Move errno.h to common-defs.h
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "exceptions.h"
33 #include "dfp.h"
34 #include "extension.h"
35 #include "ada-lang.h"
36 #include "gdb_obstack.h"
37 #include "charset.h"
38 #include <ctype.h>
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 typedef struct converted_character converted_character_d;
74 DEF_VEC_O (converted_character_d);
75
76 /* Command lists for set/show print raw. */
77 struct cmd_list_element *setprintrawlist;
78 struct cmd_list_element *showprintrawlist;
79
80 /* Prototypes for local functions */
81
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 int len, int *errptr);
84
85 static void show_print (char *, int);
86
87 static void set_print (char *, int);
88
89 static void set_radix (char *, int);
90
91 static void show_radix (char *, int);
92
93 static void set_input_radix (char *, int, struct cmd_list_element *);
94
95 static void set_input_radix_1 (int, unsigned);
96
97 static void set_output_radix (char *, int, struct cmd_list_element *);
98
99 static void set_output_radix_1 (int, unsigned);
100
101 void _initialize_valprint (void);
102
103 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
104
105 struct value_print_options user_print_options =
106 {
107 Val_prettyformat_default, /* prettyformat */
108 0, /* prettyformat_arrays */
109 0, /* prettyformat_structs */
110 0, /* vtblprint */
111 1, /* unionprint */
112 1, /* addressprint */
113 0, /* objectprint */
114 PRINT_MAX_DEFAULT, /* print_max */
115 10, /* repeat_count_threshold */
116 0, /* output_format */
117 0, /* format */
118 0, /* stop_print_at_null */
119 0, /* print_array_indexes */
120 0, /* deref_ref */
121 1, /* static_field_print */
122 1, /* pascal_static_field_print */
123 0, /* raw */
124 0, /* summary */
125 1 /* symbol_print */
126 };
127
128 /* Initialize *OPTS to be a copy of the user print options. */
129 void
130 get_user_print_options (struct value_print_options *opts)
131 {
132 *opts = user_print_options;
133 }
134
135 /* Initialize *OPTS to be a copy of the user print options, but with
136 pretty-formatting disabled. */
137 void
138 get_no_prettyformat_print_options (struct value_print_options *opts)
139 {
140 *opts = user_print_options;
141 opts->prettyformat = Val_no_prettyformat;
142 }
143
144 /* Initialize *OPTS to be a copy of the user print options, but using
145 FORMAT as the formatting option. */
146 void
147 get_formatted_print_options (struct value_print_options *opts,
148 char format)
149 {
150 *opts = user_print_options;
151 opts->format = format;
152 }
153
154 static void
155 show_print_max (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file,
159 _("Limit on string chars or array "
160 "elements to print is %s.\n"),
161 value);
162 }
163
164
165 /* Default input and output radixes, and output format letter. */
166
167 unsigned input_radix = 10;
168 static void
169 show_input_radix (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file,
173 _("Default input radix for entering numbers is %s.\n"),
174 value);
175 }
176
177 unsigned output_radix = 10;
178 static void
179 show_output_radix (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file,
183 _("Default output radix for printing of values is %s.\n"),
184 value);
185 }
186
187 /* By default we print arrays without printing the index of each element in
188 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
189
190 static void
191 show_print_array_indexes (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
195 }
196
197 /* Print repeat counts if there are more than this many repetitions of an
198 element in an array. Referenced by the low level language dependent
199 print routines. */
200
201 static void
202 show_repeat_count_threshold (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
206 value);
207 }
208
209 /* If nonzero, stops printing of char arrays at first null. */
210
211 static void
212 show_stop_print_at_null (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Printing of char arrays to stop "
217 "at first null char is %s.\n"),
218 value);
219 }
220
221 /* Controls pretty printing of structures. */
222
223 static void
224 show_prettyformat_structs (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
228 }
229
230 /* Controls pretty printing of arrays. */
231
232 static void
233 show_prettyformat_arrays (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
237 }
238
239 /* If nonzero, causes unions inside structures or other unions to be
240 printed. */
241
242 static void
243 show_unionprint (struct ui_file *file, int from_tty,
244 struct cmd_list_element *c, const char *value)
245 {
246 fprintf_filtered (file,
247 _("Printing of unions interior to structures is %s.\n"),
248 value);
249 }
250
251 /* If nonzero, causes machine addresses to be printed in certain contexts. */
252
253 static void
254 show_addressprint (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
258 }
259
260 static void
261 show_symbol_print (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file,
265 _("Printing of symbols when printing pointers is %s.\n"),
266 value);
267 }
268
269 \f
270
271 /* A helper function for val_print. When printing in "summary" mode,
272 we want to print scalar arguments, but not aggregate arguments.
273 This function distinguishes between the two. */
274
275 int
276 val_print_scalar_type_p (struct type *type)
277 {
278 CHECK_TYPEDEF (type);
279 while (TYPE_CODE (type) == TYPE_CODE_REF)
280 {
281 type = TYPE_TARGET_TYPE (type);
282 CHECK_TYPEDEF (type);
283 }
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_ARRAY:
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_SET:
290 case TYPE_CODE_STRING:
291 return 0;
292 default:
293 return 1;
294 }
295 }
296
297 /* See its definition in value.h. */
298
299 int
300 valprint_check_validity (struct ui_file *stream,
301 struct type *type,
302 int embedded_offset,
303 const struct value *val)
304 {
305 CHECK_TYPEDEF (type);
306
307 if (TYPE_CODE (type) != TYPE_CODE_UNION
308 && TYPE_CODE (type) != TYPE_CODE_STRUCT
309 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
310 {
311 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* A generic val_print that is suitable for use by language
363 implementations of the la_val_print method. This function can
364 handle most type codes, though not all, notably exception
365 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
366 the caller.
367
368 Most arguments are as to val_print.
369
370 The additional DECORATIONS argument can be used to customize the
371 output in some small, language-specific ways. */
372
373 void
374 generic_val_print (struct type *type, const gdb_byte *valaddr,
375 int embedded_offset, CORE_ADDR address,
376 struct ui_file *stream, int recurse,
377 const struct value *original_value,
378 const struct value_print_options *options,
379 const struct generic_val_print_decorations *decorations)
380 {
381 struct gdbarch *gdbarch = get_type_arch (type);
382 unsigned int i = 0; /* Number of characters printed. */
383 unsigned len;
384 struct type *elttype, *unresolved_elttype;
385 struct type *unresolved_type = type;
386 LONGEST val;
387 CORE_ADDR addr;
388
389 CHECK_TYPEDEF (type);
390 switch (TYPE_CODE (type))
391 {
392 case TYPE_CODE_ARRAY:
393 unresolved_elttype = TYPE_TARGET_TYPE (type);
394 elttype = check_typedef (unresolved_elttype);
395 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
396 {
397 LONGEST low_bound, high_bound;
398
399 if (!get_array_bounds (type, &low_bound, &high_bound))
400 error (_("Could not determine the array high bound"));
401
402 if (options->prettyformat_arrays)
403 {
404 print_spaces_filtered (2 + 2 * recurse, stream);
405 }
406
407 fprintf_filtered (stream, "{");
408 val_print_array_elements (type, valaddr, embedded_offset,
409 address, stream,
410 recurse, original_value, options, 0);
411 fprintf_filtered (stream, "}");
412 break;
413 }
414 /* Array of unspecified length: treat like pointer to first
415 elt. */
416 addr = address + embedded_offset;
417 goto print_unpacked_pointer;
418
419 case TYPE_CODE_MEMBERPTR:
420 val_print_scalar_formatted (type, valaddr, embedded_offset,
421 original_value, options, 0, stream);
422 break;
423
424 case TYPE_CODE_PTR:
425 if (options->format && options->format != 's')
426 {
427 val_print_scalar_formatted (type, valaddr, embedded_offset,
428 original_value, options, 0, stream);
429 break;
430 }
431 unresolved_elttype = TYPE_TARGET_TYPE (type);
432 elttype = check_typedef (unresolved_elttype);
433 {
434 addr = unpack_pointer (type, valaddr + embedded_offset);
435 print_unpacked_pointer:
436
437 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
438 {
439 /* Try to print what function it points to. */
440 print_function_pointer_address (options, gdbarch, addr, stream);
441 return;
442 }
443
444 if (options->symbol_print)
445 print_address_demangle (options, gdbarch, addr, stream, demangle);
446 else if (options->addressprint)
447 fputs_filtered (paddress (gdbarch, addr), stream);
448 }
449 break;
450
451 case TYPE_CODE_REF:
452 elttype = check_typedef (TYPE_TARGET_TYPE (type));
453 if (options->addressprint)
454 {
455 CORE_ADDR addr
456 = extract_typed_address (valaddr + embedded_offset, type);
457
458 fprintf_filtered (stream, "@");
459 fputs_filtered (paddress (gdbarch, addr), stream);
460 if (options->deref_ref)
461 fputs_filtered (": ", stream);
462 }
463 /* De-reference the reference. */
464 if (options->deref_ref)
465 {
466 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
467 {
468 struct value *deref_val;
469
470 deref_val = coerce_ref_if_computed (original_value);
471 if (deref_val != NULL)
472 {
473 /* More complicated computed references are not supported. */
474 gdb_assert (embedded_offset == 0);
475 }
476 else
477 deref_val = value_at (TYPE_TARGET_TYPE (type),
478 unpack_pointer (type,
479 (valaddr
480 + embedded_offset)));
481
482 common_val_print (deref_val, stream, recurse, options,
483 current_language);
484 }
485 else
486 fputs_filtered ("???", stream);
487 }
488 break;
489
490 case TYPE_CODE_ENUM:
491 if (options->format)
492 {
493 val_print_scalar_formatted (type, valaddr, embedded_offset,
