Rewrite TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "common/byte-vector.h"
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 /* Command lists for set/show print raw. */
74 struct cmd_list_element *setprintrawlist;
75 struct cmd_list_element *showprintrawlist;
76
77 /* Prototypes for local functions */
78
79 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
80 int len, int *errptr);
81
82 static void set_input_radix_1 (int, unsigned);
83
84 static void set_output_radix_1 (int, unsigned);
85
86 static void val_print_type_code_flags (struct type *type,
87 const gdb_byte *valaddr,
88 struct ui_file *stream);
89
90 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
91
92 struct value_print_options user_print_options =
93 {
94 Val_prettyformat_default, /* prettyformat */
95 0, /* prettyformat_arrays */
96 0, /* prettyformat_structs */
97 0, /* vtblprint */
98 1, /* unionprint */
99 1, /* addressprint */
100 0, /* objectprint */
101 PRINT_MAX_DEFAULT, /* print_max */
102 10, /* repeat_count_threshold */
103 0, /* output_format */
104 0, /* format */
105 0, /* stop_print_at_null */
106 0, /* print_array_indexes */
107 0, /* deref_ref */
108 1, /* static_field_print */
109 1, /* pascal_static_field_print */
110 0, /* raw */
111 0, /* summary */
112 1 /* symbol_print */
113 };
114
115 /* Initialize *OPTS to be a copy of the user print options. */
116 void
117 get_user_print_options (struct value_print_options *opts)
118 {
119 *opts = user_print_options;
120 }
121
122 /* Initialize *OPTS to be a copy of the user print options, but with
123 pretty-formatting disabled. */
124 void
125 get_no_prettyformat_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 opts->prettyformat = Val_no_prettyformat;
129 }
130
131 /* Initialize *OPTS to be a copy of the user print options, but using
132 FORMAT as the formatting option. */
133 void
134 get_formatted_print_options (struct value_print_options *opts,
135 char format)
136 {
137 *opts = user_print_options;
138 opts->format = format;
139 }
140
141 static void
142 show_print_max (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file,
146 _("Limit on string chars or array "
147 "elements to print is %s.\n"),
148 value);
149 }
150
151
152 /* Default input and output radixes, and output format letter. */
153
154 unsigned input_radix = 10;
155 static void
156 show_input_radix (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file,
160 _("Default input radix for entering numbers is %s.\n"),
161 value);
162 }
163
164 unsigned output_radix = 10;
165 static void
166 show_output_radix (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file,
170 _("Default output radix for printing of values is %s.\n"),
171 value);
172 }
173
174 /* By default we print arrays without printing the index of each element in
175 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
176
177 static void
178 show_print_array_indexes (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
182 }
183
184 /* Print repeat counts if there are more than this many repetitions of an
185 element in an array. Referenced by the low level language dependent
186 print routines. */
187
188 static void
189 show_repeat_count_threshold (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
193 value);
194 }
195
196 /* If nonzero, stops printing of char arrays at first null. */
197
198 static void
199 show_stop_print_at_null (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file,
203 _("Printing of char arrays to stop "
204 "at first null char is %s.\n"),
205 value);
206 }
207
208 /* Controls pretty printing of structures. */
209
210 static void
211 show_prettyformat_structs (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
215 }
216
217 /* Controls pretty printing of arrays. */
218
219 static void
220 show_prettyformat_arrays (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
224 }
225
226 /* If nonzero, causes unions inside structures or other unions to be
227 printed. */
228
229 static void
230 show_unionprint (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file,
234 _("Printing of unions interior to structures is %s.\n"),
235 value);
236 }
237
238 /* If nonzero, causes machine addresses to be printed in certain contexts. */
239
240 static void
241 show_addressprint (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
245 }
246
247 static void
248 show_symbol_print (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file,
252 _("Printing of symbols when printing pointers is %s.\n"),
253 value);
254 }
255
256 \f
257
258 /* A helper function for val_print. When printing in "summary" mode,
259 we want to print scalar arguments, but not aggregate arguments.
260 This function distinguishes between the two. */
261
262 int
263 val_print_scalar_type_p (struct type *type)
264 {
265 type = check_typedef (type);
266 while (TYPE_IS_REFERENCE (type))
267 {
268 type = TYPE_TARGET_TYPE (type);
269 type = check_typedef (type);
270 }
271 switch (TYPE_CODE (type))
272 {
273 case TYPE_CODE_ARRAY:
274 case TYPE_CODE_STRUCT:
275 case TYPE_CODE_UNION:
276 case TYPE_CODE_SET:
277 case TYPE_CODE_STRING:
278 return 0;
279 default:
280 return 1;
281 }
282 }
283
284 /* See its definition in value.h. */
285
286 int
287 valprint_check_validity (struct ui_file *stream,
288 struct type *type,
289 LONGEST embedded_offset,
290 const struct value *val)
291 {
292 type = check_typedef (type);
293
294 if (type_not_associated (type))
295 {
296 val_print_not_associated (stream);
297 return 0;
298 }
299
300 if (type_not_allocated (type))
301 {
302 val_print_not_allocated (stream);
303 return 0;
304 }
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
322 int ref_is_addressable = 0;
323
324 if (is_ref)
325 {
326 const struct value *deref_val = coerce_ref_if_computed (val);
327
328 if (deref_val != NULL)
329 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
330 }
331
332 if (!is_ref || !ref_is_addressable)
333 fputs_filtered (_("<synthetic pointer>"), stream);
334
335 /* C++ references should be valid even if they're synthetic. */
336 return is_ref;
337 }
338
339 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
340 {
341 val_print_unavailable (stream);
342 return 0;
343 }
344 }
345
346 return 1;
347 }
348
349 void
350 val_print_optimized_out (const struct value *val, struct ui_file *stream)
351 {
352 if (val != NULL && value_lval_const (val) == lval_register)
353 val_print_not_saved (stream);
354 else
355 fprintf_filtered (stream, _("<optimized out>"));
356 }
357
358 void
359 val_print_not_saved (struct ui_file *stream)
360 {
361 fprintf_filtered (stream, _("<not saved>"));
362 }
363
364 void
365 val_print_unavailable (struct ui_file *stream)
366 {
367 fprintf_filtered (stream, _("<unavailable>"));
368 }
369
370 void
371 val_print_invalid_address (struct ui_file *stream)
372 {
373 fprintf_filtered (stream, _("<invalid address>"));
374 }
375
376 /* Print a pointer based on the type of its target.
377
378 Arguments to this functions are roughly the same as those in
379 generic_val_print. A difference is that ADDRESS is the address to print,
380 with embedded_offset already added. ELTTYPE represents
381 the pointed type after check_typedef. */
382
383 static void
384 print_unpacked_pointer (struct type *type, struct type *elttype,
385 CORE_ADDR address, struct ui_file *stream,
386 const struct value_print_options *options)
387 {
388 struct gdbarch *gdbarch = get_type_arch (type);
389
390 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
391 {
392 /* Try to print what function it points to. */
393 print_function_pointer_address (options, gdbarch, address, stream);
394 return;
395 }
396
397 if (options->symbol_print)
398 print_address_demangle (options, gdbarch, address, stream, demangle);
399 else if (options->addressprint)
400 fputs_filtered (paddress (gdbarch, address), stream);
401 }
402
403 /* generic_val_print helper for TYPE_CODE_ARRAY. */
404
405 static void
406 generic_val_print_array (struct type *type,
407 int embedded_offset, CORE_ADDR address,
408 struct ui_file *stream, int recurse,
409 struct value *original_value,
410 const struct value_print_options *options,
411 const struct
412 generic_val_print_decorations *decorations)
413 {
414 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
415 struct type *elttype = check_typedef (unresolved_elttype);
416
417 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
418 {
419 LONGEST low_bound, high_bound;
420
421 if (!get_array_bounds (type, &low_bound, &high_bound))
422 error (_("Could not determine the array high bound"));
423
424 if (options->prettyformat_arrays)
425 {
426 print_spaces_filtered (2 + 2 * recurse, stream);
427 }
428
429 fputs_filtered (decorations->array_start, stream);
430 val_print_array_elements (type, embedded_offset,
431 address, stream,
432 recurse, original_value, options, 0);
433 fputs_filtered (decorations->array_end, stream);
434 }
435 else
436 {
437 /* Array of unspecified length: treat like pointer to first elt. */
438 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
439 options);
440 }
441
442 }
443
444 /* generic_val_print helper for TYPE_CODE_PTR. */
445
446 static void
447 generic_val_print_ptr (struct type *type,
448 int embedded_offset, struct ui_file *stream,
449 struct value *original_value,
450 const struct value_print_options *options)
451 {
452 struct gdbarch *gdbarch = get_type_arch (type);
453 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
454
455 if (options->format && options->format != 's')
456 {
457 val_print_scalar_formatted (type, embedded_offset,
458 original_value, options, 0, stream);
459 }
460 else
461 {
462 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
463 struct type *elttype = check_typedef (unresolved_elttype);
464 const gdb_byte *valaddr = value_contents_for_printing (original_value);
465 CORE_ADDR addr = unpack_pointer (type,
466 valaddr + embedded_offset * unit_size);
467
468 print_unpacked_pointer (type, elttype, addr, stream, options);
469 }
470 }
471
472
473 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
474
475 static void
476 generic_val_print_memberptr (struct type *type,
477 int embedded_offset, struct ui_file *stream,
478 struct value *original_value,
479 const struct value_print_options *options)
480 {
481 val_print_scalar_formatted (type, embedded_offset,
482 original_value, options, 0, stream);
483 }
484
485 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
486
487 static void
488 print_ref_address (struct type *type, const gdb_byte *address_buffer,
489 int embedded_offset, struct ui_file *stream)
490 {
491 struct gdbarch *gdbarch = get_type_arch (type);
492
493 if (address_buffer != NULL)
494 {
495 CORE_ADDR address
496 = extract_typed_address (address_buffer + embedded_offset, type);
497
498 fprintf_filtered (stream, "@");
499 fputs_filtered (paddress (gdbarch, address), stream);
500 }
501 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
502 }
503
504 /* If VAL is addressable, return the value contents buffer of a value that
505 represents a pointer to VAL. Otherwise return NULL. */
506
507 static const gdb_byte *
508 get_value_addr_contents (struct value *deref_val)
509 {
510 gdb_assert (deref_val != NULL);
511
512 if (value_lval_const (deref_val) == lval_memory)
513 return value_contents_for_printing_const (value_addr (deref_val));
514 else
515 {
516 /* We have a non-addressable value, such as a DW_AT_const_value. */
517 return NULL;
518 }
519 }
520
521 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
522
523 static void
524 generic_val_print_ref (struct type *type,
525 int embedded_offset, struct ui_file *stream, int recurse,
526 struct value *original_value,
527 const struct value_print_options *options)
528 {
529 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
530 struct value *deref_val = NULL;
531 const int value_is_synthetic
532 = value_bits_synthetic_pointer (original_value,
533 TARGET_CHAR_BIT * embedded_offset,
534 TARGET_CHAR_BIT * TYPE_LENGTH (type));
535 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
536 || options->deref_ref);
537 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
538 const gdb_byte *valaddr = value_contents_for_printing (original_value);
539
540 if (must_coerce_ref && type_is_defined)
541 {
542 deref_val = coerce_ref_if_computed (original_value);
543
544 if (deref_val != NULL)
545 {
546 /* More complicated computed references are not supported. */
547 gdb_assert (embedded_offset == 0);
548 }
549 else
550 deref_val = value_at (TYPE_TARGET_TYPE (type),
551 unpack_pointer (type, valaddr + embedded_offset));
552 }
553 /* Else, original_value isn't a synthetic reference or we don't have to print
554 the reference's contents.
