Factor out enum printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* generic_val_print helper for TYPE_CODE_ENUM. */
513
514 static void
515 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519 {
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579 }
580
581 /* A generic val_print that is suitable for use by language
582 implementations of the la_val_print method. This function can
583 handle most type codes, though not all, notably exception
584 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
585 the caller.
586
587 Most arguments are as to val_print.
588
589 The additional DECORATIONS argument can be used to customize the
590 output in some small, language-specific ways. */
591
592 void
593 generic_val_print (struct type *type, const gdb_byte *valaddr,
594 int embedded_offset, CORE_ADDR address,
595 struct ui_file *stream, int recurse,
596 const struct value *original_value,
597 const struct value_print_options *options,
598 const struct generic_val_print_decorations *decorations)
599 {
600 struct gdbarch *gdbarch = get_type_arch (type);
601 struct type *unresolved_type = type;
602 LONGEST val;
603
604 type = check_typedef (type);
605 switch (TYPE_CODE (type))
606 {
607 case TYPE_CODE_ARRAY:
608 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
609 recurse, original_value, options);
610 break;
611
612 case TYPE_CODE_MEMBERPTR:
613 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
614 original_value, options);
615 break;
616
617 case TYPE_CODE_PTR:
618 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
619 original_value, options);
620 break;
621
622 case TYPE_CODE_REF:
623 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
624 original_value, options);
625 break;
626
627 case TYPE_CODE_ENUM:
628 generic_val_print_enum (type, valaddr, embedded_offset, stream,
629 original_value, options);
630 break;
631
632 case TYPE_CODE_FLAGS:
633 if (options->format)
634 val_print_scalar_formatted (type, valaddr, embedded_offset,
635 original_value, options, 0, stream);
636 else
637 val_print_type_code_flags (type, valaddr + embedded_offset,
638 stream);
639 break;
640
641 case TYPE_CODE_FUNC:
642 case TYPE_CODE_METHOD:
643 if (options->format)
644 {
645 val_print_scalar_formatted (type, valaddr, embedded_offset,
646 original_value, options, 0, stream);
647 break;
648 }
649 /* FIXME, we should consider, at least for ANSI C language,
650 eliminating the distinction made between FUNCs and POINTERs
651 to FUNCs. */
652 fprintf_filtered (stream, "{");
653 type_print (type, "", stream, -1);
654 fprintf_filtered (stream, "} ");
655 /* Try to print what function it points to, and its address. */
656 print_address_demangle (options, gdbarch, address, stream, demangle);
657 break;
658
659 case TYPE_CODE_BOOL:
660 if (options->format || options->output_format)
661 {
662 struct value_print_options opts = *options;
663 opts.format = (options->format ? options->format
664 : options->output_format);
665 val_print_scalar_formatted (type, valaddr, embedded_offset,
666 original_value, &opts, 0, stream);
667 }
668 else
669 {
670 val = unpack_long (type, valaddr + embedded_offset);
671 if (val == 0)
672 fputs_filtered (decorations->false_name, stream);
673 else if (val == 1)
674 fputs_filtered (decorations->true_name, stream);
675 else
676 print_longest (stream, 'd', 0, val);
677 }
678 break;
679
680 case TYPE_CODE_RANGE:
681 /* FIXME: create_static_range_type does not set the unsigned bit in a
682 range type (I think it probably should copy it from the
683 target type), so we won't print values which are too large to
684 fit in a signed integer correctly. */
685 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
686 print with the target type, though, because the size of our
687 type and the target type might differ). */
688
689 /* FALLTHROUGH */
690
691 case TYPE_CODE_INT:
692 if (options->format || options->output_format)
693 {
694 struct value_print_options opts = *options;
695
696 opts.format = (options->format ? options->format
697 : options->output_format);
698 val_print_scalar_formatted (type, valaddr, embedded_offset,
699 original_value, &opts, 0, stream);
700 }
701 else
702 val_print_type_code_int (type, valaddr + embedded_offset, stream);
703 break;
704
705 case TYPE_CODE_CHAR:
706 if (options->format || options->output_format)
707 {
708 struct value_print_options opts = *options;
709
710 opts.format = (options->format ? options->format
711 : options->output_format);
712 val_print_scalar_formatted (type, valaddr, embedded_offset,
713 original_value, &opts, 0, stream);
714 }
715 else
716 {
717 val = unpack_long (type, valaddr + embedded_offset);
718 if (TYPE_UNSIGNED (type))
719 fprintf_filtered (stream, "%u", (unsigned int) val);
720 else
721 fprintf_filtered (stream, "%d", (int) val);
722 fputs_filtered (" ", stream);
723 LA_PRINT_CHAR (val, unresolved_type, stream);
724 }
725 break;
726
727 case TYPE_CODE_FLT:
728 if (options->format)
729 {
730 val_print_scalar_formatted (type, valaddr, embedded_offset,
731 original_value, options, 0, stream);
732 }
733 else
734 {
735 print_floating (valaddr + embedded_offset, type, stream);
736 }
737 break;
738
739 case TYPE_CODE_DECFLOAT:
740 if (options->format)
741 val_print_scalar_formatted (type, valaddr, embedded_offset,
742 original_value, options, 0, stream);
743 else
744 print_decimal_floating (valaddr + embedded_offset,
745 type, stream);
746 break;
747
748 case TYPE_CODE_VOID:
749 fputs_filtered (decorations->void_name, stream);
750 break;
751
752 case TYPE_CODE_ERROR:
753 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
754 break;
755
756 case TYPE_CODE_UNDEF:
757 /* This happens (without TYPE_FLAG_STUB set) on systems which
758 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
759 "struct foo *bar" and no complete type for struct foo in that
760 file. */
761 fprintf_filtered (stream, _("<incomplete type>"));
762 break;
763
764 case TYPE_CODE_COMPLEX:
765 fprintf_filtered (stream, "%s", decorations->complex_prefix);
766 if (options->format)
767 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
768 valaddr, embedded_offset,
769 original_value, options, 0, stream);
770 else
771 print_floating (valaddr + embedded_offset,
772 TYPE_TARGET_TYPE (type),
773 stream);
774 fprintf_filtered (stream, "%s", decorations->complex_infix);
775 if (options->format)
776 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
777 valaddr,
778 embedded_offset
779 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
780 original_value,
781 options, 0, stream);
782 else
783 print_floating (valaddr + embedded_offset
784 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
785 TYPE_TARGET_TYPE (type),
786 stream);
787 fprintf_filtered (stream, "%s", decorations->complex_suffix);
788 break;
789
790 case TYPE_CODE_UNION:
791 case TYPE_CODE_STRUCT:
792 case TYPE_CODE_METHODPTR:
793 default:
794 error (_("Unhandled type code %d in symbol table."),
795 TYPE_CODE (type));
796 }
797 gdb_flush (stream);
798 }
799
800 /* Print using the given LANGUAGE the data of type TYPE located at
801 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
802 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
803 STREAM according to OPTIONS. VAL is the whole object that came
804 from ADDRESS. VALADDR must point to the head of VAL's contents
805 buffer.
806
807 The language printers will pass down an adjusted EMBEDDED_OFFSET to
808 further helper subroutines as subfields of TYPE are printed. In
809 such cases, VALADDR is passed down unadjusted, as well as VAL, so
810 that VAL can be queried for metadata about the contents data being
811 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
812 buffer. For example: "has this field been optimized out", or "I'm
813 printing an object while inspecting a traceframe; has this
814 particular piece of data been collected?".
815
816 RECURSE indicates the amount of indentation to supply before
817 continuation lines; this amount is roughly twice the value of
818 RECURSE. */
819
820 void
821 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
822 CORE_ADDR address, struct ui_file *stream, int recurse,
823 const struct value *val,
824 const struct value_print_options *options,
825 const struct language_defn *language)
826 {
827 int ret = 0;
828 struct value_print_options local_opts = *options;
829 struct type *real_type = check_typedef (type);
830
831 if (local_opts.prettyformat == Val_prettyformat_default)
832 local_opts.prettyformat = (local_opts.prettyformat_structs
833 ? Val_prettyformat : Val_no_prettyformat);
834
835 QUIT;
836
837 /* Ensure that the type is complete and not just a stub. If the type is
838 only a stub and we can't find and substitute its complete type, then
839 print appropriate string and return. */
840
841 if (TYPE_STUB (real_type))
842 {
843 fprintf_filtered (stream, _("<incomplete type>"));
844 gdb_flush (stream);
845 return;
846 }
847
848 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
849 return;
850
851 if (!options->raw)
852 {
853 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
854 address, stream, recurse,
855 val, options, language);
856 if (ret)
857 return;
858 }
859
860 /* Handle summary mode. If the value is a scalar, print it;
861 otherwise, print an ellipsis. */
862 if (options->summary && !val_print_scalar_type_p (type))
863 {
864 fprintf_filtered (stream, "...");
865 return;
866 }
867
868 TRY
869 {
870 language->la_val_print (type, valaddr, embedded_offset, address,
871 stream, recurse, val,
872 &local_opts);
873 }
874 CATCH (except, RETURN_MASK_ERROR)
875 {
876 fprintf_filtered (stream, _("<error reading variable>"));
877 }
878 END_CATCH
879 }
880
881 /* Check whether the value VAL is printable. Return 1 if it is;
882 return 0 and print an appropriate error message to STREAM according to
883 OPTIONS if it is not. */
884
885 static int
886 value_check_printable (struct value *val, struct ui_file *stream,
887 const struct value_print_options *options)
888 {
889 if (val == 0)
890 {
891 fprintf_filtered (stream, _("<address of value unknown>"));
892 return 0;
893 }
894
895 if (value_entirely_optimized_out (val))
896 {
897 if (options->summary && !val_print_scalar_type_p (value_type (val)))
898 fprintf_filtered (stream, "...");
899 else
900 val_print_optimized_out (val, stream);
901 return 0;
902 }
903
904 if (value_entirely_unavailable (val))
905 {
906 if (options->summary && !val_print_scalar_type_p (value_type (val)))
907 fprintf_filtered (stream, "...");
908 else
909 val_print_unavailable (stream);
910 return 0;
911 }
912
913 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
914 {
915 fprintf_filtered (stream, _("<internal function %s>"),
916 value_internal_function_name (val));
917 return 0;
918 }
919
920 return 1;
921 }
922
923 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
924 to OPTIONS.