494 original_value, options, 0, stream);
495 break;
496 }
497 len = TYPE_NFIELDS (type);
498 val = unpack_long (type, valaddr + embedded_offset);
499 for (i = 0; i < len; i++)
500 {
501 QUIT;
502 if (val == TYPE_FIELD_ENUMVAL (type, i))
503 {
504 break;
505 }
506 }
507 if (i < len)
508 {
509 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
510 }
511 else if (TYPE_FLAG_ENUM (type))
512 {
513 int first = 1;
514
515 /* We have a "flag" enum, so we try to decompose it into
516 pieces as appropriate. A flag enum has disjoint
517 constants by definition. */
518 fputs_filtered ("(", stream);
519 for (i = 0; i < len; ++i)
520 {
521 QUIT;
522
523 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
524 {
525 if (!first)
526 fputs_filtered (" | ", stream);
527 first = 0;
528
529 val &= ~TYPE_FIELD_ENUMVAL (type, i);
530 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
531 }
532 }
533
534 if (first || val != 0)
535 {
536 if (!first)
537 fputs_filtered (" | ", stream);
538 fputs_filtered ("unknown: ", stream);
539 print_longest (stream, 'd', 0, val);
540 }
541
542 fputs_filtered (")", stream);
543 }
544 else
545 print_longest (stream, 'd', 0, val);
546 break;
547
548 case TYPE_CODE_FLAGS:
549 if (options->format)
550 val_print_scalar_formatted (type, valaddr, embedded_offset,
551 original_value, options, 0, stream);
552 else
553 val_print_type_code_flags (type, valaddr + embedded_offset,
554 stream);
555 break;
556
557 case TYPE_CODE_FUNC:
558 case TYPE_CODE_METHOD:
559 if (options->format)
560 {
561 val_print_scalar_formatted (type, valaddr, embedded_offset,
562 original_value, options, 0, stream);
563 break;
564 }
565 /* FIXME, we should consider, at least for ANSI C language,
566 eliminating the distinction made between FUNCs and POINTERs
567 to FUNCs. */
568 fprintf_filtered (stream, "{");
569 type_print (type, "", stream, -1);
570 fprintf_filtered (stream, "} ");
571 /* Try to print what function it points to, and its address. */
572 print_address_demangle (options, gdbarch, address, stream, demangle);
573 break;
574
575 case TYPE_CODE_BOOL:
576 if (options->format || options->output_format)
577 {
578 struct value_print_options opts = *options;
579 opts.format = (options->format ? options->format
580 : options->output_format);
581 val_print_scalar_formatted (type, valaddr, embedded_offset,
582 original_value, &opts, 0, stream);
583 }
584 else
585 {
586 val = unpack_long (type, valaddr + embedded_offset);
587 if (val == 0)
588 fputs_filtered (decorations->false_name, stream);
589 else if (val == 1)
590 fputs_filtered (decorations->true_name, stream);
591 else
592 print_longest (stream, 'd', 0, val);
593 }
594 break;
595
596 case TYPE_CODE_RANGE:
597 /* FIXME: create_static_range_type does not set the unsigned bit in a
598 range type (I think it probably should copy it from the
599 target type), so we won't print values which are too large to
600 fit in a signed integer correctly. */
601 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
602 print with the target type, though, because the size of our
603 type and the target type might differ). */
604
605 /* FALLTHROUGH */
606
607 case TYPE_CODE_INT:
608 if (options->format || options->output_format)
609 {
610 struct value_print_options opts = *options;
611
612 opts.format = (options->format ? options->format
613 : options->output_format);
614 val_print_scalar_formatted (type, valaddr, embedded_offset,
615 original_value, &opts, 0, stream);
616 }
617 else
618 val_print_type_code_int (type, valaddr + embedded_offset, stream);
619 break;
620
621 case TYPE_CODE_CHAR:
622 if (options->format || options->output_format)
623 {
624 struct value_print_options opts = *options;
625
626 opts.format = (options->format ? options->format
627 : options->output_format);
628 val_print_scalar_formatted (type, valaddr, embedded_offset,
629 original_value, &opts, 0, stream);
630 }
631 else
632 {
633 val = unpack_long (type, valaddr + embedded_offset);
634 if (TYPE_UNSIGNED (type))
635 fprintf_filtered (stream, "%u", (unsigned int) val);
636 else
637 fprintf_filtered (stream, "%d", (int) val);
638 fputs_filtered (" ", stream);
639 LA_PRINT_CHAR (val, unresolved_type, stream);
640 }
641 break;
642
643 case TYPE_CODE_FLT:
644 if (options->format)
645 {
646 val_print_scalar_formatted (type, valaddr, embedded_offset,
647 original_value, options, 0, stream);
648 }
649 else
650 {
651 print_floating (valaddr + embedded_offset, type, stream);
652 }
653 break;
654
655 case TYPE_CODE_DECFLOAT:
656 if (options->format)
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 else
660 print_decimal_floating (valaddr + embedded_offset,
661 type, stream);
662 break;
663
664 case TYPE_CODE_VOID:
665 fputs_filtered (decorations->void_name, stream);
666 break;
667
668 case TYPE_CODE_ERROR:
669 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
670 break;
671
672 case TYPE_CODE_UNDEF:
673 /* This happens (without TYPE_FLAG_STUB set) on systems which
674 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
675 "struct foo *bar" and no complete type for struct foo in that
676 file. */
677 fprintf_filtered (stream, _("<incomplete type>"));
678 break;
679
680 case TYPE_CODE_COMPLEX:
681 fprintf_filtered (stream, "%s", decorations->complex_prefix);
682 if (options->format)
683 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 valaddr, embedded_offset,
685 original_value, options, 0, stream);
686 else
687 print_floating (valaddr + embedded_offset,
688 TYPE_TARGET_TYPE (type),
689 stream);
690 fprintf_filtered (stream, "%s", decorations->complex_infix);
691 if (options->format)
692 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
693 valaddr,
694 embedded_offset
695 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
696 original_value,
697 options, 0, stream);
698 else
699 print_floating (valaddr + embedded_offset
700 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
701 TYPE_TARGET_TYPE (type),
702 stream);
703 fprintf_filtered (stream, "%s", decorations->complex_suffix);
704 break;
705
706 case TYPE_CODE_UNION:
707 case TYPE_CODE_STRUCT:
708 case TYPE_CODE_METHODPTR:
709 default:
710 error (_("Unhandled type code %d in symbol table."),
711 TYPE_CODE (type));
712 }
713 gdb_flush (stream);
714 }
715
716 /* Print using the given LANGUAGE the data of type TYPE located at
717 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
718 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
719 STREAM according to OPTIONS. VAL is the whole object that came
720 from ADDRESS. VALADDR must point to the head of VAL's contents
721 buffer.
722
723 The language printers will pass down an adjusted EMBEDDED_OFFSET to
724 further helper subroutines as subfields of TYPE are printed. In
725 such cases, VALADDR is passed down unadjusted, as well as VAL, so
726 that VAL can be queried for metadata about the contents data being
727 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
728 buffer. For example: "has this field been optimized out", or "I'm
729 printing an object while inspecting a traceframe; has this
730 particular piece of data been collected?".
731
732 RECURSE indicates the amount of indentation to supply before
733 continuation lines; this amount is roughly twice the value of
734 RECURSE. */
735
736 void
737 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
738 CORE_ADDR address, struct ui_file *stream, int recurse,
739 const struct value *val,
740 const struct value_print_options *options,
741 const struct language_defn *language)
742 {
743 volatile struct gdb_exception except;
744 int ret = 0;
745 struct value_print_options local_opts = *options;
746 struct type *real_type = check_typedef (type);
747
748 if (local_opts.prettyformat == Val_prettyformat_default)
749 local_opts.prettyformat = (local_opts.prettyformat_structs
750 ? Val_prettyformat : Val_no_prettyformat);
751
752 QUIT;
753
754 /* Ensure that the type is complete and not just a stub. If the type is
755 only a stub and we can't find and substitute its complete type, then
756 print appropriate string and return. */
757
758 if (TYPE_STUB (real_type))
759 {
760 fprintf_filtered (stream, _("<incomplete type>"));
761 gdb_flush (stream);
762 return;
763 }
764
765 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
766 return;
767
768 if (!options->raw)
769 {
770 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
771 address, stream, recurse,
772 val, options, language);
773 if (ret)
774 return;
775 }
776
777 /* Handle summary mode. If the value is a scalar, print it;
778 otherwise, print an ellipsis. */
779 if (options->summary && !val_print_scalar_type_p (type))
780 {
781 fprintf_filtered (stream, "...");
782 return;
783 }
784
785 TRY_CATCH (except, RETURN_MASK_ERROR)
786 {
787 language->la_val_print (type, valaddr, embedded_offset, address,
788 stream, recurse, val,
789 &local_opts);
790 }
791 if (except.reason < 0)
792 fprintf_filtered (stream, _("<error reading variable>"));
793 }
794
795 /* Check whether the value VAL is printable. Return 1 if it is;
796 return 0 and print an appropriate error message to STREAM according to
797 OPTIONS if it is not. */
798
799 static int
800 value_check_printable (struct value *val, struct ui_file *stream,
801 const struct value_print_options *options)
802 {
803 if (val == 0)
804 {
805 fprintf_filtered (stream, _("<address of value unknown>"));
806 return 0;
807 }
808
809 if (value_entirely_optimized_out (val))
810 {
811 if (options->summary && !val_print_scalar_type_p (value_type (val)))
812 fprintf_filtered (stream, "...");
813 else
814 val_print_optimized_out (val, stream);
815 return 0;
816 }
817
818 if (value_entirely_unavailable (val))
819 {
820 if (options->summary && !val_print_scalar_type_p (value_type (val)))
821 fprintf_filtered (stream, "...");
822 else
823 val_print_unavailable (stream);
824 return 0;
825 }
826
827 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
828 {
829 fprintf_filtered (stream, _("<internal function %s>"),
830 value_internal_function_name (val));
831 return 0;
832 }
833
834 return 1;
835 }
836
837 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
838 to OPTIONS.