555
556 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
557 cause original_value to be a not_lval instead of an lval_computed,
558 which will make value_bits_synthetic_pointer return false.
559 This happens because if options->objectprint is true, c_value_print will
560 overwrite original_value's contents with the result of coercing
561 the reference through value_addr, and then set its type back to
562 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
563 we can simply treat it as non-synthetic and move on. */
564
565 if (options->addressprint)
566 {
567 const gdb_byte *address = (value_is_synthetic && type_is_defined
568 ? get_value_addr_contents (deref_val)
569 : valaddr);
570
571 print_ref_address (type, address, embedded_offset, stream);
572
573 if (options->deref_ref)
574 fputs_filtered (": ", stream);
575 }
576
577 if (options->deref_ref)
578 {
579 if (type_is_defined)
580 common_val_print (deref_val, stream, recurse, options,
581 current_language);
582 else
583 fputs_filtered ("???", stream);
584 }
585 }
586
587 /* Helper function for generic_val_print_enum.
588 This is also used to print enums in TYPE_CODE_FLAGS values. */
589
590 static void
591 generic_val_print_enum_1 (struct type *type, LONGEST val,
592 struct ui_file *stream)
593 {
594 unsigned int i;
595 unsigned int len;
596
597 len = TYPE_NFIELDS (type);
598 for (i = 0; i < len; i++)
599 {
600 QUIT;
601 if (val == TYPE_FIELD_ENUMVAL (type, i))
602 {
603 break;
604 }
605 }
606 if (i < len)
607 {
608 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
609 }
610 else if (TYPE_FLAG_ENUM (type))
611 {
612 int first = 1;
613
614 /* We have a "flag" enum, so we try to decompose it into
615 pieces as appropriate. A flag enum has disjoint
616 constants by definition. */
617 fputs_filtered ("(", stream);
618 for (i = 0; i < len; ++i)
619 {
620 QUIT;
621
622 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
623 {
624 if (!first)
625 fputs_filtered (" | ", stream);
626 first = 0;
627
628 val &= ~TYPE_FIELD_ENUMVAL (type, i);
629 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
630 }
631 }
632
633 if (first || val != 0)
634 {
635 if (!first)
636 fputs_filtered (" | ", stream);
637 fputs_filtered ("unknown: ", stream);
638 print_longest (stream, 'd', 0, val);
639 }
640
641 fputs_filtered (")", stream);
642 }
643 else
644 print_longest (stream, 'd', 0, val);
645 }
646
647 /* generic_val_print helper for TYPE_CODE_ENUM. */
648
649 static void
650 generic_val_print_enum (struct type *type,
651 int embedded_offset, struct ui_file *stream,
652 struct value *original_value,
653 const struct value_print_options *options)
654 {
655 LONGEST val;
656 struct gdbarch *gdbarch = get_type_arch (type);
657 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
658
659 if (options->format)
660 {
661 val_print_scalar_formatted (type, embedded_offset,
662 original_value, options, 0, stream);
663 }
664 else
665 {
666 const gdb_byte *valaddr = value_contents_for_printing (original_value);
667
668 val = unpack_long (type, valaddr + embedded_offset * unit_size);
669
670 generic_val_print_enum_1 (type, val, stream);
671 }
672 }
673
674 /* generic_val_print helper for TYPE_CODE_FLAGS. */
675
676 static void
677 generic_val_print_flags (struct type *type,
678 int embedded_offset, struct ui_file *stream,
679 struct value *original_value,
680 const struct value_print_options *options)
681
682 {
683 if (options->format)
684 val_print_scalar_formatted (type, embedded_offset, original_value,
685 options, 0, stream);
686 else
687 {
688 const gdb_byte *valaddr = value_contents_for_printing (original_value);
689
690 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
691 }
692 }
693
694 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
695
696 static void
697 generic_val_print_func (struct type *type,
698 int embedded_offset, CORE_ADDR address,
699 struct ui_file *stream,
700 struct value *original_value,
701 const struct value_print_options *options)
702 {
703 struct gdbarch *gdbarch = get_type_arch (type);
704
705 if (options->format)
706 {
707 val_print_scalar_formatted (type, embedded_offset,
708 original_value, options, 0, stream);
709 }
710 else
711 {
712 /* FIXME, we should consider, at least for ANSI C language,
713 eliminating the distinction made between FUNCs and POINTERs
714 to FUNCs. */
715 fprintf_filtered (stream, "{");
716 type_print (type, "", stream, -1);
717 fprintf_filtered (stream, "} ");
718 /* Try to print what function it points to, and its address. */
719 print_address_demangle (options, gdbarch, address, stream, demangle);
720 }
721 }
722
723 /* generic_val_print helper for TYPE_CODE_BOOL. */
724
725 static void
726 generic_val_print_bool (struct type *type,
727 int embedded_offset, struct ui_file *stream,
728 struct value *original_value,
729 const struct value_print_options *options,
730 const struct generic_val_print_decorations *decorations)
731 {
732 LONGEST val;
733 struct gdbarch *gdbarch = get_type_arch (type);
734 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
735
736 if (options->format || options->output_format)
737 {
738 struct value_print_options opts = *options;
739 opts.format = (options->format ? options->format
740 : options->output_format);
741 val_print_scalar_formatted (type, embedded_offset,
742 original_value, &opts, 0, stream);
743 }
744 else
745 {
746 const gdb_byte *valaddr = value_contents_for_printing (original_value);
747
748 val = unpack_long (type, valaddr + embedded_offset * unit_size);
749 if (val == 0)
750 fputs_filtered (decorations->false_name, stream);
751 else if (val == 1)
752 fputs_filtered (decorations->true_name, stream);
753 else
754 print_longest (stream, 'd', 0, val);
755 }
756 }
757
758 /* generic_val_print helper for TYPE_CODE_INT. */
759
760 static void
761 generic_val_print_int (struct type *type,
762 int embedded_offset, struct ui_file *stream,
763 struct value *original_value,
764 const struct value_print_options *options)
765 {
766 struct value_print_options opts = *options;
767
768 opts.format = (options->format ? options->format
769 : options->output_format);
770 val_print_scalar_formatted (type, embedded_offset,
771 original_value, &opts, 0, stream);
772 }
773
774 /* generic_val_print helper for TYPE_CODE_CHAR. */
775
776 static void
777 generic_val_print_char (struct type *type, struct type *unresolved_type,
778 int embedded_offset,
779 struct ui_file *stream,
780 struct value *original_value,
781 const struct value_print_options *options)
782 {
783 LONGEST val;
784 struct gdbarch *gdbarch = get_type_arch (type);
785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
786
787 if (options->format || options->output_format)
788 {
789 struct value_print_options opts = *options;
790
791 opts.format = (options->format ? options->format
792 : options->output_format);
793 val_print_scalar_formatted (type, embedded_offset,
794 original_value, &opts, 0, stream);
795 }
796 else
797 {
798 const gdb_byte *valaddr = value_contents_for_printing (original_value);
799
800 val = unpack_long (type, valaddr + embedded_offset * unit_size);
801 if (TYPE_UNSIGNED (type))
802 fprintf_filtered (stream, "%u", (unsigned int) val);
803 else
804 fprintf_filtered (stream, "%d", (int) val);
805 fputs_filtered (" ", stream);
806 LA_PRINT_CHAR (val, unresolved_type, stream);
807 }
808 }
809
810 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
811
812 static void
813 generic_val_print_float (struct type *type,
814 int embedded_offset, struct ui_file *stream,
815 struct value *original_value,
816 const struct value_print_options *options)
817 {
818 struct gdbarch *gdbarch = get_type_arch (type);
819 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
820
821 if (options->format)
822 {
823 val_print_scalar_formatted (type, embedded_offset,
824 original_value, options, 0, stream);
825 }
826 else
827 {
828 const gdb_byte *valaddr = value_contents_for_printing (original_value);
829
830 print_floating (valaddr + embedded_offset * unit_size, type, stream);
831 }
832 }
833
834 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
835
836 static void
837 generic_val_print_complex (struct type *type,
838 int embedded_offset, struct ui_file *stream,
839 struct value *original_value,
840 const struct value_print_options *options,
841 const struct generic_val_print_decorations
842 *decorations)
843 {
844 struct gdbarch *gdbarch = get_type_arch (type);
845 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
846 const gdb_byte *valaddr = value_contents_for_printing (original_value);
847
848 fprintf_filtered (stream, "%s", decorations->complex_prefix);
849 if (options->format)
850 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
851 embedded_offset, original_value, options, 0,
852 stream);
853 else
854 print_floating (valaddr + embedded_offset * unit_size,
855 TYPE_TARGET_TYPE (type), stream);
856 fprintf_filtered (stream, "%s", decorations->complex_infix);
857 if (options->format)
858 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
859 embedded_offset
860 + type_length_units (TYPE_TARGET_TYPE (type)),
861 original_value, options, 0, stream);
862 else
863 print_floating (valaddr + embedded_offset * unit_size
864 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
865 TYPE_TARGET_TYPE (type), stream);
866 fprintf_filtered (stream, "%s", decorations->complex_suffix);
867 }
868
869 /* A generic val_print that is suitable for use by language
870 implementations of the la_val_print method. This function can
871 handle most type codes, though not all, notably exception
872 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
873 the caller.
