Remove val_print_type_code_int
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40
41 /* Maximum number of wchars returned from wchar_iterate. */
42 #define MAX_WCHARS 4
43
44 /* A convenience macro to compute the size of a wchar_t buffer containing X
45 characters. */
46 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
47
48 /* Character buffer size saved while iterating over wchars. */
49 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
50
51 /* A structure to encapsulate state information from iterated
52 character conversions. */
53 struct converted_character
54 {
55 /* The number of characters converted. */
56 int num_chars;
57
58 /* The result of the conversion. See charset.h for more. */
59 enum wchar_iterate_result result;
60
61 /* The (saved) converted character(s). */
62 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
63
64 /* The first converted target byte. */
65 const gdb_byte *buf;
66
67 /* The number of bytes converted. */
68 size_t buflen;
69
70 /* How many times this character(s) is repeated. */
71 int repeat_count;
72 };
73
74 typedef struct converted_character converted_character_d;
75 DEF_VEC_O (converted_character_d);
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void show_print (char *, int);
87
88 static void set_print (char *, int);
89
90 static void set_radix (char *, int);
91
92 static void show_radix (char *, int);
93
94 static void set_input_radix (char *, int, struct cmd_list_element *);
95
96 static void set_input_radix_1 (int, unsigned);
97
98 static void set_output_radix (char *, int, struct cmd_list_element *);
99
100 static void set_output_radix_1 (int, unsigned);
101
102 static void val_print_type_code_flags (struct type *type,
103 const gdb_byte *valaddr,
104 struct ui_file *stream);
105
106 void _initialize_valprint (void);
107
108 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
109
110 struct value_print_options user_print_options =
111 {
112 Val_prettyformat_default, /* prettyformat */
113 0, /* prettyformat_arrays */
114 0, /* prettyformat_structs */
115 0, /* vtblprint */
116 1, /* unionprint */
117 1, /* addressprint */
118 0, /* objectprint */
119 PRINT_MAX_DEFAULT, /* print_max */
120 10, /* repeat_count_threshold */
121 0, /* output_format */
122 0, /* format */
123 0, /* stop_print_at_null */
124 0, /* print_array_indexes */
125 0, /* deref_ref */
126 1, /* static_field_print */
127 1, /* pascal_static_field_print */
128 0, /* raw */
129 0, /* summary */
130 1 /* symbol_print */
131 };
132
133 /* Initialize *OPTS to be a copy of the user print options. */
134 void
135 get_user_print_options (struct value_print_options *opts)
136 {
137 *opts = user_print_options;
138 }
139
140 /* Initialize *OPTS to be a copy of the user print options, but with
141 pretty-formatting disabled. */
142 void
143 get_no_prettyformat_print_options (struct value_print_options *opts)
144 {
145 *opts = user_print_options;
146 opts->prettyformat = Val_no_prettyformat;
147 }
148
149 /* Initialize *OPTS to be a copy of the user print options, but using
150 FORMAT as the formatting option. */
151 void
152 get_formatted_print_options (struct value_print_options *opts,
153 char format)
154 {
155 *opts = user_print_options;
156 opts->format = format;
157 }
158
159 static void
160 show_print_max (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file,
164 _("Limit on string chars or array "
165 "elements to print is %s.\n"),
166 value);
167 }
168
169
170 /* Default input and output radixes, and output format letter. */
171
172 unsigned input_radix = 10;
173 static void
174 show_input_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default input radix for entering numbers is %s.\n"),
179 value);
180 }
181
182 unsigned output_radix = 10;
183 static void
184 show_output_radix (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file,
188 _("Default output radix for printing of values is %s.\n"),
189 value);
190 }
191
192 /* By default we print arrays without printing the index of each element in
193 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
194
195 static void
196 show_print_array_indexes (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
200 }
201
202 /* Print repeat counts if there are more than this many repetitions of an
203 element in an array. Referenced by the low level language dependent
204 print routines. */
205
206 static void
207 show_repeat_count_threshold (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
211 value);
212 }
213
214 /* If nonzero, stops printing of char arrays at first null. */
215
216 static void
217 show_stop_print_at_null (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file,
221 _("Printing of char arrays to stop "
222 "at first null char is %s.\n"),
223 value);
224 }
225
226 /* Controls pretty printing of structures. */
227
228 static void
229 show_prettyformat_structs (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
233 }
234
235 /* Controls pretty printing of arrays. */
236
237 static void
238 show_prettyformat_arrays (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
242 }
243
244 /* If nonzero, causes unions inside structures or other unions to be
245 printed. */
246
247 static void
248 show_unionprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file,
252 _("Printing of unions interior to structures is %s.\n"),
253 value);
254 }
255
256 /* If nonzero, causes machine addresses to be printed in certain contexts. */
257
258 static void
259 show_addressprint (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261 {
262 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
263 }
264
265 static void
266 show_symbol_print (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268 {
269 fprintf_filtered (file,
270 _("Printing of symbols when printing pointers is %s.\n"),
271 value);
272 }
273
274 \f
275
276 /* A helper function for val_print. When printing in "summary" mode,
277 we want to print scalar arguments, but not aggregate arguments.
