist);
3205
3206 add_setshow_boolean_cmd ("pretty", class_support,
3207 &user_print_options.prettyformat_structs, _("\
3208 Set pretty formatting of structures."), _("\
3209 Show pretty formatting of structures."), NULL,
3210 NULL,
3211 show_prettyformat_structs,
3212 &setprintlist, &showprintlist);
3213
3214 add_setshow_boolean_cmd ("union", class_support,
3215 &user_print_options.unionprint, _("\
3216 Set printing of unions interior to structures."), _("\
3217 Show printing of unions interior to structures."), NULL,
3218 NULL,
3219 show_unionprint,
3220 &setprintlist, &showprintlist);
3221
3222 add_setshow_boolean_cmd ("array", class_support,
3223 &user_print_options.prettyformat_arrays, _("\
3224 Set pretty formatting of arrays."), _("\
3225 Show pretty formatting of arrays."), NULL,
3226 NULL,
3227 show_prettyformat_arrays,
3228 &setprintlist, &showprintlist);
3229
3230 add_setshow_boolean_cmd ("address", class_support,
3231 &user_print_options.addressprint, _("\
3232 Set printing of addresses."), _("\
3233 Show printing of addresses."), NULL,
3234 NULL,
3235 show_addressprint,
3236 &setprintlist, &showprintlist);
3237
3238 add_setshow_boolean_cmd ("symbol", class_support,
3239 &user_print_options.symbol_print, _("\
3240 Set printing of symbol names when printing pointers."), _("\
3241 Show printing of symbol names when printing pointers."),
3242 NULL, NULL,
3243 show_symbol_print,
3244 &setprintlist, &showprintlist);
3245
3246 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3247 _("\
3248 Set default input radix for entering numbers."), _("\
3249 Show default input radix for entering numbers."), NULL,
3250 set_input_radix,
3251 show_input_radix,
3252 &setlist, &showlist);
3253
3254 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3255 _("\
3256 Set default output radix for printing of values."), _("\
3257 Show default output radix for printing of values."), NULL,
3258 set_output_radix,
3259 show_output_radix,
3260 &setlist, &showlist);
3261
3262 /* The "set radix" and "show radix" commands are special in that
3263 they are like normal set and show commands but allow two normally
3264 independent variables to be either set or shown with a single
3265 command. So the usual deprecated_add_set_cmd() and [deleted]
3266 add_show_from_set() commands aren't really appropriate. */
3267 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3268 longer true - show can display anything. */
3269 add_cmd ("radix", class_support, set_radix, _("\
3270 Set default input and output number radices.\n\
3271 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3272 Without an argument, sets both radices back to the default value of 10."),
3273 &setlist);
3274 add_cmd ("radix", class_support, show_radix, _("\
3275 Show the default input and output number radices.\n\
3276 Use 'show input-radix' or 'show output-radix' to independently show each."),
3277 &showlist);
3278
3279 add_setshow_boolean_cmd ("array-indexes", class_support,
3280 &user_print_options.print_array_indexes, _("\
3281 Set printing of array indexes."), _("\
3282 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3283 &setprintlist, &showprintlist);
3284 }
This page took 0.132846 seconds and 5 git commands to generate.