874
875 Most arguments are as to val_print.
876
877 The additional DECORATIONS argument can be used to customize the
878 output in some small, language-specific ways. */
879
880 void
881 generic_val_print (struct type *type,
882 int embedded_offset, CORE_ADDR address,
883 struct ui_file *stream, int recurse,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations *decorations)
887 {
888 struct type *unresolved_type = type;
889
890 type = check_typedef (type);
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_ARRAY:
894 generic_val_print_array (type, embedded_offset, address, stream,
895 recurse, original_value, options, decorations);
896 break;
897
898 case TYPE_CODE_MEMBERPTR:
899 generic_val_print_memberptr (type, embedded_offset, stream,
900 original_value, options);
901 break;
902
903 case TYPE_CODE_PTR:
904 generic_val_print_ptr (type, embedded_offset, stream,
905 original_value, options);
906 break;
907
908 case TYPE_CODE_REF:
909 case TYPE_CODE_RVALUE_REF:
910 generic_val_print_ref (type, embedded_offset, stream, recurse,
911 original_value, options);
912 break;
913
914 case TYPE_CODE_ENUM:
915 generic_val_print_enum (type, embedded_offset, stream,
916 original_value, options);
917 break;
918
919 case TYPE_CODE_FLAGS:
920 generic_val_print_flags (type, embedded_offset, stream,
921 original_value, options);
922 break;
923
924 case TYPE_CODE_FUNC:
925 case TYPE_CODE_METHOD:
926 generic_val_print_func (type, embedded_offset, address, stream,
927 original_value, options);
928 break;
929
930 case TYPE_CODE_BOOL:
931 generic_val_print_bool (type, embedded_offset, stream,
932 original_value, options, decorations);
933 break;
934
935 case TYPE_CODE_RANGE:
936 /* FIXME: create_static_range_type does not set the unsigned bit in a
937 range type (I think it probably should copy it from the
938 target type), so we won't print values which are too large to
939 fit in a signed integer correctly. */
940 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
941 print with the target type, though, because the size of our
942 type and the target type might differ). */
943
944 /* FALLTHROUGH */
945
946 case TYPE_CODE_INT:
947 generic_val_print_int (type, embedded_offset, stream,
948 original_value, options);
949 break;
950
951 case TYPE_CODE_CHAR:
952 generic_val_print_char (type, unresolved_type, embedded_offset,
953 stream, original_value, options);
954 break;
955
956 case TYPE_CODE_FLT:
957 case TYPE_CODE_DECFLOAT:
958 generic_val_print_float (type, embedded_offset, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_VOID:
963 fputs_filtered (decorations->void_name, stream);
964 break;
965
966 case TYPE_CODE_ERROR:
967 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
968 break;
969
970 case TYPE_CODE_UNDEF:
971 /* This happens (without TYPE_STUB set) on systems which don't use
972 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
973 and no complete type for struct foo in that file. */
974 fprintf_filtered (stream, _("<incomplete type>"));
975 break;
976
977 case TYPE_CODE_COMPLEX:
978 generic_val_print_complex (type, embedded_offset, stream,
979 original_value, options, decorations);
980 break;
981
982 case TYPE_CODE_UNION:
983 case TYPE_CODE_STRUCT:
984 case TYPE_CODE_METHODPTR:
985 default:
986 error (_("Unhandled type code %d in symbol table."),
987 TYPE_CODE (type));
988 }
989 }
990
991 /* Print using the given LANGUAGE the data of type TYPE located at
992 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
993 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
994 stdio stream STREAM according to OPTIONS. VAL is the whole object
995 that came from ADDRESS.
996
997 The language printers will pass down an adjusted EMBEDDED_OFFSET to
998 further helper subroutines as subfields of TYPE are printed. In
999 such cases, VAL is passed down unadjusted, so
1000 that VAL can be queried for metadata about the contents data being
1001 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1002 buffer. For example: "has this field been optimized out", or "I'm
1003 printing an object while inspecting a traceframe; has this
1004 particular piece of data been collected?".
1005
1006 RECURSE indicates the amount of indentation to supply before
1007 continuation lines; this amount is roughly twice the value of
1008 RECURSE. */
1009
1010 void
1011 val_print (struct type *type, LONGEST embedded_offset,
1012 CORE_ADDR address, struct ui_file *stream, int recurse,
1013 struct value *val,
1014 const struct value_print_options *options,
1015 const struct language_defn *language)
1016 {
1017 int ret = 0;
1018 struct value_print_options local_opts = *options;
1019 struct type *real_type = check_typedef (type);
1020
1021 if (local_opts.prettyformat == Val_prettyformat_default)
1022 local_opts.prettyformat = (local_opts.prettyformat_structs
1023 ? Val_prettyformat : Val_no_prettyformat);
1024
1025 QUIT;
1026
1027 /* Ensure that the type is complete and not just a stub. If the type is
1028 only a stub and we can't find and substitute its complete type, then
1029 print appropriate string and return. */
1030
1031 if (TYPE_STUB (real_type))
1032 {
1033 fprintf_filtered (stream, _("<incomplete type>"));
1034 return;
1035 }
1036
1037 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1038 return;
1039
1040 if (!options->raw)
1041 {
1042 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1043 address, stream, recurse,
1044 val, options, language);
1045 if (ret)
1046 return;
1047 }
1048
1049 /* Handle summary mode. If the value is a scalar, print it;
1050 otherwise, print an ellipsis. */
1051 if (options->summary && !val_print_scalar_type_p (type))
1052 {
1053 fprintf_filtered (stream, "...");
1054 return;
1055 }
1056
1057 try
1058 {
1059 language->la_val_print (type, embedded_offset, address,
1060 stream, recurse, val,
1061 &local_opts);
1062 }
1063 catch (const gdb_exception_RETURN_MASK_ERROR &except)
1064 {
1065 fprintf_filtered (stream, _("<error reading variable>"));
1066 }
1067 }
1068
1069 /* Check whether the value VAL is printable. Return 1 if it is;
1070 return 0 and print an appropriate error message to STREAM according to
1071 OPTIONS if it is not. */
1072
1073 static int
1074 value_check_printable (struct value *val, struct ui_file *stream,
1075 const struct value_print_options *options)
1076 {
1077 if (val == 0)
1078 {
1079 fprintf_filtered (stream, _("<address of value unknown>"));
1080 return 0;
1081 }
1082
1083 if (value_entirely_optimized_out (val))
1084 {
1085 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1086 fprintf_filtered (stream, "...");
1087 else
1088 val_print_optimized_out (val, stream);
1089 return 0;
1090 }
1091
1092 if (value_entirely_unavailable (val))
1093 {
1094 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1095 fprintf_filtered (stream, "...");
1096 else
1097 val_print_unavailable (stream);
1098 return 0;
1099 }
1100
1101 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1102 {
1103 fprintf_filtered (stream, _("<internal function %s>"),
1104 value_internal_function_name (val));
1105 return 0;
1106 }
1107
1108 if (type_not_associated (value_type (val)))
1109 {
1110 val_print_not_associated (stream);
1111 return 0;
1112 }
1113
1114 if (type_not_allocated (value_type (val)))
1115 {
1116 val_print_not_allocated (stream);
1117 return 0;
1118 }
1119
1120 return 1;
1121 }
1122
1123 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1124 to OPTIONS.
1125
1126 This is a preferable interface to val_print, above, because it uses
1127 GDB's value mechanism. */
1128
1129 void
1130 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1131 const struct value_print_options *options,
1132 const struct language_defn *language)
1133 {
1134 if (!value_check_printable (val, stream, options))
1135 return;
1136
1137 if (language->la_language == language_ada)
1138 /* The value might have a dynamic type, which would cause trouble
1139 below when trying to extract the value contents (since the value
1140 size is determined from the type size which is unknown). So
1141 get a fixed representation of our value. */
1142 val = ada_to_fixed_value (val);
1143
1144 if (value_lazy (val))
1145 value_fetch_lazy (val);
1146
1147 val_print (value_type (val),
1148 value_embedded_offset (val), value_address (val),
1149 stream, recurse,
1150 val, options, language);
1151 }
1152
1153 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1154 is printed using the current_language syntax. */
1155
1156 void
1157 value_print (struct value *val, struct ui_file *stream,
1158 const struct value_print_options *options)
1159 {
1160 if (!value_check_printable (val, stream, options))
1161 return;
1162
1163 if (!options->raw)
1164 {
1165 int r
1166 = apply_ext_lang_val_pretty_printer (value_type (val),
1167 value_embedded_offset (val),
1168 value_address (val),
1169 stream, 0,
1170 val, options, current_language);
1171
1172 if (r)
1173 return;
1174 }
1175
1176 LA_VALUE_PRINT (val, stream, options);
1177 }
1178
1179 static void
1180 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1181 struct ui_file *stream)
1182 {
1183 ULONGEST val = unpack_long (type, valaddr);
1184 int field, nfields = TYPE_NFIELDS (type);
1185 struct gdbarch *gdbarch = get_type_arch (type);
1186 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1187
1188 fputs_filtered ("[", stream);
1189 for (field = 0; field < nfields; field++)
1190 {
1191 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1192 {
1193 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1194
1195 if (field_type == bool_type
1196 /* We require boolean types here to be one bit wide. This is a
1197 problematic place to notify the user of an internal error
1198 though. Instead just fall through and print the field as an
1199 int. */
1200 && TYPE_FIELD_BITSIZE (type, field) == 1)
1201 {
1202 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1203 fprintf_filtered (stream, " %s",
1204 TYPE_FIELD_NAME (type, field));
1205 }
1206 else
1207 {
1208 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1209 ULONGEST field_val
1210 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1211
1212 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1213 field_val &= ((ULONGEST) 1 << field_len) - 1;
1214 fprintf_filtered (stream, " %s=",
1215 TYPE_FIELD_NAME (type, field));
1216 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1217 generic_val_print_enum_1 (field_type, field_val, stream);
1218 else
1219 print_longest (stream, 'd', 0, field_val);
1220 }
1221 }
1222 }
1223 fputs_filtered (" ]", stream);
1224 }
1225
1226 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1227 according to OPTIONS and SIZE on STREAM. Format i is not supported
1228 at this level.
1229
1230 This is how the elements of an array or structure are printed
1231 with a format. */
1232
1233 void
1234 val_print_scalar_formatted (struct type *type,
1235 LONGEST embedded_offset,
1236 struct value *val,
1237 const struct value_print_options *options,
1238 int size,
1239 struct ui_file *stream)
1240 {
1241 struct gdbarch *arch = get_type_arch (type);
1242 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1243
1244 gdb_assert (val != NULL);
1245
1246 /* If we get here with a string format, try again without it. Go
1247 all the way back to the language printers, which may call us
1248 again. */
1249 if (options->format == 's')
1250 {
1251 struct value_print_options opts = *options;
1252 opts.format = 0;
1253 opts.deref_ref = 0;
1254 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1255 current_language);
1256 return;
1257 }
1258
1259 /* value_contents_for_printing fetches all VAL's contents. They are
1260 needed to check whether VAL is optimized-out or unavailable
1261 below. */
1262 const gdb_byte *valaddr = value_contents_for_printing (val);
1263
1264 /* A scalar object that does not have all bits available can't be
1265 printed, because all bits contribute to its representation. */
1266 if (value_bits_any_optimized_out (val,
1267 TARGET_CHAR_BIT * embedded_offset,
1268 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1269 val_print_optimized_out (val, stream);
1270 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1271 val_print_unavailable (stream);
1272 else
1273 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1274 options, size, stream);
1275 }
1276
1277 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1278 The raison d'etre of this function is to consolidate printing of
1279 LONG_LONG's into this one function. The format chars b,h,w,g are
1280 from print_scalar_formatted(). Numbers are printed using C
1281 format.
1282
1283 USE_C_FORMAT means to use C format in all cases. Without it,
1284 'o' and 'x' format do not include the standard C radix prefix
1285 (leading 0 or 0x).
1286
1287 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1288 and was intended to request formating according to the current
1289 language and would be used for most integers that GDB prints. The
1290 exceptional cases were things like protocols where the format of
1291 the integer is a protocol thing, not a user-visible thing). The
1292 parameter remains to preserve the information of what things might
1293 be printed with language-specific format, should we ever resurrect
1294 that capability. */
1295
1296 void
1297 print_longest (struct ui_file *stream, int format, int use_c_format,
1298 LONGEST val_long)
1299 {
1300 const char *val;
1301
1302 switch (format)
1303 {
1304 case 'd':
1305 val = int_string (val_long, 10, 1, 0, 1); break;
1306 case 'u':
1307 val = int_string (val_long, 10, 0, 0, 1); break;
1308 case 'x':
1309 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1310 case 'b':
1311 val = int_string (val_long, 16, 0, 2, 1); break;
1312 case 'h':
1313 val = int_string (val_long, 16, 0, 4, 1); break;
1314 case 'w':
1315 val = int_string (val_long, 16, 0, 8, 1); break;
1316 case 'g':
1317 val = int_string (val_long, 16, 0, 16, 1); break;
1318 break;
1319 case 'o':
1320 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1321 default:
1322 internal_error (__FILE__, __LINE__,
1323 _("failed internal consistency check"));
1324 }
1325 fputs_filtered (val, stream);
1326 }
1327
1328 /* This used to be a macro, but I don't think it is called often enough
1329 to merit such treatment. */
1330 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1331 arguments to a function, number in a value history, register number, etc.)
