Introduce common_val_print_checked
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* Helper function for val_print and common_val_print that does the
1037 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1038 the value to be printed. */
1039
1040 static void
1041 do_val_print (struct value *full_value,
1042 struct type *type, LONGEST embedded_offset,
1043 CORE_ADDR address, struct ui_file *stream, int recurse,
1044 struct value *val,
1045 const struct value_print_options *options,
1046 const struct language_defn *language)
1047 {
1048 int ret = 0;
1049 struct value_print_options local_opts = *options;
1050 struct type *real_type = check_typedef (type);
1051
1052 if (local_opts.prettyformat == Val_prettyformat_default)
1053 local_opts.prettyformat = (local_opts.prettyformat_structs
1054 ? Val_prettyformat : Val_no_prettyformat);
1055
1056 QUIT;
1057
1058 /* Ensure that the type is complete and not just a stub. If the type is
1059 only a stub and we can't find and substitute its complete type, then
1060 print appropriate string and return. */
1061
1062 if (TYPE_STUB (real_type))
1063 {
1064 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1065 return;
1066 }
1067
1068 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1069 return;
1070
1071 if (!options->raw)
1072 {
1073 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1074 address, stream, recurse,
1075 val, options, language);
1076 if (ret)
1077 return;
1078 }
1079
1080 /* Handle summary mode. If the value is a scalar, print it;
1081 otherwise, print an ellipsis. */
1082 if (options->summary && !val_print_scalar_type_p (type))
1083 {
1084 fprintf_filtered (stream, "...");
1085 return;
1086 }
1087
1088 /* If this value is too deep then don't print it. */
1089 if (!val_print_scalar_or_string_type_p (type, language)
1090 && val_print_check_max_depth (stream, recurse, options, language))
1091 return;
1092
1093 try
1094 {
1095 language->la_val_print (type, embedded_offset, address,
1096 stream, recurse, val,
1097 &local_opts);
1098 }
1099 catch (const gdb_exception_error &except)
1100 {
1101 fprintf_styled (stream, metadata_style.style (),
1102 _("<error reading variable>"));
1103 }
1104 }
1105
1106 /* Print using the given LANGUAGE the data of type TYPE located at
1107 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1108 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1109 stdio stream STREAM according to OPTIONS. VAL is the whole object
1110 that came from ADDRESS.
1111
1112 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1113 further helper subroutines as subfields of TYPE are printed. In
1114 such cases, VAL is passed down unadjusted, so
1115 that VAL can be queried for metadata about the contents data being
1116 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1117 buffer. For example: "has this field been optimized out", or "I'm
1118 printing an object while inspecting a traceframe; has this
1119 particular piece of data been collected?".
1120
1121 RECURSE indicates the amount of indentation to supply before
1122 continuation lines; this amount is roughly twice the value of
1123 RECURSE. */
1124
1125 void
1126 val_print (struct type *type, LONGEST embedded_offset,
1127 CORE_ADDR address, struct ui_file *stream, int recurse,
1128 struct value *val,
1129 const struct value_print_options *options,
1130 const struct language_defn *language)
1131 {
1132 do_val_print (nullptr, type, embedded_offset, address, stream,
1133 recurse, val, options, language);
1134 }
1135
1136 /* See valprint.h. */
1137
1138 bool
1139 val_print_check_max_depth (struct ui_file *stream, int recurse,
1140 const struct value_print_options *options,
1141 const struct language_defn *language)
1142 {
1143 if (options->max_depth > -1 && recurse >= options->max_depth)
1144 {
1145 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1146 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1147 return true;
1148 }
1149
1150 return false;
1151 }
1152
1153 /* Check whether the value VAL is printable. Return 1 if it is;
1154 return 0 and print an appropriate error message to STREAM according to
1155 OPTIONS if it is not. */
1156
1157 static int
1158 value_check_printable (struct value *val, struct ui_file *stream,
1159 const struct value_print_options *options)
1160 {
1161 if (val == 0)
1162 {
1163 fprintf_styled (stream, metadata_style.style (),
1164 _("<address of value unknown>"));
1165 return 0;
1166 }
1167
1168 if (value_entirely_optimized_out (val))
1169 {
1170 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1171 fprintf_filtered (stream, "...");
1172 else
1173 val_print_optimized_out (val, stream);
1174 return 0;
1175 }
1176
1177 if (value_entirely_unavailable (val))
1178 {
1179 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1180 fprintf_filtered (stream, "...");
1181 else
1182 val_print_unavailable (stream);
1183 return 0;
1184 }
1185
1186 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1187 {
1188 fprintf_styled (stream, metadata_style.style (),
1189 _("<internal function %s>"),
1190 value_internal_function_name (val));
1191 return 0;
1192 }
1193
1194 if (type_not_associated (value_type (val)))
1195 {
1196 val_print_not_associated (stream);
1197 return 0;
1198 }
1199
1200 if (type_not_allocated (value_type (val)))
1201 {
1202 val_print_not_allocated (stream);
1203 return 0;
1204 }
1205
1206 return 1;
1207 }
1208
1209 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1210 to OPTIONS.
1211
1212 This is a preferable interface to val_print, above, because it uses
1213 GDB's value mechanism. */
1214
1215 void
1216 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1217 const struct value_print_options *options,
1218 const struct language_defn *language)
1219 {
1220 if (!value_check_printable (val, stream, options))
1221 return;
1222
1223 if (language->la_language == language_ada)
1224 /* The value might have a dynamic type, which would cause trouble
1225 below when trying to extract the value contents (since the value
1226 size is determined from the type size which is unknown). So
1227 get a fixed representation of our value. */
1228 val = ada_to_fixed_value (val);
1229
1230 if (value_lazy (val))
1231 value_fetch_lazy (val);
1232
1233 do_val_print (val, value_type (val),
1234 value_embedded_offset (val), value_address (val),
1235 stream, recurse,
1236 val, options, language);
1237 }
1238
1239 /* See valprint.h. */
1240
1241 void
1242 common_val_print_checked (struct value *val, struct ui_file *stream,
1243 int recurse,
1244 const struct value_print_options *options,
1245 const struct language_defn *language)
1246 {
1247 if (!value_check_printable (val, stream, options))
1248 return;
1249 common_val_print (val, stream, recurse, options, language);
1250 }
1251
1252 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1253 is printed using the current_language syntax. */
1254
1255 void
1256 value_print (struct value *val, struct ui_file *stream,
1257 const struct value_print_options *options)
1258 {
1259 scoped_value_mark free_values;
1260
1261 if (!value_check_printable (val, stream, options))
1262 return;
1263
1264 if (!options->raw)
1265 {
1266 int r
1267 = apply_ext_lang_val_pretty_printer (value_type (val),
1268 value_embedded_offset (val),
1269 value_address (val),
1270 stream, 0,
1271 val, options, current_language);
1272
1273 if (r)
1274 return;
1275 }
1276
1277 LA_VALUE_PRINT (val, stream, options);
1278 }
1279
1280 static void
1281 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1282 struct ui_file *stream)
1283 {
1284 ULONGEST val = unpack_long (type, valaddr);
1285 int field, nfields = TYPE_NFIELDS (type);
1286 struct gdbarch *gdbarch = get_type_arch (type);
1287 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1288
1289 fputs_filtered ("[", stream);
1290 for (field = 0; field < nfields; field++)
1291 {
1292 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1293 {
1294 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1295
1296 if (field_type == bool_type
1297 /* We require boolean types here to be one bit wide. This is a
1298 problematic place to notify the user of an internal error
1299 though. Instead just fall through and print the field as an
1300 int. */
1301 && TYPE_FIELD_BITSIZE (type, field) == 1)
1302 {
1303 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1304 fprintf_filtered
1305 (stream, " %ps",
1306 styled_string (variable_name_style.style (),
1307 TYPE_FIELD_NAME (type, field)));
1308 }
1309 else
1310 {
1311 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1312 ULONGEST field_val
1313 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1314
1315 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1316 field_val &= ((ULONGEST) 1 << field_len) - 1;
1317 fprintf_filtered (stream, " %ps=",
1318 styled_string (variable_name_style.style (),
1319 TYPE_FIELD_NAME (type, field)));
1320 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1321 generic_val_print_enum_1 (field_type, field_val, stream);
1322 else
1323 print_longest (stream, 'd', 0, field_val);
1324 }
1325 }
1326 }
1327 fputs_filtered (" ]", stream);
1328 }
1329
1330 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1331 according to OPTIONS and SIZE on STREAM. Format i is not supported
1332 at this level.