925
926 This is a preferable interface to val_print, above, because it uses
927 GDB's value mechanism. */
928
929 void
930 common_val_print (struct value *val, struct ui_file *stream, int recurse,
931 const struct value_print_options *options,
932 const struct language_defn *language)
933 {
934 if (!value_check_printable (val, stream, options))
935 return;
936
937 if (language->la_language == language_ada)
938 /* The value might have a dynamic type, which would cause trouble
939 below when trying to extract the value contents (since the value
940 size is determined from the type size which is unknown). So
941 get a fixed representation of our value. */
942 val = ada_to_fixed_value (val);
943
944 val_print (value_type (val), value_contents_for_printing (val),
945 value_embedded_offset (val), value_address (val),
946 stream, recurse,
947 val, options, language);
948 }
949
950 /* Print on stream STREAM the value VAL according to OPTIONS. The value
951 is printed using the current_language syntax. */
952
953 void
954 value_print (struct value *val, struct ui_file *stream,
955 const struct value_print_options *options)
956 {
957 if (!value_check_printable (val, stream, options))
958 return;
959
960 if (!options->raw)
961 {
962 int r
963 = apply_ext_lang_val_pretty_printer (value_type (val),
964 value_contents_for_printing (val),
965 value_embedded_offset (val),
966 value_address (val),
967 stream, 0,
968 val, options, current_language);
969
970 if (r)
971 return;
972 }
973
974 LA_VALUE_PRINT (val, stream, options);
975 }
976
977 /* Called by various <lang>_val_print routines to print
978 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
979 value. STREAM is where to print the value. */
980
981 void
982 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
983 struct ui_file *stream)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
986
987 if (TYPE_LENGTH (type) > sizeof (LONGEST))
988 {
989 LONGEST val;
990
991 if (TYPE_UNSIGNED (type)
992 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
993 byte_order, &val))
994 {
995 print_longest (stream, 'u', 0, val);
996 }
997 else
998 {
999 /* Signed, or we couldn't turn an unsigned value into a
1000 LONGEST. For signed values, one could assume two's
1001 complement (a reasonable assumption, I think) and do
1002 better than this. */
1003 print_hex_chars (stream, (unsigned char *) valaddr,
1004 TYPE_LENGTH (type), byte_order);
1005 }
1006 }
1007 else
1008 {
1009 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1010 unpack_long (type, valaddr));
1011 }
1012 }
1013
1014 void
1015 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1016 struct ui_file *stream)
1017 {
1018 ULONGEST val = unpack_long (type, valaddr);
1019 int bitpos, nfields = TYPE_NFIELDS (type);
1020
1021 fputs_filtered ("[ ", stream);
1022 for (bitpos = 0; bitpos < nfields; bitpos++)
1023 {
1024 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1025 && (val & ((ULONGEST)1 << bitpos)))
1026 {
1027 if (TYPE_FIELD_NAME (type, bitpos))
1028 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1029 else
1030 fprintf_filtered (stream, "#%d ", bitpos);
1031 }
1032 }
1033 fputs_filtered ("]", stream);
1034 }
1035
1036 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1037 according to OPTIONS and SIZE on STREAM. Format i is not supported
1038 at this level.
1039
1040 This is how the elements of an array or structure are printed
1041 with a format. */
1042
1043 void
1044 val_print_scalar_formatted (struct type *type,
1045 const gdb_byte *valaddr, int embedded_offset,
1046 const struct value *val,
1047 const struct value_print_options *options,
1048 int size,
1049 struct ui_file *stream)
1050 {
1051 gdb_assert (val != NULL);
1052 gdb_assert (valaddr == value_contents_for_printing_const (val));
1053
1054 /* If we get here with a string format, try again without it. Go
1055 all the way back to the language printers, which may call us
1056 again. */
1057 if (options->format == 's')
1058 {
1059 struct value_print_options opts = *options;
1060 opts.format = 0;
1061 opts.deref_ref = 0;
1062 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1063 current_language);
1064 return;
1065 }
1066
1067 /* A scalar object that does not have all bits available can't be
1068 printed, because all bits contribute to its representation. */
1069 if (value_bits_any_optimized_out (val,
1070 TARGET_CHAR_BIT * embedded_offset,
1071 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1072 val_print_optimized_out (val, stream);
1073 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1074 val_print_unavailable (stream);
1075 else
1076 print_scalar_formatted (valaddr + embedded_offset, type,
1077 options, size, stream);
1078 }
1079
1080 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1081 The raison d'etre of this function is to consolidate printing of
1082 LONG_LONG's into this one function. The format chars b,h,w,g are
1083 from print_scalar_formatted(). Numbers are printed using C
1084 format.
1085
1086 USE_C_FORMAT means to use C format in all cases. Without it,
1087 'o' and 'x' format do not include the standard C radix prefix
1088 (leading 0 or 0x).
1089
1090 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1091 and was intended to request formating according to the current
1092 language and would be used for most integers that GDB prints. The
1093 exceptional cases were things like protocols where the format of
1094 the integer is a protocol thing, not a user-visible thing). The
1095 parameter remains to preserve the information of what things might
1096 be printed with language-specific format, should we ever resurrect
1097 that capability. */
1098
1099 void
1100 print_longest (struct ui_file *stream, int format, int use_c_format,
1101 LONGEST val_long)
1102 {
1103 const char *val;
1104
1105 switch (format)
1106 {
1107 case 'd':
1108 val = int_string (val_long, 10, 1, 0, 1); break;
1109 case 'u':
1110 val = int_string (val_long, 10, 0, 0, 1); break;
1111 case 'x':
1112 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1113 case 'b':
1114 val = int_string (val_long, 16, 0, 2, 1); break;
1115 case 'h':
1116 val = int_string (val_long, 16, 0, 4, 1); break;
1117 case 'w':
1118 val = int_string (val_long, 16, 0, 8, 1); break;
1119 case 'g':
1120 val = int_string (val_long, 16, 0, 16, 1); break;
1121 break;
1122 case 'o':
1123 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1124 default:
1125 internal_error (__FILE__, __LINE__,
1126 _("failed internal consistency check"));
1127 }
1128 fputs_filtered (val, stream);
1129 }
1130
1131 /* This used to be a macro, but I don't think it is called often enough
1132 to merit such treatment. */
1133 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1134 arguments to a function, number in a value history, register number, etc.)
1135 where the value must not be larger than can fit in an int. */
1136
1137 int
1138 longest_to_int (LONGEST arg)
1139 {
1140 /* Let the compiler do the work. */
1141 int rtnval = (int) arg;
1142
1143 /* Check for overflows or underflows. */
1144 if (sizeof (LONGEST) > sizeof (int))
1145 {
1146 if (rtnval != arg)
1147 {
1148 error (_("Value out of range."));
1149 }
1150 }
1151 return (rtnval);
1152 }
1153
1154 /* Print a floating point value of type TYPE (not always a
1155 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1156
1157 void
1158 print_floating (const gdb_byte *valaddr, struct type *type,
1159 struct ui_file *stream)
1160 {
1161 DOUBLEST doub;
1162 int inv;
1163 const struct floatformat *fmt = NULL;
1164 unsigned len = TYPE_LENGTH (type);
1165 enum float_kind kind;
1166
1167 /* If it is a floating-point, check for obvious problems. */
1168 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1169 fmt = floatformat_from_type (type);
1170 if (fmt != NULL)
1171 {
1172 kind = floatformat_classify (fmt, valaddr);
1173 if (kind == float_nan)
1174 {
1175 if (floatformat_is_negative (fmt, valaddr))
1176 fprintf_filtered (stream, "-");
1177 fprintf_filtered (stream, "nan(");
1178 fputs_filtered ("0x", stream);
1179 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1180 fprintf_filtered (stream, ")");
1181 return;
1182 }
1183 else if (kind == float_infinite)
1184 {
1185 if (floatformat_is_negative (fmt, valaddr))
1186 fputs_filtered ("-", stream);
1187 fputs_filtered ("inf", stream);
1188 return;
1189 }
1190 }
1191
1192 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1193 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1194 needs to be used as that takes care of any necessary type
1195 conversions. Such conversions are of course direct to DOUBLEST
1196 and disregard any possible target floating point limitations.