278 This function distinguishes between the two. */
279
280 int
281 val_print_scalar_type_p (struct type *type)
282 {
283 type = check_typedef (type);
284 while (TYPE_IS_REFERENCE (type))
285 {
286 type = TYPE_TARGET_TYPE (type);
287 type = check_typedef (type);
288 }
289 switch (TYPE_CODE (type))
290 {
291 case TYPE_CODE_ARRAY:
292 case TYPE_CODE_STRUCT:
293 case TYPE_CODE_UNION:
294 case TYPE_CODE_SET:
295 case TYPE_CODE_STRING:
296 return 0;
297 default:
298 return 1;
299 }
300 }
301
302 /* See its definition in value.h. */
303
304 int
305 valprint_check_validity (struct ui_file *stream,
306 struct type *type,
307 LONGEST embedded_offset,
308 const struct value *val)
309 {
310 type = check_typedef (type);
311
312 if (type_not_associated (type))
313 {
314 val_print_not_associated (stream);
315 return 0;
316 }
317
318 if (type_not_allocated (type))
319 {
320 val_print_not_allocated (stream);
321 return 0;
322 }
323
324 if (TYPE_CODE (type) != TYPE_CODE_UNION
325 && TYPE_CODE (type) != TYPE_CODE_STRUCT
326 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
327 {
328 if (value_bits_any_optimized_out (val,
329 TARGET_CHAR_BIT * embedded_offset,
330 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
331 {
332 val_print_optimized_out (val, stream);
333 return 0;
334 }
335
336 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
337 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
338 {
339 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
340 int ref_is_addressable = 0;
341
342 if (is_ref)
343 {
344 const struct value *deref_val = coerce_ref_if_computed (val);
345
346 if (deref_val != NULL)
347 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
348 }
349
350 if (!is_ref || !ref_is_addressable)
351 fputs_filtered (_("<synthetic pointer>"), stream);
352
353 /* C++ references should be valid even if they're synthetic. */
354 return is_ref;
355 }
356
357 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
358 {
359 val_print_unavailable (stream);
360 return 0;
361 }
362 }
363
364 return 1;
365 }
366
367 void
368 val_print_optimized_out (const struct value *val, struct ui_file *stream)
369 {
370 if (val != NULL && value_lval_const (val) == lval_register)
371 val_print_not_saved (stream);
372 else
373 fprintf_filtered (stream, _("<optimized out>"));
374 }
375
376 void
377 val_print_not_saved (struct ui_file *stream)
378 {
379 fprintf_filtered (stream, _("<not saved>"));
380 }
381
382 void
383 val_print_unavailable (struct ui_file *stream)
384 {
385 fprintf_filtered (stream, _("<unavailable>"));
386 }
387
388 void
389 val_print_invalid_address (struct ui_file *stream)
390 {
391 fprintf_filtered (stream, _("<invalid address>"));
392 }
393
394 /* Print a pointer based on the type of its target.
395
396 Arguments to this functions are roughly the same as those in
397 generic_val_print. A difference is that ADDRESS is the address to print,
398 with embedded_offset already added. ELTTYPE represents
399 the pointed type after check_typedef. */
400
401 static void
402 print_unpacked_pointer (struct type *type, struct type *elttype,
403 CORE_ADDR address, struct ui_file *stream,
404 const struct value_print_options *options)
405 {
406 struct gdbarch *gdbarch = get_type_arch (type);
407
408 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
409 {
410 /* Try to print what function it points to. */
411 print_function_pointer_address (options, gdbarch, address, stream);
412 return;
413 }
414
415 if (options->symbol_print)
416 print_address_demangle (options, gdbarch, address, stream, demangle);
417 else if (options->addressprint)
418 fputs_filtered (paddress (gdbarch, address), stream);
419 }
420
421 /* generic_val_print helper for TYPE_CODE_ARRAY. */
422
423 static void
424 generic_val_print_array (struct type *type,
425 int embedded_offset, CORE_ADDR address,
426 struct ui_file *stream, int recurse,
427 struct value *original_value,
428 const struct value_print_options *options,
429 const struct
430 generic_val_print_decorations *decorations)
431 {
432 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
433 struct type *elttype = check_typedef (unresolved_elttype);
434
435 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
436 {
437 LONGEST low_bound, high_bound;
438
439 if (!get_array_bounds (type, &low_bound, &high_bound))
440 error (_("Could not determine the array high bound"));
441
442 if (options->prettyformat_arrays)
443 {
444 print_spaces_filtered (2 + 2 * recurse, stream);
445 }
446
447 fputs_filtered (decorations->array_start, stream);
448 val_print_array_elements (type, embedded_offset,
449 address, stream,
450 recurse, original_value, options, 0);
451 fputs_filtered (decorations->array_end, stream);
452 }
453 else
454 {
455 /* Array of unspecified length: treat like pointer to first elt. */
456 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
457 options);
458 }
459
460 }
461
462 /* generic_val_print helper for TYPE_CODE_PTR. */
463
464 static void
465 generic_val_print_ptr (struct type *type,
466 int embedded_offset, struct ui_file *stream,
467 struct value *original_value,
468 const struct value_print_options *options)
469 {
470 struct gdbarch *gdbarch = get_type_arch (type);
471 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
472
473 if (options->format && options->format != 's')
474 {
475 val_print_scalar_formatted (type, embedded_offset,
476 original_value, options, 0, stream);
477 }
478 else
479 {
480 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
481 struct type *elttype = check_typedef (unresolved_elttype);
482 const gdb_byte *valaddr = value_contents_for_printing (original_value);
483 CORE_ADDR addr = unpack_pointer (type,
484 valaddr + embedded_offset * unit_size);
485
486 print_unpacked_pointer (type, elttype, addr, stream, options);
487 }
488 }
489
490
491 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
492
493 static void
494 generic_val_print_memberptr (struct type *type,
495 int embedded_offset, struct ui_file *stream,
496 struct value *original_value,
497 const struct value_print_options *options)
498 {
499 val_print_scalar_formatted (type, embedded_offset,
500 original_value, options, 0, stream);
501 }
502
503 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
504
505 static void
506 print_ref_address (struct type *type, const gdb_byte *address_buffer,
507 int embedded_offset, struct ui_file *stream)
508 {
509 struct gdbarch *gdbarch = get_type_arch (type);
510
511 if (address_buffer != NULL)
512 {
513 CORE_ADDR address
514 = extract_typed_address (address_buffer + embedded_offset, type);
515
516 fprintf_filtered (stream, "@");
517 fputs_filtered (paddress (gdbarch, address), stream);
518 }
519 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
520 }
521
522 /* If VAL is addressable, return the value contents buffer of a value that
523 represents a pointer to VAL. Otherwise return NULL. */
524
525 static const gdb_byte *
526 get_value_addr_contents (struct value *deref_val)
527 {
528 gdb_assert (deref_val != NULL);
529
530 if (value_lval_const (deref_val) == lval_memory)
531 return value_contents_for_printing_const (value_addr (deref_val));
532 else
533 {
534 /* We have a non-addressable value, such as a DW_AT_const_value. */
535 return NULL;
536 }
537 }
538
539 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
540
541 static void
542 generic_val_print_ref (struct type *type,
543 int embedded_offset, struct ui_file *stream, int recurse,
544 struct value *original_value,
545 const struct value_print_options *options)
546 {
547 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
548 struct value *deref_val = NULL;
549 const int value_is_synthetic
550 = value_bits_synthetic_pointer (original_value,
551 TARGET_CHAR_BIT * embedded_offset,
552 TARGET_CHAR_BIT * TYPE_LENGTH (type));
553 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
554 || options->deref_ref);
555 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
556 const gdb_byte *valaddr = value_contents_for_printing (original_value);
557
558 if (must_coerce_ref && type_is_defined)
559 {
560 deref_val = coerce_ref_if_computed (original_value);
561
562 if (deref_val != NULL)
563 {
564 /* More complicated computed references are not supported. */
565 gdb_assert (embedded_offset == 0);
566 }
567 else
568 deref_val = value_at (TYPE_TARGET_TYPE (type),
569 unpack_pointer (type, valaddr + embedded_offset));
570 }
571 /* Else, original_value isn't a synthetic reference or we don't have to print
572 the reference's contents.