1333
1334 This is how the elements of an array or structure are printed
1335 with a format. */
1336
1337 void
1338 val_print_scalar_formatted (struct type *type,
1339 LONGEST embedded_offset,
1340 struct value *val,
1341 const struct value_print_options *options,
1342 int size,
1343 struct ui_file *stream)
1344 {
1345 struct gdbarch *arch = get_type_arch (type);
1346 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1347
1348 gdb_assert (val != NULL);
1349
1350 /* If we get here with a string format, try again without it. Go
1351 all the way back to the language printers, which may call us
1352 again. */
1353 if (options->format == 's')
1354 {
1355 struct value_print_options opts = *options;
1356 opts.format = 0;
1357 opts.deref_ref = 0;
1358 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1359 current_language);
1360 return;
1361 }
1362
1363 /* value_contents_for_printing fetches all VAL's contents. They are
1364 needed to check whether VAL is optimized-out or unavailable
1365 below. */
1366 const gdb_byte *valaddr = value_contents_for_printing (val);
1367
1368 /* A scalar object that does not have all bits available can't be
1369 printed, because all bits contribute to its representation. */
1370 if (value_bits_any_optimized_out (val,
1371 TARGET_CHAR_BIT * embedded_offset,
1372 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1373 val_print_optimized_out (val, stream);
1374 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1375 val_print_unavailable (stream);
1376 else
1377 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1378 options, size, stream);
1379 }
1380
1381 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1382 The raison d'etre of this function is to consolidate printing of
1383 LONG_LONG's into this one function. The format chars b,h,w,g are
1384 from print_scalar_formatted(). Numbers are printed using C
1385 format.
1386
1387 USE_C_FORMAT means to use C format in all cases. Without it,
1388 'o' and 'x' format do not include the standard C radix prefix
1389 (leading 0 or 0x).
1390
1391 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1392 and was intended to request formatting according to the current
1393 language and would be used for most integers that GDB prints. The
1394 exceptional cases were things like protocols where the format of
1395 the integer is a protocol thing, not a user-visible thing). The
1396 parameter remains to preserve the information of what things might
1397 be printed with language-specific format, should we ever resurrect
1398 that capability. */
1399
1400 void
1401 print_longest (struct ui_file *stream, int format, int use_c_format,
1402 LONGEST val_long)
1403 {
1404 const char *val;
1405
1406 switch (format)
1407 {
1408 case 'd':
1409 val = int_string (val_long, 10, 1, 0, 1); break;
1410 case 'u':
1411 val = int_string (val_long, 10, 0, 0, 1); break;
1412 case 'x':
1413 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1414 case 'b':
1415 val = int_string (val_long, 16, 0, 2, 1); break;
1416 case 'h':
1417 val = int_string (val_long, 16, 0, 4, 1); break;
1418 case 'w':
1419 val = int_string (val_long, 16, 0, 8, 1); break;
1420 case 'g':
1421 val = int_string (val_long, 16, 0, 16, 1); break;
1422 break;
1423 case 'o':
1424 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1425 default:
1426 internal_error (__FILE__, __LINE__,
1427 _("failed internal consistency check"));
1428 }
1429 fputs_filtered (val, stream);
1430 }
1431
1432 /* This used to be a macro, but I don't think it is called often enough
1433 to merit such treatment. */
1434 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1435 arguments to a function, number in a value history, register number, etc.)
1436 where the value must not be larger than can fit in an int. */
1437
1438 int
1439 longest_to_int (LONGEST arg)
1440 {
1441 /* Let the compiler do the work. */
1442 int rtnval = (int) arg;
1443
1444 /* Check for overflows or underflows. */
1445 if (sizeof (LONGEST) > sizeof (int))
1446 {
1447 if (rtnval != arg)
1448 {
1449 error (_("Value out of range."));
1450 }
1451 }
1452 return (rtnval);
1453 }
1454
1455 /* Print a floating point value of floating-point type TYPE,
1456 pointed to in GDB by VALADDR, on STREAM. */
1457
1458 void
1459 print_floating (const gdb_byte *valaddr, struct type *type,
1460 struct ui_file *stream)
1461 {
1462 std::string str = target_float_to_string (valaddr, type);
1463 fputs_filtered (str.c_str (), stream);
1464 }
1465
1466 void
1467 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1468 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1469 {
1470 const gdb_byte *p;
1471 unsigned int i;
1472 int b;
1473 bool seen_a_one = false;
1474
1475 /* Declared "int" so it will be signed.
1476 This ensures that right shift will shift in zeros. */
1477
1478 const int mask = 0x080;
1479
1480 if (byte_order == BFD_ENDIAN_BIG)
1481 {
1482 for (p = valaddr;
1483 p < valaddr + len;
1484 p++)
1485 {
1486 /* Every byte has 8 binary characters; peel off
1487 and print from the MSB end. */
1488
1489 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1490 {
1491 if (*p & (mask >> i))
1492 b = '1';
1493 else
1494 b = '0';
1495
1496 if (zero_pad || seen_a_one || b == '1')
1497 fputc_filtered (b, stream);
1498 if (b == '1')
1499 seen_a_one = true;
1500 }
1501 }
1502 }
1503 else
1504 {
1505 for (p = valaddr + len - 1;
1506 p >= valaddr;
1507 p--)
1508 {
1509 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1510 {
1511 if (*p & (mask >> i))
1512 b = '1';
1513 else
1514 b = '0';
1515
1516 if (zero_pad || seen_a_one || b == '1')
1517 fputc_filtered (b, stream);
1518 if (b == '1')
1519 seen_a_one = true;
1520 }
1521 }
1522 }
1523
1524 /* When not zero-padding, ensure that something is printed when the
1525 input is 0. */
1526 if (!zero_pad && !seen_a_one)
1527 fputc_filtered ('0', stream);
1528 }
1529
1530 /* A helper for print_octal_chars that emits a single octal digit,
1531 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1532
1533 static void
1534 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1535 {
1536 if (*seen_a_one || digit != 0)
1537 fprintf_filtered (stream, "%o", digit);
1538 if (digit != 0)
1539 *seen_a_one = true;
1540 }
1541
1542 /* VALADDR points to an integer of LEN bytes.
1543 Print it in octal on stream or format it in buf. */
1544
1545 void
1546 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1547 unsigned len, enum bfd_endian byte_order)
1548 {
1549 const gdb_byte *p;
1550 unsigned char octa1, octa2, octa3, carry;
1551 int cycle;
1552
1553 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1554 * the extra bits, which cycle every three bytes:
1555 *
1556 * Byte side: 0 1 2 3
1557 * | | | |
1558 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1559 *
1560 * Octal side: 0 1 carry 3 4 carry ...
1561 *
1562 * Cycle number: 0 1 2
1563 *
1564 * But of course we are printing from the high side, so we have to
1565 * figure out where in the cycle we are so that we end up with no
1566 * left over bits at the end.