1332 where the value must not be larger than can fit in an int. */
1333
1334 int
1335 longest_to_int (LONGEST arg)
1336 {
1337 /* Let the compiler do the work. */
1338 int rtnval = (int) arg;
1339
1340 /* Check for overflows or underflows. */
1341 if (sizeof (LONGEST) > sizeof (int))
1342 {
1343 if (rtnval != arg)
1344 {
1345 error (_("Value out of range."));
1346 }
1347 }
1348 return (rtnval);
1349 }
1350
1351 /* Print a floating point value of floating-point type TYPE,
1352 pointed to in GDB by VALADDR, on STREAM. */
1353
1354 void
1355 print_floating (const gdb_byte *valaddr, struct type *type,
1356 struct ui_file *stream)
1357 {
1358 std::string str = target_float_to_string (valaddr, type);
1359 fputs_filtered (str.c_str (), stream);
1360 }
1361
1362 void
1363 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1364 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1365 {
1366 const gdb_byte *p;
1367 unsigned int i;
1368 int b;
1369 bool seen_a_one = false;
1370
1371 /* Declared "int" so it will be signed.
1372 This ensures that right shift will shift in zeros. */
1373
1374 const int mask = 0x080;
1375
1376 if (byte_order == BFD_ENDIAN_BIG)
1377 {
1378 for (p = valaddr;
1379 p < valaddr + len;
1380 p++)
1381 {
1382 /* Every byte has 8 binary characters; peel off
1383 and print from the MSB end. */
1384
1385 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1386 {
1387 if (*p & (mask >> i))
1388 b = '1';
1389 else
1390 b = '0';
1391
1392 if (zero_pad || seen_a_one || b == '1')
1393 fputc_filtered (b, stream);
1394 if (b == '1')
1395 seen_a_one = true;
1396 }
1397 }
1398 }
1399 else
1400 {
1401 for (p = valaddr + len - 1;
1402 p >= valaddr;
1403 p--)
1404 {
1405 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1406 {
1407 if (*p & (mask >> i))
1408 b = '1';
1409 else
1410 b = '0';
1411
1412 if (zero_pad || seen_a_one || b == '1')
1413 fputc_filtered (b, stream);
1414 if (b == '1')
1415 seen_a_one = true;
1416 }
1417 }
1418 }
1419
1420 /* When not zero-padding, ensure that something is printed when the
1421 input is 0. */
1422 if (!zero_pad && !seen_a_one)
1423 fputc_filtered ('0', stream);
1424 }
1425
1426 /* A helper for print_octal_chars that emits a single octal digit,
1427 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1428
1429 static void
1430 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1431 {
1432 if (*seen_a_one || digit != 0)
1433 fprintf_filtered (stream, "%o", digit);
1434 if (digit != 0)
1435 *seen_a_one = true;
1436 }
1437
1438 /* VALADDR points to an integer of LEN bytes.
1439 Print it in octal on stream or format it in buf. */
1440
1441 void
1442 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1443 unsigned len, enum bfd_endian byte_order)
1444 {
1445 const gdb_byte *p;
1446 unsigned char octa1, octa2, octa3, carry;
1447 int cycle;
1448
1449 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1450 * the extra bits, which cycle every three bytes:
1451 *
1452 * Byte side: 0 1 2 3
1453 * | | | |
1454 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1455 *
1456 * Octal side: 0 1 carry 3 4 carry ...
1457 *
1458 * Cycle number: 0 1 2
1459 *
1460 * But of course we are printing from the high side, so we have to
1461 * figure out where in the cycle we are so that we end up with no
1462 * left over bits at the end.
1463 */
1464 #define BITS_IN_OCTAL 3
1465 #define HIGH_ZERO 0340
1466 #define LOW_ZERO 0034
1467 #define CARRY_ZERO 0003
1468 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1469 "cycle zero constants are wrong");
1470 #define HIGH_ONE 0200
1471 #define MID_ONE 0160
1472 #define LOW_ONE 0016
1473 #define CARRY_ONE 0001
1474 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1475 "cycle one constants are wrong");
1476 #define HIGH_TWO 0300
1477 #define MID_TWO 0070
1478 #define LOW_TWO 0007
1479 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1480 "cycle two constants are wrong");
1481
1482 /* For 32 we start in cycle 2, with two bits and one bit carry;
1483 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1484
1485 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1486 carry = 0;
1487
1488 fputs_filtered ("0", stream);
1489 bool seen_a_one = false;
1490 if (byte_order == BFD_ENDIAN_BIG)
1491 {
1492 for (p = valaddr;
1493 p < valaddr + len;
1494 p++)
1495 {
1496 switch (cycle)
1497 {
1498 case 0:
1499 /* No carry in, carry out two bits. */
1500
1501 octa1 = (HIGH_ZERO & *p) >> 5;
1502 octa2 = (LOW_ZERO & *p) >> 2;
1503 carry = (CARRY_ZERO & *p);
1504 emit_octal_digit (stream, &seen_a_one, octa1);
1505 emit_octal_digit (stream, &seen_a_one, octa2);
1506 break;
1507
1508 case 1:
1509 /* Carry in two bits, carry out one bit. */
1510
1511 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1512 octa2 = (MID_ONE & *p) >> 4;
1513 octa3 = (LOW_ONE & *p) >> 1;
1514 carry = (CARRY_ONE & *p);
1515 emit_octal_digit (stream, &seen_a_one, octa1);
1516 emit_octal_digit (stream, &seen_a_one, octa2);
1517 emit_octal_digit (stream, &seen_a_one, octa3);
1518 break;
1519
1520 case 2:
1521 /* Carry in one bit, no carry out. */
1522
1523 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1524 octa2 = (MID_TWO & *p) >> 3;
1525 octa3 = (LOW_TWO & *p);
1526 carry = 0;
1527 emit_octal_digit (stream, &seen_a_one, octa1);
1528 emit_octal_digit (stream, &seen_a_one, octa2);
1529 emit_octal_digit (stream, &seen_a_one, octa3);
1530 break;
1531
1532 default:
1533 error (_("Internal error in octal conversion;"));
1534 }
1535
1536 cycle++;
1537 cycle = cycle % BITS_IN_OCTAL;
1538 }
1539 }
1540 else
1541 {
1542 for (p = valaddr + len - 1;
1543 p >= valaddr;
1544 p--)
1545 {
1546 switch (cycle)
1547 {
1548 case 0:
1549 /* Carry out, no carry in */
1550
1551 octa1 = (HIGH_ZERO & *p) >> 5;
1552 octa2 = (LOW_ZERO & *p) >> 2;
1553 carry = (CARRY_ZERO & *p);
1554 emit_octal_digit (stream, &seen_a_one, octa1);
1555 emit_octal_digit (stream, &seen_a_one, octa2);
1556 break;
1557
1558 case 1:
1559 /* Carry in, carry out */
1560
1561 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1562 octa2 = (MID_ONE & *p) >> 4;
1563 octa3 = (LOW_ONE & *p) >> 1;
1564 carry = (CARRY_ONE & *p);
1565 emit_octal_digit (stream, &seen_a_one, octa1);
1566 emit_octal_digit (stream, &seen_a_one, octa2);
1567 emit_octal_digit (stream, &seen_a_one, octa3);
1568 break;
1569
1570 case 2:
1571 /* Carry in, no carry out */
1572
1573 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1574 octa2 = (MID_TWO & *p) >> 3;
1575 octa3 = (LOW_TWO & *p);
1576 carry = 0;
1577 emit_octal_digit (stream, &seen_a_one, octa1);
1578 emit_octal_digit (stream, &seen_a_one, octa2);
1579 emit_octal_digit (stream, &seen_a_one, octa3);
1580 break;
1581
1582 default:
1583 error (_("Internal error in octal conversion;"));
1584 }
1585
1586 cycle++;
1587 cycle = cycle % BITS_IN_OCTAL;
1588 }
1589 }
1590
1591 }
1592
1593 /* Possibly negate the integer represented by BYTES. It contains LEN
1594 bytes in the specified byte order. If the integer is negative,
1595 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1596 nothing and return false. */
1597
1598 static bool
1599 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1600 enum bfd_endian byte_order,
1601 gdb::byte_vector *out_vec)
1602 {
1603 gdb_byte sign_byte;
1604 gdb_assert (len > 0);
1605 if (byte_order == BFD_ENDIAN_BIG)
1606 sign_byte = bytes[0];
1607 else
1608 sign_byte = bytes[len - 1];
1609 if ((sign_byte & 0x80) == 0)
1610 return false;
1611
1612 out_vec->resize (len);
1613
1614 /* Compute -x == 1 + ~x. */
1615 if (byte_order == BFD_ENDIAN_LITTLE)
1616 {
1617 unsigned carry = 1;
1618 for (unsigned i = 0; i < len; ++i)
1619 {
1620 unsigned tem = (0xff & ~bytes[i]) + carry;
1621 (*out_vec)[i] = tem & 0xff;
1622 carry = tem / 256;
1623 }
1624 }
1625 else
1626 {
1627 unsigned carry = 1;
1628 for (unsigned i = len; i > 0; --i)
1629 {
1630 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1631 (*out_vec)[i - 1] = tem & 0xff;
1632 carry = tem / 256;
1633 }
1634 }
1635
1636 return true;
1637 }
1638
1639 /* VALADDR points to an integer of LEN bytes.
1640 Print it in decimal on stream or format it in buf. */
1641
1642 void
1643 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1644 unsigned len, bool is_signed,
1645 enum bfd_endian byte_order)
1646 {
1647 #define TEN 10
1648 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1649 #define CARRY_LEFT( x ) ((x) % TEN)
1650 #define SHIFT( x ) ((x) << 4)
1651 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1652 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1653
1654 const gdb_byte *p;
1655 int carry;
1656 int decimal_len;
1657 int i, j, decimal_digits;
1658 int dummy;
1659 int flip;
1660
1661 gdb::byte_vector negated_bytes;
1662 if (is_signed
1663 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1664 {
1665 fputs_filtered ("-", stream);
1666 valaddr = negated_bytes.data ();
1667 }
1668
1669 /* Base-ten number is less than twice as many digits
1670 as the base 16 number, which is 2 digits per byte. */
1671
1672 decimal_len = len * 2 * 2;
1673 std::vector<unsigned char> digits (decimal_len, 0);
1674
1675 /* Ok, we have an unknown number of bytes of data to be printed in
1676 * decimal.
1677 *
1678 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1679 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1680 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1681 *
1682 * The trick is that "digits" holds a base-10 number, but sometimes
1683 * the individual digits are > 10.
1684 *
1685 * Outer loop is per nibble (hex digit) of input, from MSD end to
1686 * LSD end.
1687 */
1688 decimal_digits = 0; /* Number of decimal digits so far */
1689 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1690 flip = 0;
1691 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1692 {
1693 /*
1694 * Multiply current base-ten number by 16 in place.
