Handle partially optimized out values similarly to unavailable values
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "exceptions.h"
33 #include "dfp.h"
34 #include "extension.h"
35 #include "ada-lang.h"
36 #include "gdb_obstack.h"
37 #include "charset.h"
38 #include <ctype.h>
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 typedef struct converted_character converted_character_d;
74 DEF_VEC_O (converted_character_d);
75
76 /* Command lists for set/show print raw. */
77 struct cmd_list_element *setprintrawlist;
78 struct cmd_list_element *showprintrawlist;
79
80 /* Prototypes for local functions */
81
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 int len, int *errptr);
84
85 static void show_print (char *, int);
86
87 static void set_print (char *, int);
88
89 static void set_radix (char *, int);
90
91 static void show_radix (char *, int);
92
93 static void set_input_radix (char *, int, struct cmd_list_element *);
94
95 static void set_input_radix_1 (int, unsigned);
96
97 static void set_output_radix (char *, int, struct cmd_list_element *);
98
99 static void set_output_radix_1 (int, unsigned);
100
101 void _initialize_valprint (void);
102
103 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
104
105 struct value_print_options user_print_options =
106 {
107 Val_prettyformat_default, /* prettyformat */
108 0, /* prettyformat_arrays */
109 0, /* prettyformat_structs */
110 0, /* vtblprint */
111 1, /* unionprint */
112 1, /* addressprint */
113 0, /* objectprint */
114 PRINT_MAX_DEFAULT, /* print_max */
115 10, /* repeat_count_threshold */
116 0, /* output_format */
117 0, /* format */
118 0, /* stop_print_at_null */
119 0, /* print_array_indexes */
120 0, /* deref_ref */
121 1, /* static_field_print */
122 1, /* pascal_static_field_print */
123 0, /* raw */
124 0, /* summary */
125 1 /* symbol_print */
126 };
127
128 /* Initialize *OPTS to be a copy of the user print options. */
129 void
130 get_user_print_options (struct value_print_options *opts)
131 {
132 *opts = user_print_options;
133 }
134
135 /* Initialize *OPTS to be a copy of the user print options, but with
136 pretty-formatting disabled. */
137 void
138 get_no_prettyformat_print_options (struct value_print_options *opts)
139 {
140 *opts = user_print_options;
141 opts->prettyformat = Val_no_prettyformat;
142 }
143
144 /* Initialize *OPTS to be a copy of the user print options, but using
145 FORMAT as the formatting option. */
146 void
147 get_formatted_print_options (struct value_print_options *opts,
148 char format)
149 {
150 *opts = user_print_options;
151 opts->format = format;
152 }
153
154 static void
155 show_print_max (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file,
159 _("Limit on string chars or array "
160 "elements to print is %s.\n"),
161 value);
162 }
163
164
165 /* Default input and output radixes, and output format letter. */
166
167 unsigned input_radix = 10;
168 static void
169 show_input_radix (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file,
173 _("Default input radix for entering numbers is %s.\n"),
174 value);
175 }
176
177 unsigned output_radix = 10;
178 static void
179 show_output_radix (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file,
183 _("Default output radix for printing of values is %s.\n"),
184 value);
185 }
186
187 /* By default we print arrays without printing the index of each element in
188 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
189
190 static void
191 show_print_array_indexes (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
195 }
196
197 /* Print repeat counts if there are more than this many repetitions of an
198 element in an array. Referenced by the low level language dependent
199 print routines. */
200
201 static void
202 show_repeat_count_threshold (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
206 value);
207 }
208
209 /* If nonzero, stops printing of char arrays at first null. */
210
211 static void
212 show_stop_print_at_null (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Printing of char arrays to stop "
217 "at first null char is %s.\n"),
218 value);
219 }
220
221 /* Controls pretty printing of structures. */
222
223 static void
224 show_prettyformat_structs (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
228 }
229
230 /* Controls pretty printing of arrays. */
231
232 static void
233 show_prettyformat_arrays (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
237 }
238
239 /* If nonzero, causes unions inside structures or other unions to be
240 printed. */
241
242 static void
243 show_unionprint (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file,
247 _("Printing of unions interior to structures is %s.\n"),
248 value);
249 }
250
251 /* If nonzero, causes machine addresses to be printed in certain contexts. */
252
253 static void
254 show_addressprint (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
258 }
259
260 static void
261 show_symbol_print (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file,
265 _("Printing of symbols when printing pointers is %s.\n"),
266 value);
267 }
268
269 \f
270
271 /* A helper function for val_print. When printing in "summary" mode,
272 we want to print scalar arguments, but not aggregate arguments.
273 This function distinguishes between the two. */
274
275 int
276 val_print_scalar_type_p (struct type *type)
277 {
278 CHECK_TYPEDEF (type);
279 while (TYPE_CODE (type) == TYPE_CODE_REF)
280 {
281 type = TYPE_TARGET_TYPE (type);
282 CHECK_TYPEDEF (type);
283 }
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_ARRAY:
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_SET:
290 case TYPE_CODE_STRING:
291 return 0;
292 default:
293 return 1;
294 }
295 }
296
297 /* See its definition in value.h. */
298
299 int
300 valprint_check_validity (struct ui_file *stream,
301 struct type *type,
302 int embedded_offset,
303 const struct value *val)
304 {
305 CHECK_TYPEDEF (type);
306
307 if (TYPE_CODE (type) != TYPE_CODE_UNION
308 && TYPE_CODE (type) != TYPE_CODE_STRUCT
309 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
310 {
311 if (value_bits_any_optimized_out (val,
312 TARGET_CHAR_BIT * embedded_offset,
313 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
314 {
315 val_print_optimized_out (val, stream);
316 return 0;
317 }
318
319 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
320 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
321 {
322 fputs_filtered (_("<synthetic pointer>"), stream);
323 return 0;
324 }
325
326 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
327 {
328 val_print_unavailable (stream);
329 return 0;
330 }
331 }
332
333 return 1;
334 }
335
336 void
337 val_print_optimized_out (const struct value *val, struct ui_file *stream)
338 {
339 if (val != NULL && value_lval_const (val) == lval_register)
340 val_print_not_saved (stream);
341 else
342 fprintf_filtered (stream, _("<optimized out>"));
343 }
344
345 void
346 val_print_not_saved (struct ui_file *stream)
347 {
348 fprintf_filtered (stream, _("<not saved>"));
349 }
350
351 void
352 val_print_unavailable (struct ui_file *stream)
353 {
354 fprintf_filtered (stream, _("<unavailable>"));
355 }
356
357 void
358 val_print_invalid_address (struct ui_file *stream)
359 {
360 fprintf_filtered (stream, _("<invalid address>"));
361 }
362
363 /* A generic val_print that is suitable for use by language
364 implementations of the la_val_print method. This function can
365 handle most type codes, though not all, notably exception
366 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
367 the caller.
368
369 Most arguments are as to val_print.
370
371 The additional DECORATIONS argument can be used to customize the
372 output in some small, language-specific ways. */
373
374 void
375 generic_val_print (struct type *type, const gdb_byte *valaddr,
376 int embedded_offset, CORE_ADDR address,
377 struct ui_file *stream, int recurse,
378 const struct value *original_value,
379 const struct value_print_options *options,
380 const struct generic_val_print_decorations *decorations)
381 {
382 struct gdbarch *gdbarch = get_type_arch (type);
383 unsigned int i = 0; /* Number of characters printed. */
384 unsigned len;
385 struct type *elttype, *unresolved_elttype;
386 struct type *unresolved_type = type;
387 LONGEST val;
388 CORE_ADDR addr;
389
390 CHECK_TYPEDEF (type);
391 switch (TYPE_CODE (type))
392 {
393 case TYPE_CODE_ARRAY:
394 unresolved_elttype = TYPE_TARGET_TYPE (type);
395 elttype = check_typedef (unresolved_elttype);
396 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
397 {
398 LONGEST low_bound, high_bound;
399
400 if (!get_array_bounds (type, &low_bound, &high_bound))
401 error (_("Could not determine the array high bound"));
402
403 if (options->prettyformat_arrays)
404 {
405 print_spaces_filtered (2 + 2 * recurse, stream);
406 }
407
408 fprintf_filtered (stream, "{");
409 val_print_array_elements (type, valaddr, embedded_offset,
410 address, stream,
411 recurse, original_value, options, 0);
412 fprintf_filtered (stream, "}");
413 break;
414 }
415 /* Array of unspecified length: treat like pointer to first
416 elt. */
417 addr = address + embedded_offset;
418 goto print_unpacked_pointer;
419
420 case TYPE_CODE_MEMBERPTR:
421 val_print_scalar_formatted (type, valaddr, embedded_offset,
422 original_value, options, 0, stream);
423 break;
424
425 case TYPE_CODE_PTR:
426 if (options->format && options->format != 's')
427 {
428 val_print_scalar_formatted (type, valaddr, embedded_offset,
429 original_value, options, 0, stream);
430 break;
431 }
432 unresolved_elttype = TYPE_TARGET_TYPE (type);
433 elttype = check_typedef (unresolved_elttype);
434 {
435 addr = unpack_pointer (type, valaddr + embedded_offset);
436 print_unpacked_pointer:
437
438 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
439 {
440 /* Try to print what function it points to. */
441 print_function_pointer_address (options, gdbarch, addr, stream);
442 return;
443 }
444
445 if (options->symbol_print)
446 print_address_demangle (options, gdbarch, addr, stream, demangle);
447 else if (options->addressprint)
448 fputs_filtered (paddress (gdbarch, addr), stream);
449 }
450 break;
451
452 case TYPE_CODE_REF:
453 elttype = check_typedef (TYPE_TARGET_TYPE (type));
454 if (options->addressprint)
455 {
456 CORE_ADDR addr
457 = extract_typed_address (valaddr + embedded_offset, type);
458
459 fprintf_filtered (stream, "@");
460 fputs_filtered (paddress (gdbarch, addr), stream);
461 if (options->deref_ref)
462 fputs_filtered (": ", stream);
463 }
464 /* De-reference the reference. */
465 if (options->deref_ref)
466 {
467 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
468 {
469 struct value *deref_val;
470
471 deref_val = coerce_ref_if_computed (original_value);