1567 */
1568 #define BITS_IN_OCTAL 3
1569 #define HIGH_ZERO 0340
1570 #define LOW_ZERO 0034
1571 #define CARRY_ZERO 0003
1572 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1573 "cycle zero constants are wrong");
1574 #define HIGH_ONE 0200
1575 #define MID_ONE 0160
1576 #define LOW_ONE 0016
1577 #define CARRY_ONE 0001
1578 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1579 "cycle one constants are wrong");
1580 #define HIGH_TWO 0300
1581 #define MID_TWO 0070
1582 #define LOW_TWO 0007
1583 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1584 "cycle two constants are wrong");
1585
1586 /* For 32 we start in cycle 2, with two bits and one bit carry;
1587 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1588
1589 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1590 carry = 0;
1591
1592 fputs_filtered ("0", stream);
1593 bool seen_a_one = false;
1594 if (byte_order == BFD_ENDIAN_BIG)
1595 {
1596 for (p = valaddr;
1597 p < valaddr + len;
1598 p++)
1599 {
1600 switch (cycle)
1601 {
1602 case 0:
1603 /* No carry in, carry out two bits. */
1604
1605 octa1 = (HIGH_ZERO & *p) >> 5;
1606 octa2 = (LOW_ZERO & *p) >> 2;
1607 carry = (CARRY_ZERO & *p);
1608 emit_octal_digit (stream, &seen_a_one, octa1);
1609 emit_octal_digit (stream, &seen_a_one, octa2);
1610 break;
1611
1612 case 1:
1613 /* Carry in two bits, carry out one bit. */
1614
1615 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1616 octa2 = (MID_ONE & *p) >> 4;
1617 octa3 = (LOW_ONE & *p) >> 1;
1618 carry = (CARRY_ONE & *p);
1619 emit_octal_digit (stream, &seen_a_one, octa1);
1620 emit_octal_digit (stream, &seen_a_one, octa2);
1621 emit_octal_digit (stream, &seen_a_one, octa3);
1622 break;
1623
1624 case 2:
1625 /* Carry in one bit, no carry out. */
1626
1627 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1628 octa2 = (MID_TWO & *p) >> 3;
1629 octa3 = (LOW_TWO & *p);
1630 carry = 0;
1631 emit_octal_digit (stream, &seen_a_one, octa1);
1632 emit_octal_digit (stream, &seen_a_one, octa2);
1633 emit_octal_digit (stream, &seen_a_one, octa3);
1634 break;
1635
1636 default:
1637 error (_("Internal error in octal conversion;"));
1638 }
1639
1640 cycle++;
1641 cycle = cycle % BITS_IN_OCTAL;
1642 }
1643 }
1644 else
1645 {
1646 for (p = valaddr + len - 1;
1647 p >= valaddr;
1648 p--)
1649 {
1650 switch (cycle)
1651 {
1652 case 0:
1653 /* Carry out, no carry in */
1654
1655 octa1 = (HIGH_ZERO & *p) >> 5;
1656 octa2 = (LOW_ZERO & *p) >> 2;
1657 carry = (CARRY_ZERO & *p);
1658 emit_octal_digit (stream, &seen_a_one, octa1);
1659 emit_octal_digit (stream, &seen_a_one, octa2);
1660 break;
1661
1662 case 1:
1663 /* Carry in, carry out */
1664
1665 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1666 octa2 = (MID_ONE & *p) >> 4;
1667 octa3 = (LOW_ONE & *p) >> 1;
1668 carry = (CARRY_ONE & *p);
1669 emit_octal_digit (stream, &seen_a_one, octa1);
1670 emit_octal_digit (stream, &seen_a_one, octa2);
1671 emit_octal_digit (stream, &seen_a_one, octa3);
1672 break;
1673
1674 case 2:
1675 /* Carry in, no carry out */
1676
1677 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1678 octa2 = (MID_TWO & *p) >> 3;
1679 octa3 = (LOW_TWO & *p);
1680 carry = 0;
1681 emit_octal_digit (stream, &seen_a_one, octa1);
1682 emit_octal_digit (stream, &seen_a_one, octa2);
1683 emit_octal_digit (stream, &seen_a_one, octa3);
1684 break;
1685
1686 default:
1687 error (_("Internal error in octal conversion;"));
1688 }
1689
1690 cycle++;
1691 cycle = cycle % BITS_IN_OCTAL;
1692 }
1693 }
1694
1695 }
1696
1697 /* Possibly negate the integer represented by BYTES. It contains LEN
1698 bytes in the specified byte order. If the integer is negative,
1699 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1700 nothing and return false. */
1701
1702 static bool
1703 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1704 enum bfd_endian byte_order,
1705 gdb::byte_vector *out_vec)
1706 {
1707 gdb_byte sign_byte;
1708 gdb_assert (len > 0);
1709 if (byte_order == BFD_ENDIAN_BIG)
1710 sign_byte = bytes[0];
1711 else
1712 sign_byte = bytes[len - 1];
1713 if ((sign_byte & 0x80) == 0)
1714 return false;
1715
1716 out_vec->resize (len);
1717
1718 /* Compute -x == 1 + ~x. */
1719 if (byte_order == BFD_ENDIAN_LITTLE)
1720 {
1721 unsigned carry = 1;
1722 for (unsigned i = 0; i < len; ++i)
1723 {
1724 unsigned tem = (0xff & ~bytes[i]) + carry;
1725 (*out_vec)[i] = tem & 0xff;
1726 carry = tem / 256;
1727 }
1728 }
1729 else
1730 {
1731 unsigned carry = 1;
1732 for (unsigned i = len; i > 0; --i)
1733 {
1734 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1735 (*out_vec)[i - 1] = tem & 0xff;
1736 carry = tem / 256;
1737 }
1738 }
1739
1740 return true;
1741 }
1742
1743 /* VALADDR points to an integer of LEN bytes.
1744 Print it in decimal on stream or format it in buf. */
1745
1746 void
1747 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1748 unsigned len, bool is_signed,
1749 enum bfd_endian byte_order)
1750 {
1751 #define TEN 10
1752 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1753 #define CARRY_LEFT( x ) ((x) % TEN)
1754 #define SHIFT( x ) ((x) << 4)
1755 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1756 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1757
1758 const gdb_byte *p;
1759 int carry;
1760 int decimal_len;
1761 int i, j, decimal_digits;
1762 int dummy;
1763 int flip;
1764
1765 gdb::byte_vector negated_bytes;
1766 if (is_signed
1767 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1768 {
1769 fputs_filtered ("-", stream);
1770 valaddr = negated_bytes.data ();
1771 }
1772
1773 /* Base-ten number is less than twice as many digits
1774 as the base 16 number, which is 2 digits per byte. */
1775
1776 decimal_len = len * 2 * 2;
1777 std::vector<unsigned char> digits (decimal_len, 0);
1778
1779 /* Ok, we have an unknown number of bytes of data to be printed in
1780 * decimal.
1781 *
1782 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1783 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1784 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1785 *
1786 * The trick is that "digits" holds a base-10 number, but sometimes
1787 * the individual digits are > 10.
1788 *
1789 * Outer loop is per nibble (hex digit) of input, from MSD end to
1790 * LSD end.
1791 */
1792 decimal_digits = 0; /* Number of decimal digits so far */
1793 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1794 flip = 0;
1795 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1796 {
1797 /*
1798 * Multiply current base-ten number by 16 in place.
1799 * Each digit was between 0 and 9, now is between
1800 * 0 and 144.
1801 */
1802 for (j = 0; j < decimal_digits; j++)
1803 {
1804 digits[j] = SHIFT (digits[j]);
1805 }
1806
1807 /* Take the next nibble off the input and add it to what
1808 * we've got in the LSB position. Bottom 'digit' is now
1809 * between 0 and 159.
1810 *
1811 * "flip" is used to run this loop twice for each byte.
1812 */
1813 if (flip == 0)
1814 {
1815 /* Take top nibble. */
1816
1817 digits[0] += HIGH_NIBBLE (*p);
1818 flip = 1;
1819 }
1820 else
1821 {
1822 /* Take low nibble and bump our pointer "p". */
1823
1824 digits[0] += LOW_NIBBLE (*p);
1825 if (byte_order == BFD_ENDIAN_BIG)
1826 p++;
1827 else
1828 p--;
1829 flip = 0;
1830 }
1831
1832 /* Re-decimalize. We have to do this often enough
1833 * that we don't overflow, but once per nibble is
1834 * overkill. Easier this way, though. Note that the
1835 * carry is often larger than 10 (e.g. max initial
1836 * carry out of lowest nibble is 15, could bubble all
1837 * the way up greater than 10). So we have to do
1838 * the carrying beyond the last current digit.
1839 */
1840 carry = 0;
1841 for (j = 0; j < decimal_len - 1; j++)
1842 {
1843 digits[j] += carry;
1844
1845 /* "/" won't handle an unsigned char with
1846 * a value that if signed would be negative.
1847 * So extend to longword int via "dummy".
1848 */
1849 dummy = digits[j];
1850 carry = CARRY_OUT (dummy);
1851 digits[j] = CARRY_LEFT (dummy);
1852
1853 if (j >= decimal_digits && carry == 0)
1854 {
1855 /*
1856 * All higher digits are 0 and we
1857 * no longer have a carry.
1858 *
1859 * Note: "j" is 0-based, "decimal_digits" is
1860 * 1-based.
1861 */
1862 decimal_digits = j + 1;
1863 break;
1864 }
1865 }
1866 }
1867
1868 /* Ok, now "digits" is the decimal representation, with
1869 the "decimal_digits" actual digits. Print! */
1870
1871 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1872 ;
1873
1874 for (; i >= 0; i--)
1875 {
1876 fprintf_filtered (stream, "%1d", digits[i]);
1877 }
1878 }
1879
1880 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1881
1882 void
1883 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1884 unsigned len, enum bfd_endian byte_order,
1885 bool zero_pad)
1886 {
1887 const gdb_byte *p;
1888
1889 fputs_filtered ("0x", stream);
1890 if (byte_order == BFD_ENDIAN_BIG)
1891 {
1892 p = valaddr;
1893
1894 if (!zero_pad)
1895 {
1896 /* Strip leading 0 bytes, but be sure to leave at least a
1897 single byte at the end. */
1898 for (; p < valaddr + len - 1 && !*p; ++p)
1899 ;
1900 }
1901
1902 const gdb_byte *first = p;
1903 for (;
1904 p < valaddr + len;
1905 p++)
1906 {
1907 /* When not zero-padding, use a different format for the
1908 very first byte printed. */
1909 if (!zero_pad && p == first)
1910 fprintf_filtered (stream, "%x", *p);
1911 else
1912 fprintf_filtered (stream, "%02x", *p);
1913 }
1914 }
1915 else
1916 {
1917 p = valaddr + len - 1;
1918
1919 if (!zero_pad)
1920 {
1921 /* Strip leading 0 bytes, but be sure to leave at least a
1922 single byte at the end. */
1923 for (; p >= valaddr + 1 && !*p; --p)
1924 ;
1925 }
1926
1927 const gdb_byte *first = p;
1928 for (;
1929 p >= valaddr;
1930 p--)
1931 {
1932 /* When not zero-padding, use a different format for the
1933 very first byte printed. */
1934 if (!zero_pad && p == first)
1935 fprintf_filtered (stream, "%x", *p);
1936 else
1937 fprintf_filtered (stream, "%02x", *p);
1938 }
1939 }
1940 }
1941
1942 /* VALADDR points to a char integer of LEN bytes.
