Return target_xfer_status in to_xfer_partial
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "extension.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Maximum number of wchars returned from wchar_iterate. */
44 #define MAX_WCHARS 4
45
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 characters. */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49
50 /* Character buffer size saved while iterating over wchars. */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52
53 /* A structure to encapsulate state information from iterated
54 character conversions. */
55 struct converted_character
56 {
57 /* The number of characters converted. */
58 int num_chars;
59
60 /* The result of the conversion. See charset.h for more. */
61 enum wchar_iterate_result result;
62
63 /* The (saved) converted character(s). */
64 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65
66 /* The first converted target byte. */
67 const gdb_byte *buf;
68
69 /* The number of bytes converted. */
70 size_t buflen;
71
72 /* How many times this character(s) is repeated. */
73 int repeat_count;
74 };
75
76 typedef struct converted_character converted_character_d;
77 DEF_VEC_O (converted_character_d);
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void show_print (char *, int);
89
90 static void set_print (char *, int);
91
92 static void set_radix (char *, int);
93
94 static void show_radix (char *, int);
95
96 static void set_input_radix (char *, int, struct cmd_list_element *);
97
98 static void set_input_radix_1 (int, unsigned);
99
100 static void set_output_radix (char *, int, struct cmd_list_element *);
101
102 static void set_output_radix_1 (int, unsigned);
103
104 void _initialize_valprint (void);
105
106 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
107
108 struct value_print_options user_print_options =
109 {
110 Val_prettyformat_default, /* prettyformat */
111 0, /* prettyformat_arrays */
112 0, /* prettyformat_structs */
113 0, /* vtblprint */
114 1, /* unionprint */
115 1, /* addressprint */
116 0, /* objectprint */
117 PRINT_MAX_DEFAULT, /* print_max */
118 10, /* repeat_count_threshold */
119 0, /* output_format */
120 0, /* format */
121 0, /* stop_print_at_null */
122 0, /* print_array_indexes */
123 0, /* deref_ref */
124 1, /* static_field_print */
125 1, /* pascal_static_field_print */
126 0, /* raw */
127 0, /* summary */
128 1 /* symbol_print */
129 };
130
131 /* Initialize *OPTS to be a copy of the user print options. */
132 void
133 get_user_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but with
139 pretty-formatting disabled. */
140 void
141 get_no_prettyformat_print_options (struct value_print_options *opts)
142 {
143 *opts = user_print_options;
144 opts->prettyformat = Val_no_prettyformat;
145 }
146
147 /* Initialize *OPTS to be a copy of the user print options, but using
148 FORMAT as the formatting option. */
149 void
150 get_formatted_print_options (struct value_print_options *opts,
151 char format)
152 {
153 *opts = user_print_options;
154 opts->format = format;
155 }
156
157 static void
158 show_print_max (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file,
162 _("Limit on string chars or array "
163 "elements to print is %s.\n"),
164 value);
165 }
166
167
168 /* Default input and output radixes, and output format letter. */
169
170 unsigned input_radix = 10;
171 static void
172 show_input_radix (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file,
176 _("Default input radix for entering numbers is %s.\n"),
177 value);
178 }
179
180 unsigned output_radix = 10;
181 static void
182 show_output_radix (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file,
186 _("Default output radix for printing of values is %s.\n"),
187 value);
188 }
189
190 /* By default we print arrays without printing the index of each element in
191 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
192
193 static void
194 show_print_array_indexes (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
198 }
199
200 /* Print repeat counts if there are more than this many repetitions of an
201 element in an array. Referenced by the low level language dependent
202 print routines. */
203
204 static void
205 show_repeat_count_threshold (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
209 value);
210 }
211
212 /* If nonzero, stops printing of char arrays at first null. */
213
214 static void
215 show_stop_print_at_null (struct ui_file *file, int from_tty,
216 struct cmd_list_element *c, const char *value)
217 {
218 fprintf_filtered (file,
219 _("Printing of char arrays to stop "
220 "at first null char is %s.\n"),
221 value);
222 }
223
224 /* Controls pretty printing of structures. */
225
226 static void
227 show_prettyformat_structs (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
231 }
232
233 /* Controls pretty printing of arrays. */
234
235 static void
236 show_prettyformat_arrays (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
240 }
241
242 /* If nonzero, causes unions inside structures or other unions to be
243 printed. */
244
245 static void
246 show_unionprint (struct ui_file *file, int from_tty,
247 struct cmd_list_element *c, const char *value)
248 {
249 fprintf_filtered (file,
250 _("Printing of unions interior to structures is %s.\n"),
251 value);
252 }
253
254 /* If nonzero, causes machine addresses to be printed in certain contexts. */
255
256 static void
257 show_addressprint (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
261 }
262
263 static void
264 show_symbol_print (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file,
268 _("Printing of symbols when printing pointers is %s.\n"),
269 value);
270 }
271
272 \f
273
274 /* A helper function for val_print. When printing in "summary" mode,
275 we want to print scalar arguments, but not aggregate arguments.
276 This function distinguishes between the two. */
277
278 int
279 val_print_scalar_type_p (struct type *type)
280 {
281 CHECK_TYPEDEF (type);
282 while (TYPE_CODE (type) == TYPE_CODE_REF)
283 {
284 type = TYPE_TARGET_TYPE (type);
285 CHECK_TYPEDEF (type);
286 }
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_ARRAY:
290 case TYPE_CODE_STRUCT:
291 case TYPE_CODE_UNION:
292 case TYPE_CODE_SET:
293 case TYPE_CODE_STRING:
294 return 0;
295 default:
296 return 1;
297 }
298 }
299
300 /* See its definition in value.h. */
301
302 int
303 valprint_check_validity (struct ui_file *stream,
304 struct type *type,
305 int embedded_offset,
306 const struct value *val)
307 {
308 CHECK_TYPEDEF (type);
309
310 if (TYPE_CODE (type) != TYPE_CODE_UNION
311 && TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
313 {
314 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
315 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
316 {
317 val_print_optimized_out (val, stream);
318 return 0;
319 }
320
321 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
322 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
323 {
324 fputs_filtered (_("<synthetic pointer>"), stream);
325 return 0;
326 }
327
328 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
329 {
330 val_print_unavailable (stream);
331 return 0;
332 }
333 }
334
335 return 1;
336 }
337
338 void
339 val_print_optimized_out (const struct value *val, struct ui_file *stream)
340 {
341 if (val != NULL && value_lval_const (val) == lval_register)
342 val_print_not_saved (stream);
343 else
344 fprintf_filtered (stream, _("<optimized out>"));
345 }
346
347 void
348 val_print_not_saved (struct ui_file *stream)
349 {
350 fprintf_filtered (stream, _("<not saved>"));
351 }
352
353 void
354 val_print_unavailable (struct ui_file *stream)
355 {
356 fprintf_filtered (stream, _("<unavailable>"));
357 }
358
359 void
360 val_print_invalid_address (struct ui_file *stream)
361 {
362 fprintf_filtered (stream, _("<invalid address>"));
363 }
364
365 /* A generic val_print that is suitable for use by language
366 implementations of the la_val_print method. This function can
367 handle most type codes, though not all, notably exception
368 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
369 the caller.
370
371 Most arguments are as to val_print.
372
373 The additional DECORATIONS argument can be used to customize the
374 output in some small, language-specific ways. */
375
376 void
377 generic_val_print (struct type *type, const gdb_byte *valaddr,
378 int embedded_offset, CORE_ADDR address,
379 struct ui_file *stream, int recurse,
380 const struct value *original_value,
381 const struct value_print_options *options,
382 const struct generic_val_print_decorations *decorations)
383 {
384 struct gdbarch *gdbarch = get_type_arch (type);
385 unsigned int i = 0; /* Number of characters printed. */
386 unsigned len;
387 struct type *elttype, *unresolved_elttype;
388 struct type *unresolved_type = type;
389 LONGEST val;
390 CORE_ADDR addr;
391
392 CHECK_TYPEDEF (type);
393 switch (TYPE_CODE (type))
394 {
395 case TYPE_CODE_ARRAY:
396 unresolved_elttype = TYPE_TARGET_TYPE (type);
397 elttype = check_typedef (unresolved_elttype);
398 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
399 {
400 LONGEST low_bound, high_bound;
401
402 if (!get_array_bounds (type, &low_bound, &high_bound))
403 error (_("Could not determine the array high bound"));
404
405 if (options->prettyformat_arrays)
406 {
407 print_spaces_filtered (2 + 2 * recurse, stream);
408 }
409
410 fprintf_filtered (stream, "{");
411 val_print_array_elements (type, valaddr, embedded_offset,
412 address, stream,
413 recurse, original_value, options, 0);
414 fprintf_filtered (stream, "}");
415 break;
416 }
417 /* Array of unspecified length: treat like pointer to first
418 elt. */
419 addr = address + embedded_offset;
420 goto print_unpacked_pointer;
421
422 case TYPE_CODE_MEMBERPTR:
423 val_print_scalar_formatted (type, valaddr, embedded_offset,
424 original_value, options, 0, stream);
425 break;
426
427 case TYPE_CODE_PTR:
428 if (options->format && options->format != 's')
429 {
430 val_print_scalar_formatted (type, valaddr, embedded_offset,
431 original_value, options, 0, stream);
432 break;
433 }
434 unresolved_elttype = TYPE_TARGET_TYPE (type);
435 elttype = check_typedef (unresolved_elttype);
436 {
437 addr = unpack_pointer (type, valaddr + embedded_offset);
438 print_unpacked_pointer:
439
440 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
441 {
442 /* Try to print what function it points to. */
443 print_function_pointer_address (options, gdbarch, addr, stream);
444 return;
445 }
446
447 if (options->symbol_print)
448 print_address_demangle (options, gdbarch, addr, stream, demangle);
449 else if (options->addressprint)
450 fputs_filtered (paddress (gdbarch, addr), stream);
451 }
452 break;
453
454 case TYPE_CODE_REF:
455 elttype = check_typedef (TYPE_TARGET_TYPE (type));
456 if (options->addressprint)
457 {
458 CORE_ADDR addr
459 = extract_typed_address (valaddr + embedded_offset, type);
460
461 fprintf_filtered (stream, "@");
462 fputs_filtered (paddress (gdbarch, addr), stream);