1695 * Each digit was between 0 and 9, now is between
1696 * 0 and 144.
1697 */
1698 for (j = 0; j < decimal_digits; j++)
1699 {
1700 digits[j] = SHIFT (digits[j]);
1701 }
1702
1703 /* Take the next nibble off the input and add it to what
1704 * we've got in the LSB position. Bottom 'digit' is now
1705 * between 0 and 159.
1706 *
1707 * "flip" is used to run this loop twice for each byte.
1708 */
1709 if (flip == 0)
1710 {
1711 /* Take top nibble. */
1712
1713 digits[0] += HIGH_NIBBLE (*p);
1714 flip = 1;
1715 }
1716 else
1717 {
1718 /* Take low nibble and bump our pointer "p". */
1719
1720 digits[0] += LOW_NIBBLE (*p);
1721 if (byte_order == BFD_ENDIAN_BIG)
1722 p++;
1723 else
1724 p--;
1725 flip = 0;
1726 }
1727
1728 /* Re-decimalize. We have to do this often enough
1729 * that we don't overflow, but once per nibble is
1730 * overkill. Easier this way, though. Note that the
1731 * carry is often larger than 10 (e.g. max initial
1732 * carry out of lowest nibble is 15, could bubble all
1733 * the way up greater than 10). So we have to do
1734 * the carrying beyond the last current digit.
1735 */
1736 carry = 0;
1737 for (j = 0; j < decimal_len - 1; j++)
1738 {
1739 digits[j] += carry;
1740
1741 /* "/" won't handle an unsigned char with
1742 * a value that if signed would be negative.
1743 * So extend to longword int via "dummy".
1744 */
1745 dummy = digits[j];
1746 carry = CARRY_OUT (dummy);
1747 digits[j] = CARRY_LEFT (dummy);
1748
1749 if (j >= decimal_digits && carry == 0)
1750 {
1751 /*
1752 * All higher digits are 0 and we
1753 * no longer have a carry.
1754 *
1755 * Note: "j" is 0-based, "decimal_digits" is
1756 * 1-based.
1757 */
1758 decimal_digits = j + 1;
1759 break;
1760 }
1761 }
1762 }
1763
1764 /* Ok, now "digits" is the decimal representation, with
1765 the "decimal_digits" actual digits. Print! */
1766
1767 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1768 ;
1769
1770 for (; i >= 0; i--)
1771 {
1772 fprintf_filtered (stream, "%1d", digits[i]);
1773 }
1774 }
1775
1776 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1777
1778 void
1779 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1780 unsigned len, enum bfd_endian byte_order,
1781 bool zero_pad)
1782 {
1783 const gdb_byte *p;
1784
1785 fputs_filtered ("0x", stream);
1786 if (byte_order == BFD_ENDIAN_BIG)
1787 {
1788 p = valaddr;
1789
1790 if (!zero_pad)
1791 {
1792 /* Strip leading 0 bytes, but be sure to leave at least a
1793 single byte at the end. */
1794 for (; p < valaddr + len - 1 && !*p; ++p)
1795 ;
1796 }
1797
1798 const gdb_byte *first = p;
1799 for (;
1800 p < valaddr + len;
1801 p++)
1802 {
1803 /* When not zero-padding, use a different format for the
1804 very first byte printed. */
1805 if (!zero_pad && p == first)
1806 fprintf_filtered (stream, "%x", *p);
1807 else
1808 fprintf_filtered (stream, "%02x", *p);
1809 }
1810 }
1811 else
1812 {
1813 p = valaddr + len - 1;
1814
1815 if (!zero_pad)
1816 {
1817 /* Strip leading 0 bytes, but be sure to leave at least a
1818 single byte at the end. */
1819 for (; p >= valaddr + 1 && !*p; --p)
1820 ;
1821 }
1822
1823 const gdb_byte *first = p;
1824 for (;
1825 p >= valaddr;
1826 p--)
1827 {
1828 /* When not zero-padding, use a different format for the
1829 very first byte printed. */
1830 if (!zero_pad && p == first)
1831 fprintf_filtered (stream, "%x", *p);
1832 else
1833 fprintf_filtered (stream, "%02x", *p);
1834 }
1835 }
1836 }
1837
1838 /* VALADDR points to a char integer of LEN bytes.
1839 Print it out in appropriate language form on stream.
1840 Omit any leading zero chars. */
1841
1842 void
1843 print_char_chars (struct ui_file *stream, struct type *type,
1844 const gdb_byte *valaddr,
1845 unsigned len, enum bfd_endian byte_order)
1846 {
1847 const gdb_byte *p;
1848
1849 if (byte_order == BFD_ENDIAN_BIG)
1850 {
1851 p = valaddr;
1852 while (p < valaddr + len - 1 && *p == 0)
1853 ++p;
1854
1855 while (p < valaddr + len)
1856 {
1857 LA_EMIT_CHAR (*p, type, stream, '\'');
1858 ++p;
1859 }
1860 }
1861 else
1862 {
1863 p = valaddr + len - 1;
1864 while (p > valaddr && *p == 0)
1865 --p;
1866
1867 while (p >= valaddr)
1868 {
1869 LA_EMIT_CHAR (*p, type, stream, '\'');
1870 --p;
1871 }
1872 }
1873 }
1874
1875 /* Print function pointer with inferior address ADDRESS onto stdio
1876 stream STREAM. */
1877
1878 void
1879 print_function_pointer_address (const struct value_print_options *options,
1880 struct gdbarch *gdbarch,
1881 CORE_ADDR address,
1882 struct ui_file *stream)
1883 {
1884 CORE_ADDR func_addr
1885 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1886 current_top_target ());
1887
1888 /* If the function pointer is represented by a description, print
1889 the address of the description. */
1890 if (options->addressprint && func_addr != address)
1891 {
1892 fputs_filtered ("@", stream);
1893 fputs_filtered (paddress (gdbarch, address), stream);
1894 fputs_filtered (": ", stream);
1895 }
1896 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1897 }
1898
1899
1900 /* Print on STREAM using the given OPTIONS the index for the element
1901 at INDEX of an array whose index type is INDEX_TYPE. */
1902
1903 void
1904 maybe_print_array_index (struct type *index_type, LONGEST index,
1905 struct ui_file *stream,
1906 const struct value_print_options *options)
1907 {
1908 struct value *index_value;
1909
1910 if (!options->print_array_indexes)
1911 return;
1912
1913 index_value = value_from_longest (index_type, index);
1914
1915 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1916 }
1917
1918 /* Called by various <lang>_val_print routines to print elements of an
1919 array in the form "<elem1>, <elem2>, <elem3>, ...".
1920
1921 (FIXME?) Assumes array element separator is a comma, which is correct
1922 for all languages currently handled.
1923 (FIXME?) Some languages have a notation for repeated array elements,
1924 perhaps we should try to use that notation when appropriate. */
1925
1926 void
1927 val_print_array_elements (struct type *type,
1928 LONGEST embedded_offset,
1929 CORE_ADDR address, struct ui_file *stream,
1930 int recurse,
1931 struct value *val,
1932 const struct value_print_options *options,
1933 unsigned int i)
1934 {
1935 unsigned int things_printed = 0;
1936 unsigned len;
1937 struct type *elttype, *index_type, *base_index_type;
1938 unsigned eltlen;
1939 /* Position of the array element we are examining to see
1940 whether it is repeated. */
1941 unsigned int rep1;
1942 /* Number of repetitions we have detected so far. */
1943 unsigned int reps;
1944 LONGEST low_bound, high_bound;
1945 LONGEST low_pos, high_pos;
1946
1947 elttype = TYPE_TARGET_TYPE (type);
1948 eltlen = type_length_units (check_typedef (elttype));
1949 index_type = TYPE_INDEX_TYPE (type);
1950
1951 if (get_array_bounds (type, &low_bound, &high_bound))
1952 {
1953 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1954 base_index_type = TYPE_TARGET_TYPE (index_type);
1955 else
1956 base_index_type = index_type;
1957
1958 /* Non-contiguous enumerations types can by used as index types
1959 in some languages (e.g. Ada). In this case, the array length
1960 shall be computed from the positions of the first and last
1961 literal in the enumeration type, and not from the values
1962 of these literals. */
1963 if (!discrete_position (base_index_type, low_bound, &low_pos)
1964 || !discrete_position (base_index_type, high_bound, &high_pos))
1965 {
1966 warning (_("unable to get positions in array, use bounds instead"));
1967 low_pos = low_bound;
1968 high_pos = high_bound;
1969 }
1970
1971 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1972 But we have to be a little extra careful, because some languages
1973 such as Ada allow LOW_POS to be greater than HIGH_POS for
1974 empty arrays. In that situation, the array length is just zero,
1975 not negative! */
1976 if (low_pos > high_pos)
1977 len = 0;
1978 else
1979 len = high_pos - low_pos + 1;
1980 }
1981 else
1982 {
1983 warning (_("unable to get bounds of array, assuming null array"));
1984 low_bound = 0;
1985 len = 0;
1986 }
1987
1988 annotate_array_section_begin (i, elttype);
1989
1990 for (; i < len && things_printed < options->print_max; i++)
1991 {
1992 if (i != 0)
1993 {
1994 if (options->prettyformat_arrays)
1995 {
1996 fprintf_filtered (stream, ",\n");
1997 print_spaces_filtered (2 + 2 * recurse, stream);
1998 }
1999 else
2000 {
2001 fprintf_filtered (stream, ", ");
2002 }
2003 }
2004 wrap_here (n_spaces (2 + 2 * recurse));
2005 maybe_print_array_index (index_type, i + low_bound,
2006 stream, options);
2007
2008 rep1 = i + 1;
2009 reps = 1;
2010 /* Only check for reps if repeat_count_threshold is not set to
2011 UINT_MAX (unlimited). */
2012 if (options->repeat_count_threshold < UINT_MAX)
2013 {
2014 while (rep1 < len
2015 && value_contents_eq (val,
2016 embedded_offset + i * eltlen,
2017 val,
2018 (embedded_offset
2019 + rep1 * eltlen),
2020 eltlen))
2021 {
2022 ++reps;
2023 ++rep1;
2024 }
2025 }
2026
2027 if (reps > options->repeat_count_threshold)
2028 {
2029 val_print (elttype, embedded_offset + i * eltlen,
2030 address, stream, recurse + 1, val, options,
2031 current_language);
2032 annotate_elt_rep (reps);
2033 fprintf_filtered (stream, " <repeats %u times>", reps);
2034 annotate_elt_rep_end ();
2035
2036 i = rep1 - 1;
2037 things_printed += options->repeat_count_threshold;
2038 }
2039 else
2040 {
2041 val_print (elttype, embedded_offset + i * eltlen,
2042 address,
2043 stream, recurse + 1, val, options, current_language);
2044 annotate_elt ();
2045 things_printed++;
2046 }
2047 }
2048 annotate_array_section_end ();
2049 if (i < len)
2050 {
2051 fprintf_filtered (stream, "...");
2052 }
2053 }
2054
2055 /* Read LEN bytes of target memory at address MEMADDR, placing the
2056 results in GDB's memory at MYADDR. Returns a count of the bytes
2057 actually read, and optionally a target_xfer_status value in the
2058 location pointed to by ERRPTR if ERRPTR is non-null. */
2059
2060 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2061 function be eliminated. */
2062
2063 static int
2064 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2065 int len, int *errptr)
2066 {
2067 int nread; /* Number of bytes actually read. */
2068 int errcode; /* Error from last read. */
2069
2070 /* First try a complete read. */
2071 errcode = target_read_memory (memaddr, myaddr, len);
2072 if (errcode == 0)
2073 {
2074 /* Got it all. */
2075 nread = len;
2076 }
2077 else
2078 {
2079 /* Loop, reading one byte at a time until we get as much as we can. */
2080 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2081 {
2082 errcode = target_read_memory (memaddr++, myaddr++, 1);
2083 }
2084 /* If an error, the last read was unsuccessful, so adjust count. */
2085 if (errcode != 0)
2086 {
2087 nread--;
2088 }
2089 }
2090 if (errptr != NULL)
2091 {
2092 *errptr = errcode;
2093 }
2094 return (nread);
2095 }
2096
2097 /* Read a string from the inferior, at ADDR, with LEN characters of
2098 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2099 will be set to a newly allocated buffer containing the string, and
2100 BYTES_READ will be set to the number of bytes read. Returns 0 on
2101 success, or a target_xfer_status on failure.