1197 For instance, a u64 would be converted and displayed exactly on a
1198 host with 80 bit DOUBLEST but with loss of information on a host
1199 with 64 bit DOUBLEST. */
1200
1201 doub = unpack_double (type, valaddr, &inv);
1202 if (inv)
1203 {
1204 fprintf_filtered (stream, "<invalid float value>");
1205 return;
1206 }
1207
1208 /* FIXME: kettenis/2001-01-20: The following code makes too much
1209 assumptions about the host and target floating point format. */
1210
1211 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1212 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1213 instead uses the type's length to determine the precision of the
1214 floating-point value being printed. */
1215
1216 if (len < sizeof (double))
1217 fprintf_filtered (stream, "%.9g", (double) doub);
1218 else if (len == sizeof (double))
1219 fprintf_filtered (stream, "%.17g", (double) doub);
1220 else
1221 #ifdef PRINTF_HAS_LONG_DOUBLE
1222 fprintf_filtered (stream, "%.35Lg", doub);
1223 #else
1224 /* This at least wins with values that are representable as
1225 doubles. */
1226 fprintf_filtered (stream, "%.17g", (double) doub);
1227 #endif
1228 }
1229
1230 void
1231 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1232 struct ui_file *stream)
1233 {
1234 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1235 char decstr[MAX_DECIMAL_STRING];
1236 unsigned len = TYPE_LENGTH (type);
1237
1238 decimal_to_string (valaddr, len, byte_order, decstr);
1239 fputs_filtered (decstr, stream);
1240 return;
1241 }
1242
1243 void
1244 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1245 unsigned len, enum bfd_endian byte_order)
1246 {
1247
1248 #define BITS_IN_BYTES 8
1249
1250 const gdb_byte *p;
1251 unsigned int i;
1252 int b;
1253
1254 /* Declared "int" so it will be signed.
1255 This ensures that right shift will shift in zeros. */
1256
1257 const int mask = 0x080;
1258
1259 /* FIXME: We should be not printing leading zeroes in most cases. */
1260
1261 if (byte_order == BFD_ENDIAN_BIG)
1262 {
1263 for (p = valaddr;
1264 p < valaddr + len;
1265 p++)
1266 {
1267 /* Every byte has 8 binary characters; peel off
1268 and print from the MSB end. */
1269
1270 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1271 {
1272 if (*p & (mask >> i))
1273 b = 1;
1274 else
1275 b = 0;
1276
1277 fprintf_filtered (stream, "%1d", b);
1278 }
1279 }
1280 }
1281 else
1282 {
1283 for (p = valaddr + len - 1;
1284 p >= valaddr;
1285 p--)
1286 {
1287 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1288 {
1289 if (*p & (mask >> i))
1290 b = 1;
1291 else
1292 b = 0;
1293
1294 fprintf_filtered (stream, "%1d", b);
1295 }
1296 }
1297 }
1298 }
1299
1300 /* VALADDR points to an integer of LEN bytes.
1301 Print it in octal on stream or format it in buf. */
1302
1303 void
1304 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1305 unsigned len, enum bfd_endian byte_order)
1306 {
1307 const gdb_byte *p;
1308 unsigned char octa1, octa2, octa3, carry;
1309 int cycle;
1310
1311 /* FIXME: We should be not printing leading zeroes in most cases. */
1312
1313
1314 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1315 * the extra bits, which cycle every three bytes:
1316 *
1317 * Byte side: 0 1 2 3
1318 * | | | |
1319 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1320 *
1321 * Octal side: 0 1 carry 3 4 carry ...
1322 *
1323 * Cycle number: 0 1 2
1324 *
1325 * But of course we are printing from the high side, so we have to
1326 * figure out where in the cycle we are so that we end up with no
1327 * left over bits at the end.
1328 */
1329 #define BITS_IN_OCTAL 3
1330 #define HIGH_ZERO 0340
1331 #define LOW_ZERO 0016
1332 #define CARRY_ZERO 0003
1333 #define HIGH_ONE 0200
1334 #define MID_ONE 0160
1335 #define LOW_ONE 0016
1336 #define CARRY_ONE 0001
1337 #define HIGH_TWO 0300
1338 #define MID_TWO 0070
1339 #define LOW_TWO 0007
1340
1341 /* For 32 we start in cycle 2, with two bits and one bit carry;
1342 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1343
1344 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1345 carry = 0;
1346
1347 fputs_filtered ("0", stream);
1348 if (byte_order == BFD_ENDIAN_BIG)
1349 {
1350 for (p = valaddr;
1351 p < valaddr + len;
1352 p++)
1353 {
1354 switch (cycle)
1355 {
1356 case 0:
1357 /* No carry in, carry out two bits. */
1358
1359 octa1 = (HIGH_ZERO & *p) >> 5;
1360 octa2 = (LOW_ZERO & *p) >> 2;
1361 carry = (CARRY_ZERO & *p);
1362 fprintf_filtered (stream, "%o", octa1);
1363 fprintf_filtered (stream, "%o", octa2);
1364 break;
1365
1366 case 1:
1367 /* Carry in two bits, carry out one bit. */
1368
1369 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1370 octa2 = (MID_ONE & *p) >> 4;
1371 octa3 = (LOW_ONE & *p) >> 1;
1372 carry = (CARRY_ONE & *p);
1373 fprintf_filtered (stream, "%o", octa1);
1374 fprintf_filtered (stream, "%o", octa2);
1375 fprintf_filtered (stream, "%o", octa3);
1376 break;
1377
1378 case 2:
1379 /* Carry in one bit, no carry out. */
1380
1381 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1382 octa2 = (MID_TWO & *p) >> 3;
1383 octa3 = (LOW_TWO & *p);
1384 carry = 0;
1385 fprintf_filtered (stream, "%o", octa1);
1386 fprintf_filtered (stream, "%o", octa2);
1387 fprintf_filtered (stream, "%o", octa3);
1388 break;
1389
1390 default:
1391 error (_("Internal error in octal conversion;"));
1392 }
1393
1394 cycle++;
1395 cycle = cycle % BITS_IN_OCTAL;
1396 }
1397 }
1398 else
1399 {
1400 for (p = valaddr + len - 1;
1401 p >= valaddr;
1402 p--)
1403 {
1404 switch (cycle)
1405 {
1406 case 0:
1407 /* Carry out, no carry in */
1408
1409 octa1 = (HIGH_ZERO & *p) >> 5;
1410 octa2 = (LOW_ZERO & *p) >> 2;
1411 carry = (CARRY_ZERO & *p);
1412 fprintf_filtered (stream, "%o", octa1);
1413 fprintf_filtered (stream, "%o", octa2);
1414 break;
1415
1416 case 1:
1417 /* Carry in, carry out */
1418
1419 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1420 octa2 = (MID_ONE & *p) >> 4;
1421 octa3 = (LOW_ONE & *p) >> 1;
1422 carry = (CARRY_ONE & *p);
1423 fprintf_filtered (stream, "%o", octa1);
1424 fprintf_filtered (stream, "%o", octa2);
1425 fprintf_filtered (stream, "%o", octa3);
1426 break;
1427
1428 case 2:
1429 /* Carry in, no carry out */
1430
1431 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1432 octa2 = (MID_TWO & *p) >> 3;
1433 octa3 = (LOW_TWO & *p);
1434 carry = 0;
1435 fprintf_filtered (stream, "%o", octa1);
1436 fprintf_filtered (stream, "%o", octa2);
1437 fprintf_filtered (stream, "%o", octa3);
1438 break;
1439
1440 default:
1441 error (_("Internal error in octal conversion;"));
1442 }
1443
1444 cycle++;
1445 cycle = cycle % BITS_IN_OCTAL;
1446 }
1447 }
1448
1449 }
1450
1451 /* VALADDR points to an integer of LEN bytes.
1452 Print it in decimal on stream or format it in buf. */
1453
1454 void
1455 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1456 unsigned len, enum bfd_endian byte_order)
1457 {
1458 #define TEN 10
1459 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1460 #define CARRY_LEFT( x ) ((x) % TEN)
1461 #define SHIFT( x ) ((x) << 4)
1462 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1463 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1464
1465 const gdb_byte *p;
1466 unsigned char *digits;
1467 int carry;
1468 int decimal_len;
1469 int i, j, decimal_digits;
1470 int dummy;
1471 int flip;
1472
1473 /* Base-ten number is less than twice as many digits
1474 as the base 16 number, which is 2 digits per byte. */
1475
1476 decimal_len = len * 2 * 2;
1477 digits = xmalloc (decimal_len);
1478
1479 for (i = 0; i < decimal_len; i++)
1480 {
1481 digits[i] = 0;
1482 }
1483
1484 /* Ok, we have an unknown number of bytes of data to be printed in
1485 * decimal.
1486 *
1487 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1488 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1489 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1490 *
1491 * The trick is that "digits" holds a base-10 number, but sometimes
1492 * the individual digits are > 10.
1493 *
1494 * Outer loop is per nibble (hex digit) of input, from MSD end to
1495 * LSD end.