463 if (options->deref_ref)
464 fputs_filtered (": ", stream);
465 }
466 /* De-reference the reference. */
467 if (options->deref_ref)
468 {
469 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
470 {
471 struct value *deref_val;
472
473 deref_val = coerce_ref_if_computed (original_value);
474 if (deref_val != NULL)
475 {
476 /* More complicated computed references are not supported. */
477 gdb_assert (embedded_offset == 0);
478 }
479 else
480 deref_val = value_at (TYPE_TARGET_TYPE (type),
481 unpack_pointer (type,
482 (valaddr
483 + embedded_offset)));
484
485 common_val_print (deref_val, stream, recurse, options,
486 current_language);
487 }
488 else
489 fputs_filtered ("???", stream);
490 }
491 break;
492
493 case TYPE_CODE_ENUM:
494 if (options->format)
495 {
496 val_print_scalar_formatted (type, valaddr, embedded_offset,
497 original_value, options, 0, stream);
498 break;
499 }
500 len = TYPE_NFIELDS (type);
501 val = unpack_long (type, valaddr + embedded_offset);
502 for (i = 0; i < len; i++)
503 {
504 QUIT;
505 if (val == TYPE_FIELD_ENUMVAL (type, i))
506 {
507 break;
508 }
509 }
510 if (i < len)
511 {
512 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
513 }
514 else if (TYPE_FLAG_ENUM (type))
515 {
516 int first = 1;
517
518 /* We have a "flag" enum, so we try to decompose it into
519 pieces as appropriate. A flag enum has disjoint
520 constants by definition. */
521 fputs_filtered ("(", stream);
522 for (i = 0; i < len; ++i)
523 {
524 QUIT;
525
526 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
527 {
528 if (!first)
529 fputs_filtered (" | ", stream);
530 first = 0;
531
532 val &= ~TYPE_FIELD_ENUMVAL (type, i);
533 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
534 }
535 }
536
537 if (first || val != 0)
538 {
539 if (!first)
540 fputs_filtered (" | ", stream);
541 fputs_filtered ("unknown: ", stream);
542 print_longest (stream, 'd', 0, val);
543 }
544
545 fputs_filtered (")", stream);
546 }
547 else
548 print_longest (stream, 'd', 0, val);
549 break;
550
551 case TYPE_CODE_FLAGS:
552 if (options->format)
553 val_print_scalar_formatted (type, valaddr, embedded_offset,
554 original_value, options, 0, stream);
555 else
556 val_print_type_code_flags (type, valaddr + embedded_offset,
557 stream);
558 break;
559
560 case TYPE_CODE_FUNC:
561 case TYPE_CODE_METHOD:
562 if (options->format)
563 {
564 val_print_scalar_formatted (type, valaddr, embedded_offset,
565 original_value, options, 0, stream);
566 break;
567 }
568 /* FIXME, we should consider, at least for ANSI C language,
569 eliminating the distinction made between FUNCs and POINTERs
570 to FUNCs. */
571 fprintf_filtered (stream, "{");
572 type_print (type, "", stream, -1);
573 fprintf_filtered (stream, "} ");
574 /* Try to print what function it points to, and its address. */
575 print_address_demangle (options, gdbarch, address, stream, demangle);
576 break;
577
578 case TYPE_CODE_BOOL:
579 if (options->format || options->output_format)
580 {
581 struct value_print_options opts = *options;
582 opts.format = (options->format ? options->format
583 : options->output_format);
584 val_print_scalar_formatted (type, valaddr, embedded_offset,
585 original_value, &opts, 0, stream);
586 }
587 else
588 {
589 val = unpack_long (type, valaddr + embedded_offset);
590 if (val == 0)
591 fputs_filtered (decorations->false_name, stream);
592 else if (val == 1)
593 fputs_filtered (decorations->true_name, stream);
594 else
595 print_longest (stream, 'd', 0, val);
596 }
597 break;
598
599 case TYPE_CODE_RANGE:
600 /* FIXME: create_range_type does not set the unsigned bit in a
601 range type (I think it probably should copy it from the
602 target type), so we won't print values which are too large to
603 fit in a signed integer correctly. */
604 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
605 print with the target type, though, because the size of our
606 type and the target type might differ). */
607
608 /* FALLTHROUGH */
609
610 case TYPE_CODE_INT:
611 if (options->format || options->output_format)
612 {
613 struct value_print_options opts = *options;
614
615 opts.format = (options->format ? options->format
616 : options->output_format);
617 val_print_scalar_formatted (type, valaddr, embedded_offset,
618 original_value, &opts, 0, stream);
619 }
620 else
621 val_print_type_code_int (type, valaddr + embedded_offset, stream);
622 break;
623
624 case TYPE_CODE_CHAR:
625 if (options->format || options->output_format)
626 {
627 struct value_print_options opts = *options;
628
629 opts.format = (options->format ? options->format
630 : options->output_format);
631 val_print_scalar_formatted (type, valaddr, embedded_offset,
632 original_value, &opts, 0, stream);
633 }
634 else
635 {
636 val = unpack_long (type, valaddr + embedded_offset);
637 if (TYPE_UNSIGNED (type))
638 fprintf_filtered (stream, "%u", (unsigned int) val);
639 else
640 fprintf_filtered (stream, "%d", (int) val);
641 fputs_filtered (" ", stream);
642 LA_PRINT_CHAR (val, unresolved_type, stream);
643 }
644 break;
645
646 case TYPE_CODE_FLT:
647 if (options->format)
648 {
649 val_print_scalar_formatted (type, valaddr, embedded_offset,
650 original_value, options, 0, stream);
651 }
652 else
653 {
654 print_floating (valaddr + embedded_offset, type, stream);
655 }
656 break;
657
658 case TYPE_CODE_DECFLOAT:
659 if (options->format)
660 val_print_scalar_formatted (type, valaddr, embedded_offset,
661 original_value, options, 0, stream);
662 else
663 print_decimal_floating (valaddr + embedded_offset,
664 type, stream);
665 break;
666
667 case TYPE_CODE_VOID:
668 fputs_filtered (decorations->void_name, stream);
669 break;
670
671 case TYPE_CODE_ERROR:
672 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
673 break;
674
675 case TYPE_CODE_UNDEF:
676 /* This happens (without TYPE_FLAG_STUB set) on systems which
677 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
678 "struct foo *bar" and no complete type for struct foo in that
679 file. */
680 fprintf_filtered (stream, _("<incomplete type>"));
681 break;
682
683 case TYPE_CODE_COMPLEX:
684 fprintf_filtered (stream, "%s", decorations->complex_prefix);
685 if (options->format)
686 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
687 valaddr, embedded_offset,
688 original_value, options, 0, stream);
689 else
690 print_floating (valaddr + embedded_offset,
691 TYPE_TARGET_TYPE (type),
692 stream);
693 fprintf_filtered (stream, "%s", decorations->complex_infix);
694 if (options->format)
695 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
696 valaddr,
697 embedded_offset
698 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
699 original_value,
700 options, 0, stream);
701 else
702 print_floating (valaddr + embedded_offset
703 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
704 TYPE_TARGET_TYPE (type),
705 stream);
706 fprintf_filtered (stream, "%s", decorations->complex_suffix);
707 break;
708
709 case TYPE_CODE_UNION:
710 case TYPE_CODE_STRUCT:
711 case TYPE_CODE_METHODPTR:
712 default:
713 error (_("Unhandled type code %d in symbol table."),
714 TYPE_CODE (type));
715 }
716 gdb_flush (stream);
717 }
718
719 /* Print using the given LANGUAGE the data of type TYPE located at
720 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
721 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
722 STREAM according to OPTIONS. VAL is the whole object that came
723 from ADDRESS. VALADDR must point to the head of VAL's contents
724 buffer.
725
726 The language printers will pass down an adjusted EMBEDDED_OFFSET to
727 further helper subroutines as subfields of TYPE are printed. In
728 such cases, VALADDR is passed down unadjusted, as well as VAL, so
729 that VAL can be queried for metadata about the contents data being
730 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
731 buffer. For example: "has this field been optimized out", or "I'm
732 printing an object while inspecting a traceframe; has this
733 particular piece of data been collected?".
734
735 RECURSE indicates the amount of indentation to supply before
736 continuation lines; this amount is roughly twice the value of
737 RECURSE. */
738
739 void
740 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
741 CORE_ADDR address, struct ui_file *stream, int recurse,
742 const struct value *val,
743 const struct value_print_options *options,
744 const struct language_defn *language)
745 {
746 volatile struct gdb_exception except;
747 int ret = 0;
748 struct value_print_options local_opts = *options;
749 struct type *real_type = check_typedef (type);
750
751 if (local_opts.prettyformat == Val_prettyformat_default)
752 local_opts.prettyformat = (local_opts.prettyformat_structs
753 ? Val_prettyformat : Val_no_prettyformat);
754
755 QUIT;
756
757 /* Ensure that the type is complete and not just a stub. If the type is
758 only a stub and we can't find and substitute its complete type, then
759 print appropriate string and return. */
760
761 if (TYPE_STUB (real_type))
762 {
763 fprintf_filtered (stream, _("<incomplete type>"));
764 gdb_flush (stream);
765 return;
766 }
767
768 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
769 return;
770
771 if (!options->raw)
772 {
773 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
774 address, stream, recurse,
775 val, options, language);
776 if (ret)
777 return;
778 }
779
780 /* Handle summary mode. If the value is a scalar, print it;
781 otherwise, print an ellipsis. */
782 if (options->summary && !val_print_scalar_type_p (type))
783 {
784 fprintf_filtered (stream, "...");
785 return;
786 }
787
788 TRY_CATCH (except, RETURN_MASK_ERROR)
789 {
790 language->la_val_print (type, valaddr, embedded_offset, address,
791 stream, recurse, val,
792 &local_opts);
793 }
794 if (except.reason < 0)
795 fprintf_filtered (stream, _("<error reading variable>"));
796 }
797
798 /* Check whether the value VAL is printable. Return 1 if it is;
799 return 0 and print an appropriate error message to STREAM according to
800 OPTIONS if it is not. */
801
802 static int
803 value_check_printable (struct value *val, struct ui_file *stream,
804 const struct value_print_options *options)
805 {
806 if (val == 0)
807 {
808 fprintf_filtered (stream, _("<address of value unknown>"));
809 return 0;
810 }
811
812 if (value_entirely_optimized_out (val))
813 {
814 if (options->summary && !val_print_scalar_type_p (value_type (val)))
815 fprintf_filtered (stream, "...");
816 else
817 val_print_optimized_out (val, stream);
818 return 0;
819 }
820
821 if (value_entirely_unavailable (val))
822 {
823 if (options->summary && !val_print_scalar_type_p (value_type (val)))
824 fprintf_filtered (stream, "...");
825 else
826 val_print_unavailable (stream);
827 return 0;
828 }
829
830 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
831 {
832 fprintf_filtered (stream, _("<internal function %s>"),
833 value_internal_function_name (val));
834 return 0;
835 }
836
837 return 1;
838 }
839
840 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
841 to OPTIONS.