573
574 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
575 cause original_value to be a not_lval instead of an lval_computed,
576 which will make value_bits_synthetic_pointer return false.
577 This happens because if options->objectprint is true, c_value_print will
578 overwrite original_value's contents with the result of coercing
579 the reference through value_addr, and then set its type back to
580 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
581 we can simply treat it as non-synthetic and move on. */
582
583 if (options->addressprint)
584 {
585 const gdb_byte *address = (value_is_synthetic && type_is_defined
586 ? get_value_addr_contents (deref_val)
587 : valaddr);
588
589 print_ref_address (type, address, embedded_offset, stream);
590
591 if (options->deref_ref)
592 fputs_filtered (": ", stream);
593 }
594
595 if (options->deref_ref)
596 {
597 if (type_is_defined)
598 common_val_print (deref_val, stream, recurse, options,
599 current_language);
600 else
601 fputs_filtered ("???", stream);
602 }
603 }
604
605 /* Helper function for generic_val_print_enum.
606 This is also used to print enums in TYPE_CODE_FLAGS values. */
607
608 static void
609 generic_val_print_enum_1 (struct type *type, LONGEST val,
610 struct ui_file *stream)
611 {
612 unsigned int i;
613 unsigned int len;
614
615 len = TYPE_NFIELDS (type);
616 for (i = 0; i < len; i++)
617 {
618 QUIT;
619 if (val == TYPE_FIELD_ENUMVAL (type, i))
620 {
621 break;
622 }
623 }
624 if (i < len)
625 {
626 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
627 }
628 else if (TYPE_FLAG_ENUM (type))
629 {
630 int first = 1;
631
632 /* We have a "flag" enum, so we try to decompose it into
633 pieces as appropriate. A flag enum has disjoint
634 constants by definition. */
635 fputs_filtered ("(", stream);
636 for (i = 0; i < len; ++i)
637 {
638 QUIT;
639
640 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
641 {
642 if (!first)
643 fputs_filtered (" | ", stream);
644 first = 0;
645
646 val &= ~TYPE_FIELD_ENUMVAL (type, i);
647 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
648 }
649 }
650
651 if (first || val != 0)
652 {
653 if (!first)
654 fputs_filtered (" | ", stream);
655 fputs_filtered ("unknown: ", stream);
656 print_longest (stream, 'd', 0, val);
657 }
658
659 fputs_filtered (")", stream);
660 }
661 else
662 print_longest (stream, 'd', 0, val);
663 }
664
665 /* generic_val_print helper for TYPE_CODE_ENUM. */
666
667 static void
668 generic_val_print_enum (struct type *type,
669 int embedded_offset, struct ui_file *stream,
670 struct value *original_value,
671 const struct value_print_options *options)
672 {
673 LONGEST val;
674 struct gdbarch *gdbarch = get_type_arch (type);
675 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
676
677 if (options->format)
678 {
679 val_print_scalar_formatted (type, embedded_offset,
680 original_value, options, 0, stream);
681 }
682 else
683 {
684 const gdb_byte *valaddr = value_contents_for_printing (original_value);
685
686 val = unpack_long (type, valaddr + embedded_offset * unit_size);
687
688 generic_val_print_enum_1 (type, val, stream);
689 }
690 }
691
692 /* generic_val_print helper for TYPE_CODE_FLAGS. */
693
694 static void
695 generic_val_print_flags (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699
700 {
701 if (options->format)
702 val_print_scalar_formatted (type, embedded_offset, original_value,
703 options, 0, stream);
704 else
705 {
706 const gdb_byte *valaddr = value_contents_for_printing (original_value);
707
708 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
709 }
710 }
711
712 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
713
714 static void
715 generic_val_print_func (struct type *type,
716 int embedded_offset, CORE_ADDR address,
717 struct ui_file *stream,
718 struct value *original_value,
719 const struct value_print_options *options)
720 {
721 struct gdbarch *gdbarch = get_type_arch (type);
722
723 if (options->format)
724 {
725 val_print_scalar_formatted (type, embedded_offset,
726 original_value, options, 0, stream);
727 }
728 else
729 {
730 /* FIXME, we should consider, at least for ANSI C language,
731 eliminating the distinction made between FUNCs and POINTERs
732 to FUNCs. */
733 fprintf_filtered (stream, "{");
734 type_print (type, "", stream, -1);
735 fprintf_filtered (stream, "} ");
736 /* Try to print what function it points to, and its address. */
737 print_address_demangle (options, gdbarch, address, stream, demangle);
738 }
739 }
740
741 /* generic_val_print helper for TYPE_CODE_BOOL. */
742
743 static void
744 generic_val_print_bool (struct type *type,
745 int embedded_offset, struct ui_file *stream,
746 struct value *original_value,
747 const struct value_print_options *options,
748 const struct generic_val_print_decorations *decorations)
749 {
750 LONGEST val;
751 struct gdbarch *gdbarch = get_type_arch (type);
752 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
753
754 if (options->format || options->output_format)
755 {
756 struct value_print_options opts = *options;
757 opts.format = (options->format ? options->format