472 if (deref_val != NULL)
473 {
474 /* More complicated computed references are not supported. */
475 gdb_assert (embedded_offset == 0);
476 }
477 else
478 deref_val = value_at (TYPE_TARGET_TYPE (type),
479 unpack_pointer (type,
480 (valaddr
481 + embedded_offset)));
482
483 common_val_print (deref_val, stream, recurse, options,
484 current_language);
485 }
486 else
487 fputs_filtered ("???", stream);
488 }
489 break;
490
491 case TYPE_CODE_ENUM:
492 if (options->format)
493 {
494 val_print_scalar_formatted (type, valaddr, embedded_offset,
495 original_value, options, 0, stream);
496 break;
497 }
498 len = TYPE_NFIELDS (type);
499 val = unpack_long (type, valaddr + embedded_offset);
500 for (i = 0; i < len; i++)
501 {
502 QUIT;
503 if (val == TYPE_FIELD_ENUMVAL (type, i))
504 {
505 break;
506 }
507 }
508 if (i < len)
509 {
510 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
511 }
512 else if (TYPE_FLAG_ENUM (type))
513 {
514 int first = 1;
515
516 /* We have a "flag" enum, so we try to decompose it into
517 pieces as appropriate. A flag enum has disjoint
518 constants by definition. */
519 fputs_filtered ("(", stream);
520 for (i = 0; i < len; ++i)
521 {
522 QUIT;
523
524 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
525 {
526 if (!first)
527 fputs_filtered (" | ", stream);
528 first = 0;
529
530 val &= ~TYPE_FIELD_ENUMVAL (type, i);
531 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
532 }
533 }
534
535 if (first || val != 0)
536 {
537 if (!first)
538 fputs_filtered (" | ", stream);
539 fputs_filtered ("unknown: ", stream);
540 print_longest (stream, 'd', 0, val);
541 }
542
543 fputs_filtered (")", stream);
544 }
545 else
546 print_longest (stream, 'd', 0, val);
547 break;
548
549 case TYPE_CODE_FLAGS:
550 if (options->format)
551 val_print_scalar_formatted (type, valaddr, embedded_offset,
552 original_value, options, 0, stream);
553 else
554 val_print_type_code_flags (type, valaddr + embedded_offset,
555 stream);
556 break;
557
558 case TYPE_CODE_FUNC:
559 case TYPE_CODE_METHOD:
560 if (options->format)
561 {
562 val_print_scalar_formatted (type, valaddr, embedded_offset,
563 original_value, options, 0, stream);
564 break;
565 }
566 /* FIXME, we should consider, at least for ANSI C language,
567 eliminating the distinction made between FUNCs and POINTERs
568 to FUNCs. */
569 fprintf_filtered (stream, "{");
570 type_print (type, "", stream, -1);
571 fprintf_filtered (stream, "} ");
572 /* Try to print what function it points to, and its address. */
573 print_address_demangle (options, gdbarch, address, stream, demangle);
574 break;
575
576 case TYPE_CODE_BOOL:
577 if (options->format || options->output_format)
578 {
579 struct value_print_options opts = *options;
580 opts.format = (options->format ? options->format
581 : options->output_format);
582 val_print_scalar_formatted (type, valaddr, embedded_offset,
583 original_value, &opts, 0, stream);
584 }
585 else
586 {
587 val = unpack_long (type, valaddr + embedded_offset);
588 if (val == 0)
589 fputs_filtered (decorations->false_name, stream);
590 else if (val == 1)
591 fputs_filtered (decorations->true_name, stream);
592 else
593 print_longest (stream, 'd', 0, val);
594 }
595 break;
596
597 case TYPE_CODE_RANGE:
598 /* FIXME: create_static_range_type does not set the unsigned bit in a
599 range type (I think it probably should copy it from the
600 target type), so we won't print values which are too large to
601 fit in a signed integer correctly. */
602 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
603 print with the target type, though, because the size of our
604 type and the target type might differ). */
605
606 /* FALLTHROUGH */
607
608 case TYPE_CODE_INT:
609 if (options->format || options->output_format)
610 {
611 struct value_print_options opts = *options;
612
613 opts.format = (options->format ? options->format
614 : options->output_format);
615 val_print_scalar_formatted (type, valaddr, embedded_offset,
616 original_value, &opts, 0, stream);
617 }
618 else
619 val_print_type_code_int (type, valaddr + embedded_offset, stream);
620 break;
621
622 case TYPE_CODE_CHAR:
623 if (options->format || options->output_format)
624 {
625 struct value_print_options opts = *options;
626
627 opts.format = (options->format ? options->format
628 : options->output_format);
629 val_print_scalar_formatted (type, valaddr, embedded_offset,
630 original_value, &opts, 0, stream);
631 }
632 else
633 {
634 val = unpack_long (type, valaddr + embedded_offset);
635 if (TYPE_UNSIGNED (type))
636 fprintf_filtered (stream, "%u", (unsigned int) val);
637 else
638 fprintf_filtered (stream, "%d", (int) val);
639 fputs_filtered (" ", stream);
640 LA_PRINT_CHAR (val, unresolved_type, stream);
641 }
642 break;
643
644 case TYPE_CODE_FLT:
645 if (options->format)
646 {
647 val_print_scalar_formatted (type, valaddr, embedded_offset,
648 original_value, options, 0, stream);
649 }
650 else
651 {
652 print_floating (valaddr + embedded_offset, type, stream);
653 }
654 break;
655
656 case TYPE_CODE_DECFLOAT:
657 if (options->format)
658 val_print_scalar_formatted (type, valaddr, embedded_offset,
659 original_value, options, 0, stream);
660 else
661 print_decimal_floating (valaddr + embedded_offset,
662 type, stream);
663 break;
664
665 case TYPE_CODE_VOID:
666 fputs_filtered (decorations->void_name, stream);
667 break;
668
669 case TYPE_CODE_ERROR:
670 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
671 break;
672
673 case TYPE_CODE_UNDEF:
674 /* This happens (without TYPE_FLAG_STUB set) on systems which
675 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
676 "struct foo *bar" and no complete type for struct foo in that
677 file. */
678 fprintf_filtered (stream, _("<incomplete type>"));
679 break;
680
681 case TYPE_CODE_COMPLEX:
682 fprintf_filtered (stream, "%s", decorations->complex_prefix);
683 if (options->format)
684 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
685 valaddr, embedded_offset,
686 original_value, options, 0, stream);
687 else
688 print_floating (valaddr + embedded_offset,
689 TYPE_TARGET_TYPE (type),
690 stream);
691 fprintf_filtered (stream, "%s", decorations->complex_infix);
692 if (options->format)
693 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
694 valaddr,
695 embedded_offset
696 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
697 original_value,
698 options, 0, stream);
699 else
700 print_floating (valaddr + embedded_offset
701 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
702 TYPE_TARGET_TYPE (type),
703 stream);
704 fprintf_filtered (stream, "%s", decorations->complex_suffix);
705 break;
706
707 case TYPE_CODE_UNION:
708 case TYPE_CODE_STRUCT:
709 case TYPE_CODE_METHODPTR:
710 default:
711 error (_("Unhandled type code %d in symbol table."),
712 TYPE_CODE (type));
713 }
714 gdb_flush (stream);
715 }
716
717 /* Print using the given LANGUAGE the data of type TYPE located at
718 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
719 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
720 STREAM according to OPTIONS. VAL is the whole object that came
721 from ADDRESS. VALADDR must point to the head of VAL's contents
722 buffer.
723
724 The language printers will pass down an adjusted EMBEDDED_OFFSET to
725 further helper subroutines as subfields of TYPE are printed. In
726 such cases, VALADDR is passed down unadjusted, as well as VAL, so
727 that VAL can be queried for metadata about the contents data being
728 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
729 buffer. For example: "has this field been optimized out", or "I'm
730 printing an object while inspecting a traceframe; has this
731 particular piece of data been collected?".
732
733 RECURSE indicates the amount of indentation to supply before
734 continuation lines; this amount is roughly twice the value of
735 RECURSE. */
736
737 void
738 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
739 CORE_ADDR address, struct ui_file *stream, int recurse,
740 const struct value *val,
741 const struct value_print_options *options,
742 const struct language_defn *language)
743 {
744 volatile struct gdb_exception except;
745 int ret = 0;
746 struct value_print_options local_opts = *options;
747 struct type *real_type = check_typedef (type);
748
749 if (local_opts.prettyformat == Val_prettyformat_default)
750 local_opts.prettyformat = (local_opts.prettyformat_structs
751 ? Val_prettyformat : Val_no_prettyformat);
752
753 QUIT;
754
755 /* Ensure that the type is complete and not just a stub. If the type is
756 only a stub and we can't find and substitute its complete type, then
757 print appropriate string and return. */
758
759 if (TYPE_STUB (real_type))
760 {
761 fprintf_filtered (stream, _("<incomplete type>"));
762 gdb_flush (stream);
763 return;
764 }
765
766 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
767 return;
768
769 if (!options->raw)
770 {
771 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
772 address, stream, recurse,
773 val, options, language);
774 if (ret)
775 return;
776 }
777
778 /* Handle summary mode. If the value is a scalar, print it;
779 otherwise, print an ellipsis. */
780 if (options->summary && !val_print_scalar_type_p (type))
781 {
782 fprintf_filtered (stream, "...");
783 return;
784 }
785
786 TRY_CATCH (except, RETURN_MASK_ERROR)
787 {
788 language->la_val_print (type, valaddr, embedded_offset, address,
789 stream, recurse, val,
790 &local_opts);
791 }
792 if (except.reason < 0)
793 fprintf_filtered (stream, _("<error reading variable>"));
794 }
795
796 /* Check whether the value VAL is printable. Return 1 if it is;
797 return 0 and print an appropriate error message to STREAM according to
798 OPTIONS if it is not. */
799
800 static int
801 value_check_printable (struct value *val, struct ui_file *stream,
802 const struct value_print_options *options)
803 {
804 if (val == 0)
805 {
806 fprintf_filtered (stream, _("<address of value unknown>"));
807 return 0;
808 }
809
810 if (value_entirely_optimized_out (val))
811 {
812 if (options->summary && !val_print_scalar_type_p (value_type (val)))
813 fprintf_filtered (stream, "...");
814 else
815 val_print_optimized_out (val, stream);
816 return 0;
817 }
818
819 if (value_entirely_unavailable (val))
820 {
821 if (options->summary && !val_print_scalar_type_p (value_type (val)))
822 fprintf_filtered (stream, "...");
823 else
824 val_print_unavailable (stream);
825 return 0;
826 }
827
828 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
829 {
830 fprintf_filtered (stream, _("<internal function %s>"),
831 value_internal_function_name (val));
832 return 0;
833 }
834
835 return 1;
836 }
837
838 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
839 to OPTIONS.