842
843 This is a preferable interface to val_print, above, because it uses
844 GDB's value mechanism. */
845
846 void
847 common_val_print (struct value *val, struct ui_file *stream, int recurse,
848 const struct value_print_options *options,
849 const struct language_defn *language)
850 {
851 if (!value_check_printable (val, stream, options))
852 return;
853
854 if (language->la_language == language_ada)
855 /* The value might have a dynamic type, which would cause trouble
856 below when trying to extract the value contents (since the value
857 size is determined from the type size which is unknown). So
858 get a fixed representation of our value. */
859 val = ada_to_fixed_value (val);
860
861 val_print (value_type (val), value_contents_for_printing (val),
862 value_embedded_offset (val), value_address (val),
863 stream, recurse,
864 val, options, language);
865 }
866
867 /* Print on stream STREAM the value VAL according to OPTIONS. The value
868 is printed using the current_language syntax. */
869
870 void
871 value_print (struct value *val, struct ui_file *stream,
872 const struct value_print_options *options)
873 {
874 if (!value_check_printable (val, stream, options))
875 return;
876
877 if (!options->raw)
878 {
879 int r
880 = apply_ext_lang_val_pretty_printer (value_type (val),
881 value_contents_for_printing (val),
882 value_embedded_offset (val),
883 value_address (val),
884 stream, 0,
885 val, options, current_language);
886
887 if (r)
888 return;
889 }
890
891 LA_VALUE_PRINT (val, stream, options);
892 }
893
894 /* Called by various <lang>_val_print routines to print
895 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
896 value. STREAM is where to print the value. */
897
898 void
899 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
900 struct ui_file *stream)
901 {
902 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
903
904 if (TYPE_LENGTH (type) > sizeof (LONGEST))
905 {
906 LONGEST val;
907
908 if (TYPE_UNSIGNED (type)
909 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
910 byte_order, &val))
911 {
912 print_longest (stream, 'u', 0, val);
913 }
914 else
915 {
916 /* Signed, or we couldn't turn an unsigned value into a
917 LONGEST. For signed values, one could assume two's
918 complement (a reasonable assumption, I think) and do
919 better than this. */
920 print_hex_chars (stream, (unsigned char *) valaddr,
921 TYPE_LENGTH (type), byte_order);
922 }
923 }
924 else
925 {
926 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
927 unpack_long (type, valaddr));
928 }
929 }
930
931 void
932 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
933 struct ui_file *stream)
934 {
935 ULONGEST val = unpack_long (type, valaddr);
936 int bitpos, nfields = TYPE_NFIELDS (type);
937
938 fputs_filtered ("[ ", stream);
939 for (bitpos = 0; bitpos < nfields; bitpos++)
940 {
941 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
942 && (val & ((ULONGEST)1 << bitpos)))
943 {
944 if (TYPE_FIELD_NAME (type, bitpos))
945 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
946 else
947 fprintf_filtered (stream, "#%d ", bitpos);
948 }
949 }
950 fputs_filtered ("]", stream);
951 }
952
953 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
954 according to OPTIONS and SIZE on STREAM. Format i is not supported
955 at this level.
956
957 This is how the elements of an array or structure are printed
958 with a format. */
959
960 void
961 val_print_scalar_formatted (struct type *type,
962 const gdb_byte *valaddr, int embedded_offset,
963 const struct value *val,
964 const struct value_print_options *options,
965 int size,
966 struct ui_file *stream)
967 {
968 gdb_assert (val != NULL);
969 gdb_assert (valaddr == value_contents_for_printing_const (val));
970
971 /* If we get here with a string format, try again without it. Go
972 all the way back to the language printers, which may call us
973 again. */
974 if (options->format == 's')
975 {
976 struct value_print_options opts = *options;
977 opts.format = 0;
978 opts.deref_ref = 0;
979 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
980 current_language);
981 return;
982 }
983
984 /* A scalar object that does not have all bits available can't be
985 printed, because all bits contribute to its representation. */
986 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
987 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
988 val_print_optimized_out (val, stream);
989 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
990 val_print_unavailable (stream);
991 else
992 print_scalar_formatted (valaddr + embedded_offset, type,
993 options, size, stream);
994 }
995
996 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
997 The raison d'etre of this function is to consolidate printing of
998 LONG_LONG's into this one function. The format chars b,h,w,g are
999 from print_scalar_formatted(). Numbers are printed using C
1000 format.
1001
1002 USE_C_FORMAT means to use C format in all cases. Without it,
1003 'o' and 'x' format do not include the standard C radix prefix
1004 (leading 0 or 0x).
1005
1006 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1007 and was intended to request formating according to the current
1008 language and would be used for most integers that GDB prints. The
1009 exceptional cases were things like protocols where the format of
1010 the integer is a protocol thing, not a user-visible thing). The
1011 parameter remains to preserve the information of what things might
1012 be printed with language-specific format, should we ever resurrect
1013 that capability. */
1014
1015 void
1016 print_longest (struct ui_file *stream, int format, int use_c_format,
1017 LONGEST val_long)
1018 {
1019 const char *val;
1020
1021 switch (format)
1022 {
1023 case 'd':
1024 val = int_string (val_long, 10, 1, 0, 1); break;
1025 case 'u':
1026 val = int_string (val_long, 10, 0, 0, 1); break;
1027 case 'x':
1028 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1029 case 'b':
1030 val = int_string (val_long, 16, 0, 2, 1); break;
1031 case 'h':
1032 val = int_string (val_long, 16, 0, 4, 1); break;
1033 case 'w':
1034 val = int_string (val_long, 16, 0, 8, 1); break;
1035 case 'g':
1036 val = int_string (val_long, 16, 0, 16, 1); break;
1037 break;
1038 case 'o':
1039 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1040 default:
1041 internal_error (__FILE__, __LINE__,
1042 _("failed internal consistency check"));
1043 }
1044 fputs_filtered (val, stream);
1045 }
1046
1047 /* This used to be a macro, but I don't think it is called often enough
1048 to merit such treatment. */
1049 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1050 arguments to a function, number in a value history, register number, etc.)
1051 where the value must not be larger than can fit in an int. */
1052
1053 int
1054 longest_to_int (LONGEST arg)
1055 {
1056 /* Let the compiler do the work. */
1057 int rtnval = (int) arg;
1058
1059 /* Check for overflows or underflows. */
1060 if (sizeof (LONGEST) > sizeof (int))
1061 {
1062 if (rtnval != arg)
1063 {
1064 error (_("Value out of range."));
1065 }
1066 }
1067 return (rtnval);
1068 }
1069
1070 /* Print a floating point value of type TYPE (not always a
1071 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1072
1073 void
1074 print_floating (const gdb_byte *valaddr, struct type *type,
1075 struct ui_file *stream)
1076 {
1077 DOUBLEST doub;
1078 int inv;
1079 const struct floatformat *fmt = NULL;
1080 unsigned len = TYPE_LENGTH (type);
1081 enum float_kind kind;
1082
1083 /* If it is a floating-point, check for obvious problems. */
1084 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1085 fmt = floatformat_from_type (type);
1086 if (fmt != NULL)
1087 {
1088 kind = floatformat_classify (fmt, valaddr);
1089 if (kind == float_nan)
1090 {
1091 if (floatformat_is_negative (fmt, valaddr))
1092 fprintf_filtered (stream, "-");
1093 fprintf_filtered (stream, "nan(");
1094 fputs_filtered ("0x", stream);
1095 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1096 fprintf_filtered (stream, ")");
1097 return;
1098 }
1099 else if (kind == float_infinite)
1100 {
1101 if (floatformat_is_negative (fmt, valaddr))
1102 fputs_filtered ("-", stream);
1103 fputs_filtered ("inf", stream);
1104 return;
1105 }
1106 }
1107
1108 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1109 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1110 needs to be used as that takes care of any necessary type
1111 conversions. Such conversions are of course direct to DOUBLEST
1112 and disregard any possible target floating point limitations.
1113 For instance, a u64 would be converted and displayed exactly on a
1114 host with 80 bit DOUBLEST but with loss of information on a host
1115 with 64 bit DOUBLEST. */
1116
1117 doub = unpack_double (type, valaddr, &inv);
1118 if (inv)
1119 {
1120 fprintf_filtered (stream, "<invalid float value>");
1121 return;
1122 }
1123
1124 /* FIXME: kettenis/2001-01-20: The following code makes too much
1125 assumptions about the host and target floating point format. */
1126
1127 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1128 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1129 instead uses the type's length to determine the precision of the
1130 floating-point value being printed. */
1131
1132 if (len < sizeof (double))
1133 fprintf_filtered (stream, "%.9g", (double) doub);
1134 else if (len == sizeof (double))
1135 fprintf_filtered (stream, "%.17g", (double) doub);
1136 else
1137 #ifdef PRINTF_HAS_LONG_DOUBLE
1138 fprintf_filtered (stream, "%.35Lg", doub);
1139 #else
1140 /* This at least wins with values that are representable as
1141 doubles. */
1142 fprintf_filtered (stream, "%.17g", (double) doub);
1143 #endif
1144 }
1145
1146 void
1147 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1148 struct ui_file *stream)
1149 {
1150 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1151 char decstr[MAX_DECIMAL_STRING];
1152 unsigned len = TYPE_LENGTH (type);
1153
1154 decimal_to_string (valaddr, len, byte_order, decstr);
1155 fputs_filtered (decstr, stream);
1156 return;
1157 }
1158
1159 void
1160 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1161 unsigned len, enum bfd_endian byte_order)
1162 {
1163
1164 #define BITS_IN_BYTES 8
1165
1166 const gdb_byte *p;
1167 unsigned int i;
1168 int b;
1169
1170 /* Declared "int" so it will be signed.