839
840 This is a preferable interface to val_print, above, because it uses
841 GDB's value mechanism. */
842
843 void
844 common_val_print (struct value *val, struct ui_file *stream, int recurse,
845 const struct value_print_options *options,
846 const struct language_defn *language)
847 {
848 if (!value_check_printable (val, stream, options))
849 return;
850
851 if (language->la_language == language_ada)
852 /* The value might have a dynamic type, which would cause trouble
853 below when trying to extract the value contents (since the value
854 size is determined from the type size which is unknown). So
855 get a fixed representation of our value. */
856 val = ada_to_fixed_value (val);
857
858 val_print (value_type (val), value_contents_for_printing (val),
859 value_embedded_offset (val), value_address (val),
860 stream, recurse,
861 val, options, language);
862 }
863
864 /* Print on stream STREAM the value VAL according to OPTIONS. The value
865 is printed using the current_language syntax. */
866
867 void
868 value_print (struct value *val, struct ui_file *stream,
869 const struct value_print_options *options)
870 {
871 if (!value_check_printable (val, stream, options))
872 return;
873
874 if (!options->raw)
875 {
876 int r
877 = apply_ext_lang_val_pretty_printer (value_type (val),
878 value_contents_for_printing (val),
879 value_embedded_offset (val),
880 value_address (val),
881 stream, 0,
882 val, options, current_language);
883
884 if (r)
885 return;
886 }
887
888 LA_VALUE_PRINT (val, stream, options);
889 }
890
891 /* Called by various <lang>_val_print routines to print
892 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
893 value. STREAM is where to print the value. */
894
895 void
896 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
897 struct ui_file *stream)
898 {
899 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
900
901 if (TYPE_LENGTH (type) > sizeof (LONGEST))
902 {
903 LONGEST val;
904
905 if (TYPE_UNSIGNED (type)
906 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
907 byte_order, &val))
908 {
909 print_longest (stream, 'u', 0, val);
910 }
911 else
912 {
913 /* Signed, or we couldn't turn an unsigned value into a
914 LONGEST. For signed values, one could assume two's
915 complement (a reasonable assumption, I think) and do
916 better than this. */
917 print_hex_chars (stream, (unsigned char *) valaddr,
918 TYPE_LENGTH (type), byte_order);
919 }
920 }
921 else
922 {
923 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
924 unpack_long (type, valaddr));
925 }
926 }
927
928 void
929 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
930 struct ui_file *stream)
931 {
932 ULONGEST val = unpack_long (type, valaddr);
933 int bitpos, nfields = TYPE_NFIELDS (type);
934
935 fputs_filtered ("[ ", stream);
936 for (bitpos = 0; bitpos < nfields; bitpos++)
937 {
938 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
939 && (val & ((ULONGEST)1 << bitpos)))
940 {
941 if (TYPE_FIELD_NAME (type, bitpos))
942 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
943 else
944 fprintf_filtered (stream, "#%d ", bitpos);
945 }
946 }
947 fputs_filtered ("]", stream);
948 }
949
950 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
951 according to OPTIONS and SIZE on STREAM. Format i is not supported
952 at this level.
953
954 This is how the elements of an array or structure are printed
955 with a format. */
956
957 void
958 val_print_scalar_formatted (struct type *type,
959 const gdb_byte *valaddr, int embedded_offset,
960 const struct value *val,
961 const struct value_print_options *options,
962 int size,
963 struct ui_file *stream)
964 {
965 gdb_assert (val != NULL);
966 gdb_assert (valaddr == value_contents_for_printing_const (val));
967
968 /* If we get here with a string format, try again without it. Go
969 all the way back to the language printers, which may call us
970 again. */
971 if (options->format == 's')
972 {
973 struct value_print_options opts = *options;
974 opts.format = 0;
975 opts.deref_ref = 0;
976 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
977 current_language);
978 return;
979 }
980
981 /* A scalar object that does not have all bits available can't be
982 printed, because all bits contribute to its representation. */
983 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
984 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
985 val_print_optimized_out (val, stream);
986 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
987 val_print_unavailable (stream);
988 else
989 print_scalar_formatted (valaddr + embedded_offset, type,
990 options, size, stream);
991 }
992
993 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
994 The raison d'etre of this function is to consolidate printing of
995 LONG_LONG's into this one function. The format chars b,h,w,g are
996 from print_scalar_formatted(). Numbers are printed using C
997 format.
998
999 USE_C_FORMAT means to use C format in all cases. Without it,
1000 'o' and 'x' format do not include the standard C radix prefix
1001 (leading 0 or 0x).
1002
1003 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1004 and was intended to request formating according to the current
1005 language and would be used for most integers that GDB prints. The
1006 exceptional cases were things like protocols where the format of
1007 the integer is a protocol thing, not a user-visible thing). The
1008 parameter remains to preserve the information of what things might
1009 be printed with language-specific format, should we ever resurrect
1010 that capability. */
1011
1012 void
1013 print_longest (struct ui_file *stream, int format, int use_c_format,
1014 LONGEST val_long)
1015 {
1016 const char *val;
1017
1018 switch (format)
1019 {
1020 case 'd':
1021 val = int_string (val_long, 10, 1, 0, 1); break;
1022 case 'u':
1023 val = int_string (val_long, 10, 0, 0, 1); break;
1024 case 'x':
1025 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1026 case 'b':
1027 val = int_string (val_long, 16, 0, 2, 1); break;
1028 case 'h':
1029 val = int_string (val_long, 16, 0, 4, 1); break;
1030 case 'w':
1031 val = int_string (val_long, 16, 0, 8, 1); break;
1032 case 'g':
1033 val = int_string (val_long, 16, 0, 16, 1); break;
1034 break;
1035 case 'o':
1036 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1037 default:
1038 internal_error (__FILE__, __LINE__,
1039 _("failed internal consistency check"));
1040 }
1041 fputs_filtered (val, stream);
1042 }
1043
1044 /* This used to be a macro, but I don't think it is called often enough
1045 to merit such treatment. */
1046 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1047 arguments to a function, number in a value history, register number, etc.)
1048 where the value must not be larger than can fit in an int. */
1049
1050 int
1051 longest_to_int (LONGEST arg)
1052 {
1053 /* Let the compiler do the work. */
1054 int rtnval = (int) arg;
1055
1056 /* Check for overflows or underflows. */
1057 if (sizeof (LONGEST) > sizeof (int))
1058 {
1059 if (rtnval != arg)
1060 {
1061 error (_("Value out of range."));
1062 }
1063 }
1064 return (rtnval);
1065 }
1066
1067 /* Print a floating point value of type TYPE (not always a
1068 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1069
1070 void
1071 print_floating (const gdb_byte *valaddr, struct type *type,
1072 struct ui_file *stream)
1073 {
1074 DOUBLEST doub;
1075 int inv;
1076 const struct floatformat *fmt = NULL;
1077 unsigned len = TYPE_LENGTH (type);
1078 enum float_kind kind;
1079
1080 /* If it is a floating-point, check for obvious problems. */
1081 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1082 fmt = floatformat_from_type (type);
1083 if (fmt != NULL)
1084 {
1085 kind = floatformat_classify (fmt, valaddr);
1086 if (kind == float_nan)
1087 {
1088 if (floatformat_is_negative (fmt, valaddr))
1089 fprintf_filtered (stream, "-");
1090 fprintf_filtered (stream, "nan(");
1091 fputs_filtered ("0x", stream);
1092 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1093 fprintf_filtered (stream, ")");
1094 return;
1095 }
1096 else if (kind == float_infinite)
1097 {
1098 if (floatformat_is_negative (fmt, valaddr))
1099 fputs_filtered ("-", stream);
1100 fputs_filtered ("inf", stream);
1101 return;
1102 }
1103 }
1104
1105 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1106 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1107 needs to be used as that takes care of any necessary type
1108 conversions. Such conversions are of course direct to DOUBLEST
1109 and disregard any possible target floating point limitations.
1110 For instance, a u64 would be converted and displayed exactly on a
1111 host with 80 bit DOUBLEST but with loss of information on a host
1112 with 64 bit DOUBLEST. */
1113
1114 doub = unpack_double (type, valaddr, &inv);
1115 if (inv)
1116 {
1117 fprintf_filtered (stream, "<invalid float value>");
1118 return;
1119 }
1120
1121 /* FIXME: kettenis/2001-01-20: The following code makes too much
1122 assumptions about the host and target floating point format. */
1123
1124 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1125 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1126 instead uses the type's length to determine the precision of the
1127 floating-point value being printed. */
1128
1129 if (len < sizeof (double))
1130 fprintf_filtered (stream, "%.9g", (double) doub);
1131 else if (len == sizeof (double))
1132 fprintf_filtered (stream, "%.17g", (double) doub);
1133 else
1134 #ifdef PRINTF_HAS_LONG_DOUBLE
1135 fprintf_filtered (stream, "%.35Lg", doub);
1136 #else
1137 /* This at least wins with values that are representable as
1138 doubles. */
1139 fprintf_filtered (stream, "%.17g", (double) doub);
1140 #endif
1141 }
1142
1143 void
1144 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1145 struct ui_file *stream)
1146 {
1147 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1148 char decstr[MAX_DECIMAL_STRING];
1149 unsigned len = TYPE_LENGTH (type);
1150
1151 decimal_to_string (valaddr, len, byte_order, decstr);
1152 fputs_filtered (decstr, stream);
1153 return;
1154 }
1155
1156 void
1157 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1158 unsigned len, enum bfd_endian byte_order)
1159 {
1160
1161 #define BITS_IN_BYTES 8
1162
1163 const gdb_byte *p;
1164 unsigned int i;
1165 int b;
1166
1167 /* Declared "int" so it will be signed.
1168 This ensures that right shift will shift in zeros. */
1169
1170 const int mask = 0x080;
1171
1172 /* FIXME: We should be not printing leading zeroes in most cases. */
1173
1174 if (byte_order == BFD_ENDIAN_BIG)
1175 {
1176 for (p = valaddr;
1177 p < valaddr + len;
1178 p++)
1179 {
1180 /* Every byte has 8 binary characters; peel off
1181 and print from the MSB end. */
1182
1183 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1184 {
1185 if (*p & (mask >> i))
1186 b = 1;
1187 else
1188 b = 0;
1189
1190 fprintf_filtered (stream, "%1d", b);
1191 }
1192 }
1193 }
1194 else
1195 {
1196 for (p = valaddr + len - 1;
1197 p >= valaddr;
1198 p--)
1199 {
1200 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1201 {
1202 if (*p & (mask >> i))
1203 b = 1;
1204 else
1205 b = 0;
1206
1207 fprintf_filtered (stream, "%1d", b);
1208 }
1209 }
1210 }
1211 }
1212
1213 /* VALADDR points to an integer of LEN bytes.