840
841 This is a preferable interface to val_print, above, because it uses
842 GDB's value mechanism. */
843
844 void
845 common_val_print (struct value *val, struct ui_file *stream, int recurse,
846 const struct value_print_options *options,
847 const struct language_defn *language)
848 {
849 if (!value_check_printable (val, stream, options))
850 return;
851
852 if (language->la_language == language_ada)
853 /* The value might have a dynamic type, which would cause trouble
854 below when trying to extract the value contents (since the value
855 size is determined from the type size which is unknown). So
856 get a fixed representation of our value. */
857 val = ada_to_fixed_value (val);
858
859 val_print (value_type (val), value_contents_for_printing (val),
860 value_embedded_offset (val), value_address (val),
861 stream, recurse,
862 val, options, language);
863 }
864
865 /* Print on stream STREAM the value VAL according to OPTIONS. The value
866 is printed using the current_language syntax. */
867
868 void
869 value_print (struct value *val, struct ui_file *stream,
870 const struct value_print_options *options)
871 {
872 if (!value_check_printable (val, stream, options))
873 return;
874
875 if (!options->raw)
876 {
877 int r
878 = apply_ext_lang_val_pretty_printer (value_type (val),
879 value_contents_for_printing (val),
880 value_embedded_offset (val),
881 value_address (val),
882 stream, 0,
883 val, options, current_language);
884
885 if (r)
886 return;
887 }
888
889 LA_VALUE_PRINT (val, stream, options);
890 }
891
892 /* Called by various <lang>_val_print routines to print
893 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
894 value. STREAM is where to print the value. */
895
896 void
897 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
898 struct ui_file *stream)
899 {
900 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
901
902 if (TYPE_LENGTH (type) > sizeof (LONGEST))
903 {
904 LONGEST val;
905
906 if (TYPE_UNSIGNED (type)
907 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
908 byte_order, &val))
909 {
910 print_longest (stream, 'u', 0, val);
911 }
912 else
913 {
914 /* Signed, or we couldn't turn an unsigned value into a
915 LONGEST. For signed values, one could assume two's
916 complement (a reasonable assumption, I think) and do
917 better than this. */
918 print_hex_chars (stream, (unsigned char *) valaddr,
919 TYPE_LENGTH (type), byte_order);
920 }
921 }
922 else
923 {
924 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
925 unpack_long (type, valaddr));
926 }
927 }
928
929 void
930 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
931 struct ui_file *stream)
932 {
933 ULONGEST val = unpack_long (type, valaddr);
934 int bitpos, nfields = TYPE_NFIELDS (type);
935
936 fputs_filtered ("[ ", stream);
937 for (bitpos = 0; bitpos < nfields; bitpos++)
938 {
939 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
940 && (val & ((ULONGEST)1 << bitpos)))
941 {
942 if (TYPE_FIELD_NAME (type, bitpos))
943 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
944 else
945 fprintf_filtered (stream, "#%d ", bitpos);
946 }
947 }
948 fputs_filtered ("]", stream);
949 }
950
951 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
952 according to OPTIONS and SIZE on STREAM. Format i is not supported
953 at this level.
954
955 This is how the elements of an array or structure are printed
956 with a format. */
957
958 void
959 val_print_scalar_formatted (struct type *type,
960 const gdb_byte *valaddr, int embedded_offset,
961 const struct value *val,
962 const struct value_print_options *options,
963 int size,
964 struct ui_file *stream)
965 {
966 gdb_assert (val != NULL);
967 gdb_assert (valaddr == value_contents_for_printing_const (val));
968
969 /* If we get here with a string format, try again without it. Go
970 all the way back to the language printers, which may call us
971 again. */
972 if (options->format == 's')
973 {
974 struct value_print_options opts = *options;
975 opts.format = 0;
976 opts.deref_ref = 0;
977 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
978 current_language);
979 return;
980 }
981
982 /* A scalar object that does not have all bits available can't be
983 printed, because all bits contribute to its representation. */
984 if (value_bits_any_optimized_out (val,
985 TARGET_CHAR_BIT * embedded_offset,
986 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
987 val_print_optimized_out (val, stream);
988 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
989 val_print_unavailable (stream);
990 else
991 print_scalar_formatted (valaddr + embedded_offset, type,
992 options, size, stream);
993 }
994
995 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
996 The raison d'etre of this function is to consolidate printing of
997 LONG_LONG's into this one function. The format chars b,h,w,g are
998 from print_scalar_formatted(). Numbers are printed using C
999 format.
1000
1001 USE_C_FORMAT means to use C format in all cases. Without it,
1002 'o' and 'x' format do not include the standard C radix prefix
1003 (leading 0 or 0x).
1004
1005 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1006 and was intended to request formating according to the current
1007 language and would be used for most integers that GDB prints. The
1008 exceptional cases were things like protocols where the format of
1009 the integer is a protocol thing, not a user-visible thing). The
1010 parameter remains to preserve the information of what things might
1011 be printed with language-specific format, should we ever resurrect
1012 that capability. */
1013
1014 void
1015 print_longest (struct ui_file *stream, int format, int use_c_format,
1016 LONGEST val_long)
1017 {
1018 const char *val;
1019
1020 switch (format)
1021 {
1022 case 'd':
1023 val = int_string (val_long, 10, 1, 0, 1); break;
1024 case 'u':
1025 val = int_string (val_long, 10, 0, 0, 1); break;
1026 case 'x':
1027 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1028 case 'b':
1029 val = int_string (val_long, 16, 0, 2, 1); break;
1030 case 'h':
1031 val = int_string (val_long, 16, 0, 4, 1); break;
1032 case 'w':
1033 val = int_string (val_long, 16, 0, 8, 1); break;
1034 case 'g':
1035 val = int_string (val_long, 16, 0, 16, 1); break;
1036 break;
1037 case 'o':
1038 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1039 default:
1040 internal_error (__FILE__, __LINE__,
1041 _("failed internal consistency check"));
1042 }
1043 fputs_filtered (val, stream);
1044 }
1045
1046 /* This used to be a macro, but I don't think it is called often enough
1047 to merit such treatment. */
1048 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1049 arguments to a function, number in a value history, register number, etc.)
1050 where the value must not be larger than can fit in an int. */
1051
1052 int
1053 longest_to_int (LONGEST arg)
1054 {
1055 /* Let the compiler do the work. */
1056 int rtnval = (int) arg;
1057
1058 /* Check for overflows or underflows. */
1059 if (sizeof (LONGEST) > sizeof (int))
1060 {
1061 if (rtnval != arg)
1062 {
1063 error (_("Value out of range."));
1064 }
1065 }
1066 return (rtnval);
1067 }
1068
1069 /* Print a floating point value of type TYPE (not always a
1070 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1071
1072 void
1073 print_floating (const gdb_byte *valaddr, struct type *type,
1074 struct ui_file *stream)
1075 {
1076 DOUBLEST doub;
1077 int inv;
1078 const struct floatformat *fmt = NULL;
1079 unsigned len = TYPE_LENGTH (type);
1080 enum float_kind kind;
1081
1082 /* If it is a floating-point, check for obvious problems. */
1083 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1084 fmt = floatformat_from_type (type);
1085 if (fmt != NULL)
1086 {
1087 kind = floatformat_classify (fmt, valaddr);
1088 if (kind == float_nan)
1089 {
1090 if (floatformat_is_negative (fmt, valaddr))
1091 fprintf_filtered (stream, "-");
1092 fprintf_filtered (stream, "nan(");
1093 fputs_filtered ("0x", stream);
1094 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1095 fprintf_filtered (stream, ")");
1096 return;
1097 }
1098 else if (kind == float_infinite)
1099 {
1100 if (floatformat_is_negative (fmt, valaddr))
1101 fputs_filtered ("-", stream);
1102 fputs_filtered ("inf", stream);
1103 return;
1104 }
1105 }
1106
1107 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1108 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1109 needs to be used as that takes care of any necessary type
1110 conversions. Such conversions are of course direct to DOUBLEST
1111 and disregard any possible target floating point limitations.
1112 For instance, a u64 would be converted and displayed exactly on a
1113 host with 80 bit DOUBLEST but with loss of information on a host
1114 with 64 bit DOUBLEST. */
1115
1116 doub = unpack_double (type, valaddr, &inv);
1117 if (inv)
1118 {
1119 fprintf_filtered (stream, "<invalid float value>");
1120 return;
1121 }
1122
1123 /* FIXME: kettenis/2001-01-20: The following code makes too much
1124 assumptions about the host and target floating point format. */
1125
1126 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1127 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1128 instead uses the type's length to determine the precision of the
1129 floating-point value being printed. */
1130
1131 if (len < sizeof (double))
1132 fprintf_filtered (stream, "%.9g", (double) doub);
1133 else if (len == sizeof (double))
1134 fprintf_filtered (stream, "%.17g", (double) doub);
1135 else
1136 #ifdef PRINTF_HAS_LONG_DOUBLE
1137 fprintf_filtered (stream, "%.35Lg", doub);
1138 #else
1139 /* This at least wins with values that are representable as
1140 doubles. */
1141 fprintf_filtered (stream, "%.17g", (double) doub);
1142 #endif
1143 }
1144
1145 void
1146 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1147 struct ui_file *stream)
1148 {
1149 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1150 char decstr[MAX_DECIMAL_STRING];
1151 unsigned len = TYPE_LENGTH (type);
1152
1153 decimal_to_string (valaddr, len, byte_order, decstr);
1154 fputs_filtered (decstr, stream);
1155 return;
1156 }
1157
1158 void
1159 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1160 unsigned len, enum bfd_endian byte_order)
1161 {
1162
1163 #define BITS_IN_BYTES 8
1164
1165 const gdb_byte *p;
1166 unsigned int i;
1167 int b;
1168
1169 /* Declared "int" so it will be signed.