1171 This ensures that right shift will shift in zeros. */
1172
1173 const int mask = 0x080;
1174
1175 /* FIXME: We should be not printing leading zeroes in most cases. */
1176
1177 if (byte_order == BFD_ENDIAN_BIG)
1178 {
1179 for (p = valaddr;
1180 p < valaddr + len;
1181 p++)
1182 {
1183 /* Every byte has 8 binary characters; peel off
1184 and print from the MSB end. */
1185
1186 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1187 {
1188 if (*p & (mask >> i))
1189 b = 1;
1190 else
1191 b = 0;
1192
1193 fprintf_filtered (stream, "%1d", b);
1194 }
1195 }
1196 }
1197 else
1198 {
1199 for (p = valaddr + len - 1;
1200 p >= valaddr;
1201 p--)
1202 {
1203 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1204 {
1205 if (*p & (mask >> i))
1206 b = 1;
1207 else
1208 b = 0;
1209
1210 fprintf_filtered (stream, "%1d", b);
1211 }
1212 }
1213 }
1214 }
1215
1216 /* VALADDR points to an integer of LEN bytes.
1217 Print it in octal on stream or format it in buf. */
1218
1219 void
1220 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1221 unsigned len, enum bfd_endian byte_order)
1222 {
1223 const gdb_byte *p;
1224 unsigned char octa1, octa2, octa3, carry;
1225 int cycle;
1226
1227 /* FIXME: We should be not printing leading zeroes in most cases. */
1228
1229
1230 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1231 * the extra bits, which cycle every three bytes:
1232 *
1233 * Byte side: 0 1 2 3
1234 * | | | |
1235 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1236 *
1237 * Octal side: 0 1 carry 3 4 carry ...
1238 *
1239 * Cycle number: 0 1 2
1240 *
1241 * But of course we are printing from the high side, so we have to
1242 * figure out where in the cycle we are so that we end up with no
1243 * left over bits at the end.
1244 */
1245 #define BITS_IN_OCTAL 3
1246 #define HIGH_ZERO 0340
1247 #define LOW_ZERO 0016
1248 #define CARRY_ZERO 0003
1249 #define HIGH_ONE 0200
1250 #define MID_ONE 0160
1251 #define LOW_ONE 0016
1252 #define CARRY_ONE 0001
1253 #define HIGH_TWO 0300
1254 #define MID_TWO 0070
1255 #define LOW_TWO 0007
1256
1257 /* For 32 we start in cycle 2, with two bits and one bit carry;
1258 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1259
1260 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1261 carry = 0;
1262
1263 fputs_filtered ("0", stream);
1264 if (byte_order == BFD_ENDIAN_BIG)
1265 {
1266 for (p = valaddr;
1267 p < valaddr + len;
1268 p++)
1269 {
1270 switch (cycle)
1271 {
1272 case 0:
1273 /* No carry in, carry out two bits. */
1274
1275 octa1 = (HIGH_ZERO & *p) >> 5;
1276 octa2 = (LOW_ZERO & *p) >> 2;
1277 carry = (CARRY_ZERO & *p);
1278 fprintf_filtered (stream, "%o", octa1);
1279 fprintf_filtered (stream, "%o", octa2);
1280 break;
1281
1282 case 1:
1283 /* Carry in two bits, carry out one bit. */
1284
1285 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1286 octa2 = (MID_ONE & *p) >> 4;
1287 octa3 = (LOW_ONE & *p) >> 1;
1288 carry = (CARRY_ONE & *p);
1289 fprintf_filtered (stream, "%o", octa1);
1290 fprintf_filtered (stream, "%o", octa2);
1291 fprintf_filtered (stream, "%o", octa3);
1292 break;
1293
1294 case 2:
1295 /* Carry in one bit, no carry out. */
1296
1297 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1298 octa2 = (MID_TWO & *p) >> 3;
1299 octa3 = (LOW_TWO & *p);
1300 carry = 0;
1301 fprintf_filtered (stream, "%o", octa1);
1302 fprintf_filtered (stream, "%o", octa2);
1303 fprintf_filtered (stream, "%o", octa3);
1304 break;
1305
1306 default:
1307 error (_("Internal error in octal conversion;"));
1308 }
1309
1310 cycle++;
1311 cycle = cycle % BITS_IN_OCTAL;
1312 }
1313 }
1314 else
1315 {
1316 for (p = valaddr + len - 1;
1317 p >= valaddr;
1318 p--)
1319 {
1320 switch (cycle)
1321 {
1322 case 0:
1323 /* Carry out, no carry in */
1324
1325 octa1 = (HIGH_ZERO & *p) >> 5;
1326 octa2 = (LOW_ZERO & *p) >> 2;
1327 carry = (CARRY_ZERO & *p);
1328 fprintf_filtered (stream, "%o", octa1);
1329 fprintf_filtered (stream, "%o", octa2);
1330 break;
1331
1332 case 1:
1333 /* Carry in, carry out */
1334
1335 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1336 octa2 = (MID_ONE & *p) >> 4;
1337 octa3 = (LOW_ONE & *p) >> 1;
1338 carry = (CARRY_ONE & *p);
1339 fprintf_filtered (stream, "%o", octa1);
1340 fprintf_filtered (stream, "%o", octa2);
1341 fprintf_filtered (stream, "%o", octa3);
1342 break;
1343
1344 case 2:
1345 /* Carry in, no carry out */
1346
1347 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1348 octa2 = (MID_TWO & *p) >> 3;
1349 octa3 = (LOW_TWO & *p);
1350 carry = 0;
1351 fprintf_filtered (stream, "%o", octa1);
1352 fprintf_filtered (stream, "%o", octa2);
1353 fprintf_filtered (stream, "%o", octa3);
1354 break;
1355
1356 default:
1357 error (_("Internal error in octal conversion;"));
1358 }
1359
1360 cycle++;
1361 cycle = cycle % BITS_IN_OCTAL;
1362 }
1363 }
1364
1365 }
1366
1367 /* VALADDR points to an integer of LEN bytes.
1368 Print it in decimal on stream or format it in buf. */
1369
1370 void
1371 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1372 unsigned len, enum bfd_endian byte_order)
1373 {
1374 #define TEN 10
1375 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1376 #define CARRY_LEFT( x ) ((x) % TEN)
1377 #define SHIFT( x ) ((x) << 4)
1378 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1379 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1380
1381 const gdb_byte *p;
1382 unsigned char *digits;
1383 int carry;
1384 int decimal_len;
1385 int i, j, decimal_digits;
1386 int dummy;
1387 int flip;
1388
1389 /* Base-ten number is less than twice as many digits
1390 as the base 16 number, which is 2 digits per byte. */
1391
1392 decimal_len = len * 2 * 2;
1393 digits = xmalloc (decimal_len);
1394
1395 for (i = 0; i < decimal_len; i++)
1396 {
1397 digits[i] = 0;
1398 }
1399
1400 /* Ok, we have an unknown number of bytes of data to be printed in
1401 * decimal.
1402 *
1403 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1404 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1405 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1406 *
1407 * The trick is that "digits" holds a base-10 number, but sometimes
1408 * the individual digits are > 10.
1409 *
1410 * Outer loop is per nibble (hex digit) of input, from MSD end to
1411 * LSD end.
1412 */
1413 decimal_digits = 0; /* Number of decimal digits so far */
1414 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1415 flip = 0;
1416 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1417 {
1418 /*
1419 * Multiply current base-ten number by 16 in place.
1420 * Each digit was between 0 and 9, now is between
1421 * 0 and 144.
1422 */
1423 for (j = 0; j < decimal_digits; j++)
1424 {
1425 digits[j] = SHIFT (digits[j]);
1426 }
1427
1428 /* Take the next nibble off the input and add it to what
1429 * we've got in the LSB position. Bottom 'digit' is now
1430 * between 0 and 159.
1431 *
1432 * "flip" is used to run this loop twice for each byte.
1433 */
1434 if (flip == 0)
1435 {
1436 /* Take top nibble. */
1437
1438 digits[0] += HIGH_NIBBLE (*p);
1439 flip = 1;
1440 }
1441 else
1442 {
1443 /* Take low nibble and bump our pointer "p". */
1444
1445 digits[0] += LOW_NIBBLE (*p);
1446 if (byte_order == BFD_ENDIAN_BIG)
1447 p++;
1448 else
1449 p--;
1450 flip = 0;
1451 }
1452
1453 /* Re-decimalize. We have to do this often enough
1454 * that we don't overflow, but once per nibble is
1455 * overkill. Easier this way, though. Note that the
1456 * carry is often larger than 10 (e.g. max initial
1457 * carry out of lowest nibble is 15, could bubble all
1458 * the way up greater than 10). So we have to do
1459 * the carrying beyond the last current digit.
1460 */
1461 carry = 0;
1462 for (j = 0; j < decimal_len - 1; j++)
1463 {
1464 digits[j] += carry;
1465
1466 /* "/" won't handle an unsigned char with
1467 * a value that if signed would be negative.
1468 * So extend to longword int via "dummy".
1469 */
1470 dummy = digits[j];
1471 carry = CARRY_OUT (dummy);
1472 digits[j] = CARRY_LEFT (dummy);
1473
1474 if (j >= decimal_digits && carry == 0)
1475 {
1476 /*
1477 * All higher digits are 0 and we
1478 * no longer have a carry.
1479 *
1480 * Note: "j" is 0-based, "decimal_digits" is
1481 * 1-based.
1482 */
1483 decimal_digits = j + 1;
1484 break;
1485 }
1486 }
1487 }
1488
1489 /* Ok, now "digits" is the decimal representation, with
1490 the "decimal_digits" actual digits. Print! */
1491
1492 for (i = decimal_digits - 1; i >= 0; i--)
1493 {
1494 fprintf_filtered (stream, "%1d", digits[i]);
1495 }
1496 xfree (digits);
1497 }
1498
1499 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1500
1501 void
1502 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1503 unsigned len, enum bfd_endian byte_order)
1504 {
1505 const gdb_byte *p;
1506
1507 /* FIXME: We should be not printing leading zeroes in most cases. */
1508
1509 fputs_filtered ("0x", stream);
1510 if (byte_order == BFD_ENDIAN_BIG)
1511 {
1512 for (p = valaddr;
1513 p < valaddr + len;
1514 p++)
1515 {
1516 fprintf_filtered (stream, "%02x", *p);
1517 }
1518 }
1519 else
1520 {
1521 for (p = valaddr + len - 1;
1522 p >= valaddr;
1523 p--)
1524 {
1525 fprintf_filtered (stream, "%02x", *p);
1526 }
1527 }
1528 }
1529
1530 /* VALADDR points to a char integer of LEN bytes.