1943 Print it out in appropriate language form on stream.
1944 Omit any leading zero chars. */
1945
1946 void
1947 print_char_chars (struct ui_file *stream, struct type *type,
1948 const gdb_byte *valaddr,
1949 unsigned len, enum bfd_endian byte_order)
1950 {
1951 const gdb_byte *p;
1952
1953 if (byte_order == BFD_ENDIAN_BIG)
1954 {
1955 p = valaddr;
1956 while (p < valaddr + len - 1 && *p == 0)
1957 ++p;
1958
1959 while (p < valaddr + len)
1960 {
1961 LA_EMIT_CHAR (*p, type, stream, '\'');
1962 ++p;
1963 }
1964 }
1965 else
1966 {
1967 p = valaddr + len - 1;
1968 while (p > valaddr && *p == 0)
1969 --p;
1970
1971 while (p >= valaddr)
1972 {
1973 LA_EMIT_CHAR (*p, type, stream, '\'');
1974 --p;
1975 }
1976 }
1977 }
1978
1979 /* Print function pointer with inferior address ADDRESS onto stdio
1980 stream STREAM. */
1981
1982 void
1983 print_function_pointer_address (const struct value_print_options *options,
1984 struct gdbarch *gdbarch,
1985 CORE_ADDR address,
1986 struct ui_file *stream)
1987 {
1988 CORE_ADDR func_addr
1989 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1990 current_top_target ());
1991
1992 /* If the function pointer is represented by a description, print
1993 the address of the description. */
1994 if (options->addressprint && func_addr != address)
1995 {
1996 fputs_filtered ("@", stream);
1997 fputs_filtered (paddress (gdbarch, address), stream);
1998 fputs_filtered (": ", stream);
1999 }
2000 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2001 }
2002
2003
2004 /* Print on STREAM using the given OPTIONS the index for the element
2005 at INDEX of an array whose index type is INDEX_TYPE. */
2006
2007 void
2008 maybe_print_array_index (struct type *index_type, LONGEST index,
2009 struct ui_file *stream,
2010 const struct value_print_options *options)
2011 {
2012 struct value *index_value;
2013
2014 if (!options->print_array_indexes)
2015 return;
2016
2017 index_value = value_from_longest (index_type, index);
2018
2019 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2020 }
2021
2022 /* Called by various <lang>_val_print routines to print elements of an
2023 array in the form "<elem1>, <elem2>, <elem3>, ...".
2024
2025 (FIXME?) Assumes array element separator is a comma, which is correct
2026 for all languages currently handled.
2027 (FIXME?) Some languages have a notation for repeated array elements,
2028 perhaps we should try to use that notation when appropriate. */
2029
2030 void
2031 val_print_array_elements (struct type *type,
2032 LONGEST embedded_offset,
2033 CORE_ADDR address, struct ui_file *stream,
2034 int recurse,
2035 struct value *val,
2036 const struct value_print_options *options,
2037 unsigned int i)
2038 {
2039 unsigned int things_printed = 0;
2040 unsigned len;
2041 struct type *elttype, *index_type, *base_index_type;
2042 unsigned eltlen;
2043 /* Position of the array element we are examining to see
2044 whether it is repeated. */
2045 unsigned int rep1;
2046 /* Number of repetitions we have detected so far. */
2047 unsigned int reps;
2048 LONGEST low_bound, high_bound;
2049 LONGEST low_pos, high_pos;
2050
2051 elttype = TYPE_TARGET_TYPE (type);
2052 eltlen = type_length_units (check_typedef (elttype));
2053 index_type = TYPE_INDEX_TYPE (type);
2054
2055 if (get_array_bounds (type, &low_bound, &high_bound))
2056 {
2057 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2058 base_index_type = TYPE_TARGET_TYPE (index_type);
2059 else
2060 base_index_type = index_type;
2061
2062 /* Non-contiguous enumerations types can by used as index types
2063 in some languages (e.g. Ada). In this case, the array length
2064 shall be computed from the positions of the first and last
2065 literal in the enumeration type, and not from the values
2066 of these literals. */
2067 if (!discrete_position (base_index_type, low_bound, &low_pos)
2068 || !discrete_position (base_index_type, high_bound, &high_pos))
2069 {
2070 warning (_("unable to get positions in array, use bounds instead"));
2071 low_pos = low_bound;
2072 high_pos = high_bound;
2073 }
2074
2075 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2076 But we have to be a little extra careful, because some languages
2077 such as Ada allow LOW_POS to be greater than HIGH_POS for
2078 empty arrays. In that situation, the array length is just zero,
2079 not negative! */
2080 if (low_pos > high_pos)
2081 len = 0;
2082 else
2083 len = high_pos - low_pos + 1;
2084 }
2085 else
2086 {
2087 warning (_("unable to get bounds of array, assuming null array"));
2088 low_bound = 0;
2089 len = 0;
2090 }
2091
2092 annotate_array_section_begin (i, elttype);
2093
2094 for (; i < len && things_printed < options->print_max; i++)
2095 {
2096 if (i != 0)
2097 {
2098 if (options->prettyformat_arrays)
2099 {
2100 fprintf_filtered (stream, ",\n");
2101 print_spaces_filtered (2 + 2 * recurse, stream);
2102 }
2103 else
2104 {
2105 fprintf_filtered (stream, ", ");
2106 }
2107 }
2108 wrap_here (n_spaces (2 + 2 * recurse));
2109 maybe_print_array_index (index_type, i + low_bound,
2110 stream, options);
2111
2112 rep1 = i + 1;
2113 reps = 1;
2114 /* Only check for reps if repeat_count_threshold is not set to
2115 UINT_MAX (unlimited). */
2116 if (options->repeat_count_threshold < UINT_MAX)
2117 {
2118 while (rep1 < len
2119 && value_contents_eq (val,
2120 embedded_offset + i * eltlen,
2121 val,
2122 (embedded_offset
2123 + rep1 * eltlen),
2124 eltlen))
2125 {
2126 ++reps;
2127 ++rep1;
2128 }
2129 }
2130
2131 if (reps > options->repeat_count_threshold)
2132 {
2133 val_print (elttype, embedded_offset + i * eltlen,
2134 address, stream, recurse + 1, val, options,
2135 current_language);
2136 annotate_elt_rep (reps);
2137 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2138 metadata_style.style ().ptr (), reps, nullptr);
2139 annotate_elt_rep_end ();
2140
2141 i = rep1 - 1;
2142 things_printed += options->repeat_count_threshold;
2143 }
2144 else
2145 {
2146 val_print (elttype, embedded_offset + i * eltlen,
2147 address,
2148 stream, recurse + 1, val, options, current_language);
2149 annotate_elt ();
2150 things_printed++;
2151 }
2152 }
2153 annotate_array_section_end ();
2154 if (i < len)
2155 {
2156 fprintf_filtered (stream, "...");
2157 }
2158 }
2159
2160 /* Read LEN bytes of target memory at address MEMADDR, placing the
2161 results in GDB's memory at MYADDR. Returns a count of the bytes
2162 actually read, and optionally a target_xfer_status value in the
2163 location pointed to by ERRPTR if ERRPTR is non-null. */
2164
2165 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2166 function be eliminated. */
2167
2168 static int
2169 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2170 int len, int *errptr)
2171 {
2172 int nread; /* Number of bytes actually read. */
2173 int errcode; /* Error from last read. */
2174
2175 /* First try a complete read. */
2176 errcode = target_read_memory (memaddr, myaddr, len);
2177 if (errcode == 0)
2178 {
2179 /* Got it all. */
2180 nread = len;
2181 }
2182 else
2183 {
2184 /* Loop, reading one byte at a time until we get as much as we can. */
2185 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2186 {
2187 errcode = target_read_memory (memaddr++, myaddr++, 1);
2188 }
2189 /* If an error, the last read was unsuccessful, so adjust count. */
2190 if (errcode != 0)
2191 {
2192 nread--;
2193 }
2194 }
2195 if (errptr != NULL)
2196 {
2197 *errptr = errcode;
2198 }
2199 return (nread);
2200 }
2201
2202 /* Read a string from the inferior, at ADDR, with LEN characters of
2203 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2204 will be set to a newly allocated buffer containing the string, and
2205 BYTES_READ will be set to the number of bytes read. Returns 0 on
2206 success, or a target_xfer_status on failure.
2207
2208 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2209 (including eventual NULs in the middle or end of the string).
2210
2211 If LEN is -1, stops at the first null character (not necessarily
2212 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2213 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2214 the string.
2215
2216 Unless an exception is thrown, BUFFER will always be allocated, even on
2217 failure. In this case, some characters might have been read before the
2218 failure happened. Check BYTES_READ to recognize this situation.