1170 This ensures that right shift will shift in zeros. */
1171
1172 const int mask = 0x080;
1173
1174 /* FIXME: We should be not printing leading zeroes in most cases. */
1175
1176 if (byte_order == BFD_ENDIAN_BIG)
1177 {
1178 for (p = valaddr;
1179 p < valaddr + len;
1180 p++)
1181 {
1182 /* Every byte has 8 binary characters; peel off
1183 and print from the MSB end. */
1184
1185 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1186 {
1187 if (*p & (mask >> i))
1188 b = 1;
1189 else
1190 b = 0;
1191
1192 fprintf_filtered (stream, "%1d", b);
1193 }
1194 }
1195 }
1196 else
1197 {
1198 for (p = valaddr + len - 1;
1199 p >= valaddr;
1200 p--)
1201 {
1202 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1203 {
1204 if (*p & (mask >> i))
1205 b = 1;
1206 else
1207 b = 0;
1208
1209 fprintf_filtered (stream, "%1d", b);
1210 }
1211 }
1212 }
1213 }
1214
1215 /* VALADDR points to an integer of LEN bytes.
1216 Print it in octal on stream or format it in buf. */
1217
1218 void
1219 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1220 unsigned len, enum bfd_endian byte_order)
1221 {
1222 const gdb_byte *p;
1223 unsigned char octa1, octa2, octa3, carry;
1224 int cycle;
1225
1226 /* FIXME: We should be not printing leading zeroes in most cases. */
1227
1228
1229 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1230 * the extra bits, which cycle every three bytes:
1231 *
1232 * Byte side: 0 1 2 3
1233 * | | | |
1234 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1235 *
1236 * Octal side: 0 1 carry 3 4 carry ...
1237 *
1238 * Cycle number: 0 1 2
1239 *
1240 * But of course we are printing from the high side, so we have to
1241 * figure out where in the cycle we are so that we end up with no
1242 * left over bits at the end.
1243 */
1244 #define BITS_IN_OCTAL 3
1245 #define HIGH_ZERO 0340
1246 #define LOW_ZERO 0016
1247 #define CARRY_ZERO 0003
1248 #define HIGH_ONE 0200
1249 #define MID_ONE 0160
1250 #define LOW_ONE 0016
1251 #define CARRY_ONE 0001
1252 #define HIGH_TWO 0300
1253 #define MID_TWO 0070
1254 #define LOW_TWO 0007
1255
1256 /* For 32 we start in cycle 2, with two bits and one bit carry;
1257 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1258
1259 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1260 carry = 0;
1261
1262 fputs_filtered ("0", stream);
1263 if (byte_order == BFD_ENDIAN_BIG)
1264 {
1265 for (p = valaddr;
1266 p < valaddr + len;
1267 p++)
1268 {
1269 switch (cycle)
1270 {
1271 case 0:
1272 /* No carry in, carry out two bits. */
1273
1274 octa1 = (HIGH_ZERO & *p) >> 5;
1275 octa2 = (LOW_ZERO & *p) >> 2;
1276 carry = (CARRY_ZERO & *p);
1277 fprintf_filtered (stream, "%o", octa1);
1278 fprintf_filtered (stream, "%o", octa2);
1279 break;
1280
1281 case 1:
1282 /* Carry in two bits, carry out one bit. */
1283
1284 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1285 octa2 = (MID_ONE & *p) >> 4;
1286 octa3 = (LOW_ONE & *p) >> 1;
1287 carry = (CARRY_ONE & *p);
1288 fprintf_filtered (stream, "%o", octa1);
1289 fprintf_filtered (stream, "%o", octa2);
1290 fprintf_filtered (stream, "%o", octa3);
1291 break;
1292
1293 case 2:
1294 /* Carry in one bit, no carry out. */
1295
1296 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1297 octa2 = (MID_TWO & *p) >> 3;
1298 octa3 = (LOW_TWO & *p);
1299 carry = 0;
1300 fprintf_filtered (stream, "%o", octa1);
1301 fprintf_filtered (stream, "%o", octa2);
1302 fprintf_filtered (stream, "%o", octa3);
1303 break;
1304
1305 default:
1306 error (_("Internal error in octal conversion;"));
1307 }
1308
1309 cycle++;
1310 cycle = cycle % BITS_IN_OCTAL;
1311 }
1312 }
1313 else
1314 {
1315 for (p = valaddr + len - 1;
1316 p >= valaddr;
1317 p--)
1318 {
1319 switch (cycle)
1320 {
1321 case 0:
1322 /* Carry out, no carry in */
1323
1324 octa1 = (HIGH_ZERO & *p) >> 5;
1325 octa2 = (LOW_ZERO & *p) >> 2;
1326 carry = (CARRY_ZERO & *p);
1327 fprintf_filtered (stream, "%o", octa1);
1328 fprintf_filtered (stream, "%o", octa2);
1329 break;
1330
1331 case 1:
1332 /* Carry in, carry out */
1333
1334 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1335 octa2 = (MID_ONE & *p) >> 4;
1336 octa3 = (LOW_ONE & *p) >> 1;
1337 carry = (CARRY_ONE & *p);
1338 fprintf_filtered (stream, "%o", octa1);
1339 fprintf_filtered (stream, "%o", octa2);
1340 fprintf_filtered (stream, "%o", octa3);
1341 break;
1342
1343 case 2:
1344 /* Carry in, no carry out */
1345
1346 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1347 octa2 = (MID_TWO & *p) >> 3;
1348 octa3 = (LOW_TWO & *p);
1349 carry = 0;
1350 fprintf_filtered (stream, "%o", octa1);
1351 fprintf_filtered (stream, "%o", octa2);
1352 fprintf_filtered (stream, "%o", octa3);
1353 break;
1354
1355 default:
1356 error (_("Internal error in octal conversion;"));
1357 }
1358
1359 cycle++;
1360 cycle = cycle % BITS_IN_OCTAL;
1361 }
1362 }
1363
1364 }
1365
1366 /* VALADDR points to an integer of LEN bytes.
1367 Print it in decimal on stream or format it in buf. */
1368
1369 void
1370 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1371 unsigned len, enum bfd_endian byte_order)
1372 {
1373 #define TEN 10
1374 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1375 #define CARRY_LEFT( x ) ((x) % TEN)
1376 #define SHIFT( x ) ((x) << 4)
1377 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1378 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1379
1380 const gdb_byte *p;
1381 unsigned char *digits;
1382 int carry;
1383 int decimal_len;
1384 int i, j, decimal_digits;
1385 int dummy;
1386 int flip;
1387
1388 /* Base-ten number is less than twice as many digits
1389 as the base 16 number, which is 2 digits per byte. */
1390
1391 decimal_len = len * 2 * 2;
1392 digits = xmalloc (decimal_len);
1393
1394 for (i = 0; i < decimal_len; i++)
1395 {
1396 digits[i] = 0;
1397 }
1398
1399 /* Ok, we have an unknown number of bytes of data to be printed in
1400 * decimal.
1401 *
1402 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1403 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1404 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1405 *
1406 * The trick is that "digits" holds a base-10 number, but sometimes
1407 * the individual digits are > 10.
1408 *
1409 * Outer loop is per nibble (hex digit) of input, from MSD end to
1410 * LSD end.
1411 */
1412 decimal_digits = 0; /* Number of decimal digits so far */
1413 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1414 flip = 0;
1415 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1416 {
1417 /*
1418 * Multiply current base-ten number by 16 in place.
1419 * Each digit was between 0 and 9, now is between
1420 * 0 and 144.
1421 */
1422 for (j = 0; j < decimal_digits; j++)
1423 {
1424 digits[j] = SHIFT (digits[j]);
1425 }
1426
1427 /* Take the next nibble off the input and add it to what
1428 * we've got in the LSB position. Bottom 'digit' is now
1429 * between 0 and 159.
1430 *
1431 * "flip" is used to run this loop twice for each byte.
1432 */
1433 if (flip == 0)
1434 {
1435 /* Take top nibble. */
1436
1437 digits[0] += HIGH_NIBBLE (*p);
1438 flip = 1;
1439 }
1440 else
1441 {
1442 /* Take low nibble and bump our pointer "p". */
1443
1444 digits[0] += LOW_NIBBLE (*p);
1445 if (byte_order == BFD_ENDIAN_BIG)
1446 p++;
1447 else
1448 p--;
1449 flip = 0;
1450 }
1451
1452 /* Re-decimalize. We have to do this often enough
1453 * that we don't overflow, but once per nibble is
1454 * overkill. Easier this way, though. Note that the
1455 * carry is often larger than 10 (e.g. max initial
1456 * carry out of lowest nibble is 15, could bubble all
1457 * the way up greater than 10). So we have to do
1458 * the carrying beyond the last current digit.
1459 */
1460 carry = 0;
1461 for (j = 0; j < decimal_len - 1; j++)
1462 {
1463 digits[j] += carry;
1464
1465 /* "/" won't handle an unsigned char with
1466 * a value that if signed would be negative.
1467 * So extend to longword int via "dummy".
1468 */
1469 dummy = digits[j];
1470 carry = CARRY_OUT (dummy);
1471 digits[j] = CARRY_LEFT (dummy);
1472
1473 if (j >= decimal_digits && carry == 0)
1474 {
1475 /*
1476 * All higher digits are 0 and we
1477 * no longer have a carry.
1478 *
1479 * Note: "j" is 0-based, "decimal_digits" is
1480 * 1-based.
1481 */
1482 decimal_digits = j + 1;
1483 break;
1484 }
1485 }
1486 }
1487
1488 /* Ok, now "digits" is the decimal representation, with
1489 the "decimal_digits" actual digits. Print! */
1490
1491 for (i = decimal_digits - 1; i >= 0; i--)
1492 {
1493 fprintf_filtered (stream, "%1d", digits[i]);
1494 }
1495 xfree (digits);
1496 }
1497
1498 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1499
1500 void
1501 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1502 unsigned len, enum bfd_endian byte_order)
1503 {
1504 const gdb_byte *p;
1505
1506 /* FIXME: We should be not printing leading zeroes in most cases. */
1507
1508 fputs_filtered ("0x", stream);
1509 if (byte_order == BFD_ENDIAN_BIG)
1510 {
1511 for (p = valaddr;
1512 p < valaddr + len;
1513 p++)
1514 {
1515 fprintf_filtered (stream, "%02x", *p);
1516 }
1517 }
1518 else
1519 {
1520 for (p = valaddr + len - 1;
1521 p >= valaddr;
1522 p--)
1523 {
1524 fprintf_filtered (stream, "%02x", *p);
1525 }
1526 }
1527 }
1528
1529 /* VALADDR points to a char integer of LEN bytes.