1531 Print it out in appropriate language form on stream.
1532 Omit any leading zero chars. */
1533
1534 void
1535 print_char_chars (struct ui_file *stream, struct type *type,
1536 const gdb_byte *valaddr,
1537 unsigned len, enum bfd_endian byte_order)
1538 {
1539 const gdb_byte *p;
1540
1541 if (byte_order == BFD_ENDIAN_BIG)
1542 {
1543 p = valaddr;
1544 while (p < valaddr + len - 1 && *p == 0)
1545 ++p;
1546
1547 while (p < valaddr + len)
1548 {
1549 LA_EMIT_CHAR (*p, type, stream, '\'');
1550 ++p;
1551 }
1552 }
1553 else
1554 {
1555 p = valaddr + len - 1;
1556 while (p > valaddr && *p == 0)
1557 --p;
1558
1559 while (p >= valaddr)
1560 {
1561 LA_EMIT_CHAR (*p, type, stream, '\'');
1562 --p;
1563 }
1564 }
1565 }
1566
1567 /* Print function pointer with inferior address ADDRESS onto stdio
1568 stream STREAM. */
1569
1570 void
1571 print_function_pointer_address (const struct value_print_options *options,
1572 struct gdbarch *gdbarch,
1573 CORE_ADDR address,
1574 struct ui_file *stream)
1575 {
1576 CORE_ADDR func_addr
1577 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1578 &current_target);
1579
1580 /* If the function pointer is represented by a description, print
1581 the address of the description. */
1582 if (options->addressprint && func_addr != address)
1583 {
1584 fputs_filtered ("@", stream);
1585 fputs_filtered (paddress (gdbarch, address), stream);
1586 fputs_filtered (": ", stream);
1587 }
1588 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1589 }
1590
1591
1592 /* Print on STREAM using the given OPTIONS the index for the element
1593 at INDEX of an array whose index type is INDEX_TYPE. */
1594
1595 void
1596 maybe_print_array_index (struct type *index_type, LONGEST index,
1597 struct ui_file *stream,
1598 const struct value_print_options *options)
1599 {
1600 struct value *index_value;
1601
1602 if (!options->print_array_indexes)
1603 return;
1604
1605 index_value = value_from_longest (index_type, index);
1606
1607 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1608 }
1609
1610 /* Called by various <lang>_val_print routines to print elements of an
1611 array in the form "<elem1>, <elem2>, <elem3>, ...".
1612
1613 (FIXME?) Assumes array element separator is a comma, which is correct
1614 for all languages currently handled.
1615 (FIXME?) Some languages have a notation for repeated array elements,
1616 perhaps we should try to use that notation when appropriate. */
1617
1618 void
1619 val_print_array_elements (struct type *type,
1620 const gdb_byte *valaddr, int embedded_offset,
1621 CORE_ADDR address, struct ui_file *stream,
1622 int recurse,
1623 const struct value *val,
1624 const struct value_print_options *options,
1625 unsigned int i)
1626 {
1627 unsigned int things_printed = 0;
1628 unsigned len;
1629 struct type *elttype, *index_type;
1630 unsigned eltlen;
1631 /* Position of the array element we are examining to see
1632 whether it is repeated. */
1633 unsigned int rep1;
1634 /* Number of repetitions we have detected so far. */
1635 unsigned int reps;
1636 LONGEST low_bound, high_bound;
1637
1638 elttype = TYPE_TARGET_TYPE (type);
1639 eltlen = TYPE_LENGTH (check_typedef (elttype));
1640 index_type = TYPE_INDEX_TYPE (type);
1641
1642 if (get_array_bounds (type, &low_bound, &high_bound))
1643 {
1644 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1645 But we have to be a little extra careful, because some languages
1646 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1647 empty arrays. In that situation, the array length is just zero,
1648 not negative! */
1649 if (low_bound > high_bound)
1650 len = 0;
1651 else
1652 len = high_bound - low_bound + 1;
1653 }
1654 else
1655 {
1656 warning (_("unable to get bounds of array, assuming null array"));
1657 low_bound = 0;
1658 len = 0;
1659 }
1660
1661 annotate_array_section_begin (i, elttype);
1662
1663 for (; i < len && things_printed < options->print_max; i++)
1664 {
1665 if (i != 0)
1666 {
1667 if (options->prettyformat_arrays)
1668 {
1669 fprintf_filtered (stream, ",\n");
1670 print_spaces_filtered (2 + 2 * recurse, stream);
1671 }
1672 else
1673 {
1674 fprintf_filtered (stream, ", ");
1675 }
1676 }
1677 wrap_here (n_spaces (2 + 2 * recurse));
1678 maybe_print_array_index (index_type, i + low_bound,
1679 stream, options);
1680
1681 rep1 = i + 1;
1682 reps = 1;
1683 /* Only check for reps if repeat_count_threshold is not set to
1684 UINT_MAX (unlimited). */
1685 if (options->repeat_count_threshold < UINT_MAX)
1686 {
1687 while (rep1 < len
1688 && value_available_contents_eq (val,
1689 embedded_offset + i * eltlen,
1690 val,
1691 (embedded_offset
1692 + rep1 * eltlen),
1693 eltlen))
1694 {
1695 ++reps;
1696 ++rep1;
1697 }
1698 }
1699
1700 if (reps > options->repeat_count_threshold)
1701 {
1702 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1703 address, stream, recurse + 1, val, options,
1704 current_language);
1705 annotate_elt_rep (reps);
1706 fprintf_filtered (stream, " <repeats %u times>", reps);
1707 annotate_elt_rep_end ();
1708
1709 i = rep1 - 1;
1710 things_printed += options->repeat_count_threshold;
1711 }
1712 else
1713 {
1714 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1715 address,
1716 stream, recurse + 1, val, options, current_language);
1717 annotate_elt ();
1718 things_printed++;
1719 }
1720 }
1721 annotate_array_section_end ();
1722 if (i < len)
1723 {
1724 fprintf_filtered (stream, "...");
1725 }
1726 }
1727
1728 /* Read LEN bytes of target memory at address MEMADDR, placing the
1729 results in GDB's memory at MYADDR. Returns a count of the bytes
1730 actually read, and optionally a target_xfer_status value in the
1731 location pointed to by ERRPTR if ERRPTR is non-null. */
1732
1733 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1734 function be eliminated. */
1735
1736 static int
1737 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1738 int len, int *errptr)
1739 {
1740 int nread; /* Number of bytes actually read. */
1741 int errcode; /* Error from last read. */
1742
1743 /* First try a complete read. */
1744 errcode = target_read_memory (memaddr, myaddr, len);
1745 if (errcode == 0)
1746 {
1747 /* Got it all. */
1748 nread = len;
1749 }
1750 else
1751 {
1752 /* Loop, reading one byte at a time until we get as much as we can. */
1753 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1754 {
1755 errcode = target_read_memory (memaddr++, myaddr++, 1);
1756 }
1757 /* If an error, the last read was unsuccessful, so adjust count. */
1758 if (errcode != 0)
1759 {
1760 nread--;
1761 }
1762 }
1763 if (errptr != NULL)
1764 {
1765 *errptr = errcode;
1766 }
1767 return (nread);
1768 }
1769
1770 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1771 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1772 allocated buffer containing the string, which the caller is responsible to
1773 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1774 success, or a target_xfer_status on failure.
1775
1776 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1777 (including eventual NULs in the middle or end of the string).
1778
1779 If LEN is -1, stops at the first null character (not necessarily
1780 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1781 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1782 the string.
1783
1784 Unless an exception is thrown, BUFFER will always be allocated, even on
1785 failure. In this case, some characters might have been read before the
1786 failure happened. Check BYTES_READ to recognize this situation.
1787
1788 Note: There was a FIXME asking to make this code use target_read_string,
1789 but this function is more general (can read past null characters, up to
1790 given LEN). Besides, it is used much more often than target_read_string
1791 so it is more tested. Perhaps callers of target_read_string should use
1792 this function instead? */
1793
1794 int
1795 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1796 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1797 {
1798 int found_nul; /* Non-zero if we found the nul char. */
1799 int errcode; /* Errno returned from bad reads. */
1800 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1801 unsigned int chunksize; /* Size of each fetch, in chars. */
1802 gdb_byte *bufptr; /* Pointer to next available byte in
1803 buffer. */
1804 gdb_byte *limit; /* First location past end of fetch buffer. */
1805 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1806
1807 /* Decide how large of chunks to try to read in one operation. This
1808 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1809 so we might as well read them all in one operation. If LEN is -1, we
1810 are looking for a NUL terminator to end the fetching, so we might as
1811 well read in blocks that are large enough to be efficient, but not so
1812 large as to be slow if fetchlimit happens to be large. So we choose the
1813 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1814 200 is way too big for remote debugging over a serial line. */
1815
1816 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1817
1818 /* Loop until we either have all the characters, or we encounter
1819 some error, such as bumping into the end of the address space. */
1820
1821 found_nul = 0;
1822 *buffer = NULL;
1823
1824 old_chain = make_cleanup (free_current_contents, buffer);
1825
1826 if (len > 0)
1827 {
1828 unsigned int fetchlen = min (len, fetchlimit);
1829
1830 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1831 bufptr = *buffer;
1832
1833 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1834 / width;
1835 addr += nfetch * width;
1836 bufptr += nfetch * width;
1837 }
1838 else if (len == -1)
1839 {
1840 unsigned long bufsize = 0;
1841
1842 do
1843 {
1844 QUIT;
1845 nfetch = min (chunksize, fetchlimit - bufsize);
1846
1847 if (*buffer == NULL)
1848 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1849 else
1850 *buffer = (gdb_byte *) xrealloc (*buffer,
1851 (nfetch + bufsize) * width);
1852
1853 bufptr = *buffer + bufsize * width;
1854 bufsize += nfetch;
1855
1856 /* Read as much as we can. */
1857 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1858 / width;
1859
1860 /* Scan this chunk for the null character that terminates the string
1861 to print. If found, we don't need to fetch any more. Note
1862 that bufptr is explicitly left pointing at the next character
1863 after the null character, or at the next character after the end
1864 of the buffer. */
1865
1866 limit = bufptr + nfetch * width;
1867 while (bufptr < limit)
1868 {
1869 unsigned long c;
1870
1871 c = extract_unsigned_integer (bufptr, width, byte_order);
1872 addr += width;
1873 bufptr += width;
1874 if (c == 0)
1875 {
1876 /* We don't care about any error which happened after
1877 the NUL terminator. */
1878 errcode = 0;
1879 found_nul = 1;
1880 break;
1881 }
1882 }
1883 }
1884 while (errcode == 0 /* no error */
1885 && bufptr - *buffer < fetchlimit * width /* no overrun */
1886 && !found_nul); /* haven't found NUL yet */
1887 }
1888 else
1889 { /* Length of string is really 0! */
1890 /* We always allocate *buffer. */
1891 *buffer = bufptr = xmalloc (1);
1892 errcode = 0;
1893 }
1894
1895 /* bufptr and addr now point immediately beyond the last byte which we
1896 consider part of the string (including a '\0' which ends the string). */
1897 *bytes_read = bufptr - *buffer;
1898
1899 QUIT;
1900
1901 discard_cleanups (old_chain);
1902
1903 return errcode;
1904 }
1905
1906 /* Return true if print_wchar can display W without resorting to a
1907 numeric escape, false otherwise. */
1908
1909 static int
1910 wchar_printable (gdb_wchar_t w)
1911 {
1912 return (gdb_iswprint (w)
1913 || w == LCST ('\a') || w == LCST ('\b')
1914 || w == LCST ('\f') || w == LCST ('\n')
1915 || w == LCST ('\r') || w == LCST ('\t')
1916 || w == LCST ('\v'));
1917 }
1918
1919 /* A helper function that converts the contents of STRING to wide
1920 characters and then appends them to OUTPUT. */
1921
1922 static void
1923 append_string_as_wide (const char *string,
1924 struct obstack *output)
1925 {
1926 for (; *string; ++string)
1927 {
1928 gdb_wchar_t w = gdb_btowc (*string);
1929 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1930 }
1931 }
1932
1933 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1934 original (target) bytes representing the character, ORIG_LEN is the
1935 number of valid bytes. WIDTH is the number of bytes in a base
1936 characters of the type. OUTPUT is an obstack to which wide
1937 characters are emitted. QUOTER is a (narrow) character indicating
1938 the style of quotes surrounding the character to be printed.