2102
2103 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2104 (including eventual NULs in the middle or end of the string).
2105
2106 If LEN is -1, stops at the first null character (not necessarily
2107 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2108 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2109 the string.
2110
2111 Unless an exception is thrown, BUFFER will always be allocated, even on
2112 failure. In this case, some characters might have been read before the
2113 failure happened. Check BYTES_READ to recognize this situation.
2114
2115 Note: There was a FIXME asking to make this code use target_read_string,
2116 but this function is more general (can read past null characters, up to
2117 given LEN). Besides, it is used much more often than target_read_string
2118 so it is more tested. Perhaps callers of target_read_string should use
2119 this function instead? */
2120
2121 int
2122 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2123 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2124 int *bytes_read)
2125 {
2126 int errcode; /* Errno returned from bad reads. */
2127 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2128 gdb_byte *bufptr; /* Pointer to next available byte in
2129 buffer. */
2130
2131 /* Loop until we either have all the characters, or we encounter
2132 some error, such as bumping into the end of the address space. */
2133
2134 buffer->reset (nullptr);
2135
2136 if (len > 0)
2137 {
2138 /* We want fetchlimit chars, so we might as well read them all in
2139 one operation. */
2140 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2141
2142 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2143 bufptr = buffer->get ();
2144
2145 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2146 / width;
2147 addr += nfetch * width;
2148 bufptr += nfetch * width;
2149 }
2150 else if (len == -1)
2151 {
2152 unsigned long bufsize = 0;
2153 unsigned int chunksize; /* Size of each fetch, in chars. */
2154 int found_nul; /* Non-zero if we found the nul char. */
2155 gdb_byte *limit; /* First location past end of fetch buffer. */
2156
2157 found_nul = 0;
2158 /* We are looking for a NUL terminator to end the fetching, so we
2159 might as well read in blocks that are large enough to be efficient,
2160 but not so large as to be slow if fetchlimit happens to be large.
2161 So we choose the minimum of 8 and fetchlimit. We used to use 200
2162 instead of 8 but 200 is way too big for remote debugging over a
2163 serial line. */
2164 chunksize = std::min (8u, fetchlimit);
2165
2166 do
2167 {
2168 QUIT;
2169 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2170
2171 if (*buffer == NULL)
2172 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2173 else
2174 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2175 (nfetch + bufsize) * width));
2176
2177 bufptr = buffer->get () + bufsize * width;
2178 bufsize += nfetch;
2179
2180 /* Read as much as we can. */
2181 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2182 / width;
2183
2184 /* Scan this chunk for the null character that terminates the string
2185 to print. If found, we don't need to fetch any more. Note
2186 that bufptr is explicitly left pointing at the next character
2187 after the null character, or at the next character after the end
2188 of the buffer. */
2189
2190 limit = bufptr + nfetch * width;
2191 while (bufptr < limit)
2192 {
2193 unsigned long c;
2194
2195 c = extract_unsigned_integer (bufptr, width, byte_order);
2196 addr += width;
2197 bufptr += width;
2198 if (c == 0)
2199 {
2200 /* We don't care about any error which happened after
2201 the NUL terminator. */
2202 errcode = 0;
2203 found_nul = 1;
2204 break;
2205 }
2206 }
2207 }
2208 while (errcode == 0 /* no error */
2209 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2210 && !found_nul); /* haven't found NUL yet */
2211 }
2212 else
2213 { /* Length of string is really 0! */
2214 /* We always allocate *buffer. */
2215 buffer->reset ((gdb_byte *) xmalloc (1));
2216 bufptr = buffer->get ();
2217 errcode = 0;
2218 }
2219
2220 /* bufptr and addr now point immediately beyond the last byte which we
2221 consider part of the string (including a '\0' which ends the string). */
2222 *bytes_read = bufptr - buffer->get ();
2223
2224 QUIT;
2225
2226 return errcode;
2227 }
2228
2229 /* Return true if print_wchar can display W without resorting to a
2230 numeric escape, false otherwise. */
2231
2232 static int
2233 wchar_printable (gdb_wchar_t w)
2234 {
2235 return (gdb_iswprint (w)
2236 || w == LCST ('\a') || w == LCST ('\b')
2237 || w == LCST ('\f') || w == LCST ('\n')
2238 || w == LCST ('\r') || w == LCST ('\t')
2239 || w == LCST ('\v'));
2240 }
2241
2242 /* A helper function that converts the contents of STRING to wide
2243 characters and then appends them to OUTPUT. */
2244
2245 static void
2246 append_string_as_wide (const char *string,
2247 struct obstack *output)
2248 {
2249 for (; *string; ++string)
2250 {
2251 gdb_wchar_t w = gdb_btowc (*string);
2252 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2253 }
2254 }
2255
2256 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2257 original (target) bytes representing the character, ORIG_LEN is the
2258 number of valid bytes. WIDTH is the number of bytes in a base
2259 characters of the type. OUTPUT is an obstack to which wide
2260 characters are emitted. QUOTER is a (narrow) character indicating
2261 the style of quotes surrounding the character to be printed.
2262 NEED_ESCAPE is an in/out flag which is used to track numeric
2263 escapes across calls. */
2264
2265 static void
2266 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2267 int orig_len, int width,
2268 enum bfd_endian byte_order,
2269 struct obstack *output,
2270 int quoter, int *need_escapep)
2271 {
2272 int need_escape = *need_escapep;
2273
2274 *need_escapep = 0;
2275
2276 /* iswprint implementation on Windows returns 1 for tab character.
2277 In order to avoid different printout on this host, we explicitly
2278 use wchar_printable function. */
2279 switch (w)
2280 {
2281 case LCST ('\a'):
2282 obstack_grow_wstr (output, LCST ("\\a"));
2283 break;
2284 case LCST ('\b'):
2285 obstack_grow_wstr (output, LCST ("\\b"));
2286 break;
2287 case LCST ('\f'):
2288 obstack_grow_wstr (output, LCST ("\\f"));
2289 break;
2290 case LCST ('\n'):
2291 obstack_grow_wstr (output, LCST ("\\n"));
2292 break;
2293 case LCST ('\r'):
2294 obstack_grow_wstr (output, LCST ("\\r"));
2295 break;
2296 case LCST ('\t'):
2297 obstack_grow_wstr (output, LCST ("\\t"));
2298 break;
2299 case LCST ('\v'):
2300 obstack_grow_wstr (output, LCST ("\\v"));
2301 break;
2302 default:
2303 {
2304 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2305 && w != LCST ('8')
2306 && w != LCST ('9'))))
2307 {
2308 gdb_wchar_t wchar = w;
2309
2310 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2311 obstack_grow_wstr (output, LCST ("\\"));
2312 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2313 }
2314 else
2315 {
2316 int i;
2317
2318 for (i = 0; i + width <= orig_len; i += width)
2319 {
2320 char octal[30];
2321 ULONGEST value;
2322
2323 value = extract_unsigned_integer (&orig[i], width,
2324 byte_order);
2325 /* If the value fits in 3 octal digits, print it that
2326 way. Otherwise, print it as a hex escape. */
2327 if (value <= 0777)
2328 xsnprintf (octal, sizeof (octal), "\\%.3o",
2329 (int) (value & 0777));
2330 else
2331 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2332 append_string_as_wide (octal, output);
2333 }
2334 /* If we somehow have extra bytes, print them now. */
2335 while (i < orig_len)
2336 {
2337 char octal[5];
2338
2339 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2340 append_string_as_wide (octal, output);
2341 ++i;
2342 }
2343
2344 *need_escapep = 1;
2345 }
2346 break;
2347 }
2348 }
2349 }
2350
2351 /* Print the character C on STREAM as part of the contents of a
2352 literal string whose delimiter is QUOTER. ENCODING names the
2353 encoding of C. */
2354
2355 void
2356 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2357 int quoter, const char *encoding)
2358 {
2359 enum bfd_endian byte_order
2360 = gdbarch_byte_order (get_type_arch (type));
2361 gdb_byte *c_buf;
2362 int need_escape = 0;
2363
2364 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2365 pack_long (c_buf, type, c);
2366
2367 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2368
2369 /* This holds the printable form of the wchar_t data. */
2370 auto_obstack wchar_buf;
2371
2372 while (1)
2373 {
2374 int num_chars;
2375 gdb_wchar_t *chars;
2376 const gdb_byte *buf;
2377 size_t buflen;
2378 int print_escape = 1;
2379 enum wchar_iterate_result result;
2380
2381 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2382 if (num_chars < 0)
2383 break;
2384 if (num_chars > 0)
2385 {
2386 /* If all characters are printable, print them. Otherwise,
2387 we're going to have to print an escape sequence. We
2388 check all characters because we want to print the target
2389 bytes in the escape sequence, and we don't know character
2390 boundaries there. */
2391 int i;
2392
2393 print_escape = 0;
2394 for (i = 0; i < num_chars; ++i)
2395 if (!wchar_printable (chars[i]))
2396 {
2397 print_escape = 1;
2398 break;
2399 }
2400
2401 if (!print_escape)
2402 {
2403 for (i = 0; i < num_chars; ++i)
2404 print_wchar (chars[i], buf, buflen,
2405 TYPE_LENGTH (type), byte_order,
2406 &wchar_buf, quoter, &need_escape);
2407 }
2408 }
2409
2410 /* This handles the NUM_CHARS == 0 case as well. */
2411 if (print_escape)
2412 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2413 byte_order, &wchar_buf, quoter, &need_escape);
2414 }
2415
2416 /* The output in the host encoding. */
2417 auto_obstack output;
2418
2419 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2420 (gdb_byte *) obstack_base (&wchar_buf),
2421 obstack_object_size (&wchar_buf),
2422 sizeof (gdb_wchar_t), &output, translit_char);
2423 obstack_1grow (&output, '\0');
2424
2425 fputs_filtered ((const char *) obstack_base (&output), stream);
2426 }
2427
2428 /* Return the repeat count of the next character/byte in ITER,
2429 storing the result in VEC. */
2430
2431 static int
2432 count_next_character (wchar_iterator *iter,
2433 std::vector<converted_character> *vec)
2434 {
2435 struct converted_character *current;
2436
2437 if (vec->empty ())
2438 {
2439 struct converted_character tmp;
2440 gdb_wchar_t *chars;
2441
2442 tmp.num_chars
2443 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2444 if (tmp.num_chars > 0)
2445 {
2446 gdb_assert (tmp.num_chars < MAX_WCHARS);
2447 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2448 }
2449 vec->push_back (tmp);
2450 }
2451
2452 current = &vec->back ();
2453
2454 /* Count repeated characters or bytes. */
2455 current->repeat_count = 1;
2456 if (current->num_chars == -1)
2457 {
2458 /* EOF */
2459 return -1;
2460 }
2461 else
2462 {
2463 gdb_wchar_t *chars;
2464 struct converted_character d;
2465 int repeat;
2466
2467 d.repeat_count = 0;
2468
2469 while (1)
2470 {
2471 /* Get the next character. */
2472 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2473
2474 /* If a character was successfully converted, save the character
2475 into the converted character. */
2476 if (d.num_chars > 0)
2477 {
2478 gdb_assert (d.num_chars < MAX_WCHARS);
2479 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2480 }
2481
2482 /* Determine if the current character is the same as this
2483 new character. */