1530 Print it out in appropriate language form on stream.
1531 Omit any leading zero chars. */
1532
1533 void
1534 print_char_chars (struct ui_file *stream, struct type *type,
1535 const gdb_byte *valaddr,
1536 unsigned len, enum bfd_endian byte_order)
1537 {
1538 const gdb_byte *p;
1539
1540 if (byte_order == BFD_ENDIAN_BIG)
1541 {
1542 p = valaddr;
1543 while (p < valaddr + len - 1 && *p == 0)
1544 ++p;
1545
1546 while (p < valaddr + len)
1547 {
1548 LA_EMIT_CHAR (*p, type, stream, '\'');
1549 ++p;
1550 }
1551 }
1552 else
1553 {
1554 p = valaddr + len - 1;
1555 while (p > valaddr && *p == 0)
1556 --p;
1557
1558 while (p >= valaddr)
1559 {
1560 LA_EMIT_CHAR (*p, type, stream, '\'');
1561 --p;
1562 }
1563 }
1564 }
1565
1566 /* Print function pointer with inferior address ADDRESS onto stdio
1567 stream STREAM. */
1568
1569 void
1570 print_function_pointer_address (const struct value_print_options *options,
1571 struct gdbarch *gdbarch,
1572 CORE_ADDR address,
1573 struct ui_file *stream)
1574 {
1575 CORE_ADDR func_addr
1576 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1577 &current_target);
1578
1579 /* If the function pointer is represented by a description, print
1580 the address of the description. */
1581 if (options->addressprint && func_addr != address)
1582 {
1583 fputs_filtered ("@", stream);
1584 fputs_filtered (paddress (gdbarch, address), stream);
1585 fputs_filtered (": ", stream);
1586 }
1587 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1588 }
1589
1590
1591 /* Print on STREAM using the given OPTIONS the index for the element
1592 at INDEX of an array whose index type is INDEX_TYPE. */
1593
1594 void
1595 maybe_print_array_index (struct type *index_type, LONGEST index,
1596 struct ui_file *stream,
1597 const struct value_print_options *options)
1598 {
1599 struct value *index_value;
1600
1601 if (!options->print_array_indexes)
1602 return;
1603
1604 index_value = value_from_longest (index_type, index);
1605
1606 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1607 }
1608
1609 /* Called by various <lang>_val_print routines to print elements of an
1610 array in the form "<elem1>, <elem2>, <elem3>, ...".
1611
1612 (FIXME?) Assumes array element separator is a comma, which is correct
1613 for all languages currently handled.
1614 (FIXME?) Some languages have a notation for repeated array elements,
1615 perhaps we should try to use that notation when appropriate. */
1616
1617 void
1618 val_print_array_elements (struct type *type,
1619 const gdb_byte *valaddr, int embedded_offset,
1620 CORE_ADDR address, struct ui_file *stream,
1621 int recurse,
1622 const struct value *val,
1623 const struct value_print_options *options,
1624 unsigned int i)
1625 {
1626 unsigned int things_printed = 0;
1627 unsigned len;
1628 struct type *elttype, *index_type;
1629 unsigned eltlen;
1630 /* Position of the array element we are examining to see
1631 whether it is repeated. */
1632 unsigned int rep1;
1633 /* Number of repetitions we have detected so far. */
1634 unsigned int reps;
1635 LONGEST low_bound, high_bound;
1636
1637 elttype = TYPE_TARGET_TYPE (type);
1638 eltlen = TYPE_LENGTH (check_typedef (elttype));
1639 index_type = TYPE_INDEX_TYPE (type);
1640
1641 if (get_array_bounds (type, &low_bound, &high_bound))
1642 {
1643 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1644 But we have to be a little extra careful, because some languages
1645 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1646 empty arrays. In that situation, the array length is just zero,
1647 not negative! */
1648 if (low_bound > high_bound)
1649 len = 0;
1650 else
1651 len = high_bound - low_bound + 1;
1652 }
1653 else
1654 {
1655 warning (_("unable to get bounds of array, assuming null array"));
1656 low_bound = 0;
1657 len = 0;
1658 }
1659
1660 annotate_array_section_begin (i, elttype);
1661
1662 for (; i < len && things_printed < options->print_max; i++)
1663 {
1664 if (i != 0)
1665 {
1666 if (options->prettyformat_arrays)
1667 {
1668 fprintf_filtered (stream, ",\n");
1669 print_spaces_filtered (2 + 2 * recurse, stream);
1670 }
1671 else
1672 {
1673 fprintf_filtered (stream, ", ");
1674 }
1675 }
1676 wrap_here (n_spaces (2 + 2 * recurse));
1677 maybe_print_array_index (index_type, i + low_bound,
1678 stream, options);
1679
1680 rep1 = i + 1;
1681 reps = 1;
1682 /* Only check for reps if repeat_count_threshold is not set to
1683 UINT_MAX (unlimited). */
1684 if (options->repeat_count_threshold < UINT_MAX)
1685 {
1686 while (rep1 < len
1687 && value_contents_eq (val,
1688 embedded_offset + i * eltlen,
1689 val,
1690 (embedded_offset
1691 + rep1 * eltlen),
1692 eltlen))
1693 {
1694 ++reps;
1695 ++rep1;
1696 }
1697 }
1698
1699 if (reps > options->repeat_count_threshold)
1700 {
1701 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1702 address, stream, recurse + 1, val, options,
1703 current_language);
1704 annotate_elt_rep (reps);
1705 fprintf_filtered (stream, " <repeats %u times>", reps);
1706 annotate_elt_rep_end ();
1707
1708 i = rep1 - 1;
1709 things_printed += options->repeat_count_threshold;
1710 }
1711 else
1712 {
1713 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1714 address,
1715 stream, recurse + 1, val, options, current_language);
1716 annotate_elt ();
1717 things_printed++;
1718 }
1719 }
1720 annotate_array_section_end ();
1721 if (i < len)
1722 {
1723 fprintf_filtered (stream, "...");
1724 }
1725 }
1726
1727 /* Read LEN bytes of target memory at address MEMADDR, placing the
1728 results in GDB's memory at MYADDR. Returns a count of the bytes
1729 actually read, and optionally a target_xfer_status value in the
1730 location pointed to by ERRPTR if ERRPTR is non-null. */
1731
1732 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1733 function be eliminated. */
1734
1735 static int
1736 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1737 int len, int *errptr)
1738 {
1739 int nread; /* Number of bytes actually read. */
1740 int errcode; /* Error from last read. */
1741
1742 /* First try a complete read. */
1743 errcode = target_read_memory (memaddr, myaddr, len);
1744 if (errcode == 0)
1745 {
1746 /* Got it all. */
1747 nread = len;
1748 }
1749 else
1750 {
1751 /* Loop, reading one byte at a time until we get as much as we can. */
1752 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1753 {
1754 errcode = target_read_memory (memaddr++, myaddr++, 1);
1755 }
1756 /* If an error, the last read was unsuccessful, so adjust count. */
1757 if (errcode != 0)
1758 {
1759 nread--;
1760 }
1761 }
1762 if (errptr != NULL)
1763 {
1764 *errptr = errcode;
1765 }
1766 return (nread);
1767 }
1768
1769 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1770 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1771 allocated buffer containing the string, which the caller is responsible to
1772 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1773 success, or a target_xfer_status on failure.
1774
1775 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1776 (including eventual NULs in the middle or end of the string).
1777
1778 If LEN is -1, stops at the first null character (not necessarily
1779 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1780 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1781 the string.
1782
1783 Unless an exception is thrown, BUFFER will always be allocated, even on
1784 failure. In this case, some characters might have been read before the
1785 failure happened. Check BYTES_READ to recognize this situation.
1786
1787 Note: There was a FIXME asking to make this code use target_read_string,
1788 but this function is more general (can read past null characters, up to
1789 given LEN). Besides, it is used much more often than target_read_string
1790 so it is more tested. Perhaps callers of target_read_string should use
1791 this function instead? */
1792
1793 int
1794 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1795 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1796 {
1797 int found_nul; /* Non-zero if we found the nul char. */
1798 int errcode; /* Errno returned from bad reads. */
1799 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1800 unsigned int chunksize; /* Size of each fetch, in chars. */
1801 gdb_byte *bufptr; /* Pointer to next available byte in
1802 buffer. */
1803 gdb_byte *limit; /* First location past end of fetch buffer. */
1804 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1805
1806 /* Decide how large of chunks to try to read in one operation. This
1807 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1808 so we might as well read them all in one operation. If LEN is -1, we
1809 are looking for a NUL terminator to end the fetching, so we might as
1810 well read in blocks that are large enough to be efficient, but not so
1811 large as to be slow if fetchlimit happens to be large. So we choose the
1812 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1813 200 is way too big for remote debugging over a serial line. */
1814
1815 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1816
1817 /* Loop until we either have all the characters, or we encounter
1818 some error, such as bumping into the end of the address space. */
1819
1820 found_nul = 0;
1821 *buffer = NULL;
1822
1823 old_chain = make_cleanup (free_current_contents, buffer);
1824
1825 if (len > 0)
1826 {
1827 unsigned int fetchlen = min (len, fetchlimit);
1828
1829 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1830 bufptr = *buffer;
1831
1832 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1833 / width;
1834 addr += nfetch * width;
1835 bufptr += nfetch * width;
1836 }
1837 else if (len == -1)
1838 {
1839 unsigned long bufsize = 0;
1840
1841 do
1842 {
1843 QUIT;
1844 nfetch = min (chunksize, fetchlimit - bufsize);
1845
1846 if (*buffer == NULL)
1847 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1848 else
1849 *buffer = (gdb_byte *) xrealloc (*buffer,
1850 (nfetch + bufsize) * width);
1851
1852 bufptr = *buffer + bufsize * width;
1853 bufsize += nfetch;
1854
1855 /* Read as much as we can. */
1856 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1857 / width;
1858
1859 /* Scan this chunk for the null character that terminates the string
1860 to print. If found, we don't need to fetch any more. Note
1861 that bufptr is explicitly left pointing at the next character
1862 after the null character, or at the next character after the end
1863 of the buffer. */
1864
1865 limit = bufptr + nfetch * width;
1866 while (bufptr < limit)
1867 {
1868 unsigned long c;
1869
1870 c = extract_unsigned_integer (bufptr, width, byte_order);
1871 addr += width;
1872 bufptr += width;
1873 if (c == 0)
1874 {
1875 /* We don't care about any error which happened after
1876 the NUL terminator. */
1877 errcode = 0;
1878 found_nul = 1;
1879 break;
1880 }
1881 }
1882 }
1883 while (errcode == 0 /* no error */
1884 && bufptr - *buffer < fetchlimit * width /* no overrun */
1885 && !found_nul); /* haven't found NUL yet */
1886 }
1887 else
1888 { /* Length of string is really 0! */
1889 /* We always allocate *buffer. */
1890 *buffer = bufptr = xmalloc (1);
1891 errcode = 0;
1892 }
1893
1894 /* bufptr and addr now point immediately beyond the last byte which we
1895 consider part of the string (including a '\0' which ends the string). */
1896 *bytes_read = bufptr - *buffer;
1897
1898 QUIT;
1899
1900 discard_cleanups (old_chain);
1901
1902 return errcode;
1903 }
1904
1905 /* Return true if print_wchar can display W without resorting to a
1906 numeric escape, false otherwise. */
1907
1908 static int
1909 wchar_printable (gdb_wchar_t w)
1910 {
1911 return (gdb_iswprint (w)
1912 || w == LCST ('\a') || w == LCST ('\b')
1913 || w == LCST ('\f') || w == LCST ('\n')
1914 || w == LCST ('\r') || w == LCST ('\t')
1915 || w == LCST ('\v'));
1916 }
1917
1918 /* A helper function that converts the contents of STRING to wide
1919 characters and then appends them to OUTPUT. */
1920
1921 static void
1922 append_string_as_wide (const char *string,
1923 struct obstack *output)
1924 {
1925 for (; *string; ++string)
1926 {
1927 gdb_wchar_t w = gdb_btowc (*string);
1928 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1929 }
1930 }
1931
1932 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1933 original (target) bytes representing the character, ORIG_LEN is the
1934 number of valid bytes. WIDTH is the number of bytes in a base
1935 characters of the type. OUTPUT is an obstack to which wide
1936 characters are emitted. QUOTER is a (narrow) character indicating
1937 the style of quotes surrounding the character to be printed.