1496 */
1497 decimal_digits = 0; /* Number of decimal digits so far */
1498 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1499 flip = 0;
1500 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1501 {
1502 /*
1503 * Multiply current base-ten number by 16 in place.
1504 * Each digit was between 0 and 9, now is between
1505 * 0 and 144.
1506 */
1507 for (j = 0; j < decimal_digits; j++)
1508 {
1509 digits[j] = SHIFT (digits[j]);
1510 }
1511
1512 /* Take the next nibble off the input and add it to what
1513 * we've got in the LSB position. Bottom 'digit' is now
1514 * between 0 and 159.
1515 *
1516 * "flip" is used to run this loop twice for each byte.
1517 */
1518 if (flip == 0)
1519 {
1520 /* Take top nibble. */
1521
1522 digits[0] += HIGH_NIBBLE (*p);
1523 flip = 1;
1524 }
1525 else
1526 {
1527 /* Take low nibble and bump our pointer "p". */
1528
1529 digits[0] += LOW_NIBBLE (*p);
1530 if (byte_order == BFD_ENDIAN_BIG)
1531 p++;
1532 else
1533 p--;
1534 flip = 0;
1535 }
1536
1537 /* Re-decimalize. We have to do this often enough
1538 * that we don't overflow, but once per nibble is
1539 * overkill. Easier this way, though. Note that the
1540 * carry is often larger than 10 (e.g. max initial
1541 * carry out of lowest nibble is 15, could bubble all
1542 * the way up greater than 10). So we have to do
1543 * the carrying beyond the last current digit.
1544 */
1545 carry = 0;
1546 for (j = 0; j < decimal_len - 1; j++)
1547 {
1548 digits[j] += carry;
1549
1550 /* "/" won't handle an unsigned char with
1551 * a value that if signed would be negative.
1552 * So extend to longword int via "dummy".
1553 */
1554 dummy = digits[j];
1555 carry = CARRY_OUT (dummy);
1556 digits[j] = CARRY_LEFT (dummy);
1557
1558 if (j >= decimal_digits && carry == 0)
1559 {
1560 /*
1561 * All higher digits are 0 and we
1562 * no longer have a carry.
1563 *
1564 * Note: "j" is 0-based, "decimal_digits" is
1565 * 1-based.
1566 */
1567 decimal_digits = j + 1;
1568 break;
1569 }
1570 }
1571 }
1572
1573 /* Ok, now "digits" is the decimal representation, with
1574 the "decimal_digits" actual digits. Print! */
1575
1576 for (i = decimal_digits - 1; i >= 0; i--)
1577 {
1578 fprintf_filtered (stream, "%1d", digits[i]);
1579 }
1580 xfree (digits);
1581 }
1582
1583 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1584
1585 void
1586 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1587 unsigned len, enum bfd_endian byte_order)
1588 {
1589 const gdb_byte *p;
1590
1591 /* FIXME: We should be not printing leading zeroes in most cases. */
1592
1593 fputs_filtered ("0x", stream);
1594 if (byte_order == BFD_ENDIAN_BIG)
1595 {
1596 for (p = valaddr;
1597 p < valaddr + len;
1598 p++)
1599 {
1600 fprintf_filtered (stream, "%02x", *p);
1601 }
1602 }
1603 else
1604 {
1605 for (p = valaddr + len - 1;
1606 p >= valaddr;
1607 p--)
1608 {
1609 fprintf_filtered (stream, "%02x", *p);
1610 }
1611 }
1612 }
1613
1614 /* VALADDR points to a char integer of LEN bytes.
1615 Print it out in appropriate language form on stream.
1616 Omit any leading zero chars. */
1617
1618 void
1619 print_char_chars (struct ui_file *stream, struct type *type,
1620 const gdb_byte *valaddr,
1621 unsigned len, enum bfd_endian byte_order)
1622 {
1623 const gdb_byte *p;
1624
1625 if (byte_order == BFD_ENDIAN_BIG)
1626 {
1627 p = valaddr;
1628 while (p < valaddr + len - 1 && *p == 0)
1629 ++p;
1630
1631 while (p < valaddr + len)
1632 {
1633 LA_EMIT_CHAR (*p, type, stream, '\'');
1634 ++p;
1635 }
1636 }
1637 else
1638 {
1639 p = valaddr + len - 1;
1640 while (p > valaddr && *p == 0)
1641 --p;
1642
1643 while (p >= valaddr)
1644 {
1645 LA_EMIT_CHAR (*p, type, stream, '\'');
1646 --p;
1647 }
1648 }
1649 }
1650
1651 /* Print function pointer with inferior address ADDRESS onto stdio
1652 stream STREAM. */
1653
1654 void
1655 print_function_pointer_address (const struct value_print_options *options,
1656 struct gdbarch *gdbarch,
1657 CORE_ADDR address,
1658 struct ui_file *stream)
1659 {
1660 CORE_ADDR func_addr
1661 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1662 &current_target);
1663
1664 /* If the function pointer is represented by a description, print
1665 the address of the description. */
1666 if (options->addressprint && func_addr != address)
1667 {
1668 fputs_filtered ("@", stream);
1669 fputs_filtered (paddress (gdbarch, address), stream);
1670 fputs_filtered (": ", stream);
1671 }
1672 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1673 }
1674
1675
1676 /* Print on STREAM using the given OPTIONS the index for the element
1677 at INDEX of an array whose index type is INDEX_TYPE. */
1678
1679 void
1680 maybe_print_array_index (struct type *index_type, LONGEST index,
1681 struct ui_file *stream,
1682 const struct value_print_options *options)
1683 {
1684 struct value *index_value;
1685
1686 if (!options->print_array_indexes)
1687 return;
1688
1689 index_value = value_from_longest (index_type, index);
1690
1691 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1692 }
1693
1694 /* Called by various <lang>_val_print routines to print elements of an
1695 array in the form "<elem1>, <elem2>, <elem3>, ...".
1696
1697 (FIXME?) Assumes array element separator is a comma, which is correct
1698 for all languages currently handled.
1699 (FIXME?) Some languages have a notation for repeated array elements,
1700 perhaps we should try to use that notation when appropriate. */
1701
1702 void
1703 val_print_array_elements (struct type *type,
1704 const gdb_byte *valaddr, int embedded_offset,
1705 CORE_ADDR address, struct ui_file *stream,
1706 int recurse,
1707 const struct value *val,
1708 const struct value_print_options *options,
1709 unsigned int i)
1710 {
1711 unsigned int things_printed = 0;
1712 unsigned len;
1713 struct type *elttype, *index_type, *base_index_type;
1714 unsigned eltlen;
1715 /* Position of the array element we are examining to see
1716 whether it is repeated. */
1717 unsigned int rep1;
1718 /* Number of repetitions we have detected so far. */
1719 unsigned int reps;
1720 LONGEST low_bound, high_bound;
1721 LONGEST low_pos, high_pos;
1722
1723 elttype = TYPE_TARGET_TYPE (type);
1724 eltlen = TYPE_LENGTH (check_typedef (elttype));
1725 index_type = TYPE_INDEX_TYPE (type);
1726
1727 if (get_array_bounds (type, &low_bound, &high_bound))
1728 {
1729 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1730 base_index_type = TYPE_TARGET_TYPE (index_type);
1731 else
1732 base_index_type = index_type;
1733
1734 /* Non-contiguous enumerations types can by used as index types
1735 in some languages (e.g. Ada). In this case, the array length
1736 shall be computed from the positions of the first and last
1737 literal in the enumeration type, and not from the values
1738 of these literals. */
1739 if (!discrete_position (base_index_type, low_bound, &low_pos)
1740 || !discrete_position (base_index_type, high_bound, &high_pos))
1741 {
1742 warning (_("unable to get positions in array, use bounds instead"));
1743 low_pos = low_bound;
1744 high_pos = high_bound;
1745 }
1746
1747 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1748 But we have to be a little extra careful, because some languages
1749 such as Ada allow LOW_POS to be greater than HIGH_POS for
1750 empty arrays. In that situation, the array length is just zero,
1751 not negative! */
1752 if (low_pos > high_pos)
1753 len = 0;
1754 else
1755 len = high_pos - low_pos + 1;
1756 }
1757 else
1758 {
1759 warning (_("unable to get bounds of array, assuming null array"));
1760 low_bound = 0;
1761 len = 0;
1762 }
1763
1764 annotate_array_section_begin (i, elttype);
1765
1766 for (; i < len && things_printed < options->print_max; i++)
1767 {
1768 if (i != 0)
1769 {
1770 if (options->prettyformat_arrays)
1771 {
1772 fprintf_filtered (stream, ",\n");
1773 print_spaces_filtered (2 + 2 * recurse, stream);
1774 }
1775 else
1776 {
1777 fprintf_filtered (stream, ", ");
1778 }
1779 }
1780 wrap_here (n_spaces (2 + 2 * recurse));
1781 maybe_print_array_index (index_type, i + low_bound,
1782 stream, options);
1783
1784 rep1 = i + 1;
1785 reps = 1;
1786 /* Only check for reps if repeat_count_threshold is not set to
1787 UINT_MAX (unlimited). */
1788 if (options->repeat_count_threshold < UINT_MAX)
1789 {
1790 while (rep1 < len
1791 && value_contents_eq (val,
1792 embedded_offset + i * eltlen,
1793 val,
1794 (embedded_offset
1795 + rep1 * eltlen),
1796 eltlen))
1797 {
1798 ++reps;
1799 ++rep1;
1800 }
1801 }
1802
1803 if (reps > options->repeat_count_threshold)
1804 {
1805 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1806 address, stream, recurse + 1, val, options,
1807 current_language);
1808 annotate_elt_rep (reps);
1809 fprintf_filtered (stream, " <repeats %u times>", reps);
1810 annotate_elt_rep_end ();
1811
1812 i = rep1 - 1;
1813 things_printed += options->repeat_count_threshold;
1814 }
1815 else
1816 {
1817 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1818 address,
1819 stream, recurse + 1, val, options, current_language);
1820 annotate_elt ();
1821 things_printed++;
1822 }
1823 }
1824 annotate_array_section_end ();
1825 if (i < len)
1826 {
1827 fprintf_filtered (stream, "...");
1828 }
1829 }
1830
1831 /* Read LEN bytes of target memory at address MEMADDR, placing the
1832 results in GDB's memory at MYADDR. Returns a count of the bytes
1833 actually read, and optionally a target_xfer_status value in the
1834 location pointed to by ERRPTR if ERRPTR is non-null. */
1835
1836 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1837 function be eliminated. */
1838
1839 static int
1840 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1841 int len, int *errptr)
1842 {
1843 int nread; /* Number of bytes actually read. */
1844 int errcode; /* Error from last read. */
1845
1846 /* First try a complete read. */
1847 errcode = target_read_memory (memaddr, myaddr, len);
1848 if (errcode == 0)
1849 {
1850 /* Got it all. */
1851 nread = len;
1852 }
1853 else
1854 {
1855 /* Loop, reading one byte at a time until we get as much as we can. */
1856 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1857 {
1858 errcode = target_read_memory (memaddr++, myaddr++, 1);
1859 }
1860 /* If an error, the last read was unsuccessful, so adjust count. */
1861 if (errcode != 0)
1862 {
1863 nread--;
1864 }
1865 }
1866 if (errptr != NULL)
1867 {
1868 *errptr = errcode;
1869 }
1870 return (nread);
1871 }
1872
1873 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1874 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1875 allocated buffer containing the string, which the caller is responsible to
1876 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1877 success, or a target_xfer_status on failure.