758 : options->output_format);
759 val_print_scalar_formatted (type, embedded_offset,
760 original_value, &opts, 0, stream);
761 }
762 else
763 {
764 const gdb_byte *valaddr = value_contents_for_printing (original_value);
765
766 val = unpack_long (type, valaddr + embedded_offset * unit_size);
767 if (val == 0)
768 fputs_filtered (decorations->false_name, stream);
769 else if (val == 1)
770 fputs_filtered (decorations->true_name, stream);
771 else
772 print_longest (stream, 'd', 0, val);
773 }
774 }
775
776 /* generic_val_print helper for TYPE_CODE_INT. */
777
778 static void
779 generic_val_print_int (struct type *type,
780 int embedded_offset, struct ui_file *stream,
781 struct value *original_value,
782 const struct value_print_options *options)
783 {
784 struct value_print_options opts = *options;
785
786 opts.format = (options->format ? options->format
787 : options->output_format);
788 val_print_scalar_formatted (type, embedded_offset,
789 original_value, &opts, 0, stream);
790 }
791
792 /* generic_val_print helper for TYPE_CODE_CHAR. */
793
794 static void
795 generic_val_print_char (struct type *type, struct type *unresolved_type,
796 int embedded_offset,
797 struct ui_file *stream,
798 struct value *original_value,
799 const struct value_print_options *options)
800 {
801 LONGEST val;
802 struct gdbarch *gdbarch = get_type_arch (type);
803 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
804
805 if (options->format || options->output_format)
806 {
807 struct value_print_options opts = *options;
808
809 opts.format = (options->format ? options->format
810 : options->output_format);
811 val_print_scalar_formatted (type, embedded_offset,
812 original_value, &opts, 0, stream);
813 }
814 else
815 {
816 const gdb_byte *valaddr = value_contents_for_printing (original_value);
817
818 val = unpack_long (type, valaddr + embedded_offset * unit_size);
819 if (TYPE_UNSIGNED (type))
820 fprintf_filtered (stream, "%u", (unsigned int) val);
821 else
822 fprintf_filtered (stream, "%d", (int) val);
823 fputs_filtered (" ", stream);
824 LA_PRINT_CHAR (val, unresolved_type, stream);
825 }
826 }
827
828 /* generic_val_print helper for TYPE_CODE_FLT. */
829
830 static void
831 generic_val_print_float (struct type *type,
832 int embedded_offset, struct ui_file *stream,
833 struct value *original_value,
834 const struct value_print_options *options)
835 {
836 struct gdbarch *gdbarch = get_type_arch (type);
837 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
838
839 if (options->format)
840 {
841 val_print_scalar_formatted (type, embedded_offset,
842 original_value, options, 0, stream);
843 }
844 else
845 {
846 const gdb_byte *valaddr = value_contents_for_printing (original_value);
847
848 print_floating (valaddr + embedded_offset * unit_size, type, stream);
849 }
850 }
851
852 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
853
854 static void
855 generic_val_print_decfloat (struct type *type,
856 int embedded_offset, struct ui_file *stream,
857 struct value *original_value,
858 const struct value_print_options *options)
859 {
860 struct gdbarch *gdbarch = get_type_arch (type);
861 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
862
863 if (options->format)
864 val_print_scalar_formatted (type, embedded_offset, original_value,
865 options, 0, stream);
866 else
867 {
868 const gdb_byte *valaddr = value_contents_for_printing (original_value);
869
870 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
871 stream);
872 }
873 }
874
875 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
876
877 static void
878 generic_val_print_complex (struct type *type,
879 int embedded_offset, struct ui_file *stream,
880 struct value *original_value,
881 const struct value_print_options *options,
882 const struct generic_val_print_decorations
883 *decorations)
884 {
885 struct gdbarch *gdbarch = get_type_arch (type);
886 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
887 const gdb_byte *valaddr = value_contents_for_printing (original_value);
888
889 fprintf_filtered (stream, "%s", decorations->complex_prefix);
890 if (options->format)
891 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
892 embedded_offset, original_value, options, 0,
893 stream);
894 else
895 print_floating (valaddr + embedded_offset * unit_size,
896 TYPE_TARGET_TYPE (type), stream);
897 fprintf_filtered (stream, "%s", decorations->complex_infix);
898 if (options->format)
899 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
900 embedded_offset
901 + type_length_units (TYPE_TARGET_TYPE (type)),
902 original_value, options, 0, stream);
903 else
904 print_floating (valaddr + embedded_offset * unit_size
905 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
906 TYPE_TARGET_TYPE (type), stream);
907 fprintf_filtered (stream, "%s", decorations->complex_suffix);
908 }
909
910 /* A generic val_print that is suitable for use by language
911 implementations of the la_val_print method. This function can
912 handle most type codes, though not all, notably exception
913 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
914 the caller.