1939 NEED_ESCAPE is an in/out flag which is used to track numeric
1940 escapes across calls. */
1941
1942 static void
1943 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1944 int orig_len, int width,
1945 enum bfd_endian byte_order,
1946 struct obstack *output,
1947 int quoter, int *need_escapep)
1948 {
1949 int need_escape = *need_escapep;
1950
1951 *need_escapep = 0;
1952 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1953 && w != LCST ('8')
1954 && w != LCST ('9'))))
1955 {
1956 gdb_wchar_t wchar = w;
1957
1958 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1959 obstack_grow_wstr (output, LCST ("\\"));
1960 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1961 }
1962 else
1963 {
1964 switch (w)
1965 {
1966 case LCST ('\a'):
1967 obstack_grow_wstr (output, LCST ("\\a"));
1968 break;
1969 case LCST ('\b'):
1970 obstack_grow_wstr (output, LCST ("\\b"));
1971 break;
1972 case LCST ('\f'):
1973 obstack_grow_wstr (output, LCST ("\\f"));
1974 break;
1975 case LCST ('\n'):
1976 obstack_grow_wstr (output, LCST ("\\n"));
1977 break;
1978 case LCST ('\r'):
1979 obstack_grow_wstr (output, LCST ("\\r"));
1980 break;
1981 case LCST ('\t'):
1982 obstack_grow_wstr (output, LCST ("\\t"));
1983 break;
1984 case LCST ('\v'):
1985 obstack_grow_wstr (output, LCST ("\\v"));
1986 break;
1987 default:
1988 {
1989 int i;
1990
1991 for (i = 0; i + width <= orig_len; i += width)
1992 {
1993 char octal[30];
1994 ULONGEST value;
1995
1996 value = extract_unsigned_integer (&orig[i], width,
1997 byte_order);
1998 /* If the value fits in 3 octal digits, print it that
1999 way. Otherwise, print it as a hex escape. */
2000 if (value <= 0777)
2001 xsnprintf (octal, sizeof (octal), "\\%.3o",
2002 (int) (value & 0777));
2003 else
2004 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2005 append_string_as_wide (octal, output);
2006 }
2007 /* If we somehow have extra bytes, print them now. */
2008 while (i < orig_len)
2009 {
2010 char octal[5];
2011
2012 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2013 append_string_as_wide (octal, output);
2014 ++i;
2015 }
2016
2017 *need_escapep = 1;
2018 }
2019 break;
2020 }
2021 }
2022 }
2023
2024 /* Print the character C on STREAM as part of the contents of a
2025 literal string whose delimiter is QUOTER. ENCODING names the
2026 encoding of C. */
2027
2028 void
2029 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2030 int quoter, const char *encoding)
2031 {
2032 enum bfd_endian byte_order
2033 = gdbarch_byte_order (get_type_arch (type));
2034 struct obstack wchar_buf, output;
2035 struct cleanup *cleanups;
2036 gdb_byte *buf;
2037 struct wchar_iterator *iter;
2038 int need_escape = 0;
2039
2040 buf = alloca (TYPE_LENGTH (type));
2041 pack_long (buf, type, c);
2042
2043 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2044 encoding, TYPE_LENGTH (type));
2045 cleanups = make_cleanup_wchar_iterator (iter);
2046
2047 /* This holds the printable form of the wchar_t data. */
2048 obstack_init (&wchar_buf);
2049 make_cleanup_obstack_free (&wchar_buf);
2050
2051 while (1)
2052 {
2053 int num_chars;
2054 gdb_wchar_t *chars;
2055 const gdb_byte *buf;
2056 size_t buflen;
2057 int print_escape = 1;
2058 enum wchar_iterate_result result;
2059
2060 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2061 if (num_chars < 0)
2062 break;
2063 if (num_chars > 0)
2064 {
2065 /* If all characters are printable, print them. Otherwise,
2066 we're going to have to print an escape sequence. We
2067 check all characters because we want to print the target
2068 bytes in the escape sequence, and we don't know character
2069 boundaries there. */
2070 int i;
2071
2072 print_escape = 0;
2073 for (i = 0; i < num_chars; ++i)
2074 if (!wchar_printable (chars[i]))
2075 {
2076 print_escape = 1;
2077 break;
2078 }
2079
2080 if (!print_escape)
2081 {
2082 for (i = 0; i < num_chars; ++i)
2083 print_wchar (chars[i], buf, buflen,
2084 TYPE_LENGTH (type), byte_order,
2085 &wchar_buf, quoter, &need_escape);
2086 }
2087 }
2088
2089 /* This handles the NUM_CHARS == 0 case as well. */
2090 if (print_escape)
2091 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2092 byte_order, &wchar_buf, quoter, &need_escape);
2093 }
2094
2095 /* The output in the host encoding. */
2096 obstack_init (&output);
2097 make_cleanup_obstack_free (&output);
2098
2099 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2100 (gdb_byte *) obstack_base (&wchar_buf),
2101 obstack_object_size (&wchar_buf),
2102 sizeof (gdb_wchar_t), &output, translit_char);
2103 obstack_1grow (&output, '\0');
2104
2105 fputs_filtered (obstack_base (&output), stream);
2106
2107 do_cleanups (cleanups);
2108 }
2109
2110 /* Return the repeat count of the next character/byte in ITER,
2111 storing the result in VEC. */
2112
2113 static int
2114 count_next_character (struct wchar_iterator *iter,
2115 VEC (converted_character_d) **vec)
2116 {
2117 struct converted_character *current;
2118
2119 if (VEC_empty (converted_character_d, *vec))
2120 {
2121 struct converted_character tmp;
2122 gdb_wchar_t *chars;
2123
2124 tmp.num_chars
2125 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2126 if (tmp.num_chars > 0)
2127 {
2128 gdb_assert (tmp.num_chars < MAX_WCHARS);
2129 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2130 }
2131 VEC_safe_push (converted_character_d, *vec, &tmp);
2132 }
2133
2134 current = VEC_last (converted_character_d, *vec);
2135
2136 /* Count repeated characters or bytes. */
2137 current->repeat_count = 1;
2138 if (current->num_chars == -1)
2139 {
2140 /* EOF */
2141 return -1;
2142 }
2143 else
2144 {
2145 gdb_wchar_t *chars;
2146 struct converted_character d;
2147 int repeat;
2148
2149 d.repeat_count = 0;
2150
2151 while (1)
2152 {
2153 /* Get the next character. */
2154 d.num_chars
2155 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2156
2157 /* If a character was successfully converted, save the character
2158 into the converted character. */
2159 if (d.num_chars > 0)
2160 {
2161 gdb_assert (d.num_chars < MAX_WCHARS);
2162 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2163 }
2164
2165 /* Determine if the current character is the same as this
2166 new character. */
2167 if (d.num_chars == current->num_chars && d.result == current->result)
2168 {
2169 /* There are two cases to consider:
2170
2171 1) Equality of converted character (num_chars > 0)
2172 2) Equality of non-converted character (num_chars == 0) */
2173 if ((current->num_chars > 0
2174 && memcmp (current->chars, d.chars,
2175 WCHAR_BUFLEN (current->num_chars)) == 0)
2176 || (current->num_chars == 0
2177 && current->buflen == d.buflen
2178 && memcmp (current->buf, d.buf, current->buflen) == 0))
2179 ++current->repeat_count;
2180 else
2181 break;
2182 }
2183 else
2184 break;
2185 }
2186
2187 /* Push this next converted character onto the result vector. */
2188 repeat = current->repeat_count;
2189 VEC_safe_push (converted_character_d, *vec, &d);
2190 return repeat;
2191 }
2192 }
2193
2194 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2195 character to use with string output. WIDTH is the size of the output
2196 character type. BYTE_ORDER is the the target byte order. OPTIONS
2197 is the user's print options. */
2198
2199 static void
2200 print_converted_chars_to_obstack (struct obstack *obstack,
2201 VEC (converted_character_d) *chars,
2202 int quote_char, int width,
2203 enum bfd_endian byte_order,
2204 const struct value_print_options *options)
2205 {
2206 unsigned int idx;
2207 struct converted_character *elem;
2208 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2209 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2210 int need_escape = 0;
2211
2212 /* Set the start state. */
2213 idx = 0;
2214 last = state = START;
2215 elem = NULL;
2216
2217 while (1)
2218 {
2219 switch (state)
2220 {
2221 case START:
2222 /* Nothing to do. */
2223 break;
2224
2225 case SINGLE:
2226 {
2227 int j;
2228
2229 /* We are outputting a single character
2230 (< options->repeat_count_threshold). */
2231
2232 if (last != SINGLE)
2233 {
2234 /* We were outputting some other type of content, so we
2235 must output and a comma and a quote. */
2236 if (last != START)
2237 obstack_grow_wstr (obstack, LCST (", "));
2238 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2239 }
2240 /* Output the character. */
2241 for (j = 0; j < elem->repeat_count; ++j)
2242 {
2243 if (elem->result == wchar_iterate_ok)
2244 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2245 byte_order, obstack, quote_char, &need_escape);
2246 else
2247 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2248 byte_order, obstack, quote_char, &need_escape);
2249 }
2250 }
2251 break;
2252
2253 case REPEAT:
2254 {
2255 int j;
2256 char *s;
2257
2258 /* We are outputting a character with a repeat count
2259 greater than options->repeat_count_threshold. */
2260
2261 if (last == SINGLE)
2262 {
2263 /* We were outputting a single string. Terminate the
2264 string. */
2265 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2266 }
2267 if (last != START)
2268 obstack_grow_wstr (obstack, LCST (", "));
2269
2270 /* Output the character and repeat string. */
2271 obstack_grow_wstr (obstack, LCST ("'"));
2272 if (elem->result == wchar_iterate_ok)
2273 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2274 byte_order, obstack, quote_char, &need_escape);
2275 else
2276 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2277 byte_order, obstack, quote_char, &need_escape);