2219
2220 Note: There was a FIXME asking to make this code use target_read_string,
2221 but this function is more general (can read past null characters, up to
2222 given LEN). Besides, it is used much more often than target_read_string
2223 so it is more tested. Perhaps callers of target_read_string should use
2224 this function instead? */
2225
2226 int
2227 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2228 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2229 int *bytes_read)
2230 {
2231 int errcode; /* Errno returned from bad reads. */
2232 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2233 gdb_byte *bufptr; /* Pointer to next available byte in
2234 buffer. */
2235
2236 /* Loop until we either have all the characters, or we encounter
2237 some error, such as bumping into the end of the address space. */
2238
2239 buffer->reset (nullptr);
2240
2241 if (len > 0)
2242 {
2243 /* We want fetchlimit chars, so we might as well read them all in
2244 one operation. */
2245 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2246
2247 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2248 bufptr = buffer->get ();
2249
2250 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2251 / width;
2252 addr += nfetch * width;
2253 bufptr += nfetch * width;
2254 }
2255 else if (len == -1)
2256 {
2257 unsigned long bufsize = 0;
2258 unsigned int chunksize; /* Size of each fetch, in chars. */
2259 int found_nul; /* Non-zero if we found the nul char. */
2260 gdb_byte *limit; /* First location past end of fetch buffer. */
2261
2262 found_nul = 0;
2263 /* We are looking for a NUL terminator to end the fetching, so we
2264 might as well read in blocks that are large enough to be efficient,
2265 but not so large as to be slow if fetchlimit happens to be large.
2266 So we choose the minimum of 8 and fetchlimit. We used to use 200
2267 instead of 8 but 200 is way too big for remote debugging over a
2268 serial line. */
2269 chunksize = std::min (8u, fetchlimit);
2270
2271 do
2272 {
2273 QUIT;
2274 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2275
2276 if (*buffer == NULL)
2277 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2278 else
2279 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2280 (nfetch + bufsize) * width));
2281
2282 bufptr = buffer->get () + bufsize * width;
2283 bufsize += nfetch;
2284
2285 /* Read as much as we can. */
2286 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2287 / width;
2288
2289 /* Scan this chunk for the null character that terminates the string
2290 to print. If found, we don't need to fetch any more. Note
2291 that bufptr is explicitly left pointing at the next character
2292 after the null character, or at the next character after the end
2293 of the buffer. */
2294
2295 limit = bufptr + nfetch * width;
2296 while (bufptr < limit)
2297 {
2298 unsigned long c;
2299
2300 c = extract_unsigned_integer (bufptr, width, byte_order);
2301 addr += width;
2302 bufptr += width;
2303 if (c == 0)
2304 {
2305 /* We don't care about any error which happened after
2306 the NUL terminator. */
2307 errcode = 0;
2308 found_nul = 1;
2309 break;
2310 }
2311 }
2312 }
2313 while (errcode == 0 /* no error */
2314 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2315 && !found_nul); /* haven't found NUL yet */
2316 }
2317 else
2318 { /* Length of string is really 0! */
2319 /* We always allocate *buffer. */
2320 buffer->reset ((gdb_byte *) xmalloc (1));
2321 bufptr = buffer->get ();
2322 errcode = 0;
2323 }
2324
2325 /* bufptr and addr now point immediately beyond the last byte which we
2326 consider part of the string (including a '\0' which ends the string). */
2327 *bytes_read = bufptr - buffer->get ();
2328
2329 QUIT;
2330
2331 return errcode;
2332 }
2333
2334 /* Return true if print_wchar can display W without resorting to a
2335 numeric escape, false otherwise. */
2336
2337 static int
2338 wchar_printable (gdb_wchar_t w)
2339 {
2340 return (gdb_iswprint (w)
2341 || w == LCST ('\a') || w == LCST ('\b')
2342 || w == LCST ('\f') || w == LCST ('\n')
2343 || w == LCST ('\r') || w == LCST ('\t')
2344 || w == LCST ('\v'));
2345 }
2346
2347 /* A helper function that converts the contents of STRING to wide
2348 characters and then appends them to OUTPUT. */
2349
2350 static void
2351 append_string_as_wide (const char *string,
2352 struct obstack *output)
2353 {
2354 for (; *string; ++string)
2355 {
2356 gdb_wchar_t w = gdb_btowc (*string);
2357 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2358 }
2359 }
2360
2361 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2362 original (target) bytes representing the character, ORIG_LEN is the
2363 number of valid bytes. WIDTH is the number of bytes in a base
2364 characters of the type. OUTPUT is an obstack to which wide
2365 characters are emitted. QUOTER is a (narrow) character indicating
2366 the style of quotes surrounding the character to be printed.
2367 NEED_ESCAPE is an in/out flag which is used to track numeric
2368 escapes across calls. */
2369
2370 static void
2371 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2372 int orig_len, int width,
2373 enum bfd_endian byte_order,
2374 struct obstack *output,
2375 int quoter, int *need_escapep)
2376 {
2377 int need_escape = *need_escapep;
2378
2379 *need_escapep = 0;
2380
2381 /* iswprint implementation on Windows returns 1 for tab character.
2382 In order to avoid different printout on this host, we explicitly
2383 use wchar_printable function. */
2384 switch (w)
2385 {
2386 case LCST ('\a'):
2387 obstack_grow_wstr (output, LCST ("\\a"));
2388 break;
2389 case LCST ('\b'):
2390 obstack_grow_wstr (output, LCST ("\\b"));
2391 break;
2392 case LCST ('\f'):
2393 obstack_grow_wstr (output, LCST ("\\f"));
2394 break;
2395 case LCST ('\n'):
2396 obstack_grow_wstr (output, LCST ("\\n"));
2397 break;
2398 case LCST ('\r'):
2399 obstack_grow_wstr (output, LCST ("\\r"));
2400 break;
2401 case LCST ('\t'):
2402 obstack_grow_wstr (output, LCST ("\\t"));
2403 break;
2404 case LCST ('\v'):
2405 obstack_grow_wstr (output, LCST ("\\v"));
2406 break;
2407 default:
2408 {
2409 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2410 && w != LCST ('8')
2411 && w != LCST ('9'))))
2412 {
2413 gdb_wchar_t wchar = w;
2414
2415 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2416 obstack_grow_wstr (output, LCST ("\\"));
2417 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2418 }
2419 else
2420 {
2421 int i;
2422
2423 for (i = 0; i + width <= orig_len; i += width)
2424 {
2425 char octal[30];
2426 ULONGEST value;
2427
2428 value = extract_unsigned_integer (&orig[i], width,
2429 byte_order);
2430 /* If the value fits in 3 octal digits, print it that
2431 way. Otherwise, print it as a hex escape. */
2432 if (value <= 0777)
2433 xsnprintf (octal, sizeof (octal), "\\%.3o",
2434 (int) (value & 0777));
2435 else
2436 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2437 append_string_as_wide (octal, output);
2438 }
2439 /* If we somehow have extra bytes, print them now. */
2440 while (i < orig_len)
2441 {
2442 char octal[5];
2443
2444 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2445 append_string_as_wide (octal, output);
2446 ++i;
2447 }
2448
2449 *need_escapep = 1;
2450 }
2451 break;
2452 }
2453 }
2454 }
2455
2456 /* Print the character C on STREAM as part of the contents of a
2457 literal string whose delimiter is QUOTER. ENCODING names the
2458 encoding of C. */
2459
2460 void
2461 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2462 int quoter, const char *encoding)
2463 {
2464 enum bfd_endian byte_order
2465 = type_byte_order (type);
2466 gdb_byte *c_buf;
2467 int need_escape = 0;
2468
2469 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2470 pack_long (c_buf, type, c);
2471
2472 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2473
2474 /* This holds the printable form of the wchar_t data. */
2475 auto_obstack wchar_buf;
2476
2477 while (1)
2478 {
2479 int num_chars;
2480 gdb_wchar_t *chars;
2481 const gdb_byte *buf;
2482 size_t buflen;
2483 int print_escape = 1;
2484 enum wchar_iterate_result result;
2485
2486 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2487 if (num_chars < 0)
2488 break;
2489 if (num_chars > 0)
2490 {
2491 /* If all characters are printable, print them. Otherwise,
2492 we're going to have to print an escape sequence. We
2493 check all characters because we want to print the target
2494 bytes in the escape sequence, and we don't know character
2495 boundaries there. */
2496 int i;
2497
2498 print_escape = 0;
2499 for (i = 0; i < num_chars; ++i)
2500 if (!wchar_printable (chars[i]))
2501 {
2502 print_escape = 1;
2503 break;