915
916 Most arguments are as to val_print.
917
918 The additional DECORATIONS argument can be used to customize the
919 output in some small, language-specific ways. */
920
921 void
922 generic_val_print (struct type *type,
923 int embedded_offset, CORE_ADDR address,
924 struct ui_file *stream, int recurse,
925 struct value *original_value,
926 const struct value_print_options *options,
927 const struct generic_val_print_decorations *decorations)
928 {
929 struct type *unresolved_type = type;
930
931 type = check_typedef (type);
932 switch (TYPE_CODE (type))
933 {
934 case TYPE_CODE_ARRAY:
935 generic_val_print_array (type, embedded_offset, address, stream,
936 recurse, original_value, options, decorations);
937 break;
938
939 case TYPE_CODE_MEMBERPTR:
940 generic_val_print_memberptr (type, embedded_offset, stream,
941 original_value, options);
942 break;
943
944 case TYPE_CODE_PTR:
945 generic_val_print_ptr (type, embedded_offset, stream,
946 original_value, options);
947 break;
948
949 case TYPE_CODE_REF:
950 case TYPE_CODE_RVALUE_REF:
951 generic_val_print_ref (type, embedded_offset, stream, recurse,
952 original_value, options);
953 break;
954
955 case TYPE_CODE_ENUM:
956 generic_val_print_enum (type, embedded_offset, stream,
957 original_value, options);
958 break;
959
960 case TYPE_CODE_FLAGS:
961 generic_val_print_flags (type, embedded_offset, stream,
962 original_value, options);
963 break;
964
965 case TYPE_CODE_FUNC:
966 case TYPE_CODE_METHOD:
967 generic_val_print_func (type, embedded_offset, address, stream,
968 original_value, options);
969 break;
970
971 case TYPE_CODE_BOOL:
972 generic_val_print_bool (type, embedded_offset, stream,
973 original_value, options, decorations);
974 break;
975
976 case TYPE_CODE_RANGE:
977 /* FIXME: create_static_range_type does not set the unsigned bit in a
978 range type (I think it probably should copy it from the
979 target type), so we won't print values which are too large to
980 fit in a signed integer correctly. */
981 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
982 print with the target type, though, because the size of our
983 type and the target type might differ). */
984
985 /* FALLTHROUGH */
986
987 case TYPE_CODE_INT:
988 generic_val_print_int (type, embedded_offset, stream,
989 original_value, options);
990 break;
991
992 case TYPE_CODE_CHAR:
993 generic_val_print_char (type, unresolved_type, embedded_offset,
994 stream, original_value, options);
995 break;
996
997 case TYPE_CODE_FLT:
998 generic_val_print_float (type, embedded_offset, stream,
999 original_value, options);
1000 break;
1001
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_decfloat (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_filtered (stream, _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 gdb_flush (stream);
1035 }
1036
1037 /* Print using the given LANGUAGE the data of type TYPE located at
1038 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1039 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1040 stdio stream STREAM according to OPTIONS. VAL is the whole object
1041 that came from ADDRESS.
1042
1043 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1044 further helper subroutines as subfields of TYPE are printed. In
1045 such cases, VAL is passed down unadjusted, so
1046 that VAL can be queried for metadata about the contents data being
1047 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1048 buffer. For example: "has this field been optimized out", or "I'm
1049 printing an object while inspecting a traceframe; has this
1050 particular piece of data been collected?".
1051
1052 RECURSE indicates the amount of indentation to supply before
1053 continuation lines; this amount is roughly twice the value of
1054 RECURSE. */
1055
1056 void
1057 val_print (struct type *type, LONGEST embedded_offset,
1058 CORE_ADDR address, struct ui_file *stream, int recurse,
1059 struct value *val,
1060 const struct value_print_options *options,
1061 const struct language_defn *language)
1062 {
1063 int ret = 0;
1064 struct value_print_options local_opts = *options;
1065 struct type *real_type = check_typedef (type);
1066
1067 if (local_opts.prettyformat == Val_prettyformat_default)
1068 local_opts.prettyformat = (local_opts.prettyformat_structs
1069 ? Val_prettyformat : Val_no_prettyformat);
1070
1071 QUIT;
1072
1073 /* Ensure that the type is complete and not just a stub. If the type is
1074 only a stub and we can't find and substitute its complete type, then
1075 print appropriate string and return. */
1076
1077 if (TYPE_STUB (real_type))
1078 {
1079 fprintf_filtered (stream, _("<incomplete type>"));
1080 gdb_flush (stream);
1081 return;
1082 }
1083
1084 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1085 return;
1086
1087 if (!options->raw)
1088 {
1089 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1090 address, stream, recurse,
1091 val, options, language);
1092 if (ret)
1093 return;
1094 }
1095
1096 /* Handle summary mode. If the value is a scalar, print it;
1097 otherwise, print an ellipsis. */
1098 if (options->summary && !val_print_scalar_type_p (type))
1099 {
1100 fprintf_filtered (stream, "...");
1101 return;
1102 }
1103
1104 TRY
1105 {
1106 language->la_val_print (type, embedded_offset, address,
1107 stream, recurse, val,
1108 &local_opts);
1109 }
1110 CATCH (except, RETURN_MASK_ERROR)
1111 {
1112 fprintf_filtered (stream, _("<error reading variable>"));
1113 }
1114 END_CATCH
1115 }
1116
1117 /* Check whether the value VAL is printable. Return 1 if it is;
1118 return 0 and print an appropriate error message to STREAM according to
1119 OPTIONS if it is not. */
1120
1121 static int
1122 value_check_printable (struct value *val, struct ui_file *stream,
1123 const struct value_print_options *options)
1124 {
1125 if (val == 0)
1126 {
1127 fprintf_filtered (stream, _("<address of value unknown>"));
1128 return 0;
1129 }
1130
1131 if (value_entirely_optimized_out (val))
1132 {
1133 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1134 fprintf_filtered (stream, "...");
1135 else
1136 val_print_optimized_out (val, stream);
1137 return 0;
1138 }
1139
1140 if (value_entirely_unavailable (val))
1141 {
1142 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1143 fprintf_filtered (stream, "...");
1144 else
1145 val_print_unavailable (stream);
1146 return 0;
1147 }
1148
1149 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1150 {
1151 fprintf_filtered (stream, _("<internal function %s>"),
1152 value_internal_function_name (val));
1153 return 0;
1154 }
1155
1156 if (type_not_associated (value_type (val)))
1157 {
1158 val_print_not_associated (stream);
1159 return 0;
1160 }
1161
1162 if (type_not_allocated (value_type (val)))
1163 {
1164 val_print_not_allocated (stream);
1165 return 0;
1166 }
1167
1168 return 1;
1169 }
1170
1171 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1172 to OPTIONS.