1878
1879 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1880 (including eventual NULs in the middle or end of the string).
1881
1882 If LEN is -1, stops at the first null character (not necessarily
1883 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1884 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1885 the string.
1886
1887 Unless an exception is thrown, BUFFER will always be allocated, even on
1888 failure. In this case, some characters might have been read before the
1889 failure happened. Check BYTES_READ to recognize this situation.
1890
1891 Note: There was a FIXME asking to make this code use target_read_string,
1892 but this function is more general (can read past null characters, up to
1893 given LEN). Besides, it is used much more often than target_read_string
1894 so it is more tested. Perhaps callers of target_read_string should use
1895 this function instead? */
1896
1897 int
1898 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1899 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1900 {
1901 int errcode; /* Errno returned from bad reads. */
1902 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1903 gdb_byte *bufptr; /* Pointer to next available byte in
1904 buffer. */
1905 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1906
1907 /* Loop until we either have all the characters, or we encounter
1908 some error, such as bumping into the end of the address space. */
1909
1910 *buffer = NULL;
1911
1912 old_chain = make_cleanup (free_current_contents, buffer);
1913
1914 if (len > 0)
1915 {
1916 /* We want fetchlimit chars, so we might as well read them all in
1917 one operation. */
1918 unsigned int fetchlen = min (len, fetchlimit);
1919
1920 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1921 bufptr = *buffer;
1922
1923 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1924 / width;
1925 addr += nfetch * width;
1926 bufptr += nfetch * width;
1927 }
1928 else if (len == -1)
1929 {
1930 unsigned long bufsize = 0;
1931 unsigned int chunksize; /* Size of each fetch, in chars. */
1932 int found_nul; /* Non-zero if we found the nul char. */
1933 gdb_byte *limit; /* First location past end of fetch buffer. */
1934
1935 found_nul = 0;
1936 /* We are looking for a NUL terminator to end the fetching, so we
1937 might as well read in blocks that are large enough to be efficient,
1938 but not so large as to be slow if fetchlimit happens to be large.
1939 So we choose the minimum of 8 and fetchlimit. We used to use 200
1940 instead of 8 but 200 is way too big for remote debugging over a
1941 serial line. */
1942 chunksize = min (8, fetchlimit);
1943
1944 do
1945 {
1946 QUIT;
1947 nfetch = min (chunksize, fetchlimit - bufsize);
1948
1949 if (*buffer == NULL)
1950 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1951 else
1952 *buffer = (gdb_byte *) xrealloc (*buffer,
1953 (nfetch + bufsize) * width);
1954
1955 bufptr = *buffer + bufsize * width;
1956 bufsize += nfetch;
1957
1958 /* Read as much as we can. */
1959 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1960 / width;
1961
1962 /* Scan this chunk for the null character that terminates the string
1963 to print. If found, we don't need to fetch any more. Note
1964 that bufptr is explicitly left pointing at the next character
1965 after the null character, or at the next character after the end
1966 of the buffer. */
1967
1968 limit = bufptr + nfetch * width;
1969 while (bufptr < limit)
1970 {
1971 unsigned long c;
1972
1973 c = extract_unsigned_integer (bufptr, width, byte_order);
1974 addr += width;
1975 bufptr += width;
1976 if (c == 0)
1977 {
1978 /* We don't care about any error which happened after
1979 the NUL terminator. */
1980 errcode = 0;
1981 found_nul = 1;
1982 break;
1983 }
1984 }
1985 }
1986 while (errcode == 0 /* no error */
1987 && bufptr - *buffer < fetchlimit * width /* no overrun */
1988 && !found_nul); /* haven't found NUL yet */
1989 }
1990 else
1991 { /* Length of string is really 0! */
1992 /* We always allocate *buffer. */
1993 *buffer = bufptr = xmalloc (1);
1994 errcode = 0;
1995 }
1996
1997 /* bufptr and addr now point immediately beyond the last byte which we
1998 consider part of the string (including a '\0' which ends the string). */
1999 *bytes_read = bufptr - *buffer;
2000
2001 QUIT;
2002
2003 discard_cleanups (old_chain);
2004
2005 return errcode;
2006 }
2007
2008 /* Return true if print_wchar can display W without resorting to a
2009 numeric escape, false otherwise. */
2010
2011 static int
2012 wchar_printable (gdb_wchar_t w)
2013 {
2014 return (gdb_iswprint (w)
2015 || w == LCST ('\a') || w == LCST ('\b')
2016 || w == LCST ('\f') || w == LCST ('\n')
2017 || w == LCST ('\r') || w == LCST ('\t')
2018 || w == LCST ('\v'));
2019 }
2020
2021 /* A helper function that converts the contents of STRING to wide
2022 characters and then appends them to OUTPUT. */
2023
2024 static void
2025 append_string_as_wide (const char *string,
2026 struct obstack *output)
2027 {
2028 for (; *string; ++string)
2029 {
2030 gdb_wchar_t w = gdb_btowc (*string);
2031 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2032 }
2033 }
2034
2035 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2036 original (target) bytes representing the character, ORIG_LEN is the
2037 number of valid bytes. WIDTH is the number of bytes in a base
2038 characters of the type. OUTPUT is an obstack to which wide
2039 characters are emitted. QUOTER is a (narrow) character indicating
2040 the style of quotes surrounding the character to be printed.
2041 NEED_ESCAPE is an in/out flag which is used to track numeric
2042 escapes across calls. */
2043
2044 static void
2045 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2046 int orig_len, int width,
2047 enum bfd_endian byte_order,
2048 struct obstack *output,
2049 int quoter, int *need_escapep)
2050 {
2051 int need_escape = *need_escapep;
2052
2053 *need_escapep = 0;
2054
2055 /* iswprint implementation on Windows returns 1 for tab character.