2278 obstack_grow_wstr (obstack, LCST ("'"));
2279 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2280 for (j = 0; s[j]; ++j)
2281 {
2282 gdb_wchar_t w = gdb_btowc (s[j]);
2283 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2284 }
2285 xfree (s);
2286 }
2287 break;
2288
2289 case INCOMPLETE:
2290 /* We are outputting an incomplete sequence. */
2291 if (last == SINGLE)
2292 {
2293 /* If we were outputting a string of SINGLE characters,
2294 terminate the quote. */
2295 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2296 }
2297 if (last != START)
2298 obstack_grow_wstr (obstack, LCST (", "));
2299
2300 /* Output the incomplete sequence string. */
2301 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2302 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2303 obstack, 0, &need_escape);
2304 obstack_grow_wstr (obstack, LCST (">"));
2305
2306 /* We do not attempt to outupt anything after this. */
2307 state = FINISH;
2308 break;
2309
2310 case FINISH:
2311 /* All done. If we were outputting a string of SINGLE
2312 characters, the string must be terminated. Otherwise,
2313 REPEAT and INCOMPLETE are always left properly terminated. */
2314 if (last == SINGLE)
2315 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2316
2317 return;
2318 }
2319
2320 /* Get the next element and state. */
2321 last = state;
2322 if (state != FINISH)
2323 {
2324 elem = VEC_index (converted_character_d, chars, idx++);
2325 switch (elem->result)
2326 {
2327 case wchar_iterate_ok:
2328 case wchar_iterate_invalid:
2329 if (elem->repeat_count > options->repeat_count_threshold)
2330 state = REPEAT;
2331 else
2332 state = SINGLE;
2333 break;
2334
2335 case wchar_iterate_incomplete:
2336 state = INCOMPLETE;
2337 break;
2338
2339 case wchar_iterate_eof:
2340 state = FINISH;
2341 break;
2342 }
2343 }
2344 }
2345 }
2346
2347 /* Print the character string STRING, printing at most LENGTH
2348 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2349 the type of each character. OPTIONS holds the printing options;
2350 printing stops early if the number hits print_max; repeat counts
2351 are printed as appropriate. Print ellipses at the end if we had to
2352 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2353 QUOTE_CHAR is the character to print at each end of the string. If
2354 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2355 omitted. */
2356
2357 void
2358 generic_printstr (struct ui_file *stream, struct type *type,
2359 const gdb_byte *string, unsigned int length,
2360 const char *encoding, int force_ellipses,
2361 int quote_char, int c_style_terminator,
2362 const struct value_print_options *options)
2363 {
2364 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2365 unsigned int i;
2366 int width = TYPE_LENGTH (type);
2367 struct obstack wchar_buf, output;
2368 struct cleanup *cleanup;
2369 struct wchar_iterator *iter;
2370 int finished = 0;
2371 struct converted_character *last;
2372 VEC (converted_character_d) *converted_chars;
2373
2374 if (length == -1)
2375 {
2376 unsigned long current_char = 1;
2377
2378 for (i = 0; current_char; ++i)
2379 {
2380 QUIT;
2381 current_char = extract_unsigned_integer (string + i * width,
2382 width, byte_order);
2383 }
2384 length = i;
2385 }
2386
2387 /* If the string was not truncated due to `set print elements', and
2388 the last byte of it is a null, we don't print that, in
2389 traditional C style. */
2390 if (c_style_terminator
2391 && !force_ellipses
2392 && length > 0
2393 && (extract_unsigned_integer (string + (length - 1) * width,
2394 width, byte_order) == 0))
2395 length--;
2396
2397 if (length == 0)
2398 {
2399 fputs_filtered ("\"\"", stream);
2400 return;
2401 }
2402
2403 /* Arrange to iterate over the characters, in wchar_t form. */
2404 iter = make_wchar_iterator (string, length * width, encoding, width);
2405 cleanup = make_cleanup_wchar_iterator (iter);
2406 converted_chars = NULL;
2407 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2408
2409 /* Convert characters until the string is over or the maximum
2410 number of printed characters has been reached. */
2411 i = 0;
2412 while (i < options->print_max)
2413 {
2414 int r;
2415
2416 QUIT;
2417
2418 /* Grab the next character and repeat count. */
2419 r = count_next_character (iter, &converted_chars);
2420
2421 /* If less than zero, the end of the input string was reached. */
2422 if (r < 0)
2423 break;
2424
2425 /* Otherwise, add the count to the total print count and get
2426 the next character. */
2427 i += r;
2428 }
2429
2430 /* Get the last element and determine if the entire string was
2431 processed. */
2432 last = VEC_last (converted_character_d, converted_chars);
2433 finished = (last->result == wchar_iterate_eof);
2434
2435 /* Ensure that CONVERTED_CHARS is terminated. */
2436 last->result = wchar_iterate_eof;
2437
2438 /* WCHAR_BUF is the obstack we use to represent the string in
2439 wchar_t form. */
2440 obstack_init (&wchar_buf);
2441 make_cleanup_obstack_free (&wchar_buf);
2442
2443 /* Print the output string to the obstack. */
2444 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2445 width, byte_order, options);
2446
2447 if (force_ellipses || !finished)
2448 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2449
2450 /* OUTPUT is where we collect `char's for printing. */
2451 obstack_init (&output);
2452 make_cleanup_obstack_free (&output);
2453
2454 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2455 (gdb_byte *) obstack_base (&wchar_buf),
2456 obstack_object_size (&wchar_buf),
2457 sizeof (gdb_wchar_t), &output, translit_char);
2458 obstack_1grow (&output, '\0');
2459
2460 fputs_filtered (obstack_base (&output), stream);
2461
2462 do_cleanups (cleanup);
2463 }
2464
2465 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2466 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2467 stops at the first null byte, otherwise printing proceeds (including null
2468 bytes) until either print_max or LEN characters have been printed,
2469 whichever is smaller. ENCODING is the name of the string's
2470 encoding. It can be NULL, in which case the target encoding is
2471 assumed. */
2472
2473 int
2474 val_print_string (struct type *elttype, const char *encoding,
2475 CORE_ADDR addr, int len,
2476 struct ui_file *stream,
2477 const struct value_print_options *options)
2478 {
2479 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2480 int errcode; /* Errno returned from bad reads. */
2481 int found_nul; /* Non-zero if we found the nul char. */
2482 unsigned int fetchlimit; /* Maximum number of chars to print. */
2483 int bytes_read;
2484 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2485 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2486 struct gdbarch *gdbarch = get_type_arch (elttype);
2487 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2488 int width = TYPE_LENGTH (elttype);
2489
2490 /* First we need to figure out the limit on the number of characters we are
2491 going to attempt to fetch and print. This is actually pretty simple. If
2492 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2493 LEN is -1, then the limit is print_max. This is true regardless of
2494 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2495 because finding the null byte (or available memory) is what actually
2496 limits the fetch. */
2497
2498 fetchlimit = (len == -1 ? options->print_max : min (len,
2499 options->print_max));
2500
2501 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2502 &buffer, &bytes_read);
2503 old_chain = make_cleanup (xfree, buffer);
2504
2505 addr += bytes_read;
2506
2507 /* We now have either successfully filled the buffer to fetchlimit,
2508 or terminated early due to an error or finding a null char when
2509 LEN is -1. */
2510
2511 /* Determine found_nul by looking at the last character read. */
2512 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2513 byte_order) == 0;
2514 if (len == -1 && !found_nul)
2515 {
2516 gdb_byte *peekbuf;
2517
2518 /* We didn't find a NUL terminator we were looking for. Attempt
2519 to peek at the next character. If not successful, or it is not
2520 a null byte, then force ellipsis to be printed. */
2521
2522 peekbuf = (gdb_byte *) alloca (width);
2523
2524 if (target_read_memory (addr, peekbuf, width) == 0
2525 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2526 force_ellipsis = 1;
2527 }
2528 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2529 {
2530 /* Getting an error when we have a requested length, or fetching less
2531 than the number of characters actually requested, always make us
2532 print ellipsis. */
2533 force_ellipsis = 1;
2534 }
2535
2536 /* If we get an error before fetching anything, don't print a string.
2537 But if we fetch something and then get an error, print the string
2538 and then the error message. */
2539 if (errcode == 0 || bytes_read > 0)
2540 {
2541 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2542 encoding, force_ellipsis, options);
2543 }
2544
2545 if (errcode != 0)
2546 {
2547 char *str;
2548
2549 str = memory_error_message (errcode, gdbarch, addr);
2550 make_cleanup (xfree, str);
2551
2552 fprintf_filtered (stream, "<error: ");
2553 fputs_filtered (str, stream);
2554 fprintf_filtered (stream, ">");
2555 }
2556
2557 gdb_flush (stream);
2558 do_cleanups (old_chain);
2559
2560 return (bytes_read / width);
2561 }
2562 \f
2563
2564 /* The 'set input-radix' command writes to this auxiliary variable.