1173
1174 This is a preferable interface to val_print, above, because it uses
1175 GDB's value mechanism. */
1176
1177 void
1178 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1179 const struct value_print_options *options,
1180 const struct language_defn *language)
1181 {
1182 if (!value_check_printable (val, stream, options))
1183 return;
1184
1185 if (language->la_language == language_ada)
1186 /* The value might have a dynamic type, which would cause trouble
1187 below when trying to extract the value contents (since the value
1188 size is determined from the type size which is unknown). So
1189 get a fixed representation of our value. */
1190 val = ada_to_fixed_value (val);
1191
1192 if (value_lazy (val))
1193 value_fetch_lazy (val);
1194
1195 val_print (value_type (val),
1196 value_embedded_offset (val), value_address (val),
1197 stream, recurse,
1198 val, options, language);
1199 }
1200
1201 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1202 is printed using the current_language syntax. */
1203
1204 void
1205 value_print (struct value *val, struct ui_file *stream,
1206 const struct value_print_options *options)
1207 {
1208 if (!value_check_printable (val, stream, options))
1209 return;
1210
1211 if (!options->raw)
1212 {
1213 int r
1214 = apply_ext_lang_val_pretty_printer (value_type (val),
1215 value_embedded_offset (val),
1216 value_address (val),
1217 stream, 0,
1218 val, options, current_language);
1219
1220 if (r)
1221 return;
1222 }
1223
1224 LA_VALUE_PRINT (val, stream, options);
1225 }
1226
1227 static void
1228 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1229 struct ui_file *stream)
1230 {
1231 ULONGEST val = unpack_long (type, valaddr);
1232 int field, nfields = TYPE_NFIELDS (type);
1233 struct gdbarch *gdbarch = get_type_arch (type);
1234 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1235
1236 fputs_filtered ("[", stream);
1237 for (field = 0; field < nfields; field++)
1238 {
1239 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1240 {
1241 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1242
1243 if (field_type == bool_type
1244 /* We require boolean types here to be one bit wide. This is a
1245 problematic place to notify the user of an internal error
1246 though. Instead just fall through and print the field as an
1247 int. */
1248 && TYPE_FIELD_BITSIZE (type, field) == 1)
1249 {
1250 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1251 fprintf_filtered (stream, " %s",
1252 TYPE_FIELD_NAME (type, field));
1253 }
1254 else
1255 {
1256 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1257 ULONGEST field_val
1258 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1259
1260 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1261 field_val &= ((ULONGEST) 1 << field_len) - 1;
1262 fprintf_filtered (stream, " %s=",
1263 TYPE_FIELD_NAME (type, field));
1264 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1265 generic_val_print_enum_1 (field_type, field_val, stream);
1266 else
1267 print_longest (stream, 'd', 0, field_val);
1268 }
1269 }
1270 }
1271 fputs_filtered (" ]", stream);
1272 }
1273
1274 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1275 according to OPTIONS and SIZE on STREAM. Format i is not supported
1276 at this level.
1277
1278 This is how the elements of an array or structure are printed
1279 with a format. */
1280
1281 void
1282 val_print_scalar_formatted (struct type *type,
1283 LONGEST embedded_offset,
1284 struct value *val,
1285 const struct value_print_options *options,
1286 int size,
1287 struct ui_file *stream)
1288 {
1289 struct gdbarch *arch = get_type_arch (type);
1290 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1291
1292 gdb_assert (val != NULL);
1293
1294 /* If we get here with a string format, try again without it. Go
1295 all the way back to the language printers, which may call us
1296 again. */
1297 if (options->format == 's')
1298 {
1299 struct value_print_options opts = *options;
1300 opts.format = 0;
1301 opts.deref_ref = 0;
1302 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1303 current_language);
1304 return;
1305 }
1306
1307 /* value_contents_for_printing fetches all VAL's contents. They are
1308 needed to check whether VAL is optimized-out or unavailable
1309 below. */
1310 const gdb_byte *valaddr = value_contents_for_printing (val);
1311
1312 /* A scalar object that does not have all bits available can't be
1313 printed, because all bits contribute to its representation. */
1314 if (value_bits_any_optimized_out (val,
1315 TARGET_CHAR_BIT * embedded_offset,
1316 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1317 val_print_optimized_out (val, stream);
1318 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1319 val_print_unavailable (stream);
1320 else
1321 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1322 options, size, stream);
1323 }
1324
1325 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1326 The raison d'etre of this function is to consolidate printing of
1327 LONG_LONG's into this one function. The format chars b,h,w,g are
1328 from print_scalar_formatted(). Numbers are printed using C
1329 format.
1330
1331 USE_C_FORMAT means to use C format in all cases. Without it,
1332 'o' and 'x' format do not include the standard C radix prefix
1333 (leading 0 or 0x).
1334
1335 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1336 and was intended to request formating according to the current
1337 language and would be used for most integers that GDB prints. The
1338 exceptional cases were things like protocols where the format of
1339 the integer is a protocol thing, not a user-visible thing). The
1340 parameter remains to preserve the information of what things might
1341 be printed with language-specific format, should we ever resurrect
1342 that capability. */
1343
1344 void
1345 print_longest (struct ui_file *stream, int format, int use_c_format,
1346 LONGEST val_long)
1347 {
1348 const char *val;
1349
1350 switch (format)
1351 {
1352 case 'd':
1353 val = int_string (val_long, 10, 1, 0, 1); break;
1354 case 'u':
1355 val = int_string (val_long, 10, 0, 0, 1); break;
1356 case 'x':
1357 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1358 case 'b':
1359 val = int_string (val_long, 16, 0, 2, 1); break;
1360 case 'h':
1361 val = int_string (val_long, 16, 0, 4, 1); break;
1362 case 'w':
1363 val = int_string (val_long, 16, 0, 8, 1); break;
1364 case 'g':
1365 val = int_string (val_long, 16, 0, 16, 1); break;
1366 break;
1367 case 'o':
1368 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1369 default:
1370 internal_error (__FILE__, __LINE__,
1371 _("failed internal consistency check"));
1372 }
1373 fputs_filtered (val, stream);
1374 }
1375
1376 /* This used to be a macro, but I don't think it is called often enough
1377 to merit such treatment. */
1378 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1379 arguments to a function, number in a value history, register number, etc.)