2504 }
2505
2506 if (!print_escape)
2507 {
2508 for (i = 0; i < num_chars; ++i)
2509 print_wchar (chars[i], buf, buflen,
2510 TYPE_LENGTH (type), byte_order,
2511 &wchar_buf, quoter, &need_escape);
2512 }
2513 }
2514
2515 /* This handles the NUM_CHARS == 0 case as well. */
2516 if (print_escape)
2517 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2518 byte_order, &wchar_buf, quoter, &need_escape);
2519 }
2520
2521 /* The output in the host encoding. */
2522 auto_obstack output;
2523
2524 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2525 (gdb_byte *) obstack_base (&wchar_buf),
2526 obstack_object_size (&wchar_buf),
2527 sizeof (gdb_wchar_t), &output, translit_char);
2528 obstack_1grow (&output, '\0');
2529
2530 fputs_filtered ((const char *) obstack_base (&output), stream);
2531 }
2532
2533 /* Return the repeat count of the next character/byte in ITER,
2534 storing the result in VEC. */
2535
2536 static int
2537 count_next_character (wchar_iterator *iter,
2538 std::vector<converted_character> *vec)
2539 {
2540 struct converted_character *current;
2541
2542 if (vec->empty ())
2543 {
2544 struct converted_character tmp;
2545 gdb_wchar_t *chars;
2546
2547 tmp.num_chars
2548 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2549 if (tmp.num_chars > 0)
2550 {
2551 gdb_assert (tmp.num_chars < MAX_WCHARS);
2552 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2553 }
2554 vec->push_back (tmp);
2555 }
2556
2557 current = &vec->back ();
2558
2559 /* Count repeated characters or bytes. */
2560 current->repeat_count = 1;
2561 if (current->num_chars == -1)
2562 {
2563 /* EOF */
2564 return -1;
2565 }
2566 else
2567 {
2568 gdb_wchar_t *chars;
2569 struct converted_character d;
2570 int repeat;
2571
2572 d.repeat_count = 0;
2573
2574 while (1)
2575 {
2576 /* Get the next character. */
2577 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2578
2579 /* If a character was successfully converted, save the character
2580 into the converted character. */
2581 if (d.num_chars > 0)
2582 {
2583 gdb_assert (d.num_chars < MAX_WCHARS);
2584 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2585 }
2586
2587 /* Determine if the current character is the same as this
2588 new character. */
2589 if (d.num_chars == current->num_chars && d.result == current->result)
2590 {
2591 /* There are two cases to consider:
2592
2593 1) Equality of converted character (num_chars > 0)
2594 2) Equality of non-converted character (num_chars == 0) */
2595 if ((current->num_chars > 0
2596 && memcmp (current->chars, d.chars,
2597 WCHAR_BUFLEN (current->num_chars)) == 0)
2598 || (current->num_chars == 0
2599 && current->buflen == d.buflen
2600 && memcmp (current->buf, d.buf, current->buflen) == 0))
2601 ++current->repeat_count;
2602 else
2603 break;
2604 }
2605 else
2606 break;
2607 }
2608
2609 /* Push this next converted character onto the result vector. */
2610 repeat = current->repeat_count;
2611 vec->push_back (d);
2612 return repeat;
2613 }
2614 }
2615
2616 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2617 character to use with string output. WIDTH is the size of the output
2618 character type. BYTE_ORDER is the target byte order. OPTIONS
2619 is the user's print options. */
2620
2621 static void
2622 print_converted_chars_to_obstack (struct obstack *obstack,
2623 const std::vector<converted_character> &chars,
2624 int quote_char, int width,
2625 enum bfd_endian byte_order,
2626 const struct value_print_options *options)
2627 {
2628 unsigned int idx;
2629 const converted_character *elem;
2630 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2631 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2632 int need_escape = 0;
2633
2634 /* Set the start state. */
2635 idx = 0;
2636 last = state = START;
2637 elem = NULL;
2638
2639 while (1)
2640 {
2641 switch (state)
2642 {
2643 case START:
2644 /* Nothing to do. */
2645 break;
2646
2647 case SINGLE:
2648 {
2649 int j;
2650
2651 /* We are outputting a single character
2652 (< options->repeat_count_threshold). */
2653
2654 if (last != SINGLE)
2655 {
2656 /* We were outputting some other type of content, so we
2657 must output and a comma and a quote. */
2658 if (last != START)
2659 obstack_grow_wstr (obstack, LCST (", "));
2660 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2661 }
2662 /* Output the character. */
2663 for (j = 0; j < elem->repeat_count; ++j)
2664 {
2665 if (elem->result == wchar_iterate_ok)
2666 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2667 byte_order, obstack, quote_char, &need_escape);
2668 else
2669 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2670 byte_order, obstack, quote_char, &need_escape);
2671 }
2672 }
2673 break;
2674
2675 case REPEAT:
2676 {
2677 int j;
2678
2679 /* We are outputting a character with a repeat count
2680 greater than options->repeat_count_threshold. */
2681
2682 if (last == SINGLE)
2683 {
2684 /* We were outputting a single string. Terminate the
2685 string. */
2686 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2687 }
2688 if (last != START)
2689 obstack_grow_wstr (obstack, LCST (", "));
2690
2691 /* Output the character and repeat string. */
2692 obstack_grow_wstr (obstack, LCST ("'"));
2693 if (elem->result == wchar_iterate_ok)
2694 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2695 byte_order, obstack, quote_char, &need_escape);
2696 else
2697 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2698 byte_order, obstack, quote_char, &need_escape);
2699 obstack_grow_wstr (obstack, LCST ("'"));
2700 std::string s = string_printf (_(" <repeats %u times>"),
2701 elem->repeat_count);
2702 for (j = 0; s[j]; ++j)
2703 {
2704 gdb_wchar_t w = gdb_btowc (s[j]);
2705 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2706 }
2707 }
2708 break;
2709
2710 case INCOMPLETE:
2711 /* We are outputting an incomplete sequence. */
2712 if (last == SINGLE)
2713 {
2714 /* If we were outputting a string of SINGLE characters,
2715 terminate the quote. */
2716 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2717 }
2718 if (last != START)
2719 obstack_grow_wstr (obstack, LCST (", "));
2720
2721 /* Output the incomplete sequence string. */
2722 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2723 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2724 obstack, 0, &need_escape);
2725 obstack_grow_wstr (obstack, LCST (">"));
2726
2727 /* We do not attempt to output anything after this. */
2728 state = FINISH;
2729 break;
2730
2731 case FINISH:
2732 /* All done. If we were outputting a string of SINGLE
2733 characters, the string must be terminated. Otherwise,
2734 REPEAT and INCOMPLETE are always left properly terminated. */
2735 if (last == SINGLE)
2736 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2737
2738 return;
2739 }
2740
2741 /* Get the next element and state. */
2742 last = state;
2743 if (state != FINISH)
2744 {
2745 elem = &chars[idx++];
2746 switch (elem->result)
2747 {
2748 case wchar_iterate_ok:
2749 case wchar_iterate_invalid:
2750 if (elem->repeat_count > options->repeat_count_threshold)
2751 state = REPEAT;
2752 else
2753 state = SINGLE;
2754 break;
2755
2756 case wchar_iterate_incomplete:
2757 state = INCOMPLETE;
2758 break;
2759
2760 case wchar_iterate_eof:
2761 state = FINISH;
2762 break;
2763 }
2764 }
2765 }
2766 }
2767
2768 /* Print the character string STRING, printing at most LENGTH
2769 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2770 the type of each character. OPTIONS holds the printing options;
2771 printing stops early if the number hits print_max; repeat counts
2772 are printed as appropriate. Print ellipses at the end if we had to
2773 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2774 QUOTE_CHAR is the character to print at each end of the string. If
2775 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2776 omitted. */
2777
2778 void
2779 generic_printstr (struct ui_file *stream, struct type *type,
2780 const gdb_byte *string, unsigned int length,
2781 const char *encoding, int force_ellipses,
2782 int quote_char, int c_style_terminator,
2783 const struct value_print_options *options)
2784 {
2785 enum bfd_endian byte_order = type_byte_order (type);
2786 unsigned int i;
2787 int width = TYPE_LENGTH (type);
2788 int finished = 0;
2789 struct converted_character *last;
2790
2791 if (length == -1)
2792 {
2793 unsigned long current_char = 1;
2794
2795 for (i = 0; current_char; ++i)
2796 {
2797 QUIT;
2798 current_char = extract_unsigned_integer (string + i * width,
2799 width, byte_order);
2800 }
2801 length = i;
2802 }
2803
2804 /* If the string was not truncated due to `set print elements', and
2805 the last byte of it is a null, we don't print that, in