1214 Print it in octal on stream or format it in buf. */
1215
1216 void
1217 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1218 unsigned len, enum bfd_endian byte_order)
1219 {
1220 const gdb_byte *p;
1221 unsigned char octa1, octa2, octa3, carry;
1222 int cycle;
1223
1224 /* FIXME: We should be not printing leading zeroes in most cases. */
1225
1226
1227 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1228 * the extra bits, which cycle every three bytes:
1229 *
1230 * Byte side: 0 1 2 3
1231 * | | | |
1232 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1233 *
1234 * Octal side: 0 1 carry 3 4 carry ...
1235 *
1236 * Cycle number: 0 1 2
1237 *
1238 * But of course we are printing from the high side, so we have to
1239 * figure out where in the cycle we are so that we end up with no
1240 * left over bits at the end.
1241 */
1242 #define BITS_IN_OCTAL 3
1243 #define HIGH_ZERO 0340
1244 #define LOW_ZERO 0016
1245 #define CARRY_ZERO 0003
1246 #define HIGH_ONE 0200
1247 #define MID_ONE 0160
1248 #define LOW_ONE 0016
1249 #define CARRY_ONE 0001
1250 #define HIGH_TWO 0300
1251 #define MID_TWO 0070
1252 #define LOW_TWO 0007
1253
1254 /* For 32 we start in cycle 2, with two bits and one bit carry;
1255 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1256
1257 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1258 carry = 0;
1259
1260 fputs_filtered ("0", stream);
1261 if (byte_order == BFD_ENDIAN_BIG)
1262 {
1263 for (p = valaddr;
1264 p < valaddr + len;
1265 p++)
1266 {
1267 switch (cycle)
1268 {
1269 case 0:
1270 /* No carry in, carry out two bits. */
1271
1272 octa1 = (HIGH_ZERO & *p) >> 5;
1273 octa2 = (LOW_ZERO & *p) >> 2;
1274 carry = (CARRY_ZERO & *p);
1275 fprintf_filtered (stream, "%o", octa1);
1276 fprintf_filtered (stream, "%o", octa2);
1277 break;
1278
1279 case 1:
1280 /* Carry in two bits, carry out one bit. */
1281
1282 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1283 octa2 = (MID_ONE & *p) >> 4;
1284 octa3 = (LOW_ONE & *p) >> 1;
1285 carry = (CARRY_ONE & *p);
1286 fprintf_filtered (stream, "%o", octa1);
1287 fprintf_filtered (stream, "%o", octa2);
1288 fprintf_filtered (stream, "%o", octa3);
1289 break;
1290
1291 case 2:
1292 /* Carry in one bit, no carry out. */
1293
1294 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1295 octa2 = (MID_TWO & *p) >> 3;
1296 octa3 = (LOW_TWO & *p);
1297 carry = 0;
1298 fprintf_filtered (stream, "%o", octa1);
1299 fprintf_filtered (stream, "%o", octa2);
1300 fprintf_filtered (stream, "%o", octa3);
1301 break;
1302
1303 default:
1304 error (_("Internal error in octal conversion;"));
1305 }
1306
1307 cycle++;
1308 cycle = cycle % BITS_IN_OCTAL;
1309 }
1310 }
1311 else
1312 {
1313 for (p = valaddr + len - 1;
1314 p >= valaddr;
1315 p--)
1316 {
1317 switch (cycle)
1318 {
1319 case 0:
1320 /* Carry out, no carry in */
1321
1322 octa1 = (HIGH_ZERO & *p) >> 5;
1323 octa2 = (LOW_ZERO & *p) >> 2;
1324 carry = (CARRY_ZERO & *p);
1325 fprintf_filtered (stream, "%o", octa1);
1326 fprintf_filtered (stream, "%o", octa2);
1327 break;
1328
1329 case 1:
1330 /* Carry in, carry out */
1331
1332 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1333 octa2 = (MID_ONE & *p) >> 4;
1334 octa3 = (LOW_ONE & *p) >> 1;
1335 carry = (CARRY_ONE & *p);
1336 fprintf_filtered (stream, "%o", octa1);
1337 fprintf_filtered (stream, "%o", octa2);
1338 fprintf_filtered (stream, "%o", octa3);
1339 break;
1340
1341 case 2:
1342 /* Carry in, no carry out */
1343
1344 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1345 octa2 = (MID_TWO & *p) >> 3;
1346 octa3 = (LOW_TWO & *p);
1347 carry = 0;
1348 fprintf_filtered (stream, "%o", octa1);
1349 fprintf_filtered (stream, "%o", octa2);
1350 fprintf_filtered (stream, "%o", octa3);
1351 break;
1352
1353 default:
1354 error (_("Internal error in octal conversion;"));
1355 }
1356
1357 cycle++;
1358 cycle = cycle % BITS_IN_OCTAL;
1359 }
1360 }
1361
1362 }
1363
1364 /* VALADDR points to an integer of LEN bytes.
1365 Print it in decimal on stream or format it in buf. */
1366
1367 void
1368 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1369 unsigned len, enum bfd_endian byte_order)
1370 {
1371 #define TEN 10
1372 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1373 #define CARRY_LEFT( x ) ((x) % TEN)
1374 #define SHIFT( x ) ((x) << 4)
1375 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1376 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1377
1378 const gdb_byte *p;
1379 unsigned char *digits;
1380 int carry;
1381 int decimal_len;
1382 int i, j, decimal_digits;
1383 int dummy;
1384 int flip;
1385
1386 /* Base-ten number is less than twice as many digits
1387 as the base 16 number, which is 2 digits per byte. */
1388
1389 decimal_len = len * 2 * 2;
1390 digits = xmalloc (decimal_len);
1391
1392 for (i = 0; i < decimal_len; i++)
1393 {
1394 digits[i] = 0;
1395 }
1396
1397 /* Ok, we have an unknown number of bytes of data to be printed in
1398 * decimal.
1399 *
1400 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1401 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1402 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1403 *
1404 * The trick is that "digits" holds a base-10 number, but sometimes
1405 * the individual digits are > 10.
1406 *
1407 * Outer loop is per nibble (hex digit) of input, from MSD end to
1408 * LSD end.
1409 */
1410 decimal_digits = 0; /* Number of decimal digits so far */
1411 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1412 flip = 0;
1413 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1414 {
1415 /*
1416 * Multiply current base-ten number by 16 in place.
1417 * Each digit was between 0 and 9, now is between
1418 * 0 and 144.
1419 */
1420 for (j = 0; j < decimal_digits; j++)
1421 {
1422 digits[j] = SHIFT (digits[j]);
1423 }
1424
1425 /* Take the next nibble off the input and add it to what
1426 * we've got in the LSB position. Bottom 'digit' is now
1427 * between 0 and 159.
1428 *
1429 * "flip" is used to run this loop twice for each byte.
1430 */
1431 if (flip == 0)
1432 {
1433 /* Take top nibble. */
1434
1435 digits[0] += HIGH_NIBBLE (*p);
1436 flip = 1;
1437 }
1438 else
1439 {
1440 /* Take low nibble and bump our pointer "p". */
1441
1442 digits[0] += LOW_NIBBLE (*p);
1443 if (byte_order == BFD_ENDIAN_BIG)
1444 p++;
1445 else
1446 p--;
1447 flip = 0;
1448 }
1449
1450 /* Re-decimalize. We have to do this often enough
1451 * that we don't overflow, but once per nibble is
1452 * overkill. Easier this way, though. Note that the
1453 * carry is often larger than 10 (e.g. max initial
1454 * carry out of lowest nibble is 15, could bubble all
1455 * the way up greater than 10). So we have to do
1456 * the carrying beyond the last current digit.
1457 */
1458 carry = 0;
1459 for (j = 0; j < decimal_len - 1; j++)
1460 {
1461 digits[j] += carry;
1462
1463 /* "/" won't handle an unsigned char with
1464 * a value that if signed would be negative.
1465 * So extend to longword int via "dummy".
1466 */
1467 dummy = digits[j];
1468 carry = CARRY_OUT (dummy);
1469 digits[j] = CARRY_LEFT (dummy);
1470
1471 if (j >= decimal_digits && carry == 0)
1472 {
1473 /*
1474 * All higher digits are 0 and we
1475 * no longer have a carry.
1476 *
1477 * Note: "j" is 0-based, "decimal_digits" is
1478 * 1-based.
1479 */
1480 decimal_digits = j + 1;
1481 break;
1482 }
1483 }
1484 }
1485
1486 /* Ok, now "digits" is the decimal representation, with
1487 the "decimal_digits" actual digits. Print! */
1488
1489 for (i = decimal_digits - 1; i >= 0; i--)
1490 {
1491 fprintf_filtered (stream, "%1d", digits[i]);
1492 }
1493 xfree (digits);
1494 }
1495
1496 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1497
1498 void
1499 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1500 unsigned len, enum bfd_endian byte_order)
1501 {
1502 const gdb_byte *p;
1503
1504 /* FIXME: We should be not printing leading zeroes in most cases. */
1505
1506 fputs_filtered ("0x", stream);
1507 if (byte_order == BFD_ENDIAN_BIG)
1508 {
1509 for (p = valaddr;
1510 p < valaddr + len;
1511 p++)
1512 {
1513 fprintf_filtered (stream, "%02x", *p);
1514 }
1515 }
1516 else
1517 {
1518 for (p = valaddr + len - 1;
1519 p >= valaddr;
1520 p--)
1521 {
1522 fprintf_filtered (stream, "%02x", *p);
1523 }
1524 }
1525 }
1526
1527 /* VALADDR points to a char integer of LEN bytes.