2484 if (d.num_chars == current->num_chars && d.result == current->result)
2485 {
2486 /* There are two cases to consider:
2487
2488 1) Equality of converted character (num_chars > 0)
2489 2) Equality of non-converted character (num_chars == 0) */
2490 if ((current->num_chars > 0
2491 && memcmp (current->chars, d.chars,
2492 WCHAR_BUFLEN (current->num_chars)) == 0)
2493 || (current->num_chars == 0
2494 && current->buflen == d.buflen
2495 && memcmp (current->buf, d.buf, current->buflen) == 0))
2496 ++current->repeat_count;
2497 else
2498 break;
2499 }
2500 else
2501 break;
2502 }
2503
2504 /* Push this next converted character onto the result vector. */
2505 repeat = current->repeat_count;
2506 vec->push_back (d);
2507 return repeat;
2508 }
2509 }
2510
2511 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2512 character to use with string output. WIDTH is the size of the output
2513 character type. BYTE_ORDER is the target byte order. OPTIONS
2514 is the user's print options. */
2515
2516 static void
2517 print_converted_chars_to_obstack (struct obstack *obstack,
2518 const std::vector<converted_character> &chars,
2519 int quote_char, int width,
2520 enum bfd_endian byte_order,
2521 const struct value_print_options *options)
2522 {
2523 unsigned int idx;
2524 const converted_character *elem;
2525 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2526 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2527 int need_escape = 0;
2528
2529 /* Set the start state. */
2530 idx = 0;
2531 last = state = START;
2532 elem = NULL;
2533
2534 while (1)
2535 {
2536 switch (state)
2537 {
2538 case START:
2539 /* Nothing to do. */
2540 break;
2541
2542 case SINGLE:
2543 {
2544 int j;
2545
2546 /* We are outputting a single character
2547 (< options->repeat_count_threshold). */
2548
2549 if (last != SINGLE)
2550 {
2551 /* We were outputting some other type of content, so we
2552 must output and a comma and a quote. */
2553 if (last != START)
2554 obstack_grow_wstr (obstack, LCST (", "));
2555 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2556 }
2557 /* Output the character. */
2558 for (j = 0; j < elem->repeat_count; ++j)
2559 {
2560 if (elem->result == wchar_iterate_ok)
2561 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2562 byte_order, obstack, quote_char, &need_escape);
2563 else
2564 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2565 byte_order, obstack, quote_char, &need_escape);
2566 }
2567 }
2568 break;
2569
2570 case REPEAT:
2571 {
2572 int j;
2573
2574 /* We are outputting a character with a repeat count
2575 greater than options->repeat_count_threshold. */
2576
2577 if (last == SINGLE)
2578 {
2579 /* We were outputting a single string. Terminate the
2580 string. */
2581 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2582 }
2583 if (last != START)
2584 obstack_grow_wstr (obstack, LCST (", "));
2585
2586 /* Output the character and repeat string. */
2587 obstack_grow_wstr (obstack, LCST ("'"));
2588 if (elem->result == wchar_iterate_ok)
2589 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2590 byte_order, obstack, quote_char, &need_escape);
2591 else
2592 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2593 byte_order, obstack, quote_char, &need_escape);
2594 obstack_grow_wstr (obstack, LCST ("'"));
2595 std::string s = string_printf (_(" <repeats %u times>"),
2596 elem->repeat_count);
2597 for (j = 0; s[j]; ++j)
2598 {
2599 gdb_wchar_t w = gdb_btowc (s[j]);
2600 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2601 }
2602 }
2603 break;
2604
2605 case INCOMPLETE:
2606 /* We are outputting an incomplete sequence. */
2607 if (last == SINGLE)
2608 {
2609 /* If we were outputting a string of SINGLE characters,
2610 terminate the quote. */
2611 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2612 }
2613 if (last != START)
2614 obstack_grow_wstr (obstack, LCST (", "));
2615
2616 /* Output the incomplete sequence string. */
2617 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2618 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2619 obstack, 0, &need_escape);
2620 obstack_grow_wstr (obstack, LCST (">"));
2621
2622 /* We do not attempt to outupt anything after this. */
2623 state = FINISH;
2624 break;
2625
2626 case FINISH:
2627 /* All done. If we were outputting a string of SINGLE
2628 characters, the string must be terminated. Otherwise,
2629 REPEAT and INCOMPLETE are always left properly terminated. */
2630 if (last == SINGLE)
2631 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2632
2633 return;
2634 }
2635
2636 /* Get the next element and state. */
2637 last = state;
2638 if (state != FINISH)
2639 {
2640 elem = &chars[idx++];
2641 switch (elem->result)
2642 {
2643 case wchar_iterate_ok:
2644 case wchar_iterate_invalid:
2645 if (elem->repeat_count > options->repeat_count_threshold)
2646 state = REPEAT;
2647 else
2648 state = SINGLE;
2649 break;
2650
2651 case wchar_iterate_incomplete:
2652 state = INCOMPLETE;
2653 break;
2654
2655 case wchar_iterate_eof:
2656 state = FINISH;
2657 break;
2658 }
2659 }
2660 }
2661 }
2662
2663 /* Print the character string STRING, printing at most LENGTH
2664 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2665 the type of each character. OPTIONS holds the printing options;
2666 printing stops early if the number hits print_max; repeat counts
2667 are printed as appropriate. Print ellipses at the end if we had to
2668 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2669 QUOTE_CHAR is the character to print at each end of the string. If
2670 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2671 omitted. */
2672
2673 void
2674 generic_printstr (struct ui_file *stream, struct type *type,
2675 const gdb_byte *string, unsigned int length,
2676 const char *encoding, int force_ellipses,
2677 int quote_char, int c_style_terminator,
2678 const struct value_print_options *options)
2679 {
2680 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2681 unsigned int i;
2682 int width = TYPE_LENGTH (type);
2683 int finished = 0;
2684 struct converted_character *last;
2685
2686 if (length == -1)
2687 {
2688 unsigned long current_char = 1;
2689
2690 for (i = 0; current_char; ++i)
2691 {
2692 QUIT;
2693 current_char = extract_unsigned_integer (string + i * width,
2694 width, byte_order);
2695 }
2696 length = i;
2697 }
2698
2699 /* If the string was not truncated due to `set print elements', and
2700 the last byte of it is a null, we don't print that, in
2701 traditional C style. */
2702 if (c_style_terminator
2703 && !force_ellipses
2704 && length > 0
2705 && (extract_unsigned_integer (string + (length - 1) * width,
2706 width, byte_order) == 0))
2707 length--;
2708
2709 if (length == 0)
2710 {
2711 fputs_filtered ("\"\"", stream);
2712 return;
2713 }
2714
2715 /* Arrange to iterate over the characters, in wchar_t form. */
2716 wchar_iterator iter (string, length * width, encoding, width);
2717 std::vector<converted_character> converted_chars;
2718
2719 /* Convert characters until the string is over or the maximum
2720 number of printed characters has been reached. */
2721 i = 0;
2722 while (i < options->print_max)
2723 {
2724 int r;
2725
2726 QUIT;
2727
2728 /* Grab the next character and repeat count. */
2729 r = count_next_character (&iter, &converted_chars);
2730
2731 /* If less than zero, the end of the input string was reached. */
2732 if (r < 0)
2733 break;
2734
2735 /* Otherwise, add the count to the total print count and get
2736 the next character. */
2737 i += r;
2738 }
2739
2740 /* Get the last element and determine if the entire string was
2741 processed. */
2742 last = &converted_chars.back ();
2743 finished = (last->result == wchar_iterate_eof);
2744
2745 /* Ensure that CONVERTED_CHARS is terminated. */
2746 last->result = wchar_iterate_eof;
2747
2748 /* WCHAR_BUF is the obstack we use to represent the string in
2749 wchar_t form. */
2750 auto_obstack wchar_buf;
2751
2752 /* Print the output string to the obstack. */
2753 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2754 width, byte_order, options);
2755
2756 if (force_ellipses || !finished)
2757 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2758
2759 /* OUTPUT is where we collect `char's for printing. */
2760 auto_obstack output;
2761
2762 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2763 (gdb_byte *) obstack_base (&wchar_buf),
2764 obstack_object_size (&wchar_buf),
2765 sizeof (gdb_wchar_t), &output, translit_char);
2766 obstack_1grow (&output, '\0');
2767
2768 fputs_filtered ((const char *) obstack_base (&output), stream);
2769 }
2770
2771 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2772 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2773 stops at the first null byte, otherwise printing proceeds (including null
2774 bytes) until either print_max or LEN characters have been printed,
2775 whichever is smaller. ENCODING is the name of the string's
2776 encoding. It can be NULL, in which case the target encoding is
2777 assumed. */
2778
2779 int
2780 val_print_string (struct type *elttype, const char *encoding,
2781 CORE_ADDR addr, int len,
2782 struct ui_file *stream,
2783 const struct value_print_options *options)
2784 {
2785 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2786 int err; /* Non-zero if we got a bad read. */
2787 int found_nul; /* Non-zero if we found the nul char. */
2788 unsigned int fetchlimit; /* Maximum number of chars to print. */
2789 int bytes_read;
2790 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2791 struct gdbarch *gdbarch = get_type_arch (elttype);
2792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2793 int width = TYPE_LENGTH (elttype);
2794
2795 /* First we need to figure out the limit on the number of characters we are
2796 going to attempt to fetch and print. This is actually pretty simple. If
2797 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2798 LEN is -1, then the limit is print_max. This is true regardless of
2799 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2800 because finding the null byte (or available memory) is what actually
2801 limits the fetch. */
2802
2803 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2804 options->print_max));
2805
2806 err = read_string (addr, len, width, fetchlimit, byte_order,
2807 &buffer, &bytes_read);
2808
2809 addr += bytes_read;
2810
2811 /* We now have either successfully filled the buffer to fetchlimit,
2812 or terminated early due to an error or finding a null char when
2813 LEN is -1. */
2814
2815 /* Determine found_nul by looking at the last character read. */
2816 found_nul = 0;
2817 if (bytes_read >= width)
2818 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2819 width, byte_order) == 0;
2820 if (len == -1 && !found_nul)
2821 {
2822 gdb_byte *peekbuf;
2823
2824 /* We didn't find a NUL terminator we were looking for. Attempt
2825 to peek at the next character. If not successful, or it is not
2826 a null byte, then force ellipsis to be printed. */
2827
2828 peekbuf = (gdb_byte *) alloca (width);
2829
2830 if (target_read_memory (addr, peekbuf, width) == 0
2831 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2832 force_ellipsis = 1;
2833 }
2834 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2835 {
2836 /* Getting an error when we have a requested length, or fetching less
2837 than the number of characters actually requested, always make us
2838 print ellipsis. */
2839 force_ellipsis = 1;
2840 }
2841
2842 /* If we get an error before fetching anything, don't print a string.