1938 NEED_ESCAPE is an in/out flag which is used to track numeric
1939 escapes across calls. */
1940
1941 static void
1942 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1943 int orig_len, int width,
1944 enum bfd_endian byte_order,
1945 struct obstack *output,
1946 int quoter, int *need_escapep)
1947 {
1948 int need_escape = *need_escapep;
1949
1950 *need_escapep = 0;
1951
1952 /* iswprint implementation on Windows returns 1 for tab character.
1953 In order to avoid different printout on this host, we explicitly
1954 use wchar_printable function. */
1955 switch (w)
1956 {
1957 case LCST ('\a'):
1958 obstack_grow_wstr (output, LCST ("\\a"));
1959 break;
1960 case LCST ('\b'):
1961 obstack_grow_wstr (output, LCST ("\\b"));
1962 break;
1963 case LCST ('\f'):
1964 obstack_grow_wstr (output, LCST ("\\f"));
1965 break;
1966 case LCST ('\n'):
1967 obstack_grow_wstr (output, LCST ("\\n"));
1968 break;
1969 case LCST ('\r'):
1970 obstack_grow_wstr (output, LCST ("\\r"));
1971 break;
1972 case LCST ('\t'):
1973 obstack_grow_wstr (output, LCST ("\\t"));
1974 break;
1975 case LCST ('\v'):
1976 obstack_grow_wstr (output, LCST ("\\v"));
1977 break;
1978 default:
1979 {
1980 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
1981 && w != LCST ('8')
1982 && w != LCST ('9'))))
1983 {
1984 gdb_wchar_t wchar = w;
1985
1986 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1987 obstack_grow_wstr (output, LCST ("\\"));
1988 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1989 }
1990 else
1991 {
1992 int i;
1993
1994 for (i = 0; i + width <= orig_len; i += width)
1995 {
1996 char octal[30];
1997 ULONGEST value;
1998
1999 value = extract_unsigned_integer (&orig[i], width,
2000 byte_order);
2001 /* If the value fits in 3 octal digits, print it that
2002 way. Otherwise, print it as a hex escape. */
2003 if (value <= 0777)
2004 xsnprintf (octal, sizeof (octal), "\\%.3o",
2005 (int) (value & 0777));
2006 else
2007 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2008 append_string_as_wide (octal, output);
2009 }
2010 /* If we somehow have extra bytes, print them now. */
2011 while (i < orig_len)
2012 {
2013 char octal[5];
2014
2015 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2016 append_string_as_wide (octal, output);
2017 ++i;
2018 }
2019
2020 *need_escapep = 1;
2021 }
2022 break;
2023 }
2024 }
2025 }
2026
2027 /* Print the character C on STREAM as part of the contents of a
2028 literal string whose delimiter is QUOTER. ENCODING names the
2029 encoding of C. */
2030
2031 void
2032 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2033 int quoter, const char *encoding)
2034 {
2035 enum bfd_endian byte_order
2036 = gdbarch_byte_order (get_type_arch (type));
2037 struct obstack wchar_buf, output;
2038 struct cleanup *cleanups;
2039 gdb_byte *buf;
2040 struct wchar_iterator *iter;
2041 int need_escape = 0;
2042
2043 buf = alloca (TYPE_LENGTH (type));
2044 pack_long (buf, type, c);
2045
2046 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2047 encoding, TYPE_LENGTH (type));
2048 cleanups = make_cleanup_wchar_iterator (iter);
2049
2050 /* This holds the printable form of the wchar_t data. */
2051 obstack_init (&wchar_buf);
2052 make_cleanup_obstack_free (&wchar_buf);
2053
2054 while (1)
2055 {
2056 int num_chars;
2057 gdb_wchar_t *chars;
2058 const gdb_byte *buf;
2059 size_t buflen;
2060 int print_escape = 1;
2061 enum wchar_iterate_result result;
2062
2063 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2064 if (num_chars < 0)
2065 break;
2066 if (num_chars > 0)
2067 {
2068 /* If all characters are printable, print them. Otherwise,
2069 we're going to have to print an escape sequence. We
2070 check all characters because we want to print the target
2071 bytes in the escape sequence, and we don't know character
2072 boundaries there. */
2073 int i;
2074
2075 print_escape = 0;
2076 for (i = 0; i < num_chars; ++i)
2077 if (!wchar_printable (chars[i]))
2078 {
2079 print_escape = 1;
2080 break;
2081 }
2082
2083 if (!print_escape)
2084 {
2085 for (i = 0; i < num_chars; ++i)
2086 print_wchar (chars[i], buf, buflen,
2087 TYPE_LENGTH (type), byte_order,
2088 &wchar_buf, quoter, &need_escape);
2089 }
2090 }
2091
2092 /* This handles the NUM_CHARS == 0 case as well. */
2093 if (print_escape)
2094 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2095 byte_order, &wchar_buf, quoter, &need_escape);
2096 }
2097
2098 /* The output in the host encoding. */
2099 obstack_init (&output);
2100 make_cleanup_obstack_free (&output);
2101
2102 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2103 (gdb_byte *) obstack_base (&wchar_buf),
2104 obstack_object_size (&wchar_buf),
2105 sizeof (gdb_wchar_t), &output, translit_char);
2106 obstack_1grow (&output, '\0');
2107
2108 fputs_filtered (obstack_base (&output), stream);
2109
2110 do_cleanups (cleanups);
2111 }
2112
2113 /* Return the repeat count of the next character/byte in ITER,
2114 storing the result in VEC. */
2115
2116 static int
2117 count_next_character (struct wchar_iterator *iter,
2118 VEC (converted_character_d) **vec)
2119 {
2120 struct converted_character *current;
2121
2122 if (VEC_empty (converted_character_d, *vec))
2123 {
2124 struct converted_character tmp;
2125 gdb_wchar_t *chars;
2126
2127 tmp.num_chars
2128 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2129 if (tmp.num_chars > 0)
2130 {
2131 gdb_assert (tmp.num_chars < MAX_WCHARS);
2132 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2133 }
2134 VEC_safe_push (converted_character_d, *vec, &tmp);
2135 }
2136
2137 current = VEC_last (converted_character_d, *vec);
2138
2139 /* Count repeated characters or bytes. */
2140 current->repeat_count = 1;
2141 if (current->num_chars == -1)
2142 {
2143 /* EOF */
2144 return -1;
2145 }
2146 else
2147 {
2148 gdb_wchar_t *chars;
2149 struct converted_character d;
2150 int repeat;
2151
2152 d.repeat_count = 0;
2153
2154 while (1)
2155 {
2156 /* Get the next character. */
2157 d.num_chars
2158 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2159
2160 /* If a character was successfully converted, save the character
2161 into the converted character. */
2162 if (d.num_chars > 0)
2163 {
2164 gdb_assert (d.num_chars < MAX_WCHARS);
2165 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2166 }
2167
2168 /* Determine if the current character is the same as this
2169 new character. */
2170 if (d.num_chars == current->num_chars && d.result == current->result)
2171 {
2172 /* There are two cases to consider:
2173
2174 1) Equality of converted character (num_chars > 0)
2175 2) Equality of non-converted character (num_chars == 0) */
2176 if ((current->num_chars > 0
2177 && memcmp (current->chars, d.chars,
2178 WCHAR_BUFLEN (current->num_chars)) == 0)
2179 || (current->num_chars == 0
2180 && current->buflen == d.buflen
2181 && memcmp (current->buf, d.buf, current->buflen) == 0))
2182 ++current->repeat_count;
2183 else
2184 break;
2185 }
2186 else
2187 break;
2188 }
2189
2190 /* Push this next converted character onto the result vector. */
2191 repeat = current->repeat_count;
2192 VEC_safe_push (converted_character_d, *vec, &d);
2193 return repeat;
2194 }
2195 }
2196
2197 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2198 character to use with string output. WIDTH is the size of the output
2199 character type. BYTE_ORDER is the the target byte order. OPTIONS
2200 is the user's print options. */
2201
2202 static void
2203 print_converted_chars_to_obstack (struct obstack *obstack,
2204 VEC (converted_character_d) *chars,
2205 int quote_char, int width,
2206 enum bfd_endian byte_order,
2207 const struct value_print_options *options)
2208 {
2209 unsigned int idx;
2210 struct converted_character *elem;
2211 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2212 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2213 int need_escape = 0;
2214
2215 /* Set the start state. */
2216 idx = 0;
2217 last = state = START;
2218 elem = NULL;
2219
2220 while (1)
2221 {
2222 switch (state)
2223 {
2224 case START:
2225 /* Nothing to do. */
2226 break;
2227
2228 case SINGLE:
2229 {
2230 int j;
2231
2232 /* We are outputting a single character
2233 (< options->repeat_count_threshold). */
2234
2235 if (last != SINGLE)
2236 {
2237 /* We were outputting some other type of content, so we
2238 must output and a comma and a quote. */
2239 if (last != START)
2240 obstack_grow_wstr (obstack, LCST (", "));
2241 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2242 }
2243 /* Output the character. */
2244 for (j = 0; j < elem->repeat_count; ++j)
2245 {
2246 if (elem->result == wchar_iterate_ok)
2247 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2248 byte_order, obstack, quote_char, &need_escape);
2249 else
2250 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2251 byte_order, obstack, quote_char, &need_escape);
2252 }
2253 }
2254 break;
2255
2256 case REPEAT:
2257 {
2258 int j;
2259 char *s;
2260
2261 /* We are outputting a character with a repeat count
2262 greater than options->repeat_count_threshold. */
2263
2264 if (last == SINGLE)
2265 {
2266 /* We were outputting a single string. Terminate the
2267 string. */
2268 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2269 }
2270 if (last != START)
2271 obstack_grow_wstr (obstack, LCST (", "));
2272
2273 /* Output the character and repeat string. */
2274 obstack_grow_wstr (obstack, LCST ("'"));
2275 if (elem->result == wchar_iterate_ok)
2276 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2277 byte_order, obstack, quote_char, &need_escape);
2278 else