1380 where the value must not be larger than can fit in an int. */
1381
1382 int
1383 longest_to_int (LONGEST arg)
1384 {
1385 /* Let the compiler do the work. */
1386 int rtnval = (int) arg;
1387
1388 /* Check for overflows or underflows. */
1389 if (sizeof (LONGEST) > sizeof (int))
1390 {
1391 if (rtnval != arg)
1392 {
1393 error (_("Value out of range."));
1394 }
1395 }
1396 return (rtnval);
1397 }
1398
1399 /* Print a floating point value of type TYPE (not always a
1400 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1401
1402 void
1403 print_floating (const gdb_byte *valaddr, struct type *type,
1404 struct ui_file *stream)
1405 {
1406 DOUBLEST doub;
1407 int inv;
1408 const struct floatformat *fmt = NULL;
1409 unsigned len = TYPE_LENGTH (type);
1410 enum float_kind kind;
1411
1412 /* If it is a floating-point, check for obvious problems. */
1413 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1414 fmt = floatformat_from_type (type);
1415 if (fmt != NULL)
1416 {
1417 kind = floatformat_classify (fmt, valaddr);
1418 if (kind == float_nan)
1419 {
1420 if (floatformat_is_negative (fmt, valaddr))
1421 fprintf_filtered (stream, "-");
1422 fprintf_filtered (stream, "nan(");
1423 fputs_filtered ("0x", stream);
1424 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1425 fprintf_filtered (stream, ")");
1426 return;
1427 }
1428 else if (kind == float_infinite)
1429 {
1430 if (floatformat_is_negative (fmt, valaddr))
1431 fputs_filtered ("-", stream);
1432 fputs_filtered ("inf", stream);
1433 return;
1434 }
1435 }
1436
1437 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1438 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1439 needs to be used as that takes care of any necessary type
1440 conversions. Such conversions are of course direct to DOUBLEST
1441 and disregard any possible target floating point limitations.
1442 For instance, a u64 would be converted and displayed exactly on a
1443 host with 80 bit DOUBLEST but with loss of information on a host
1444 with 64 bit DOUBLEST. */
1445
1446 doub = unpack_double (type, valaddr, &inv);
1447 if (inv)
1448 {
1449 fprintf_filtered (stream, "<invalid float value>");
1450 return;
1451 }
1452
1453 /* FIXME: kettenis/2001-01-20: The following code makes too much
1454 assumptions about the host and target floating point format. */
1455
1456 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1457 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1458 instead uses the type's length to determine the precision of the
1459 floating-point value being printed. */
1460
1461 if (len < sizeof (double))
1462 fprintf_filtered (stream, "%.9g", (double) doub);
1463 else if (len == sizeof (double))
1464 fprintf_filtered (stream, "%.17g", (double) doub);
1465 else
1466 #ifdef PRINTF_HAS_LONG_DOUBLE
1467 fprintf_filtered (stream, "%.35Lg", doub);
1468 #else
1469 /* This at least wins with values that are representable as
1470 doubles. */
1471 fprintf_filtered (stream, "%.17g", (double) doub);
1472 #endif
1473 }
1474
1475 void
1476 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1477 struct ui_file *stream)
1478 {
1479 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1480 char decstr[MAX_DECIMAL_STRING];
1481 unsigned len = TYPE_LENGTH (type);
1482
1483 decimal_to_string (valaddr, len, byte_order, decstr);
1484 fputs_filtered (decstr, stream);
1485 return;
1486 }
1487
1488 void
1489 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1490 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1491 {
1492
1493 #define BITS_IN_BYTES 8
1494
1495 const gdb_byte *p;
1496 unsigned int i;
1497 int b;
1498 bool seen_a_one = false;
1499
1500 /* Declared "int" so it will be signed.
1501 This ensures that right shift will shift in zeros. */
1502
1503 const int mask = 0x080;
1504
1505 if (byte_order == BFD_ENDIAN_BIG)
1506 {
1507 for (p = valaddr;
1508 p < valaddr + len;
1509 p++)
1510 {
1511 /* Every byte has 8 binary characters; peel off
1512 and print from the MSB end. */
1513
1514 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1515 {
1516 if (*p & (mask >> i))
1517 b = '1';
1518 else
1519 b = '0';
1520
1521 if (zero_pad || seen_a_one || b == '1')
1522 fputc_filtered (b, stream);
1523 if (b == '1')
1524 seen_a_one = true;
1525 }
1526 }
1527 }
1528 else
1529 {
1530 for (p = valaddr + len - 1;
1531 p >= valaddr;
1532 p--)
1533 {
1534 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1535 {
1536 if (*p & (mask >> i))
1537 b = '1';
1538 else
1539 b = '0';
1540
1541 if (zero_pad || seen_a_one || b == '1')
1542 fputc_filtered (b, stream);
1543 if (b == '1')
1544 seen_a_one = true;
1545 }
1546 }
1547 }
1548
1549 /* When not zero-padding, ensure that something is printed when the
1550 input is 0. */
1551 if (!zero_pad && !seen_a_one)
1552 fputc_filtered ('0', stream);
1553 }
1554
1555 /* A helper for print_octal_chars that emits a single octal digit,
1556 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1557
1558 static void
1559 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1560 {
1561 if (*seen_a_one || digit != 0)
1562 fprintf_filtered (stream, "%o", digit);
1563 if (digit != 0)
1564 *seen_a_one = true;
1565 }
1566
1567 /* VALADDR points to an integer of LEN bytes.