1528 Print it out in appropriate language form on stream.
1529 Omit any leading zero chars. */
1530
1531 void
1532 print_char_chars (struct ui_file *stream, struct type *type,
1533 const gdb_byte *valaddr,
1534 unsigned len, enum bfd_endian byte_order)
1535 {
1536 const gdb_byte *p;
1537
1538 if (byte_order == BFD_ENDIAN_BIG)
1539 {
1540 p = valaddr;
1541 while (p < valaddr + len - 1 && *p == 0)
1542 ++p;
1543
1544 while (p < valaddr + len)
1545 {
1546 LA_EMIT_CHAR (*p, type, stream, '\'');
1547 ++p;
1548 }
1549 }
1550 else
1551 {
1552 p = valaddr + len - 1;
1553 while (p > valaddr && *p == 0)
1554 --p;
1555
1556 while (p >= valaddr)
1557 {
1558 LA_EMIT_CHAR (*p, type, stream, '\'');
1559 --p;
1560 }
1561 }
1562 }
1563
1564 /* Print function pointer with inferior address ADDRESS onto stdio
1565 stream STREAM. */
1566
1567 void
1568 print_function_pointer_address (const struct value_print_options *options,
1569 struct gdbarch *gdbarch,
1570 CORE_ADDR address,
1571 struct ui_file *stream)
1572 {
1573 CORE_ADDR func_addr
1574 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1575 &current_target);
1576
1577 /* If the function pointer is represented by a description, print
1578 the address of the description. */
1579 if (options->addressprint && func_addr != address)
1580 {
1581 fputs_filtered ("@", stream);
1582 fputs_filtered (paddress (gdbarch, address), stream);
1583 fputs_filtered (": ", stream);
1584 }
1585 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1586 }
1587
1588
1589 /* Print on STREAM using the given OPTIONS the index for the element
1590 at INDEX of an array whose index type is INDEX_TYPE. */
1591
1592 void
1593 maybe_print_array_index (struct type *index_type, LONGEST index,
1594 struct ui_file *stream,
1595 const struct value_print_options *options)
1596 {
1597 struct value *index_value;
1598
1599 if (!options->print_array_indexes)
1600 return;
1601
1602 index_value = value_from_longest (index_type, index);
1603
1604 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1605 }
1606
1607 /* Called by various <lang>_val_print routines to print elements of an
1608 array in the form "<elem1>, <elem2>, <elem3>, ...".
1609
1610 (FIXME?) Assumes array element separator is a comma, which is correct
1611 for all languages currently handled.
1612 (FIXME?) Some languages have a notation for repeated array elements,
1613 perhaps we should try to use that notation when appropriate. */
1614
1615 void
1616 val_print_array_elements (struct type *type,
1617 const gdb_byte *valaddr, int embedded_offset,
1618 CORE_ADDR address, struct ui_file *stream,
1619 int recurse,
1620 const struct value *val,
1621 const struct value_print_options *options,
1622 unsigned int i)
1623 {
1624 unsigned int things_printed = 0;
1625 unsigned len;
1626 struct type *elttype, *index_type;
1627 unsigned eltlen;
1628 /* Position of the array element we are examining to see
1629 whether it is repeated. */
1630 unsigned int rep1;
1631 /* Number of repetitions we have detected so far. */
1632 unsigned int reps;
1633 LONGEST low_bound, high_bound;
1634
1635 elttype = TYPE_TARGET_TYPE (type);
1636 eltlen = TYPE_LENGTH (check_typedef (elttype));
1637 index_type = TYPE_INDEX_TYPE (type);
1638
1639 if (get_array_bounds (type, &low_bound, &high_bound))
1640 {
1641 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1642 But we have to be a little extra careful, because some languages
1643 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1644 empty arrays. In that situation, the array length is just zero,
1645 not negative! */
1646 if (low_bound > high_bound)
1647 len = 0;
1648 else
1649 len = high_bound - low_bound + 1;
1650 }
1651 else
1652 {
1653 warning (_("unable to get bounds of array, assuming null array"));
1654 low_bound = 0;
1655 len = 0;
1656 }
1657
1658 annotate_array_section_begin (i, elttype);
1659
1660 for (; i < len && things_printed < options->print_max; i++)
1661 {
1662 if (i != 0)
1663 {
1664 if (options->prettyformat_arrays)
1665 {
1666 fprintf_filtered (stream, ",\n");
1667 print_spaces_filtered (2 + 2 * recurse, stream);
1668 }
1669 else
1670 {
1671 fprintf_filtered (stream, ", ");
1672 }
1673 }
1674 wrap_here (n_spaces (2 + 2 * recurse));
1675 maybe_print_array_index (index_type, i + low_bound,
1676 stream, options);
1677
1678 rep1 = i + 1;
1679 reps = 1;
1680 /* Only check for reps if repeat_count_threshold is not set to
1681 UINT_MAX (unlimited). */
1682 if (options->repeat_count_threshold < UINT_MAX)
1683 {
1684 while (rep1 < len
1685 && value_available_contents_eq (val,
1686 embedded_offset + i * eltlen,
1687 val,
1688 (embedded_offset
1689 + rep1 * eltlen),
1690 eltlen))
1691 {
1692 ++reps;
1693 ++rep1;
1694 }
1695 }
1696
1697 if (reps > options->repeat_count_threshold)
1698 {
1699 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1700 address, stream, recurse + 1, val, options,
1701 current_language);
1702 annotate_elt_rep (reps);
1703 fprintf_filtered (stream, " <repeats %u times>", reps);
1704 annotate_elt_rep_end ();
1705
1706 i = rep1 - 1;
1707 things_printed += options->repeat_count_threshold;
1708 }
1709 else
1710 {
1711 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1712 address,
1713 stream, recurse + 1, val, options, current_language);
1714 annotate_elt ();
1715 things_printed++;
1716 }
1717 }
1718 annotate_array_section_end ();
1719 if (i < len)
1720 {
1721 fprintf_filtered (stream, "...");
1722 }
1723 }
1724
1725 /* Read LEN bytes of target memory at address MEMADDR, placing the
1726 results in GDB's memory at MYADDR. Returns a count of the bytes
1727 actually read, and optionally a target_xfer_status value in the
1728 location pointed to by ERRPTR if ERRPTR is non-null. */
1729
1730 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1731 function be eliminated. */
1732
1733 static int
1734 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1735 int len, int *errptr)
1736 {
1737 int nread; /* Number of bytes actually read. */
1738 int errcode; /* Error from last read. */
1739
1740 /* First try a complete read. */
1741 errcode = target_read_memory (memaddr, myaddr, len);
1742 if (errcode == 0)
1743 {
1744 /* Got it all. */
1745 nread = len;
1746 }
1747 else
1748 {
1749 /* Loop, reading one byte at a time until we get as much as we can. */
1750 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1751 {
1752 errcode = target_read_memory (memaddr++, myaddr++, 1);
1753 }
1754 /* If an error, the last read was unsuccessful, so adjust count. */
1755 if (errcode != 0)
1756 {
1757 nread--;
1758 }
1759 }
1760 if (errptr != NULL)
1761 {
1762 *errptr = errcode;
1763 }
1764 return (nread);
1765 }
1766
1767 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1768 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1769 allocated buffer containing the string, which the caller is responsible to
1770 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1771 success, or a target_xfer_status on failure.
1772
1773 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1774 (including eventual NULs in the middle or end of the string).
1775
1776 If LEN is -1, stops at the first null character (not necessarily
1777 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1778 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1779 the string.
1780
1781 Unless an exception is thrown, BUFFER will always be allocated, even on
1782 failure. In this case, some characters might have been read before the
1783 failure happened. Check BYTES_READ to recognize this situation.
1784
1785 Note: There was a FIXME asking to make this code use target_read_string,
1786 but this function is more general (can read past null characters, up to
1787 given LEN). Besides, it is used much more often than target_read_string
1788 so it is more tested. Perhaps callers of target_read_string should use
1789 this function instead? */
1790
1791 int
1792 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1793 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1794 {
1795 int found_nul; /* Non-zero if we found the nul char. */
1796 int errcode; /* Errno returned from bad reads. */
1797 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1798 unsigned int chunksize; /* Size of each fetch, in chars. */
1799 gdb_byte *bufptr; /* Pointer to next available byte in
1800 buffer. */
1801 gdb_byte *limit; /* First location past end of fetch buffer. */
1802 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1803
1804 /* Decide how large of chunks to try to read in one operation. This
1805 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1806 so we might as well read them all in one operation. If LEN is -1, we
1807 are looking for a NUL terminator to end the fetching, so we might as
1808 well read in blocks that are large enough to be efficient, but not so
1809 large as to be slow if fetchlimit happens to be large. So we choose the
1810 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1811 200 is way too big for remote debugging over a serial line. */
1812
1813 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1814
1815 /* Loop until we either have all the characters, or we encounter
1816 some error, such as bumping into the end of the address space. */
1817
1818 found_nul = 0;
1819 *buffer = NULL;
1820
1821 old_chain = make_cleanup (free_current_contents, buffer);
1822
1823 if (len > 0)
1824 {
1825 unsigned int fetchlen = min (len, fetchlimit);
1826
1827 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1828 bufptr = *buffer;
1829
1830 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1831 / width;
1832 addr += nfetch * width;
1833 bufptr += nfetch * width;
1834 }
1835 else if (len == -1)
1836 {
1837 unsigned long bufsize = 0;
1838
1839 do
1840 {
1841 QUIT;
1842 nfetch = min (chunksize, fetchlimit - bufsize);
1843
1844 if (*buffer == NULL)
1845 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1846 else
1847 *buffer = (gdb_byte *) xrealloc (*buffer,
1848 (nfetch + bufsize) * width);
1849
1850 bufptr = *buffer + bufsize * width;
1851 bufsize += nfetch;
1852
1853 /* Read as much as we can. */
1854 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1855 / width;
1856
1857 /* Scan this chunk for the null character that terminates the string
1858 to print. If found, we don't need to fetch any more. Note
1859 that bufptr is explicitly left pointing at the next character
1860 after the null character, or at the next character after the end
1861 of the buffer. */
1862
1863 limit = bufptr + nfetch * width;
1864 while (bufptr < limit)
1865 {
1866 unsigned long c;
1867
1868 c = extract_unsigned_integer (bufptr, width, byte_order);
1869 addr += width;
1870 bufptr += width;
1871 if (c == 0)
1872 {
1873 /* We don't care about any error which happened after
1874 the NUL terminator. */
1875 errcode = 0;
1876 found_nul = 1;
1877 break;
1878 }
1879 }
1880 }
1881 while (errcode == 0 /* no error */
1882 && bufptr - *buffer < fetchlimit * width /* no overrun */
1883 && !found_nul); /* haven't found NUL yet */
1884 }
1885 else
1886 { /* Length of string is really 0! */
1887 /* We always allocate *buffer. */
1888 *buffer = bufptr = xmalloc (1);
1889 errcode = 0;
1890 }
1891
1892 /* bufptr and addr now point immediately beyond the last byte which we
1893 consider part of the string (including a '\0' which ends the string). */
1894 *bytes_read = bufptr - *buffer;
1895
1896 QUIT;
1897
1898 discard_cleanups (old_chain);
1899
1900 return errcode;
1901 }
1902
1903 /* Return true if print_wchar can display W without resorting to a
1904 numeric escape, false otherwise. */
1905
1906 static int
1907 wchar_printable (gdb_wchar_t w)
1908 {
1909 return (gdb_iswprint (w)
1910 || w == LCST ('\a') || w == LCST ('\b')
1911 || w == LCST ('\f') || w == LCST ('\n')
1912 || w == LCST ('\r') || w == LCST ('\t')
1913 || w == LCST ('\v'));
1914 }
1915
1916 /* A helper function that converts the contents of STRING to wide
1917 characters and then appends them to OUTPUT. */
1918
1919 static void
1920 append_string_as_wide (const char *string,
1921 struct obstack *output)
1922 {
1923 for (; *string; ++string)
1924 {
1925 gdb_wchar_t w = gdb_btowc (*string);
1926 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1927 }
1928 }
1929
1930 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1931 original (target) bytes representing the character, ORIG_LEN is the
1932 number of valid bytes. WIDTH is the number of bytes in a base
1933 characters of the type. OUTPUT is an obstack to which wide
1934 characters are emitted. QUOTER is a (narrow) character indicating
1935 the style of quotes surrounding the character to be printed.