2806 traditional C style. */
2807 if (c_style_terminator
2808 && !force_ellipses
2809 && length > 0
2810 && (extract_unsigned_integer (string + (length - 1) * width,
2811 width, byte_order) == 0))
2812 length--;
2813
2814 if (length == 0)
2815 {
2816 fputs_filtered ("\"\"", stream);
2817 return;
2818 }
2819
2820 /* Arrange to iterate over the characters, in wchar_t form. */
2821 wchar_iterator iter (string, length * width, encoding, width);
2822 std::vector<converted_character> converted_chars;
2823
2824 /* Convert characters until the string is over or the maximum
2825 number of printed characters has been reached. */
2826 i = 0;
2827 while (i < options->print_max)
2828 {
2829 int r;
2830
2831 QUIT;
2832
2833 /* Grab the next character and repeat count. */
2834 r = count_next_character (&iter, &converted_chars);
2835
2836 /* If less than zero, the end of the input string was reached. */
2837 if (r < 0)
2838 break;
2839
2840 /* Otherwise, add the count to the total print count and get
2841 the next character. */
2842 i += r;
2843 }
2844
2845 /* Get the last element and determine if the entire string was
2846 processed. */
2847 last = &converted_chars.back ();
2848 finished = (last->result == wchar_iterate_eof);
2849
2850 /* Ensure that CONVERTED_CHARS is terminated. */
2851 last->result = wchar_iterate_eof;
2852
2853 /* WCHAR_BUF is the obstack we use to represent the string in
2854 wchar_t form. */
2855 auto_obstack wchar_buf;
2856
2857 /* Print the output string to the obstack. */
2858 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2859 width, byte_order, options);
2860
2861 if (force_ellipses || !finished)
2862 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2863
2864 /* OUTPUT is where we collect `char's for printing. */
2865 auto_obstack output;
2866
2867 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2868 (gdb_byte *) obstack_base (&wchar_buf),
2869 obstack_object_size (&wchar_buf),
2870 sizeof (gdb_wchar_t), &output, translit_char);
2871 obstack_1grow (&output, '\0');
2872
2873 fputs_filtered ((const char *) obstack_base (&output), stream);
2874 }
2875
2876 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2877 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2878 stops at the first null byte, otherwise printing proceeds (including null
2879 bytes) until either print_max or LEN characters have been printed,
2880 whichever is smaller. ENCODING is the name of the string's
2881 encoding. It can be NULL, in which case the target encoding is
2882 assumed. */
2883
2884 int
2885 val_print_string (struct type *elttype, const char *encoding,
2886 CORE_ADDR addr, int len,
2887 struct ui_file *stream,
2888 const struct value_print_options *options)
2889 {
2890 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2891 int err; /* Non-zero if we got a bad read. */
2892 int found_nul; /* Non-zero if we found the nul char. */
2893 unsigned int fetchlimit; /* Maximum number of chars to print. */
2894 int bytes_read;
2895 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2896 struct gdbarch *gdbarch = get_type_arch (elttype);
2897 enum bfd_endian byte_order = type_byte_order (elttype);
2898 int width = TYPE_LENGTH (elttype);
2899
2900 /* First we need to figure out the limit on the number of characters we are
2901 going to attempt to fetch and print. This is actually pretty simple. If
2902 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2903 LEN is -1, then the limit is print_max. This is true regardless of
2904 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2905 because finding the null byte (or available memory) is what actually
2906 limits the fetch. */
2907
2908 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2909 options->print_max));
2910
2911 err = read_string (addr, len, width, fetchlimit, byte_order,
2912 &buffer, &bytes_read);
2913
2914 addr += bytes_read;
2915
2916 /* We now have either successfully filled the buffer to fetchlimit,
2917 or terminated early due to an error or finding a null char when
2918 LEN is -1. */
2919
2920 /* Determine found_nul by looking at the last character read. */
2921 found_nul = 0;
2922 if (bytes_read >= width)
2923 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2924 width, byte_order) == 0;
2925 if (len == -1 && !found_nul)
2926 {
2927 gdb_byte *peekbuf;
2928
2929 /* We didn't find a NUL terminator we were looking for. Attempt
2930 to peek at the next character. If not successful, or it is not
2931 a null byte, then force ellipsis to be printed. */
2932
2933 peekbuf = (gdb_byte *) alloca (width);
2934
2935 if (target_read_memory (addr, peekbuf, width) == 0
2936 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2937 force_ellipsis = 1;
2938 }
2939 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2940 {
2941 /* Getting an error when we have a requested length, or fetching less
2942 than the number of characters actually requested, always make us
2943 print ellipsis. */
2944 force_ellipsis = 1;
2945 }
2946
2947 /* If we get an error before fetching anything, don't print a string.
2948 But if we fetch something and then get an error, print the string
2949 and then the error message. */
2950 if (err == 0 || bytes_read > 0)
2951 {
2952 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2953 encoding, force_ellipsis, options);
2954 }
2955
2956 if (err != 0)
2957 {
2958 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2959
2960 fprintf_filtered (stream, _("<error: %ps>"),
2961 styled_string (metadata_style.style (),
2962 str.c_str ()));
2963 }
2964
2965 return (bytes_read / width);
2966 }
2967
2968 /* Handle 'show print max-depth'. */
2969
2970 static void
2971 show_print_max_depth (struct ui_file *file, int from_tty,
2972 struct cmd_list_element *c, const char *value)
2973 {
2974 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2975 }
2976 \f
2977
2978 /* The 'set input-radix' command writes to this auxiliary variable.
2979 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2980 it is left unchanged. */
2981
2982 static unsigned input_radix_1 = 10;
2983
2984 /* Validate an input or output radix setting, and make sure the user
2985 knows what they really did here. Radix setting is confusing, e.g.
2986 setting the input radix to "10" never changes it! */
2987
2988 static void
2989 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2990 {
2991 set_input_radix_1 (from_tty, input_radix_1);
2992 }
2993
2994 static void
2995 set_input_radix_1 (int from_tty, unsigned radix)
2996 {
2997 /* We don't currently disallow any input radix except 0 or 1, which don't
2998 make any mathematical sense. In theory, we can deal with any input
2999 radix greater than 1, even if we don't have unique digits for every
3000 value from 0 to radix-1, but in practice we lose on large radix values.
3001 We should either fix the lossage or restrict the radix range more.
3002 (FIXME). */
3003
3004 if (radix < 2)
3005 {
3006 input_radix_1 = input_radix;
3007 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3008 radix);
3009 }
3010 input_radix_1 = input_radix = radix;
3011 if (from_tty)
3012 {
3013 printf_filtered (_("Input radix now set to "
3014 "decimal %u, hex %x, octal %o.\n"),
3015 radix, radix, radix);
3016 }
3017 }
3018
3019 /* The 'set output-radix' command writes to this auxiliary variable.
3020 If the requested radix is valid, OUTPUT_RADIX is updated,
3021 otherwise, it is left unchanged. */
3022
3023 static unsigned output_radix_1 = 10;
3024
3025 static void
3026 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3027 {
3028 set_output_radix_1 (from_tty, output_radix_1);
3029 }
3030
3031 static void
3032 set_output_radix_1 (int from_tty, unsigned radix)
3033 {
3034 /* Validate the radix and disallow ones that we aren't prepared to
3035 handle correctly, leaving the radix unchanged. */
3036 switch (radix)
3037 {
3038 case 16:
3039 user_print_options.output_format = 'x'; /* hex */
3040 break;
3041 case 10:
3042 user_print_options.output_format = 0; /* decimal */
3043 break;
3044 case 8:
3045 user_print_options.output_format = 'o'; /* octal */
3046 break;
3047 default:
3048 output_radix_1 = output_radix;
3049 error (_("Unsupported output radix ``decimal %u''; "
3050 "output radix unchanged."),
3051 radix);
3052 }
3053 output_radix_1 = output_radix = radix;
3054 if (from_tty)
3055 {
3056 printf_filtered (_("Output radix now set to "
3057 "decimal %u, hex %x, octal %o.\n"),
3058 radix, radix, radix);
3059 }
3060 }
3061
3062 /* Set both the input and output radix at once. Try to set the output radix
3063 first, since it has the most restrictive range. An radix that is valid as
3064 an output radix is also valid as an input radix.