2056 In order to avoid different printout on this host, we explicitly
2057 use wchar_printable function. */
2058 switch (w)
2059 {
2060 case LCST ('\a'):
2061 obstack_grow_wstr (output, LCST ("\\a"));
2062 break;
2063 case LCST ('\b'):
2064 obstack_grow_wstr (output, LCST ("\\b"));
2065 break;
2066 case LCST ('\f'):
2067 obstack_grow_wstr (output, LCST ("\\f"));
2068 break;
2069 case LCST ('\n'):
2070 obstack_grow_wstr (output, LCST ("\\n"));
2071 break;
2072 case LCST ('\r'):
2073 obstack_grow_wstr (output, LCST ("\\r"));
2074 break;
2075 case LCST ('\t'):
2076 obstack_grow_wstr (output, LCST ("\\t"));
2077 break;
2078 case LCST ('\v'):
2079 obstack_grow_wstr (output, LCST ("\\v"));
2080 break;
2081 default:
2082 {
2083 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2084 && w != LCST ('8')
2085 && w != LCST ('9'))))
2086 {
2087 gdb_wchar_t wchar = w;
2088
2089 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2090 obstack_grow_wstr (output, LCST ("\\"));
2091 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2092 }
2093 else
2094 {
2095 int i;
2096
2097 for (i = 0; i + width <= orig_len; i += width)
2098 {
2099 char octal[30];
2100 ULONGEST value;
2101
2102 value = extract_unsigned_integer (&orig[i], width,
2103 byte_order);
2104 /* If the value fits in 3 octal digits, print it that
2105 way. Otherwise, print it as a hex escape. */
2106 if (value <= 0777)
2107 xsnprintf (octal, sizeof (octal), "\\%.3o",
2108 (int) (value & 0777));
2109 else
2110 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2111 append_string_as_wide (octal, output);
2112 }
2113 /* If we somehow have extra bytes, print them now. */
2114 while (i < orig_len)
2115 {
2116 char octal[5];
2117
2118 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2119 append_string_as_wide (octal, output);
2120 ++i;
2121 }
2122
2123 *need_escapep = 1;
2124 }
2125 break;
2126 }
2127 }
2128 }
2129
2130 /* Print the character C on STREAM as part of the contents of a
2131 literal string whose delimiter is QUOTER. ENCODING names the
2132 encoding of C. */
2133
2134 void
2135 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2136 int quoter, const char *encoding)
2137 {
2138 enum bfd_endian byte_order
2139 = gdbarch_byte_order (get_type_arch (type));
2140 struct obstack wchar_buf, output;
2141 struct cleanup *cleanups;
2142 gdb_byte *buf;
2143 struct wchar_iterator *iter;
2144 int need_escape = 0;
2145
2146 buf = alloca (TYPE_LENGTH (type));
2147 pack_long (buf, type, c);
2148
2149 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2150 encoding, TYPE_LENGTH (type));
2151 cleanups = make_cleanup_wchar_iterator (iter);
2152
2153 /* This holds the printable form of the wchar_t data. */
2154 obstack_init (&wchar_buf);
2155 make_cleanup_obstack_free (&wchar_buf);
2156
2157 while (1)
2158 {
2159 int num_chars;
2160 gdb_wchar_t *chars;
2161 const gdb_byte *buf;
2162 size_t buflen;
2163 int print_escape = 1;
2164 enum wchar_iterate_result result;
2165
2166 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2167 if (num_chars < 0)
2168 break;
2169 if (num_chars > 0)
2170 {
2171 /* If all characters are printable, print them. Otherwise,
2172 we're going to have to print an escape sequence. We
2173 check all characters because we want to print the target
2174 bytes in the escape sequence, and we don't know character
2175 boundaries there. */
2176 int i;
2177
2178 print_escape = 0;
2179 for (i = 0; i < num_chars; ++i)
2180 if (!wchar_printable (chars[i]))
2181 {
2182 print_escape = 1;
2183 break;
2184 }
2185
2186 if (!print_escape)
2187 {
2188 for (i = 0; i < num_chars; ++i)
2189 print_wchar (chars[i], buf, buflen,
2190 TYPE_LENGTH (type), byte_order,
2191 &wchar_buf, quoter, &need_escape);
2192 }
2193 }
2194
2195 /* This handles the NUM_CHARS == 0 case as well. */
2196 if (print_escape)
2197 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2198 byte_order, &wchar_buf, quoter, &need_escape);
2199 }
2200
2201 /* The output in the host encoding. */
2202 obstack_init (&output);
2203 make_cleanup_obstack_free (&output);
2204
2205 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2206 (gdb_byte *) obstack_base (&wchar_buf),
2207 obstack_object_size (&wchar_buf),
2208 sizeof (gdb_wchar_t), &output, translit_char);
2209 obstack_1grow (&output, '\0');
2210
2211 fputs_filtered (obstack_base (&output), stream);
2212
2213 do_cleanups (cleanups);
2214 }
2215
2216 /* Return the repeat count of the next character/byte in ITER,
2217 storing the result in VEC. */
2218
2219 static int
2220 count_next_character (struct wchar_iterator *iter,
2221 VEC (converted_character_d) **vec)
2222 {
2223 struct converted_character *current;
2224
2225 if (VEC_empty (converted_character_d, *vec))
2226 {
2227 struct converted_character tmp;
2228 gdb_wchar_t *chars;
2229
2230 tmp.num_chars
2231 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2232 if (tmp.num_chars > 0)
2233 {
2234 gdb_assert (tmp.num_chars < MAX_WCHARS);
2235 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2236 }
2237 VEC_safe_push (converted_character_d, *vec, &tmp);
2238 }
2239
2240 current = VEC_last (converted_character_d, *vec);
2241
2242 /* Count repeated characters or bytes. */
2243 current->repeat_count = 1;
2244 if (current->num_chars == -1)
2245 {
2246 /* EOF */
2247 return -1;
2248 }
2249 else
2250 {
2251 gdb_wchar_t *chars;
2252 struct converted_character d;
2253 int repeat;
2254
2255 d.repeat_count = 0;
2256
2257 while (1)
2258 {
2259 /* Get the next character. */
2260 d.num_chars
2261 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2262
2263 /* If a character was successfully converted, save the character
2264 into the converted character. */
2265 if (d.num_chars > 0)
2266 {
2267 gdb_assert (d.num_chars < MAX_WCHARS);
2268 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2269 }
2270
2271 /* Determine if the current character is the same as this
2272 new character. */
2273 if (d.num_chars == current->num_chars && d.result == current->result)
2274 {
2275 /* There are two cases to consider:
2276
2277 1) Equality of converted character (num_chars > 0)
2278 2) Equality of non-converted character (num_chars == 0) */
2279 if ((current->num_chars > 0
2280 && memcmp (current->chars, d.chars,
2281 WCHAR_BUFLEN (current->num_chars)) == 0)
2282 || (current->num_chars == 0
2283 && current->buflen == d.buflen
2284 && memcmp (current->buf, d.buf, current->buflen) == 0))
2285 ++current->repeat_count;
2286 else
2287 break;
2288 }
2289 else
2290 break;
2291 }
2292
2293 /* Push this next converted character onto the result vector. */
2294 repeat = current->repeat_count;
2295 VEC_safe_push (converted_character_d, *vec, &d);
2296 return repeat;
2297 }
2298 }
2299
2300 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2301 character to use with string output. WIDTH is the size of the output
2302 character type. BYTE_ORDER is the the target byte order. OPTIONS
2303 is the user's print options. */
2304
2305 static void
2306 print_converted_chars_to_obstack (struct obstack *obstack,
2307 VEC (converted_character_d) *chars,
2308 int quote_char, int width,
2309 enum bfd_endian byte_order,
2310 const struct value_print_options *options)
2311 {
2312 unsigned int idx;
2313 struct converted_character *elem;
2314 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2315 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2316 int need_escape = 0;
2317
2318 /* Set the start state. */
2319 idx = 0;
2320 last = state = START;
2321 elem = NULL;
2322
2323 while (1)
2324 {
2325 switch (state)
2326 {
2327 case START:
2328 /* Nothing to do. */
2329 break;
2330
2331 case SINGLE:
2332 {
2333 int j;
2334
2335 /* We are outputting a single character
2336 (< options->repeat_count_threshold). */
2337
2338 if (last != SINGLE)
2339 {
2340 /* We were outputting some other type of content, so we
2341 must output and a comma and a quote. */
2342 if (last != START)
2343 obstack_grow_wstr (obstack, LCST (", "));
2344 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2345 }
2346 /* Output the character. */
2347 for (j = 0; j < elem->repeat_count; ++j)
2348 {
2349 if (elem->result == wchar_iterate_ok)
2350 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2351 byte_order, obstack, quote_char, &need_escape);
2352 else
2353 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2354 byte_order, obstack, quote_char, &need_escape);
2355 }
2356 }
2357 break;
2358
2359 case REPEAT:
2360 {
2361 int j;
2362 char *s;
2363
2364 /* We are outputting a character with a repeat count
2365 greater than options->repeat_count_threshold. */
2366
2367 if (last == SINGLE)
2368 {
2369 /* We were outputting a single string. Terminate the
2370 string. */
2371 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2372 }
2373 if (last != START)
2374 obstack_grow_wstr (obstack, LCST (", "));
2375
2376 /* Output the character and repeat string. */
2377 obstack_grow_wstr (obstack, LCST ("'"));
2378 if (elem->result == wchar_iterate_ok)
2379 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2380 byte_order, obstack, quote_char, &need_escape);
2381 else
2382 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2383 byte_order, obstack, quote_char, &need_escape);
2384 obstack_grow_wstr (obstack, LCST ("'"));
2385 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2386 for (j = 0; s[j]; ++j)
2387 {
2388 gdb_wchar_t w = gdb_btowc (s[j]);
2389 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2390 }
2391 xfree (s);
2392 }
2393 break;
2394
2395 case INCOMPLETE:
2396 /* We are outputting an incomplete sequence. */
2397 if (last == SINGLE)
2398 {
2399 /* If we were outputting a string of SINGLE characters,
2400 terminate the quote. */
2401 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2402 }
2403 if (last != START)