2279 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2280 byte_order, obstack, quote_char, &need_escape);
2281 obstack_grow_wstr (obstack, LCST ("'"));
2282 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2283 for (j = 0; s[j]; ++j)
2284 {
2285 gdb_wchar_t w = gdb_btowc (s[j]);
2286 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2287 }
2288 xfree (s);
2289 }
2290 break;
2291
2292 case INCOMPLETE:
2293 /* We are outputting an incomplete sequence. */
2294 if (last == SINGLE)
2295 {
2296 /* If we were outputting a string of SINGLE characters,
2297 terminate the quote. */
2298 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2299 }
2300 if (last != START)
2301 obstack_grow_wstr (obstack, LCST (", "));
2302
2303 /* Output the incomplete sequence string. */
2304 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2305 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2306 obstack, 0, &need_escape);
2307 obstack_grow_wstr (obstack, LCST (">"));
2308
2309 /* We do not attempt to outupt anything after this. */
2310 state = FINISH;
2311 break;
2312
2313 case FINISH:
2314 /* All done. If we were outputting a string of SINGLE
2315 characters, the string must be terminated. Otherwise,
2316 REPEAT and INCOMPLETE are always left properly terminated. */
2317 if (last == SINGLE)
2318 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2319
2320 return;
2321 }
2322
2323 /* Get the next element and state. */
2324 last = state;
2325 if (state != FINISH)
2326 {
2327 elem = VEC_index (converted_character_d, chars, idx++);
2328 switch (elem->result)
2329 {
2330 case wchar_iterate_ok:
2331 case wchar_iterate_invalid:
2332 if (elem->repeat_count > options->repeat_count_threshold)
2333 state = REPEAT;
2334 else
2335 state = SINGLE;
2336 break;
2337
2338 case wchar_iterate_incomplete:
2339 state = INCOMPLETE;
2340 break;
2341
2342 case wchar_iterate_eof:
2343 state = FINISH;
2344 break;
2345 }
2346 }
2347 }
2348 }
2349
2350 /* Print the character string STRING, printing at most LENGTH
2351 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2352 the type of each character. OPTIONS holds the printing options;
2353 printing stops early if the number hits print_max; repeat counts
2354 are printed as appropriate. Print ellipses at the end if we had to
2355 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2356 QUOTE_CHAR is the character to print at each end of the string. If
2357 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2358 omitted. */
2359
2360 void
2361 generic_printstr (struct ui_file *stream, struct type *type,
2362 const gdb_byte *string, unsigned int length,
2363 const char *encoding, int force_ellipses,
2364 int quote_char, int c_style_terminator,
2365 const struct value_print_options *options)
2366 {
2367 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2368 unsigned int i;
2369 int width = TYPE_LENGTH (type);
2370 struct obstack wchar_buf, output;
2371 struct cleanup *cleanup;
2372 struct wchar_iterator *iter;
2373 int finished = 0;
2374 struct converted_character *last;
2375 VEC (converted_character_d) *converted_chars;
2376
2377 if (length == -1)
2378 {
2379 unsigned long current_char = 1;
2380
2381 for (i = 0; current_char; ++i)
2382 {
2383 QUIT;
2384 current_char = extract_unsigned_integer (string + i * width,
2385 width, byte_order);
2386 }
2387 length = i;
2388 }
2389
2390 /* If the string was not truncated due to `set print elements', and
2391 the last byte of it is a null, we don't print that, in
2392 traditional C style. */
2393 if (c_style_terminator
2394 && !force_ellipses
2395 && length > 0
2396 && (extract_unsigned_integer (string + (length - 1) * width,
2397 width, byte_order) == 0))
2398 length--;
2399
2400 if (length == 0)
2401 {
2402 fputs_filtered ("\"\"", stream);
2403 return;
2404 }
2405
2406 /* Arrange to iterate over the characters, in wchar_t form. */
2407 iter = make_wchar_iterator (string, length * width, encoding, width);
2408 cleanup = make_cleanup_wchar_iterator (iter);
2409 converted_chars = NULL;
2410 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2411
2412 /* Convert characters until the string is over or the maximum
2413 number of printed characters has been reached. */
2414 i = 0;
2415 while (i < options->print_max)
2416 {
2417 int r;
2418
2419 QUIT;
2420
2421 /* Grab the next character and repeat count. */
2422 r = count_next_character (iter, &converted_chars);
2423
2424 /* If less than zero, the end of the input string was reached. */
2425 if (r < 0)
2426 break;
2427
2428 /* Otherwise, add the count to the total print count and get
2429 the next character. */
2430 i += r;
2431 }
2432
2433 /* Get the last element and determine if the entire string was
2434 processed. */
2435 last = VEC_last (converted_character_d, converted_chars);
2436 finished = (last->result == wchar_iterate_eof);
2437
2438 /* Ensure that CONVERTED_CHARS is terminated. */
2439 last->result = wchar_iterate_eof;
2440
2441 /* WCHAR_BUF is the obstack we use to represent the string in
2442 wchar_t form. */
2443 obstack_init (&wchar_buf);
2444 make_cleanup_obstack_free (&wchar_buf);
2445
2446 /* Print the output string to the obstack. */
2447 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2448 width, byte_order, options);
2449
2450 if (force_ellipses || !finished)
2451 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2452
2453 /* OUTPUT is where we collect `char's for printing. */
2454 obstack_init (&output);
2455 make_cleanup_obstack_free (&output);
2456
2457 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2458 (gdb_byte *) obstack_base (&wchar_buf),
2459 obstack_object_size (&wchar_buf),
2460 sizeof (gdb_wchar_t), &output, translit_char);
2461 obstack_1grow (&output, '\0');
2462
2463 fputs_filtered (obstack_base (&output), stream);
2464
2465 do_cleanups (cleanup);
2466 }
2467
2468 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2469 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2470 stops at the first null byte, otherwise printing proceeds (including null
2471 bytes) until either print_max or LEN characters have been printed,
2472 whichever is smaller. ENCODING is the name of the string's
2473 encoding. It can be NULL, in which case the target encoding is
2474 assumed. */
2475
2476 int
2477 val_print_string (struct type *elttype, const char *encoding,
2478 CORE_ADDR addr, int len,
2479 struct ui_file *stream,
2480 const struct value_print_options *options)
2481 {
2482 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2483 int errcode; /* Errno returned from bad reads. */
2484 int found_nul; /* Non-zero if we found the nul char. */
2485 unsigned int fetchlimit; /* Maximum number of chars to print. */
2486 int bytes_read;
2487 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2488 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2489 struct gdbarch *gdbarch = get_type_arch (elttype);
2490 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2491 int width = TYPE_LENGTH (elttype);
2492
2493 /* First we need to figure out the limit on the number of characters we are
2494 going to attempt to fetch and print. This is actually pretty simple. If
2495 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2496 LEN is -1, then the limit is print_max. This is true regardless of
2497 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2498 because finding the null byte (or available memory) is what actually
2499 limits the fetch. */
2500
2501 fetchlimit = (len == -1 ? options->print_max : min (len,
2502 options->print_max));
2503
2504 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2505 &buffer, &bytes_read);
2506 old_chain = make_cleanup (xfree, buffer);
2507
2508 addr += bytes_read;
2509
2510 /* We now have either successfully filled the buffer to fetchlimit,
2511 or terminated early due to an error or finding a null char when
2512 LEN is -1. */
2513
2514 /* Determine found_nul by looking at the last character read. */
2515 found_nul = 0;
2516 if (bytes_read >= width)
2517 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2518 byte_order) == 0;
2519 if (len == -1 && !found_nul)
2520 {
2521 gdb_byte *peekbuf;
2522
2523 /* We didn't find a NUL terminator we were looking for. Attempt
2524 to peek at the next character. If not successful, or it is not
2525 a null byte, then force ellipsis to be printed. */
2526
2527 peekbuf = (gdb_byte *) alloca (width);
2528
2529 if (target_read_memory (addr, peekbuf, width) == 0
2530 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2531 force_ellipsis = 1;
2532 }
2533 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2534 {
2535 /* Getting an error when we have a requested length, or fetching less
2536 than the number of characters actually requested, always make us
2537 print ellipsis. */
2538 force_ellipsis = 1;
2539 }
2540
2541 /* If we get an error before fetching anything, don't print a string.
2542 But if we fetch something and then get an error, print the string
2543 and then the error message. */
2544 if (errcode == 0 || bytes_read > 0)
2545 {
2546 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2547 encoding, force_ellipsis, options);
2548 }
2549
2550 if (errcode != 0)
2551 {
2552 char *str;
2553
2554 str = memory_error_message (errcode, gdbarch, addr);
2555 make_cleanup (xfree, str);
2556
2557 fprintf_filtered (stream, "<error: ");
2558 fputs_filtered (str, stream);
2559 fprintf_filtered (stream, ">");
2560 }
2561
2562 gdb_flush (stream);
2563 do_cleanups (old_chain);
2564
2565 return (bytes_read / width);
2566 }
2567 \f
2568
2569 /* The 'set input-radix' command writes to this auxiliary variable.