3065
3066 It may be useful to have an unusual input radix. If the user wishes to
3067 set an input radix that is not valid as an output radix, he needs to use
3068 the 'set input-radix' command. */
3069
3070 static void
3071 set_radix (const char *arg, int from_tty)
3072 {
3073 unsigned radix;
3074
3075 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3076 set_output_radix_1 (0, radix);
3077 set_input_radix_1 (0, radix);
3078 if (from_tty)
3079 {
3080 printf_filtered (_("Input and output radices now set to "
3081 "decimal %u, hex %x, octal %o.\n"),
3082 radix, radix, radix);
3083 }
3084 }
3085
3086 /* Show both the input and output radices. */
3087
3088 static void
3089 show_radix (const char *arg, int from_tty)
3090 {
3091 if (from_tty)
3092 {
3093 if (input_radix == output_radix)
3094 {
3095 printf_filtered (_("Input and output radices set to "
3096 "decimal %u, hex %x, octal %o.\n"),
3097 input_radix, input_radix, input_radix);
3098 }
3099 else
3100 {
3101 printf_filtered (_("Input radix set to decimal "
3102 "%u, hex %x, octal %o.\n"),
3103 input_radix, input_radix, input_radix);
3104 printf_filtered (_("Output radix set to decimal "
3105 "%u, hex %x, octal %o.\n"),
3106 output_radix, output_radix, output_radix);
3107 }
3108 }
3109 }
3110 \f
3111
3112 static void
3113 set_print (const char *arg, int from_tty)
3114 {
3115 printf_unfiltered (
3116 "\"set print\" must be followed by the name of a print subcommand.\n");
3117 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3118 }
3119
3120 static void
3121 show_print (const char *args, int from_tty)
3122 {
3123 cmd_show_list (showprintlist, from_tty, "");
3124 }
3125
3126 static void
3127 set_print_raw (const char *arg, int from_tty)
3128 {
3129 printf_unfiltered (
3130 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3131 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3132 }
3133
3134 static void
3135 show_print_raw (const char *args, int from_tty)
3136 {
3137 cmd_show_list (showprintrawlist, from_tty, "");
3138 }
3139
3140 /* Controls printing of vtbl's. */
3141 static void
3142 show_vtblprint (struct ui_file *file, int from_tty,
3143 struct cmd_list_element *c, const char *value)
3144 {
3145 fprintf_filtered (file, _("\
3146 Printing of C++ virtual function tables is %s.\n"),
3147 value);
3148 }
3149
3150 /* Controls looking up an object's derived type using what we find in
3151 its vtables. */
3152 static void
3153 show_objectprint (struct ui_file *file, int from_tty,
3154 struct cmd_list_element *c,
3155 const char *value)
3156 {
3157 fprintf_filtered (file, _("\
3158 Printing of object's derived type based on vtable info is %s.\n"),
3159 value);
3160 }
3161
3162 static void
3163 show_static_field_print (struct ui_file *file, int from_tty,
3164 struct cmd_list_element *c,
3165 const char *value)
3166 {
3167 fprintf_filtered (file,
3168 _("Printing of C++ static members is %s.\n"),
3169 value);
3170 }
3171
3172 \f
3173
3174 /* A couple typedefs to make writing the options a bit more
3175 convenient. */
3176 using boolean_option_def
3177 = gdb::option::boolean_option_def<value_print_options>;
3178 using uinteger_option_def
3179 = gdb::option::uinteger_option_def<value_print_options>;
3180 using zuinteger_unlimited_option_def
3181 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3182
3183 /* Definitions of options for the "print" and "compile print"
3184 commands. */
3185 static const gdb::option::option_def value_print_option_defs[] = {
3186
3187 boolean_option_def {
3188 "address",
3189 [] (value_print_options *opt) { return &opt->addressprint; },
3190 show_addressprint, /* show_cmd_cb */
3191 N_("Set printing of addresses."),
3192 N_("Show printing of addresses."),
3193 NULL, /* help_doc */
3194 },
3195
3196 boolean_option_def {
3197 "array",
3198 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3199 show_prettyformat_arrays, /* show_cmd_cb */
3200 N_("Set pretty formatting of arrays."),
3201 N_("Show pretty formatting of arrays."),
3202 NULL, /* help_doc */
3203 },
3204
3205 boolean_option_def {
3206 "array-indexes",
3207 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3208 show_print_array_indexes, /* show_cmd_cb */
3209 N_("Set printing of array indexes."),
3210 N_("Show printing of array indexes."),
3211 NULL, /* help_doc */
3212 },
3213
3214 uinteger_option_def {
3215 "elements",
3216 [] (value_print_options *opt) { return &opt->print_max; },
3217 show_print_max, /* show_cmd_cb */
3218 N_("Set limit on string chars or array elements to print."),
3219 N_("Show limit on string chars or array elements to print."),
3220 N_("\"unlimited\" causes there to be no limit."),
3221 },
3222
3223 zuinteger_unlimited_option_def {
3224 "max-depth",
3225 [] (value_print_options *opt) { return &opt->max_depth; },
3226 show_print_max_depth, /* show_cmd_cb */
3227 N_("Set maximum print depth for nested structures, unions and arrays."),
3228 N_("Show maximum print depth for nested structures, unions, and arrays."),
3229 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3230 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3231 Use \"unlimited\" to print the complete structure.")
3232 },
3233
3234 boolean_option_def {
3235 "null-stop",
3236 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3237 show_stop_print_at_null, /* show_cmd_cb */
3238 N_("Set printing of char arrays to stop at first null char."),
3239 N_("Show printing of char arrays to stop at first null char."),
3240 NULL, /* help_doc */
3241 },
3242
3243 boolean_option_def {
3244 "object",
3245 [] (value_print_options *opt) { return &opt->objectprint; },
3246 show_objectprint, /* show_cmd_cb */
3247 _("Set printing of C++ virtual function tables."),
3248 _("Show printing of C++ virtual function tables."),
3249 NULL, /* help_doc */
3250 },
3251
3252 boolean_option_def {
3253 "pretty",
3254 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3255 show_prettyformat_structs, /* show_cmd_cb */
3256 N_("Set pretty formatting of structures."),
3257 N_("Show pretty formatting of structures."),
3258 NULL, /* help_doc */
3259 },
3260
3261 boolean_option_def {
3262 "raw-values",
3263 [] (value_print_options *opt) { return &opt->raw; },
3264 NULL, /* show_cmd_cb */
3265 N_("Set whether to print values in raw form."),
3266 N_("Show whether to print values in raw form."),
3267 N_("If set, values are printed in raw form, bypassing any\n\
3268 pretty-printers for that value.")
3269 },
3270
3271 uinteger_option_def {
3272 "repeats",
3273 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3274 show_repeat_count_threshold, /* show_cmd_cb */
3275 N_("Set threshold for repeated print elements."),
3276 N_("Show threshold for repeated print elements."),
3277 N_("\"unlimited\" causes all elements to be individually printed."),
3278 },
3279
3280 boolean_option_def {
3281 "static-members",
3282 [] (value_print_options *opt) { return &opt->static_field_print; },
3283 show_static_field_print, /* show_cmd_cb */
3284 N_("Set printing of C++ static members."),
3285 N_("Show printing of C++ static members."),
3286 NULL, /* help_doc */
3287 },
3288
3289 boolean_option_def {
3290 "symbol",
3291 [] (value_print_options *opt) { return &opt->symbol_print; },
3292 show_symbol_print, /* show_cmd_cb */
3293 N_("Set printing of symbol names when printing pointers."),
3294 N_("Show printing of symbol names when printing pointers."),
3295 NULL, /* help_doc */
3296 },
3297
3298 boolean_option_def {
3299 "union",
3300 [] (value_print_options *opt) { return &opt->unionprint; },
3301 show_unionprint, /* show_cmd_cb */
3302 N_("Set printing of unions interior to structures."),
3303 N_("Show printing of unions interior to structures."),
3304 NULL, /* help_doc */
3305 },
3306
3307 boolean_option_def {
3308 "vtbl",
3309 [] (value_print_options *opt) { return &opt->vtblprint; },
3310 show_vtblprint, /* show_cmd_cb */
3311 N_("Set printing of C++ virtual function tables."),
3312 N_("Show printing of C++ virtual function tables."),
3313 NULL, /* help_doc */
3314 },
3315 };
3316
3317 /* See valprint.h. */
3318
3319 gdb::option::option_def_group
3320 make_value_print_options_def_group (value_print_options *opts)
3321 {
3322 return {{value_print_option_defs}, opts};
3323 }
3324
3325 void _initialize_valprint ();
3326 void
3327 _initialize_valprint ()
3328 {
3329 cmd_list_element *cmd;
3330
3331 add_prefix_cmd ("print", no_class, set_print,
3332 _("Generic command for setting how things print."),
3333 &setprintlist, "set print ", 0, &setlist);
3334 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3335 /* Prefer set print to set prompt. */
3336 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3337
3338 add_prefix_cmd ("print", no_class, show_print,
3339 _("Generic command for showing print settings."),
3340 &showprintlist, "show print ", 0, &showlist);
3341 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3342 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3343
3344 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3345 _("\
3346 Generic command for setting what things to print in \"raw\" mode."),
3347 &setprintrawlist, "set print raw ", 0,
3348 &setprintlist);
3349 deprecate_cmd (cmd, nullptr);
3350
3351 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3352 _("Generic command for showing \"print raw\" settings."),
3353 &showprintrawlist, "show print raw ", 0,
3354 &showprintlist);
3355 deprecate_cmd (cmd, nullptr);
3356
3357 gdb::option::add_setshow_cmds_for_options
3358 (class_support, &user_print_options, value_print_option_defs,
3359 &setprintlist, &showprintlist);
3360
3361 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3362 _("\
3363 Set default input radix for entering numbers."), _("\
3364 Show default input radix for entering numbers."), NULL,
3365 set_input_radix,
3366 show_input_radix,
3367 &setlist, &showlist);
3368
3369 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3370 _("\
3371 Set default output radix for printing of values."), _("\
3372 Show default output radix for printing of values."), NULL,
3373 set_output_radix,
3374 show_output_radix,
3375 &setlist, &showlist);
3376
3377 /* The "set radix" and "show radix" commands are special in that
3378 they are like normal set and show commands but allow two normally
3379 independent variables to be either set or shown with a single
3380 command. So the usual deprecated_add_set_cmd() and [deleted]
3381 add_show_from_set() commands aren't really appropriate. */
3382 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3383 longer true - show can display anything. */
3384 add_cmd ("radix", class_support, set_radix, _("\
3385 Set default input and output number radices.\n\
3386 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3387 Without an argument, sets both radices back to the default value of 10."),
3388 &setlist);
3389 add_cmd ("radix", class_support, show_radix, _("\
3390 Show the default input and output number radices.\n\
3391 Use 'show input-radix' or 'show output-radix' to independently show each."),
3392 &showlist);
3393 }
This page took 0.096574 seconds and 5 git commands to generate.