2843 But if we fetch something and then get an error, print the string
2844 and then the error message. */
2845 if (err == 0 || bytes_read > 0)
2846 {
2847 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2848 encoding, force_ellipsis, options);
2849 }
2850
2851 if (err != 0)
2852 {
2853 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2854
2855 fprintf_filtered (stream, "<error: ");
2856 fputs_filtered (str.c_str (), stream);
2857 fprintf_filtered (stream, ">");
2858 }
2859
2860 return (bytes_read / width);
2861 }
2862 \f
2863
2864 /* The 'set input-radix' command writes to this auxiliary variable.
2865 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2866 it is left unchanged. */
2867
2868 static unsigned input_radix_1 = 10;
2869
2870 /* Validate an input or output radix setting, and make sure the user
2871 knows what they really did here. Radix setting is confusing, e.g.
2872 setting the input radix to "10" never changes it! */
2873
2874 static void
2875 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2876 {
2877 set_input_radix_1 (from_tty, input_radix_1);
2878 }
2879
2880 static void
2881 set_input_radix_1 (int from_tty, unsigned radix)
2882 {
2883 /* We don't currently disallow any input radix except 0 or 1, which don't
2884 make any mathematical sense. In theory, we can deal with any input
2885 radix greater than 1, even if we don't have unique digits for every
2886 value from 0 to radix-1, but in practice we lose on large radix values.
2887 We should either fix the lossage or restrict the radix range more.
2888 (FIXME). */
2889
2890 if (radix < 2)
2891 {
2892 input_radix_1 = input_radix;
2893 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2894 radix);
2895 }
2896 input_radix_1 = input_radix = radix;
2897 if (from_tty)
2898 {
2899 printf_filtered (_("Input radix now set to "
2900 "decimal %u, hex %x, octal %o.\n"),
2901 radix, radix, radix);
2902 }
2903 }
2904
2905 /* The 'set output-radix' command writes to this auxiliary variable.
2906 If the requested radix is valid, OUTPUT_RADIX is updated,
2907 otherwise, it is left unchanged. */
2908
2909 static unsigned output_radix_1 = 10;
2910
2911 static void
2912 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2913 {
2914 set_output_radix_1 (from_tty, output_radix_1);
2915 }
2916
2917 static void
2918 set_output_radix_1 (int from_tty, unsigned radix)
2919 {
2920 /* Validate the radix and disallow ones that we aren't prepared to
2921 handle correctly, leaving the radix unchanged. */
2922 switch (radix)
2923 {
2924 case 16:
2925 user_print_options.output_format = 'x'; /* hex */
2926 break;
2927 case 10:
2928 user_print_options.output_format = 0; /* decimal */
2929 break;
2930 case 8:
2931 user_print_options.output_format = 'o'; /* octal */
2932 break;
2933 default:
2934 output_radix_1 = output_radix;
2935 error (_("Unsupported output radix ``decimal %u''; "
2936 "output radix unchanged."),
2937 radix);
2938 }
2939 output_radix_1 = output_radix = radix;
2940 if (from_tty)
2941 {
2942 printf_filtered (_("Output radix now set to "
2943 "decimal %u, hex %x, octal %o.\n"),
2944 radix, radix, radix);
2945 }
2946 }
2947
2948 /* Set both the input and output radix at once. Try to set the output radix
2949 first, since it has the most restrictive range. An radix that is valid as
2950 an output radix is also valid as an input radix.
2951
2952 It may be useful to have an unusual input radix. If the user wishes to
2953 set an input radix that is not valid as an output radix, he needs to use
2954 the 'set input-radix' command. */
2955
2956 static void
2957 set_radix (const char *arg, int from_tty)
2958 {
2959 unsigned radix;
2960
2961 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2962 set_output_radix_1 (0, radix);
2963 set_input_radix_1 (0, radix);
2964 if (from_tty)
2965 {
2966 printf_filtered (_("Input and output radices now set to "
2967 "decimal %u, hex %x, octal %o.\n"),
2968 radix, radix, radix);
2969 }
2970 }
2971
2972 /* Show both the input and output radices. */
2973
2974 static void
2975 show_radix (const char *arg, int from_tty)
2976 {
2977 if (from_tty)
2978 {
2979 if (input_radix == output_radix)
2980 {
2981 printf_filtered (_("Input and output radices set to "
2982 "decimal %u, hex %x, octal %o.\n"),
2983 input_radix, input_radix, input_radix);
2984 }
2985 else
2986 {
2987 printf_filtered (_("Input radix set to decimal "
2988 "%u, hex %x, octal %o.\n"),
2989 input_radix, input_radix, input_radix);
2990 printf_filtered (_("Output radix set to decimal "
2991 "%u, hex %x, octal %o.\n"),
2992 output_radix, output_radix, output_radix);
2993 }
2994 }
2995 }
2996 \f
2997
2998 static void
2999 set_print (const char *arg, int from_tty)
3000 {
3001 printf_unfiltered (
3002 "\"set print\" must be followed by the name of a print subcommand.\n");
3003 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3004 }
3005
3006 static void
3007 show_print (const char *args, int from_tty)
3008 {
3009 cmd_show_list (showprintlist, from_tty, "");
3010 }
3011
3012 static void
3013 set_print_raw (const char *arg, int from_tty)
3014 {
3015 printf_unfiltered (
3016 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3017 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3018 }
3019
3020 static void
3021 show_print_raw (const char *args, int from_tty)
3022 {
3023 cmd_show_list (showprintrawlist, from_tty, "");
3024 }
3025
3026 \f
3027 void
3028 _initialize_valprint (void)
3029 {
3030 add_prefix_cmd ("print", no_class, set_print,
3031 _("Generic command for setting how things print."),
3032 &setprintlist, "set print ", 0, &setlist);
3033 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3034 /* Prefer set print to set prompt. */
3035 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3036
3037 add_prefix_cmd ("print", no_class, show_print,
3038 _("Generic command for showing print settings."),
3039 &showprintlist, "show print ", 0, &showlist);
3040 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3041 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3042
3043 add_prefix_cmd ("raw", no_class, set_print_raw,
3044 _("\
3045 Generic command for setting what things to print in \"raw\" mode."),
3046 &setprintrawlist, "set print raw ", 0, &setprintlist);
3047 add_prefix_cmd ("raw", no_class, show_print_raw,
3048 _("Generic command for showing \"print raw\" settings."),
3049 &showprintrawlist, "show print raw ", 0, &showprintlist);
3050
3051 add_setshow_uinteger_cmd ("elements", no_class,
3052 &user_print_options.print_max, _("\
3053 Set limit on string chars or array elements to print."), _("\
3054 Show limit on string chars or array elements to print."), _("\
3055 \"set print elements unlimited\" causes there to be no limit."),
3056 NULL,
3057 show_print_max,
3058 &setprintlist, &showprintlist);
3059
3060 add_setshow_boolean_cmd ("null-stop", no_class,
3061 &user_print_options.stop_print_at_null, _("\
3062 Set printing of char arrays to stop at first null char."), _("\
3063 Show printing of char arrays to stop at first null char."), NULL,
3064 NULL,
3065 show_stop_print_at_null,
3066 &setprintlist, &showprintlist);
3067
3068 add_setshow_uinteger_cmd ("repeats", no_class,
3069 &user_print_options.repeat_count_threshold, _("\
3070 Set threshold for repeated print elements."), _("\
3071 Show threshold for repeated print elements."), _("\
3072 \"set print repeats unlimited\" causes all elements to be individually printed."),
3073 NULL,
3074 show_repeat_count_threshold,
3075 &setprintlist, &showprintlist);
3076
3077 add_setshow_boolean_cmd ("pretty", class_support,
3078 &user_print_options.prettyformat_structs, _("\
3079 Set pretty formatting of structures."), _("\
3080 Show pretty formatting of structures."), NULL,
3081 NULL,
3082 show_prettyformat_structs,
3083 &setprintlist, &showprintlist);
3084
3085 add_setshow_boolean_cmd ("union", class_support,
3086 &user_print_options.unionprint, _("\
3087 Set printing of unions interior to structures."), _("\
3088 Show printing of unions interior to structures."), NULL,
3089 NULL,
3090 show_unionprint,
3091 &setprintlist, &showprintlist);
3092
3093 add_setshow_boolean_cmd ("array", class_support,
3094 &user_print_options.prettyformat_arrays, _("\
3095 Set pretty formatting of arrays."), _("\
3096 Show pretty formatting of arrays."), NULL,
3097 NULL,
3098 show_prettyformat_arrays,
3099 &setprintlist, &showprintlist);
3100
3101 add_setshow_boolean_cmd ("address", class_support,
3102 &user_print_options.addressprint, _("\
3103 Set printing of addresses."), _("\
3104 Show printing of addresses."), NULL,
3105 NULL,
3106 show_addressprint,
3107 &setprintlist, &showprintlist);
3108
3109 add_setshow_boolean_cmd ("symbol", class_support,
3110 &user_print_options.symbol_print, _("\
3111 Set printing of symbol names when printing pointers."), _("\
3112 Show printing of symbol names when printing pointers."),
3113 NULL, NULL,
3114 show_symbol_print,
3115 &setprintlist, &showprintlist);
3116
3117 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3118 _("\
3119 Set default input radix for entering numbers."), _("\
3120 Show default input radix for entering numbers."), NULL,
3121 set_input_radix,
3122 show_input_radix,
3123 &setlist, &showlist);
3124
3125 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3126 _("\
3127 Set default output radix for printing of values."), _("\
3128 Show default output radix for printing of values."), NULL,
3129 set_output_radix,
3130 show_output_radix,
3131 &setlist, &showlist);
3132
3133 /* The "set radix" and "show radix" commands are special in that
3134 they are like normal set and show commands but allow two normally
3135 independent variables to be either set or shown with a single
3136 command. So the usual deprecated_add_set_cmd() and [deleted]
3137 add_show_from_set() commands aren't really appropriate. */
3138 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3139 longer true - show can display anything. */
3140 add_cmd ("radix", class_support, set_radix, _("\
3141 Set default input and output number radices.\n\
3142 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3143 Without an argument, sets both radices back to the default value of 10."),
3144 &setlist);
3145 add_cmd ("radix", class_support, show_radix, _("\
3146 Show the default input and output number radices.\n\
3147 Use 'show input-radix' or 'show output-radix' to independently show each."),
3148 &showlist);
3149
3150 add_setshow_boolean_cmd ("array-indexes", class_support,
3151 &user_print_options.print_array_indexes, _("\
3152 Set printing of array indexes."), _("\
3153 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3154 &setprintlist, &showprintlist);
3155 }
This page took 0.093583 seconds and 5 git commands to generate.