1936 NEED_ESCAPE is an in/out flag which is used to track numeric
1937 escapes across calls. */
1938
1939 static void
1940 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1941 int orig_len, int width,
1942 enum bfd_endian byte_order,
1943 struct obstack *output,
1944 int quoter, int *need_escapep)
1945 {
1946 int need_escape = *need_escapep;
1947
1948 *need_escapep = 0;
1949
1950 /* iswprint implementation on Windows returns 1 for tab character.
1951 In order to avoid different printout on this host, we explicitly
1952 use wchar_printable function. */
1953 switch (w)
1954 {
1955 case LCST ('\a'):
1956 obstack_grow_wstr (output, LCST ("\\a"));
1957 break;
1958 case LCST ('\b'):
1959 obstack_grow_wstr (output, LCST ("\\b"));
1960 break;
1961 case LCST ('\f'):
1962 obstack_grow_wstr (output, LCST ("\\f"));
1963 break;
1964 case LCST ('\n'):
1965 obstack_grow_wstr (output, LCST ("\\n"));
1966 break;
1967 case LCST ('\r'):
1968 obstack_grow_wstr (output, LCST ("\\r"));
1969 break;
1970 case LCST ('\t'):
1971 obstack_grow_wstr (output, LCST ("\\t"));
1972 break;
1973 case LCST ('\v'):
1974 obstack_grow_wstr (output, LCST ("\\v"));
1975 break;
1976 default:
1977 {
1978 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
1979 && w != LCST ('8')
1980 && w != LCST ('9'))))
1981 {
1982 gdb_wchar_t wchar = w;
1983
1984 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1985 obstack_grow_wstr (output, LCST ("\\"));
1986 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1987 }
1988 else
1989 {
1990 int i;
1991
1992 for (i = 0; i + width <= orig_len; i += width)
1993 {
1994 char octal[30];
1995 ULONGEST value;
1996
1997 value = extract_unsigned_integer (&orig[i], width,
1998 byte_order);
1999 /* If the value fits in 3 octal digits, print it that
2000 way. Otherwise, print it as a hex escape. */
2001 if (value <= 0777)
2002 xsnprintf (octal, sizeof (octal), "\\%.3o",
2003 (int) (value & 0777));
2004 else
2005 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2006 append_string_as_wide (octal, output);
2007 }
2008 /* If we somehow have extra bytes, print them now. */
2009 while (i < orig_len)
2010 {
2011 char octal[5];
2012
2013 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2014 append_string_as_wide (octal, output);
2015 ++i;
2016 }
2017
2018 *need_escapep = 1;
2019 }
2020 break;
2021 }
2022 }
2023 }
2024
2025 /* Print the character C on STREAM as part of the contents of a
2026 literal string whose delimiter is QUOTER. ENCODING names the
2027 encoding of C. */
2028
2029 void
2030 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2031 int quoter, const char *encoding)
2032 {
2033 enum bfd_endian byte_order
2034 = gdbarch_byte_order (get_type_arch (type));
2035 struct obstack wchar_buf, output;
2036 struct cleanup *cleanups;
2037 gdb_byte *buf;
2038 struct wchar_iterator *iter;
2039 int need_escape = 0;
2040
2041 buf = alloca (TYPE_LENGTH (type));
2042 pack_long (buf, type, c);
2043
2044 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2045 encoding, TYPE_LENGTH (type));
2046 cleanups = make_cleanup_wchar_iterator (iter);
2047
2048 /* This holds the printable form of the wchar_t data. */
2049 obstack_init (&wchar_buf);
2050 make_cleanup_obstack_free (&wchar_buf);
2051
2052 while (1)
2053 {
2054 int num_chars;
2055 gdb_wchar_t *chars;
2056 const gdb_byte *buf;
2057 size_t buflen;
2058 int print_escape = 1;
2059 enum wchar_iterate_result result;
2060
2061 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2062 if (num_chars < 0)
2063 break;
2064 if (num_chars > 0)
2065 {
2066 /* If all characters are printable, print them. Otherwise,
2067 we're going to have to print an escape sequence. We
2068 check all characters because we want to print the target
2069 bytes in the escape sequence, and we don't know character
2070 boundaries there. */
2071 int i;
2072
2073 print_escape = 0;
2074 for (i = 0; i < num_chars; ++i)
2075 if (!wchar_printable (chars[i]))
2076 {
2077 print_escape = 1;
2078 break;
2079 }
2080
2081 if (!print_escape)
2082 {
2083 for (i = 0; i < num_chars; ++i)
2084 print_wchar (chars[i], buf, buflen,
2085 TYPE_LENGTH (type), byte_order,
2086 &wchar_buf, quoter, &need_escape);
2087 }
2088 }
2089
2090 /* This handles the NUM_CHARS == 0 case as well. */
2091 if (print_escape)
2092 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2093 byte_order, &wchar_buf, quoter, &need_escape);
2094 }
2095
2096 /* The output in the host encoding. */
2097 obstack_init (&output);
2098 make_cleanup_obstack_free (&output);
2099
2100 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2101 (gdb_byte *) obstack_base (&wchar_buf),
2102 obstack_object_size (&wchar_buf),
2103 sizeof (gdb_wchar_t), &output, translit_char);
2104 obstack_1grow (&output, '\0');
2105
2106 fputs_filtered (obstack_base (&output), stream);
2107
2108 do_cleanups (cleanups);
2109 }
2110
2111 /* Return the repeat count of the next character/byte in ITER,
2112 storing the result in VEC. */
2113
2114 static int
2115 count_next_character (struct wchar_iterator *iter,
2116 VEC (converted_character_d) **vec)
2117 {
2118 struct converted_character *current;
2119
2120 if (VEC_empty (converted_character_d, *vec))
2121 {
2122 struct converted_character tmp;
2123 gdb_wchar_t *chars;
2124
2125 tmp.num_chars
2126 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2127 if (tmp.num_chars > 0)
2128 {
2129 gdb_assert (tmp.num_chars < MAX_WCHARS);
2130 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2131 }
2132 VEC_safe_push (converted_character_d, *vec, &tmp);
2133 }
2134
2135 current = VEC_last (converted_character_d, *vec);
2136
2137 /* Count repeated characters or bytes. */
2138 current->repeat_count = 1;
2139 if (current->num_chars == -1)
2140 {
2141 /* EOF */
2142 return -1;
2143 }
2144 else
2145 {
2146 gdb_wchar_t *chars;
2147 struct converted_character d;
2148 int repeat;
2149
2150 d.repeat_count = 0;
2151
2152 while (1)
2153 {
2154 /* Get the next character. */
2155 d.num_chars
2156 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2157
2158 /* If a character was successfully converted, save the character
2159 into the converted character. */
2160 if (d.num_chars > 0)
2161 {
2162 gdb_assert (d.num_chars < MAX_WCHARS);
2163 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2164 }
2165
2166 /* Determine if the current character is the same as this
2167 new character. */
2168 if (d.num_chars == current->num_chars && d.result == current->result)
2169 {
2170 /* There are two cases to consider:
2171
2172 1) Equality of converted character (num_chars > 0)
2173 2) Equality of non-converted character (num_chars == 0) */
2174 if ((current->num_chars > 0
2175 && memcmp (current->chars, d.chars,
2176 WCHAR_BUFLEN (current->num_chars)) == 0)
2177 || (current->num_chars == 0
2178 && current->buflen == d.buflen
2179 && memcmp (current->buf, d.buf, current->buflen) == 0))
2180 ++current->repeat_count;
2181 else
2182 break;
2183 }
2184 else
2185 break;
2186 }
2187
2188 /* Push this next converted character onto the result vector. */
2189 repeat = current->repeat_count;
2190 VEC_safe_push (converted_character_d, *vec, &d);
2191 return repeat;
2192 }
2193 }
2194
2195 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2196 character to use with string output. WIDTH is the size of the output
2197 character type. BYTE_ORDER is the the target byte order. OPTIONS
2198 is the user's print options. */
2199
2200 static void
2201 print_converted_chars_to_obstack (struct obstack *obstack,
2202 VEC (converted_character_d) *chars,
2203 int quote_char, int width,
2204 enum bfd_endian byte_order,
2205 const struct value_print_options *options)
2206 {
2207 unsigned int idx;
2208 struct converted_character *elem;
2209 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2210 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2211 int need_escape = 0;
2212
2213 /* Set the start state. */
2214 idx = 0;
2215 last = state = START;
2216 elem = NULL;
2217
2218 while (1)
2219 {
2220 switch (state)
2221 {
2222 case START:
2223 /* Nothing to do. */
2224 break;
2225
2226 case SINGLE:
2227 {
2228 int j;
2229
2230 /* We are outputting a single character
2231 (< options->repeat_count_threshold). */
2232
2233 if (last != SINGLE)
2234 {
2235 /* We were outputting some other type of content, so we
2236 must output and a comma and a quote. */
2237 if (last != START)
2238 obstack_grow_wstr (obstack, LCST (", "));
2239 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2240 }
2241 /* Output the character. */
2242 for (j = 0; j < elem->repeat_count; ++j)
2243 {
2244 if (elem->result == wchar_iterate_ok)
2245 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2246 byte_order, obstack, quote_char, &need_escape);
2247 else
2248 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2249 byte_order, obstack, quote_char, &need_escape);
2250 }
2251 }
2252 break;
2253
2254 case REPEAT:
2255 {
2256 int j;
2257 char *s;
2258
2259 /* We are outputting a character with a repeat count
2260 greater than options->repeat_count_threshold. */
2261
2262 if (last == SINGLE)
2263 {
2264 /* We were outputting a single string. Terminate the
2265 string. */
2266 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2267 }
2268 if (last != START)
2269 obstack_grow_wstr (obstack, LCST (", "));
2270
2271 /* Output the character and repeat string. */
2272 obstack_grow_wstr (obstack, LCST ("'"));
2273 if (elem->result == wchar_iterate_ok)
2274 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2275 byte_order, obstack, quote_char, &need_escape);
2276 else