2565 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2566 it is left unchanged. */
2567
2568 static unsigned input_radix_1 = 10;
2569
2570 /* Validate an input or output radix setting, and make sure the user
2571 knows what they really did here. Radix setting is confusing, e.g.
2572 setting the input radix to "10" never changes it! */
2573
2574 static void
2575 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2576 {
2577 set_input_radix_1 (from_tty, input_radix_1);
2578 }
2579
2580 static void
2581 set_input_radix_1 (int from_tty, unsigned radix)
2582 {
2583 /* We don't currently disallow any input radix except 0 or 1, which don't
2584 make any mathematical sense. In theory, we can deal with any input
2585 radix greater than 1, even if we don't have unique digits for every
2586 value from 0 to radix-1, but in practice we lose on large radix values.
2587 We should either fix the lossage or restrict the radix range more.
2588 (FIXME). */
2589
2590 if (radix < 2)
2591 {
2592 input_radix_1 = input_radix;
2593 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2594 radix);
2595 }
2596 input_radix_1 = input_radix = radix;
2597 if (from_tty)
2598 {
2599 printf_filtered (_("Input radix now set to "
2600 "decimal %u, hex %x, octal %o.\n"),
2601 radix, radix, radix);
2602 }
2603 }
2604
2605 /* The 'set output-radix' command writes to this auxiliary variable.
2606 If the requested radix is valid, OUTPUT_RADIX is updated,
2607 otherwise, it is left unchanged. */
2608
2609 static unsigned output_radix_1 = 10;
2610
2611 static void
2612 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2613 {
2614 set_output_radix_1 (from_tty, output_radix_1);
2615 }
2616
2617 static void
2618 set_output_radix_1 (int from_tty, unsigned radix)
2619 {
2620 /* Validate the radix and disallow ones that we aren't prepared to
2621 handle correctly, leaving the radix unchanged. */
2622 switch (radix)
2623 {
2624 case 16:
2625 user_print_options.output_format = 'x'; /* hex */
2626 break;
2627 case 10:
2628 user_print_options.output_format = 0; /* decimal */
2629 break;
2630 case 8:
2631 user_print_options.output_format = 'o'; /* octal */
2632 break;
2633 default:
2634 output_radix_1 = output_radix;
2635 error (_("Unsupported output radix ``decimal %u''; "
2636 "output radix unchanged."),
2637 radix);
2638 }
2639 output_radix_1 = output_radix = radix;
2640 if (from_tty)
2641 {
2642 printf_filtered (_("Output radix now set to "
2643 "decimal %u, hex %x, octal %o.\n"),
2644 radix, radix, radix);
2645 }
2646 }
2647
2648 /* Set both the input and output radix at once. Try to set the output radix
2649 first, since it has the most restrictive range. An radix that is valid as
2650 an output radix is also valid as an input radix.
2651
2652 It may be useful to have an unusual input radix. If the user wishes to
2653 set an input radix that is not valid as an output radix, he needs to use
2654 the 'set input-radix' command. */
2655
2656 static void
2657 set_radix (char *arg, int from_tty)
2658 {
2659 unsigned radix;
2660
2661 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2662 set_output_radix_1 (0, radix);
2663 set_input_radix_1 (0, radix);
2664 if (from_tty)
2665 {
2666 printf_filtered (_("Input and output radices now set to "
2667 "decimal %u, hex %x, octal %o.\n"),
2668 radix, radix, radix);
2669 }
2670 }
2671
2672 /* Show both the input and output radices. */
2673
2674 static void
2675 show_radix (char *arg, int from_tty)
2676 {
2677 if (from_tty)
2678 {
2679 if (input_radix == output_radix)
2680 {
2681 printf_filtered (_("Input and output radices set to "
2682 "decimal %u, hex %x, octal %o.\n"),
2683 input_radix, input_radix, input_radix);
2684 }
2685 else
2686 {
2687 printf_filtered (_("Input radix set to decimal "
2688 "%u, hex %x, octal %o.\n"),
2689 input_radix, input_radix, input_radix);
2690 printf_filtered (_("Output radix set to decimal "
2691 "%u, hex %x, octal %o.\n"),
2692 output_radix, output_radix, output_radix);
2693 }
2694 }
2695 }
2696 \f
2697
2698 static void
2699 set_print (char *arg, int from_tty)
2700 {
2701 printf_unfiltered (
2702 "\"set print\" must be followed by the name of a print subcommand.\n");
2703 help_list (setprintlist, "set print ", -1, gdb_stdout);
2704 }
2705
2706 static void
2707 show_print (char *args, int from_tty)
2708 {
2709 cmd_show_list (showprintlist, from_tty, "");
2710 }
2711
2712 static void
2713 set_print_raw (char *arg, int from_tty)
2714 {
2715 printf_unfiltered (
2716 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2717 help_list (setprintrawlist, "set print raw ", -1, gdb_stdout);
2718 }
2719
2720 static void
2721 show_print_raw (char *args, int from_tty)
2722 {
2723 cmd_show_list (showprintrawlist, from_tty, "");
2724 }
2725
2726 \f
2727 void
2728 _initialize_valprint (void)
2729 {
2730 add_prefix_cmd ("print", no_class, set_print,
2731 _("Generic command for setting how things print."),
2732 &setprintlist, "set print ", 0, &setlist);
2733 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2734 /* Prefer set print to set prompt. */
2735 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2736
2737 add_prefix_cmd ("print", no_class, show_print,
2738 _("Generic command for showing print settings."),
2739 &showprintlist, "show print ", 0, &showlist);
2740 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2741 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2742
2743 add_prefix_cmd ("raw", no_class, set_print_raw,
2744 _("\
2745 Generic command for setting what things to print in \"raw\" mode."),
2746 &setprintrawlist, "set print raw ", 0, &setprintlist);
2747 add_prefix_cmd ("raw", no_class, show_print_raw,
2748 _("Generic command for showing \"print raw\" settings."),
2749 &showprintrawlist, "show print raw ", 0, &showprintlist);
2750
2751 add_setshow_uinteger_cmd ("elements", no_class,
2752 &user_print_options.print_max, _("\
2753 Set limit on string chars or array elements to print."), _("\
2754 Show limit on string chars or array elements to print."), _("\
2755 \"set print elements unlimited\" causes there to be no limit."),
2756 NULL,
2757 show_print_max,
2758 &setprintlist, &showprintlist);
2759
2760 add_setshow_boolean_cmd ("null-stop", no_class,
2761 &user_print_options.stop_print_at_null, _("\
2762 Set printing of char arrays to stop at first null char."), _("\
2763 Show printing of char arrays to stop at first null char."), NULL,
2764 NULL,
2765 show_stop_print_at_null,
2766 &setprintlist, &showprintlist);
2767
2768 add_setshow_uinteger_cmd ("repeats", no_class,
2769 &user_print_options.repeat_count_threshold, _("\
2770 Set threshold for repeated print elements."), _("\
2771 Show threshold for repeated print elements."), _("\
2772 \"set print repeats unlimited\" causes all elements to be individually printed."),
2773 NULL,
2774 show_repeat_count_threshold,
2775 &setprintlist, &showprintlist);
2776
2777 add_setshow_boolean_cmd ("pretty", class_support,
2778 &user_print_options.prettyformat_structs, _("\
2779 Set pretty formatting of structures."), _("\
2780 Show pretty formatting of structures."), NULL,
2781 NULL,
2782 show_prettyformat_structs,
2783 &setprintlist, &showprintlist);
2784
2785 add_setshow_boolean_cmd ("union", class_support,
2786 &user_print_options.unionprint, _("\
2787 Set printing of unions interior to structures."), _("\
2788 Show printing of unions interior to structures."), NULL,
2789 NULL,
2790 show_unionprint,
2791 &setprintlist, &showprintlist);
2792
2793 add_setshow_boolean_cmd ("array", class_support,
2794 &user_print_options.prettyformat_arrays, _("\
2795 Set pretty formatting of arrays."), _("\
2796 Show pretty formatting of arrays."), NULL,
2797 NULL,
2798 show_prettyformat_arrays,
2799 &setprintlist, &showprintlist);
2800
2801 add_setshow_boolean_cmd ("address", class_support,
2802 &user_print_options.addressprint, _("\
2803 Set printing of addresses."), _("\
2804 Show printing of addresses."), NULL,
2805 NULL,
2806 show_addressprint,
2807 &setprintlist, &showprintlist);
2808
2809 add_setshow_boolean_cmd ("symbol", class_support,
2810 &user_print_options.symbol_print, _("\
2811 Set printing of symbol names when printing pointers."), _("\
2812 Show printing of symbol names when printing pointers."),
2813 NULL, NULL,
2814 show_symbol_print,
2815 &setprintlist, &showprintlist);
2816
2817 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2818 _("\
2819 Set default input radix for entering numbers."), _("\
2820 Show default input radix for entering numbers."), NULL,
2821 set_input_radix,
2822 show_input_radix,
2823 &setlist, &showlist);
2824
2825 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2826 _("\
2827 Set default output radix for printing of values."), _("\
2828 Show default output radix for printing of values."), NULL,
2829 set_output_radix,
2830 show_output_radix,
2831 &setlist, &showlist);
2832
2833 /* The "set radix" and "show radix" commands are special in that
2834 they are like normal set and show commands but allow two normally
2835 independent variables to be either set or shown with a single
2836 command. So the usual deprecated_add_set_cmd() and [deleted]
2837 add_show_from_set() commands aren't really appropriate. */
2838 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2839 longer true - show can display anything. */
2840 add_cmd ("radix", class_support, set_radix, _("\
2841 Set default input and output number radices.\n\
2842 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2843 Without an argument, sets both radices back to the default value of 10."),
2844 &setlist);
2845 add_cmd ("radix", class_support, show_radix, _("\
2846 Show the default input and output number radices.\n\
2847 Use 'show input-radix' or 'show output-radix' to independently show each."),
2848 &showlist);
2849
2850 add_setshow_boolean_cmd ("array-indexes", class_support,
2851 &user_print_options.print_array_indexes, _("\
2852 Set printing of array indexes."), _("\
2853 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2854 &setprintlist, &showprintlist);
2855 }
This page took 0.121278 seconds and 5 git commands to generate.