2404 obstack_grow_wstr (obstack, LCST (", "));
2405
2406 /* Output the incomplete sequence string. */
2407 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2408 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2409 obstack, 0, &need_escape);
2410 obstack_grow_wstr (obstack, LCST (">"));
2411
2412 /* We do not attempt to outupt anything after this. */
2413 state = FINISH;
2414 break;
2415
2416 case FINISH:
2417 /* All done. If we were outputting a string of SINGLE
2418 characters, the string must be terminated. Otherwise,
2419 REPEAT and INCOMPLETE are always left properly terminated. */
2420 if (last == SINGLE)
2421 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2422
2423 return;
2424 }
2425
2426 /* Get the next element and state. */
2427 last = state;
2428 if (state != FINISH)
2429 {
2430 elem = VEC_index (converted_character_d, chars, idx++);
2431 switch (elem->result)
2432 {
2433 case wchar_iterate_ok:
2434 case wchar_iterate_invalid:
2435 if (elem->repeat_count > options->repeat_count_threshold)
2436 state = REPEAT;
2437 else
2438 state = SINGLE;
2439 break;
2440
2441 case wchar_iterate_incomplete:
2442 state = INCOMPLETE;
2443 break;
2444
2445 case wchar_iterate_eof:
2446 state = FINISH;
2447 break;
2448 }
2449 }
2450 }
2451 }
2452
2453 /* Print the character string STRING, printing at most LENGTH
2454 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2455 the type of each character. OPTIONS holds the printing options;
2456 printing stops early if the number hits print_max; repeat counts
2457 are printed as appropriate. Print ellipses at the end if we had to
2458 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2459 QUOTE_CHAR is the character to print at each end of the string. If
2460 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2461 omitted. */
2462
2463 void
2464 generic_printstr (struct ui_file *stream, struct type *type,
2465 const gdb_byte *string, unsigned int length,
2466 const char *encoding, int force_ellipses,
2467 int quote_char, int c_style_terminator,
2468 const struct value_print_options *options)
2469 {
2470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2471 unsigned int i;
2472 int width = TYPE_LENGTH (type);
2473 struct obstack wchar_buf, output;
2474 struct cleanup *cleanup;
2475 struct wchar_iterator *iter;
2476 int finished = 0;
2477 struct converted_character *last;
2478 VEC (converted_character_d) *converted_chars;
2479
2480 if (length == -1)
2481 {
2482 unsigned long current_char = 1;
2483
2484 for (i = 0; current_char; ++i)
2485 {
2486 QUIT;
2487 current_char = extract_unsigned_integer (string + i * width,
2488 width, byte_order);
2489 }
2490 length = i;
2491 }
2492
2493 /* If the string was not truncated due to `set print elements', and
2494 the last byte of it is a null, we don't print that, in
2495 traditional C style. */
2496 if (c_style_terminator
2497 && !force_ellipses
2498 && length > 0
2499 && (extract_unsigned_integer (string + (length - 1) * width,
2500 width, byte_order) == 0))
2501 length--;
2502
2503 if (length == 0)
2504 {
2505 fputs_filtered ("\"\"", stream);
2506 return;
2507 }
2508
2509 /* Arrange to iterate over the characters, in wchar_t form. */
2510 iter = make_wchar_iterator (string, length * width, encoding, width);
2511 cleanup = make_cleanup_wchar_iterator (iter);
2512 converted_chars = NULL;
2513 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2514
2515 /* Convert characters until the string is over or the maximum
2516 number of printed characters has been reached. */
2517 i = 0;
2518 while (i < options->print_max)
2519 {
2520 int r;
2521
2522 QUIT;
2523
2524 /* Grab the next character and repeat count. */
2525 r = count_next_character (iter, &converted_chars);
2526
2527 /* If less than zero, the end of the input string was reached. */
2528 if (r < 0)
2529 break;
2530
2531 /* Otherwise, add the count to the total print count and get
2532 the next character. */
2533 i += r;
2534 }
2535
2536 /* Get the last element and determine if the entire string was
2537 processed. */
2538 last = VEC_last (converted_character_d, converted_chars);
2539 finished = (last->result == wchar_iterate_eof);
2540
2541 /* Ensure that CONVERTED_CHARS is terminated. */
2542 last->result = wchar_iterate_eof;
2543
2544 /* WCHAR_BUF is the obstack we use to represent the string in
2545 wchar_t form. */
2546 obstack_init (&wchar_buf);
2547 make_cleanup_obstack_free (&wchar_buf);
2548
2549 /* Print the output string to the obstack. */
2550 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2551 width, byte_order, options);
2552
2553 if (force_ellipses || !finished)
2554 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2555
2556 /* OUTPUT is where we collect `char's for printing. */
2557 obstack_init (&output);
2558 make_cleanup_obstack_free (&output);
2559
2560 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2561 (gdb_byte *) obstack_base (&wchar_buf),
2562 obstack_object_size (&wchar_buf),
2563 sizeof (gdb_wchar_t), &output, translit_char);
2564 obstack_1grow (&output, '\0');
2565
2566 fputs_filtered (obstack_base (&output), stream);
2567
2568 do_cleanups (cleanup);
2569 }
2570
2571 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2572 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2573 stops at the first null byte, otherwise printing proceeds (including null
2574 bytes) until either print_max or LEN characters have been printed,
2575 whichever is smaller. ENCODING is the name of the string's
2576 encoding. It can be NULL, in which case the target encoding is
2577 assumed. */
2578
2579 int
2580 val_print_string (struct type *elttype, const char *encoding,
2581 CORE_ADDR addr, int len,
2582 struct ui_file *stream,
2583 const struct value_print_options *options)
2584 {
2585 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2586 int errcode; /* Errno returned from bad reads. */
2587 int found_nul; /* Non-zero if we found the nul char. */
2588 unsigned int fetchlimit; /* Maximum number of chars to print. */
2589 int bytes_read;
2590 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2591 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2592 struct gdbarch *gdbarch = get_type_arch (elttype);
2593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2594 int width = TYPE_LENGTH (elttype);
2595
2596 /* First we need to figure out the limit on the number of characters we are
2597 going to attempt to fetch and print. This is actually pretty simple. If
2598 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2599 LEN is -1, then the limit is print_max. This is true regardless of
2600 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2601 because finding the null byte (or available memory) is what actually
2602 limits the fetch. */
2603
2604 fetchlimit = (len == -1 ? options->print_max : min (len,
2605 options->print_max));
2606
2607 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2608 &buffer, &bytes_read);
2609 old_chain = make_cleanup (xfree, buffer);
2610
2611 addr += bytes_read;
2612
2613 /* We now have either successfully filled the buffer to fetchlimit,
2614 or terminated early due to an error or finding a null char when
2615 LEN is -1. */
2616
2617 /* Determine found_nul by looking at the last character read. */
2618 found_nul = 0;
2619 if (bytes_read >= width)
2620 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2621 byte_order) == 0;
2622 if (len == -1 && !found_nul)
2623 {
2624 gdb_byte *peekbuf;
2625
2626 /* We didn't find a NUL terminator we were looking for. Attempt
2627 to peek at the next character. If not successful, or it is not
2628 a null byte, then force ellipsis to be printed. */
2629
2630 peekbuf = (gdb_byte *) alloca (width);
2631
2632 if (target_read_memory (addr, peekbuf, width) == 0
2633 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2634 force_ellipsis = 1;
2635 }
2636 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2637 {
2638 /* Getting an error when we have a requested length, or fetching less
2639 than the number of characters actually requested, always make us
2640 print ellipsis. */
2641 force_ellipsis = 1;
2642 }
2643
2644 /* If we get an error before fetching anything, don't print a string.
2645 But if we fetch something and then get an error, print the string
2646 and then the error message. */
2647 if (errcode == 0 || bytes_read > 0)
2648 {
2649 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2650 encoding, force_ellipsis, options);
2651 }
2652
2653 if (errcode != 0)
2654 {
2655 char *str;
2656
2657 str = memory_error_message (errcode, gdbarch, addr);
2658 make_cleanup (xfree, str);
2659
2660 fprintf_filtered (stream, "<error: ");
2661 fputs_filtered (str, stream);
2662 fprintf_filtered (stream, ">");
2663 }
2664
2665 gdb_flush (stream);
2666 do_cleanups (old_chain);
2667
2668 return (bytes_read / width);
2669 }
2670 \f
2671
2672 /* The 'set input-radix' command writes to this auxiliary variable.
2673 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2674 it is left unchanged. */
2675
2676 static unsigned input_radix_1 = 10;
2677
2678 /* Validate an input or output radix setting, and make sure the user
2679 knows what they really did here. Radix setting is confusing, e.g.
2680 setting the input radix to "10" never changes it! */
2681
2682 static void
2683 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2684 {
2685 set_input_radix_1 (from_tty, input_radix_1);
2686 }
2687
2688 static void
2689 set_input_radix_1 (int from_tty, unsigned radix)
2690 {
2691 /* We don't currently disallow any input radix except 0 or 1, which don't
2692 make any mathematical sense. In theory, we can deal with any input
2693 radix greater than 1, even if we don't have unique digits for every
2694 value from 0 to radix-1, but in practice we lose on large radix values.