2277 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2278 byte_order, obstack, quote_char, &need_escape);
2279 obstack_grow_wstr (obstack, LCST ("'"));
2280 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2281 for (j = 0; s[j]; ++j)
2282 {
2283 gdb_wchar_t w = gdb_btowc (s[j]);
2284 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2285 }
2286 xfree (s);
2287 }
2288 break;
2289
2290 case INCOMPLETE:
2291 /* We are outputting an incomplete sequence. */
2292 if (last == SINGLE)
2293 {
2294 /* If we were outputting a string of SINGLE characters,
2295 terminate the quote. */
2296 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2297 }
2298 if (last != START)
2299 obstack_grow_wstr (obstack, LCST (", "));
2300
2301 /* Output the incomplete sequence string. */
2302 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2303 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2304 obstack, 0, &need_escape);
2305 obstack_grow_wstr (obstack, LCST (">"));
2306
2307 /* We do not attempt to outupt anything after this. */
2308 state = FINISH;
2309 break;
2310
2311 case FINISH:
2312 /* All done. If we were outputting a string of SINGLE
2313 characters, the string must be terminated. Otherwise,
2314 REPEAT and INCOMPLETE are always left properly terminated. */
2315 if (last == SINGLE)
2316 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2317
2318 return;
2319 }
2320
2321 /* Get the next element and state. */
2322 last = state;
2323 if (state != FINISH)
2324 {
2325 elem = VEC_index (converted_character_d, chars, idx++);
2326 switch (elem->result)
2327 {
2328 case wchar_iterate_ok:
2329 case wchar_iterate_invalid:
2330 if (elem->repeat_count > options->repeat_count_threshold)
2331 state = REPEAT;
2332 else
2333 state = SINGLE;
2334 break;
2335
2336 case wchar_iterate_incomplete:
2337 state = INCOMPLETE;
2338 break;
2339
2340 case wchar_iterate_eof:
2341 state = FINISH;
2342 break;
2343 }
2344 }
2345 }
2346 }
2347
2348 /* Print the character string STRING, printing at most LENGTH
2349 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2350 the type of each character. OPTIONS holds the printing options;
2351 printing stops early if the number hits print_max; repeat counts
2352 are printed as appropriate. Print ellipses at the end if we had to
2353 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2354 QUOTE_CHAR is the character to print at each end of the string. If
2355 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2356 omitted. */
2357
2358 void
2359 generic_printstr (struct ui_file *stream, struct type *type,
2360 const gdb_byte *string, unsigned int length,
2361 const char *encoding, int force_ellipses,
2362 int quote_char, int c_style_terminator,
2363 const struct value_print_options *options)
2364 {
2365 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2366 unsigned int i;
2367 int width = TYPE_LENGTH (type);
2368 struct obstack wchar_buf, output;
2369 struct cleanup *cleanup;
2370 struct wchar_iterator *iter;
2371 int finished = 0;
2372 struct converted_character *last;
2373 VEC (converted_character_d) *converted_chars;
2374
2375 if (length == -1)
2376 {
2377 unsigned long current_char = 1;
2378
2379 for (i = 0; current_char; ++i)
2380 {
2381 QUIT;
2382 current_char = extract_unsigned_integer (string + i * width,
2383 width, byte_order);
2384 }
2385 length = i;
2386 }
2387
2388 /* If the string was not truncated due to `set print elements', and
2389 the last byte of it is a null, we don't print that, in
2390 traditional C style. */
2391 if (c_style_terminator
2392 && !force_ellipses
2393 && length > 0
2394 && (extract_unsigned_integer (string + (length - 1) * width,
2395 width, byte_order) == 0))
2396 length--;
2397
2398 if (length == 0)
2399 {
2400 fputs_filtered ("\"\"", stream);
2401 return;
2402 }
2403
2404 /* Arrange to iterate over the characters, in wchar_t form. */
2405 iter = make_wchar_iterator (string, length * width, encoding, width);
2406 cleanup = make_cleanup_wchar_iterator (iter);
2407 converted_chars = NULL;
2408 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2409
2410 /* Convert characters until the string is over or the maximum
2411 number of printed characters has been reached. */
2412 i = 0;
2413 while (i < options->print_max)
2414 {
2415 int r;
2416
2417 QUIT;
2418
2419 /* Grab the next character and repeat count. */
2420 r = count_next_character (iter, &converted_chars);
2421
2422 /* If less than zero, the end of the input string was reached. */
2423 if (r < 0)
2424 break;
2425
2426 /* Otherwise, add the count to the total print count and get
2427 the next character. */
2428 i += r;
2429 }
2430
2431 /* Get the last element and determine if the entire string was
2432 processed. */
2433 last = VEC_last (converted_character_d, converted_chars);
2434 finished = (last->result == wchar_iterate_eof);
2435
2436 /* Ensure that CONVERTED_CHARS is terminated. */
2437 last->result = wchar_iterate_eof;
2438
2439 /* WCHAR_BUF is the obstack we use to represent the string in
2440 wchar_t form. */
2441 obstack_init (&wchar_buf);
2442 make_cleanup_obstack_free (&wchar_buf);
2443
2444 /* Print the output string to the obstack. */
2445 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2446 width, byte_order, options);
2447
2448 if (force_ellipses || !finished)
2449 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2450
2451 /* OUTPUT is where we collect `char's for printing. */
2452 obstack_init (&output);
2453 make_cleanup_obstack_free (&output);
2454
2455 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2456 (gdb_byte *) obstack_base (&wchar_buf),
2457 obstack_object_size (&wchar_buf),
2458 sizeof (gdb_wchar_t), &output, translit_char);
2459 obstack_1grow (&output, '\0');
2460
2461 fputs_filtered (obstack_base (&output), stream);
2462
2463 do_cleanups (cleanup);
2464 }
2465
2466 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2467 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2468 stops at the first null byte, otherwise printing proceeds (including null
2469 bytes) until either print_max or LEN characters have been printed,
2470 whichever is smaller. ENCODING is the name of the string's
2471 encoding. It can be NULL, in which case the target encoding is
2472 assumed. */
2473
2474 int
2475 val_print_string (struct type *elttype, const char *encoding,
2476 CORE_ADDR addr, int len,
2477 struct ui_file *stream,
2478 const struct value_print_options *options)
2479 {
2480 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2481 int errcode; /* Errno returned from bad reads. */
2482 int found_nul; /* Non-zero if we found the nul char. */
2483 unsigned int fetchlimit; /* Maximum number of chars to print. */
2484 int bytes_read;
2485 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2486 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2487 struct gdbarch *gdbarch = get_type_arch (elttype);
2488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2489 int width = TYPE_LENGTH (elttype);
2490
2491 /* First we need to figure out the limit on the number of characters we are
2492 going to attempt to fetch and print. This is actually pretty simple. If
2493 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2494 LEN is -1, then the limit is print_max. This is true regardless of
2495 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2496 because finding the null byte (or available memory) is what actually
2497 limits the fetch. */
2498
2499 fetchlimit = (len == -1 ? options->print_max : min (len,
2500 options->print_max));
2501
2502 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2503 &buffer, &bytes_read);
2504 old_chain = make_cleanup (xfree, buffer);
2505
2506 addr += bytes_read;
2507
2508 /* We now have either successfully filled the buffer to fetchlimit,
2509 or terminated early due to an error or finding a null char when
2510 LEN is -1. */
2511
2512 /* Determine found_nul by looking at the last character read. */
2513 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2514 byte_order) == 0;
2515 if (len == -1 && !found_nul)
2516 {
2517 gdb_byte *peekbuf;
2518
2519 /* We didn't find a NUL terminator we were looking for. Attempt
2520 to peek at the next character. If not successful, or it is not
2521 a null byte, then force ellipsis to be printed. */
2522
2523 peekbuf = (gdb_byte *) alloca (width);
2524
2525 if (target_read_memory (addr, peekbuf, width) == 0
2526 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2527 force_ellipsis = 1;
2528 }
2529 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2530 {
2531 /* Getting an error when we have a requested length, or fetching less
2532 than the number of characters actually requested, always make us
2533 print ellipsis. */
2534 force_ellipsis = 1;
2535 }
2536
2537 /* If we get an error before fetching anything, don't print a string.
2538 But if we fetch something and then get an error, print the string
2539 and then the error message. */
2540 if (errcode == 0 || bytes_read > 0)
2541 {
2542 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2543 encoding, force_ellipsis, options);
2544 }
2545
2546 if (errcode != 0)
2547 {
2548 char *str;
2549
2550 str = memory_error_message (errcode, gdbarch, addr);
2551 make_cleanup (xfree, str);
2552
2553 fprintf_filtered (stream, "<error: ");
2554 fputs_filtered (str, stream);
2555 fprintf_filtered (stream, ">");
2556 }
2557
2558 gdb_flush (stream);
2559 do_cleanups (old_chain);
2560
2561 return (bytes_read / width);
2562 }
2563 \f
2564
2565 /* The 'set input-radix' command writes to this auxiliary variable.