2570 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2571 it is left unchanged. */
2572
2573 static unsigned input_radix_1 = 10;
2574
2575 /* Validate an input or output radix setting, and make sure the user
2576 knows what they really did here. Radix setting is confusing, e.g.
2577 setting the input radix to "10" never changes it! */
2578
2579 static void
2580 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2581 {
2582 set_input_radix_1 (from_tty, input_radix_1);
2583 }
2584
2585 static void
2586 set_input_radix_1 (int from_tty, unsigned radix)
2587 {
2588 /* We don't currently disallow any input radix except 0 or 1, which don't
2589 make any mathematical sense. In theory, we can deal with any input
2590 radix greater than 1, even if we don't have unique digits for every
2591 value from 0 to radix-1, but in practice we lose on large radix values.
2592 We should either fix the lossage or restrict the radix range more.
2593 (FIXME). */
2594
2595 if (radix < 2)
2596 {
2597 input_radix_1 = input_radix;
2598 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2599 radix);
2600 }
2601 input_radix_1 = input_radix = radix;
2602 if (from_tty)
2603 {
2604 printf_filtered (_("Input radix now set to "
2605 "decimal %u, hex %x, octal %o.\n"),
2606 radix, radix, radix);
2607 }
2608 }
2609
2610 /* The 'set output-radix' command writes to this auxiliary variable.
2611 If the requested radix is valid, OUTPUT_RADIX is updated,
2612 otherwise, it is left unchanged. */
2613
2614 static unsigned output_radix_1 = 10;
2615
2616 static void
2617 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2618 {
2619 set_output_radix_1 (from_tty, output_radix_1);
2620 }
2621
2622 static void
2623 set_output_radix_1 (int from_tty, unsigned radix)
2624 {
2625 /* Validate the radix and disallow ones that we aren't prepared to
2626 handle correctly, leaving the radix unchanged. */
2627 switch (radix)
2628 {
2629 case 16:
2630 user_print_options.output_format = 'x'; /* hex */
2631 break;
2632 case 10:
2633 user_print_options.output_format = 0; /* decimal */
2634 break;
2635 case 8:
2636 user_print_options.output_format = 'o'; /* octal */
2637 break;
2638 default:
2639 output_radix_1 = output_radix;
2640 error (_("Unsupported output radix ``decimal %u''; "
2641 "output radix unchanged."),
2642 radix);
2643 }
2644 output_radix_1 = output_radix = radix;
2645 if (from_tty)
2646 {
2647 printf_filtered (_("Output radix now set to "
2648 "decimal %u, hex %x, octal %o.\n"),
2649 radix, radix, radix);
2650 }
2651 }
2652
2653 /* Set both the input and output radix at once. Try to set the output radix
2654 first, since it has the most restrictive range. An radix that is valid as
2655 an output radix is also valid as an input radix.
2656
2657 It may be useful to have an unusual input radix. If the user wishes to
2658 set an input radix that is not valid as an output radix, he needs to use
2659 the 'set input-radix' command. */
2660
2661 static void
2662 set_radix (char *arg, int from_tty)
2663 {
2664 unsigned radix;
2665
2666 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2667 set_output_radix_1 (0, radix);
2668 set_input_radix_1 (0, radix);
2669 if (from_tty)
2670 {
2671 printf_filtered (_("Input and output radices now set to "
2672 "decimal %u, hex %x, octal %o.\n"),
2673 radix, radix, radix);
2674 }
2675 }
2676
2677 /* Show both the input and output radices. */
2678
2679 static void
2680 show_radix (char *arg, int from_tty)
2681 {
2682 if (from_tty)
2683 {
2684 if (input_radix == output_radix)
2685 {
2686 printf_filtered (_("Input and output radices set to "
2687 "decimal %u, hex %x, octal %o.\n"),
2688 input_radix, input_radix, input_radix);
2689 }
2690 else
2691 {
2692 printf_filtered (_("Input radix set to decimal "
2693 "%u, hex %x, octal %o.\n"),
2694 input_radix, input_radix, input_radix);
2695 printf_filtered (_("Output radix set to decimal "
2696 "%u, hex %x, octal %o.\n"),
2697 output_radix, output_radix, output_radix);
2698 }
2699 }
2700 }
2701 \f
2702
2703 static void
2704 set_print (char *arg, int from_tty)
2705 {
2706 printf_unfiltered (
2707 "\"set print\" must be followed by the name of a print subcommand.\n");
2708 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2709 }
2710
2711 static void
2712 show_print (char *args, int from_tty)
2713 {
2714 cmd_show_list (showprintlist, from_tty, "");
2715 }
2716
2717 static void
2718 set_print_raw (char *arg, int from_tty)
2719 {
2720 printf_unfiltered (
2721 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2722 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2723 }
2724
2725 static void
2726 show_print_raw (char *args, int from_tty)
2727 {
2728 cmd_show_list (showprintrawlist, from_tty, "");
2729 }
2730
2731 \f
2732 void
2733 _initialize_valprint (void)
2734 {
2735 add_prefix_cmd ("print", no_class, set_print,
2736 _("Generic command for setting how things print."),
2737 &setprintlist, "set print ", 0, &setlist);
2738 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2739 /* Prefer set print to set prompt. */
2740 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2741
2742 add_prefix_cmd ("print", no_class, show_print,
2743 _("Generic command for showing print settings."),
2744 &showprintlist, "show print ", 0, &showlist);
2745 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2746 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2747
2748 add_prefix_cmd ("raw", no_class, set_print_raw,
2749 _("\
2750 Generic command for setting what things to print in \"raw\" mode."),
2751 &setprintrawlist, "set print raw ", 0, &setprintlist);
2752 add_prefix_cmd ("raw", no_class, show_print_raw,
2753 _("Generic command for showing \"print raw\" settings."),
2754 &showprintrawlist, "show print raw ", 0, &showprintlist);
2755
2756 add_setshow_uinteger_cmd ("elements", no_class,
2757 &user_print_options.print_max, _("\
2758 Set limit on string chars or array elements to print."), _("\
2759 Show limit on string chars or array elements to print."), _("\
2760 \"set print elements unlimited\" causes there to be no limit."),
2761 NULL,
2762 show_print_max,
2763 &setprintlist, &showprintlist);
2764
2765 add_setshow_boolean_cmd ("null-stop", no_class,
2766 &user_print_options.stop_print_at_null, _("\
2767 Set printing of char arrays to stop at first null char."), _("\
2768 Show printing of char arrays to stop at first null char."), NULL,
2769 NULL,
2770 show_stop_print_at_null,
2771 &setprintlist, &showprintlist);
2772
2773 add_setshow_uinteger_cmd ("repeats", no_class,
2774 &user_print_options.repeat_count_threshold, _("\
2775 Set threshold for repeated print elements."), _("\
2776 Show threshold for repeated print elements."), _("\
2777 \"set print repeats unlimited\" causes all elements to be individually printed."),
2778 NULL,
2779 show_repeat_count_threshold,
2780 &setprintlist, &showprintlist);
2781
2782 add_setshow_boolean_cmd ("pretty", class_support,
2783 &user_print_options.prettyformat_structs, _("\
2784 Set pretty formatting of structures."), _("\
2785 Show pretty formatting of structures."), NULL,
2786 NULL,
2787 show_prettyformat_structs,
2788 &setprintlist, &showprintlist);
2789
2790 add_setshow_boolean_cmd ("union", class_support,
2791 &user_print_options.unionprint, _("\
2792 Set printing of unions interior to structures."), _("\
2793 Show printing of unions interior to structures."), NULL,
2794 NULL,
2795 show_unionprint,
2796 &setprintlist, &showprintlist);
2797
2798 add_setshow_boolean_cmd ("array", class_support,
2799 &user_print_options.prettyformat_arrays, _("\
2800 Set pretty formatting of arrays."), _("\
2801 Show pretty formatting of arrays."), NULL,
2802 NULL,
2803 show_prettyformat_arrays,
2804 &setprintlist, &showprintlist);
2805
2806 add_setshow_boolean_cmd ("address", class_support,
2807 &user_print_options.addressprint, _("\
2808 Set printing of addresses."), _("\
2809 Show printing of addresses."), NULL,
2810 NULL,
2811 show_addressprint,
2812 &setprintlist, &showprintlist);
2813
2814 add_setshow_boolean_cmd ("symbol", class_support,
2815 &user_print_options.symbol_print, _("\
2816 Set printing of symbol names when printing pointers."), _("\
2817 Show printing of symbol names when printing pointers."),
2818 NULL, NULL,
2819 show_symbol_print,
2820 &setprintlist, &showprintlist);
2821
2822 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2823 _("\
2824 Set default input radix for entering numbers."), _("\
2825 Show default input radix for entering numbers."), NULL,
2826 set_input_radix,
2827 show_input_radix,
2828 &setlist, &showlist);
2829
2830 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2831 _("\
2832 Set default output radix for printing of values."), _("\
2833 Show default output radix for printing of values."), NULL,
2834 set_output_radix,
2835 show_output_radix,
2836 &setlist, &showlist);
2837
2838 /* The "set radix" and "show radix" commands are special in that
2839 they are like normal set and show commands but allow two normally
2840 independent variables to be either set or shown with a single
2841 command. So the usual deprecated_add_set_cmd() and [deleted]
2842 add_show_from_set() commands aren't really appropriate. */
2843 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2844 longer true - show can display anything. */
2845 add_cmd ("radix", class_support, set_radix, _("\
2846 Set default input and output number radices.\n\
2847 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2848 Without an argument, sets both radices back to the default value of 10."),
2849 &setlist);
2850 add_cmd ("radix", class_support, show_radix, _("\
2851 Show the default input and output number radices.\n\
2852 Use 'show input-radix' or 'show output-radix' to independently show each."),
2853 &showlist);
2854
2855 add_setshow_boolean_cmd ("array-indexes", class_support,
2856 &user_print_options.print_array_indexes, _("\
2857 Set printing of array indexes."), _("\
2858 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2859 &setprintlist, &showprintlist);
2860 }
This page took 0.14026 seconds and 5 git commands to generate.