2695 We should either fix the lossage or restrict the radix range more.
2696 (FIXME). */
2697
2698 if (radix < 2)
2699 {
2700 input_radix_1 = input_radix;
2701 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2702 radix);
2703 }
2704 input_radix_1 = input_radix = radix;
2705 if (from_tty)
2706 {
2707 printf_filtered (_("Input radix now set to "
2708 "decimal %u, hex %x, octal %o.\n"),
2709 radix, radix, radix);
2710 }
2711 }
2712
2713 /* The 'set output-radix' command writes to this auxiliary variable.
2714 If the requested radix is valid, OUTPUT_RADIX is updated,
2715 otherwise, it is left unchanged. */
2716
2717 static unsigned output_radix_1 = 10;
2718
2719 static void
2720 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2721 {
2722 set_output_radix_1 (from_tty, output_radix_1);
2723 }
2724
2725 static void
2726 set_output_radix_1 (int from_tty, unsigned radix)
2727 {
2728 /* Validate the radix and disallow ones that we aren't prepared to
2729 handle correctly, leaving the radix unchanged. */
2730 switch (radix)
2731 {
2732 case 16:
2733 user_print_options.output_format = 'x'; /* hex */
2734 break;
2735 case 10:
2736 user_print_options.output_format = 0; /* decimal */
2737 break;
2738 case 8:
2739 user_print_options.output_format = 'o'; /* octal */
2740 break;
2741 default:
2742 output_radix_1 = output_radix;
2743 error (_("Unsupported output radix ``decimal %u''; "
2744 "output radix unchanged."),
2745 radix);
2746 }
2747 output_radix_1 = output_radix = radix;
2748 if (from_tty)
2749 {
2750 printf_filtered (_("Output radix now set to "
2751 "decimal %u, hex %x, octal %o.\n"),
2752 radix, radix, radix);
2753 }
2754 }
2755
2756 /* Set both the input and output radix at once. Try to set the output radix
2757 first, since it has the most restrictive range. An radix that is valid as
2758 an output radix is also valid as an input radix.
2759
2760 It may be useful to have an unusual input radix. If the user wishes to
2761 set an input radix that is not valid as an output radix, he needs to use
2762 the 'set input-radix' command. */
2763
2764 static void
2765 set_radix (char *arg, int from_tty)
2766 {
2767 unsigned radix;
2768
2769 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2770 set_output_radix_1 (0, radix);
2771 set_input_radix_1 (0, radix);
2772 if (from_tty)
2773 {
2774 printf_filtered (_("Input and output radices now set to "
2775 "decimal %u, hex %x, octal %o.\n"),
2776 radix, radix, radix);
2777 }
2778 }
2779
2780 /* Show both the input and output radices. */
2781
2782 static void
2783 show_radix (char *arg, int from_tty)
2784 {
2785 if (from_tty)
2786 {
2787 if (input_radix == output_radix)
2788 {
2789 printf_filtered (_("Input and output radices set to "
2790 "decimal %u, hex %x, octal %o.\n"),
2791 input_radix, input_radix, input_radix);
2792 }
2793 else
2794 {
2795 printf_filtered (_("Input radix set to decimal "
2796 "%u, hex %x, octal %o.\n"),
2797 input_radix, input_radix, input_radix);
2798 printf_filtered (_("Output radix set to decimal "
2799 "%u, hex %x, octal %o.\n"),
2800 output_radix, output_radix, output_radix);
2801 }
2802 }
2803 }
2804 \f
2805
2806 static void
2807 set_print (char *arg, int from_tty)
2808 {
2809 printf_unfiltered (
2810 "\"set print\" must be followed by the name of a print subcommand.\n");
2811 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2812 }
2813
2814 static void
2815 show_print (char *args, int from_tty)
2816 {
2817 cmd_show_list (showprintlist, from_tty, "");
2818 }
2819
2820 static void
2821 set_print_raw (char *arg, int from_tty)
2822 {
2823 printf_unfiltered (
2824 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2825 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2826 }
2827
2828 static void
2829 show_print_raw (char *args, int from_tty)
2830 {
2831 cmd_show_list (showprintrawlist, from_tty, "");
2832 }
2833
2834 \f
2835 void
2836 _initialize_valprint (void)
2837 {
2838 add_prefix_cmd ("print", no_class, set_print,
2839 _("Generic command for setting how things print."),
2840 &setprintlist, "set print ", 0, &setlist);
2841 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2842 /* Prefer set print to set prompt. */
2843 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2844
2845 add_prefix_cmd ("print", no_class, show_print,
2846 _("Generic command for showing print settings."),
2847 &showprintlist, "show print ", 0, &showlist);
2848 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2849 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2850
2851 add_prefix_cmd ("raw", no_class, set_print_raw,
2852 _("\
2853 Generic command for setting what things to print in \"raw\" mode."),
2854 &setprintrawlist, "set print raw ", 0, &setprintlist);
2855 add_prefix_cmd ("raw", no_class, show_print_raw,
2856 _("Generic command for showing \"print raw\" settings."),
2857 &showprintrawlist, "show print raw ", 0, &showprintlist);
2858
2859 add_setshow_uinteger_cmd ("elements", no_class,
2860 &user_print_options.print_max, _("\
2861 Set limit on string chars or array elements to print."), _("\
2862 Show limit on string chars or array elements to print."), _("\
2863 \"set print elements unlimited\" causes there to be no limit."),
2864 NULL,
2865 show_print_max,
2866 &setprintlist, &showprintlist);
2867
2868 add_setshow_boolean_cmd ("null-stop", no_class,
2869 &user_print_options.stop_print_at_null, _("\
2870 Set printing of char arrays to stop at first null char."), _("\
2871 Show printing of char arrays to stop at first null char."), NULL,
2872 NULL,
2873 show_stop_print_at_null,
2874 &setprintlist, &showprintlist);
2875
2876 add_setshow_uinteger_cmd ("repeats", no_class,
2877 &user_print_options.repeat_count_threshold, _("\
2878 Set threshold for repeated print elements."), _("\
2879 Show threshold for repeated print elements."), _("\
2880 \"set print repeats unlimited\" causes all elements to be individually printed."),
2881 NULL,
2882 show_repeat_count_threshold,
2883 &setprintlist, &showprintlist);
2884
2885 add_setshow_boolean_cmd ("pretty", class_support,
2886 &user_print_options.prettyformat_structs, _("\
2887 Set pretty formatting of structures."), _("\
2888 Show pretty formatting of structures."), NULL,
2889 NULL,
2890 show_prettyformat_structs,
2891 &setprintlist, &showprintlist);
2892
2893 add_setshow_boolean_cmd ("union", class_support,
2894 &user_print_options.unionprint, _("\
2895 Set printing of unions interior to structures."), _("\
2896 Show printing of unions interior to structures."), NULL,
2897 NULL,
2898 show_unionprint,
2899 &setprintlist, &showprintlist);
2900
2901 add_setshow_boolean_cmd ("array", class_support,
2902 &user_print_options.prettyformat_arrays, _("\
2903 Set pretty formatting of arrays."), _("\
2904 Show pretty formatting of arrays."), NULL,
2905 NULL,
2906 show_prettyformat_arrays,
2907 &setprintlist, &showprintlist);
2908
2909 add_setshow_boolean_cmd ("address", class_support,
2910 &user_print_options.addressprint, _("\
2911 Set printing of addresses."), _("\
2912 Show printing of addresses."), NULL,
2913 NULL,
2914 show_addressprint,
2915 &setprintlist, &showprintlist);
2916
2917 add_setshow_boolean_cmd ("symbol", class_support,
2918 &user_print_options.symbol_print, _("\
2919 Set printing of symbol names when printing pointers."), _("\
2920 Show printing of symbol names when printing pointers."),
2921 NULL, NULL,
2922 show_symbol_print,
2923 &setprintlist, &showprintlist);
2924
2925 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2926 _("\
2927 Set default input radix for entering numbers."), _("\
2928 Show default input radix for entering numbers."), NULL,
2929 set_input_radix,
2930 show_input_radix,
2931 &setlist, &showlist);
2932
2933 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2934 _("\
2935 Set default output radix for printing of values."), _("\
2936 Show default output radix for printing of values."), NULL,
2937 set_output_radix,
2938 show_output_radix,
2939 &setlist, &showlist);
2940
2941 /* The "set radix" and "show radix" commands are special in that
2942 they are like normal set and show commands but allow two normally
2943 independent variables to be either set or shown with a single
2944 command. So the usual deprecated_add_set_cmd() and [deleted]
2945 add_show_from_set() commands aren't really appropriate. */
2946 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2947 longer true - show can display anything. */
2948 add_cmd ("radix", class_support, set_radix, _("\
2949 Set default input and output number radices.\n\
2950 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2951 Without an argument, sets both radices back to the default value of 10."),
2952 &setlist);
2953 add_cmd ("radix", class_support, show_radix, _("\
2954 Show the default input and output number radices.\n\
2955 Use 'show input-radix' or 'show output-radix' to independently show each."),
2956 &showlist);
2957
2958 add_setshow_boolean_cmd ("array-indexes", class_support,
2959 &user_print_options.print_array_indexes, _("\
2960 Set printing of array indexes."), _("\
2961 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2962 &setprintlist, &showprintlist);
2963 }
This page took 0.133597 seconds and 5 git commands to generate.