2566 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2567 it is left unchanged. */
2568
2569 static unsigned input_radix_1 = 10;
2570
2571 /* Validate an input or output radix setting, and make sure the user
2572 knows what they really did here. Radix setting is confusing, e.g.
2573 setting the input radix to "10" never changes it! */
2574
2575 static void
2576 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2577 {
2578 set_input_radix_1 (from_tty, input_radix_1);
2579 }
2580
2581 static void
2582 set_input_radix_1 (int from_tty, unsigned radix)
2583 {
2584 /* We don't currently disallow any input radix except 0 or 1, which don't
2585 make any mathematical sense. In theory, we can deal with any input
2586 radix greater than 1, even if we don't have unique digits for every
2587 value from 0 to radix-1, but in practice we lose on large radix values.
2588 We should either fix the lossage or restrict the radix range more.
2589 (FIXME). */
2590
2591 if (radix < 2)
2592 {
2593 input_radix_1 = input_radix;
2594 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2595 radix);
2596 }
2597 input_radix_1 = input_radix = radix;
2598 if (from_tty)
2599 {
2600 printf_filtered (_("Input radix now set to "
2601 "decimal %u, hex %x, octal %o.\n"),
2602 radix, radix, radix);
2603 }
2604 }
2605
2606 /* The 'set output-radix' command writes to this auxiliary variable.
2607 If the requested radix is valid, OUTPUT_RADIX is updated,
2608 otherwise, it is left unchanged. */
2609
2610 static unsigned output_radix_1 = 10;
2611
2612 static void
2613 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2614 {
2615 set_output_radix_1 (from_tty, output_radix_1);
2616 }
2617
2618 static void
2619 set_output_radix_1 (int from_tty, unsigned radix)
2620 {
2621 /* Validate the radix and disallow ones that we aren't prepared to
2622 handle correctly, leaving the radix unchanged. */
2623 switch (radix)
2624 {
2625 case 16:
2626 user_print_options.output_format = 'x'; /* hex */
2627 break;
2628 case 10:
2629 user_print_options.output_format = 0; /* decimal */
2630 break;
2631 case 8:
2632 user_print_options.output_format = 'o'; /* octal */
2633 break;
2634 default:
2635 output_radix_1 = output_radix;
2636 error (_("Unsupported output radix ``decimal %u''; "
2637 "output radix unchanged."),
2638 radix);
2639 }
2640 output_radix_1 = output_radix = radix;
2641 if (from_tty)
2642 {
2643 printf_filtered (_("Output radix now set to "
2644 "decimal %u, hex %x, octal %o.\n"),
2645 radix, radix, radix);
2646 }
2647 }
2648
2649 /* Set both the input and output radix at once. Try to set the output radix
2650 first, since it has the most restrictive range. An radix that is valid as
2651 an output radix is also valid as an input radix.
2652
2653 It may be useful to have an unusual input radix. If the user wishes to
2654 set an input radix that is not valid as an output radix, he needs to use
2655 the 'set input-radix' command. */
2656
2657 static void
2658 set_radix (char *arg, int from_tty)
2659 {
2660 unsigned radix;
2661
2662 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2663 set_output_radix_1 (0, radix);
2664 set_input_radix_1 (0, radix);
2665 if (from_tty)
2666 {
2667 printf_filtered (_("Input and output radices now set to "
2668 "decimal %u, hex %x, octal %o.\n"),
2669 radix, radix, radix);
2670 }
2671 }
2672
2673 /* Show both the input and output radices. */
2674
2675 static void
2676 show_radix (char *arg, int from_tty)
2677 {
2678 if (from_tty)
2679 {
2680 if (input_radix == output_radix)
2681 {
2682 printf_filtered (_("Input and output radices set to "
2683 "decimal %u, hex %x, octal %o.\n"),
2684 input_radix, input_radix, input_radix);
2685 }
2686 else
2687 {
2688 printf_filtered (_("Input radix set to decimal "
2689 "%u, hex %x, octal %o.\n"),
2690 input_radix, input_radix, input_radix);
2691 printf_filtered (_("Output radix set to decimal "
2692 "%u, hex %x, octal %o.\n"),
2693 output_radix, output_radix, output_radix);
2694 }
2695 }
2696 }
2697 \f
2698
2699 static void
2700 set_print (char *arg, int from_tty)
2701 {
2702 printf_unfiltered (
2703 "\"set print\" must be followed by the name of a print subcommand.\n");
2704 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2705 }
2706
2707 static void
2708 show_print (char *args, int from_tty)
2709 {
2710 cmd_show_list (showprintlist, from_tty, "");
2711 }
2712
2713 static void
2714 set_print_raw (char *arg, int from_tty)
2715 {
2716 printf_unfiltered (
2717 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2718 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2719 }
2720
2721 static void
2722 show_print_raw (char *args, int from_tty)
2723 {
2724 cmd_show_list (showprintrawlist, from_tty, "");
2725 }
2726
2727 \f
2728 void
2729 _initialize_valprint (void)
2730 {
2731 add_prefix_cmd ("print", no_class, set_print,
2732 _("Generic command for setting how things print."),
2733 &setprintlist, "set print ", 0, &setlist);
2734 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2735 /* Prefer set print to set prompt. */
2736 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2737
2738 add_prefix_cmd ("print", no_class, show_print,
2739 _("Generic command for showing print settings."),
2740 &showprintlist, "show print ", 0, &showlist);
2741 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2742 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2743
2744 add_prefix_cmd ("raw", no_class, set_print_raw,
2745 _("\
2746 Generic command for setting what things to print in \"raw\" mode."),
2747 &setprintrawlist, "set print raw ", 0, &setprintlist);
2748 add_prefix_cmd ("raw", no_class, show_print_raw,
2749 _("Generic command for showing \"print raw\" settings."),
2750 &showprintrawlist, "show print raw ", 0, &showprintlist);
2751
2752 add_setshow_uinteger_cmd ("elements", no_class,
2753 &user_print_options.print_max, _("\
2754 Set limit on string chars or array elements to print."), _("\
2755 Show limit on string chars or array elements to print."), _("\
2756 \"set print elements unlimited\" causes there to be no limit."),
2757 NULL,
2758 show_print_max,
2759 &setprintlist, &showprintlist);
2760
2761 add_setshow_boolean_cmd ("null-stop", no_class,
2762 &user_print_options.stop_print_at_null, _("\
2763 Set printing of char arrays to stop at first null char."), _("\
2764 Show printing of char arrays to stop at first null char."), NULL,
2765 NULL,
2766 show_stop_print_at_null,
2767 &setprintlist, &showprintlist);
2768
2769 add_setshow_uinteger_cmd ("repeats", no_class,
2770 &user_print_options.repeat_count_threshold, _("\
2771 Set threshold for repeated print elements."), _("\
2772 Show threshold for repeated print elements."), _("\
2773 \"set print repeats unlimited\" causes all elements to be individually printed."),
2774 NULL,
2775 show_repeat_count_threshold,
2776 &setprintlist, &showprintlist);
2777
2778 add_setshow_boolean_cmd ("pretty", class_support,
2779 &user_print_options.prettyformat_structs, _("\
2780 Set pretty formatting of structures."), _("\
2781 Show pretty formatting of structures."), NULL,
2782 NULL,
2783 show_prettyformat_structs,
2784 &setprintlist, &showprintlist);
2785
2786 add_setshow_boolean_cmd ("union", class_support,
2787 &user_print_options.unionprint, _("\
2788 Set printing of unions interior to structures."), _("\
2789 Show printing of unions interior to structures."), NULL,
2790 NULL,
2791 show_unionprint,
2792 &setprintlist, &showprintlist);
2793
2794 add_setshow_boolean_cmd ("array", class_support,
2795 &user_print_options.prettyformat_arrays, _("\
2796 Set pretty formatting of arrays."), _("\
2797 Show pretty formatting of arrays."), NULL,
2798 NULL,
2799 show_prettyformat_arrays,
2800 &setprintlist, &showprintlist);
2801
2802 add_setshow_boolean_cmd ("address", class_support,
2803 &user_print_options.addressprint, _("\
2804 Set printing of addresses."), _("\
2805 Show printing of addresses."), NULL,
2806 NULL,
2807 show_addressprint,
2808 &setprintlist, &showprintlist);
2809
2810 add_setshow_boolean_cmd ("symbol", class_support,
2811 &user_print_options.symbol_print, _("\
2812 Set printing of symbol names when printing pointers."), _("\
2813 Show printing of symbol names when printing pointers."),
2814 NULL, NULL,
2815 show_symbol_print,
2816 &setprintlist, &showprintlist);
2817
2818 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2819 _("\
2820 Set default input radix for entering numbers."), _("\
2821 Show default input radix for entering numbers."), NULL,
2822 set_input_radix,
2823 show_input_radix,
2824 &setlist, &showlist);
2825
2826 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2827 _("\
2828 Set default output radix for printing of values."), _("\
2829 Show default output radix for printing of values."), NULL,
2830 set_output_radix,
2831 show_output_radix,
2832 &setlist, &showlist);
2833
2834 /* The "set radix" and "show radix" commands are special in that
2835 they are like normal set and show commands but allow two normally
2836 independent variables to be either set or shown with a single
2837 command. So the usual deprecated_add_set_cmd() and [deleted]
2838 add_show_from_set() commands aren't really appropriate. */
2839 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2840 longer true - show can display anything. */
2841 add_cmd ("radix", class_support, set_radix, _("\
2842 Set default input and output number radices.\n\
2843 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2844 Without an argument, sets both radices back to the default value of 10."),
2845 &setlist);
2846 add_cmd ("radix", class_support, show_radix, _("\
2847 Show the default input and output number radices.\n\
2848 Use 'show input-radix' or 'show output-radix' to independently show each."),
2849 &showlist);
2850
2851 add_setshow_boolean_cmd ("array-indexes", class_support,
2852 &user_print_options.print_array_indexes, _("\
2853 Set printing of array indexes."), _("\
2854 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2855 &setprintlist, &showprintlist);
2856 }
This page took 0.116868 seconds and 5 git commands to generate.