1568 Print it in octal on stream or format it in buf. */
1569
1570 void
1571 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1572 unsigned len, enum bfd_endian byte_order)
1573 {
1574 const gdb_byte *p;
1575 unsigned char octa1, octa2, octa3, carry;
1576 int cycle;
1577
1578 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1579 * the extra bits, which cycle every three bytes:
1580 *
1581 * Byte side: 0 1 2 3
1582 * | | | |
1583 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1584 *
1585 * Octal side: 0 1 carry 3 4 carry ...
1586 *
1587 * Cycle number: 0 1 2
1588 *
1589 * But of course we are printing from the high side, so we have to
1590 * figure out where in the cycle we are so that we end up with no
1591 * left over bits at the end.
1592 */
1593 #define BITS_IN_OCTAL 3
1594 #define HIGH_ZERO 0340
1595 #define LOW_ZERO 0016
1596 #define CARRY_ZERO 0003
1597 #define HIGH_ONE 0200
1598 #define MID_ONE 0160
1599 #define LOW_ONE 0016
1600 #define CARRY_ONE 0001
1601 #define HIGH_TWO 0300
1602 #define MID_TWO 0070
1603 #define LOW_TWO 0007
1604
1605 /* For 32 we start in cycle 2, with two bits and one bit carry;
1606 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1607
1608 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1609 carry = 0;
1610
1611 fputs_filtered ("0", stream);
1612 bool seen_a_one = false;
1613 if (byte_order == BFD_ENDIAN_BIG)
1614 {
1615 for (p = valaddr;
1616 p < valaddr + len;
1617 p++)
1618 {
1619 switch (cycle)
1620 {
1621 case 0:
1622 /* No carry in, carry out two bits. */
1623
1624 octa1 = (HIGH_ZERO & *p) >> 5;
1625 octa2 = (LOW_ZERO & *p) >> 2;
1626 carry = (CARRY_ZERO & *p);
1627 emit_octal_digit (stream, &seen_a_one, octa1);
1628 emit_octal_digit (stream, &seen_a_one, octa2);
1629 break;
1630
1631 case 1:
1632 /* Carry in two bits, carry out one bit. */
1633
1634 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1635 octa2 = (MID_ONE & *p) >> 4;
1636 octa3 = (LOW_ONE & *p) >> 1;
1637 carry = (CARRY_ONE & *p);
1638 emit_octal_digit (stream, &seen_a_one, octa1);
1639 emit_octal_digit (stream, &seen_a_one, octa2);
1640 emit_octal_digit (stream, &seen_a_one, octa3);
1641 break;
1642
1643 case 2:
1644 /* Carry in one bit, no carry out. */
1645
1646 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1647 octa2 = (MID_TWO & *p) >> 3;
1648 octa3 = (LOW_TWO & *p);
1649 carry = 0;
1650 emit_octal_digit (stream, &seen_a_one, octa1);
1651 emit_octal_digit (stream, &seen_a_one, octa2);
1652 emit_octal_digit (stream, &seen_a_one, octa3);
1653 break;
1654
1655 default:
1656 error (_("Internal error in octal conversion;"));
1657 }
1658
1659 cycle++;
1660 cycle = cycle % BITS_IN_OCTAL;
1661 }
1662 }
1663 else
1664 {
1665 for (p = valaddr + len - 1;
1666 p >= valaddr;
1667 p--)
1668 {
1669 switch (cycle)
1670 {
1671 case 0:
1672 /* Carry out, no carry in */
1673
1674 octa1 = (HIGH_ZERO & *p) >> 5;
1675 octa2 = (LOW_ZERO & *p) >> 2;
1676 carry = (CARRY_ZERO & *p);
1677 emit_octal_digit (stream, &seen_a_one, octa1);
1678 emit_octal_digit (stream, &seen_a_one, octa2);
1679 break;
1680
1681 case 1:
1682 /* Carry in, carry out */
1683
1684 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1685 octa2 = (MID_ONE & *p) >> 4;
1686 octa3 = (LOW_ONE & *p) >> 1;
1687 carry = (CARRY_ONE & *p);
1688 emit_octal_digit (stream, &seen_a_one, octa1);
1689 emit_octal_digit (stream, &seen_a_one, octa2);
1690 emit_octal_digit (stream, &seen_a_one, octa3);
1691 break;
1692
1693 case 2:
1694 /* Carry in, no carry out */
1695
1696 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1697 octa2 = (MID_TWO & *p) >> 3;
1698 octa3 = (LOW_TWO & *p);
1699 carry = 0;
1700 emit_octal_digit (stream, &seen_a_one, octa1);
1701 emit_octal_digit (stream, &seen_a_one, octa2);
1702 emit_octal_digit (stream, &seen_a_one, octa3);
1703 break;
1704
1705 default:
1706 error (_("Internal error in octal conversion;"));
1707 }
1708
1709 cycle++;
1710 cycle = cycle % BITS_IN_OCTAL;
1711 }
1712 }
1713
1714 }
1715
1716 /* Possibly negate the integer represented by BYTES. It contains LEN
1717 bytes in the specified byte order. If the integer is negative,
1718 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1719 nothing and return false. */
1720
1721 static bool
1722 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1723 enum bfd_endian byte_order,
1724 std::vector<gdb_byte> *out_vec)
1725 {
1726 gdb_byte sign_byte;
1727 if (byte_order == BFD_ENDIAN_BIG)
1728 sign_byte = bytes[0];
1729 else
1730 sign_byte = bytes[len - 1];
1731 if ((sign_byte & 0x80) == 0)
1732 return false;
1733
1734 out_vec->resize (len);
1735
1736 /* Compute -x == 1 + ~x. */
1737 if (byte_order == BFD_ENDIAN_LITTLE)
1738 {
1739 unsigned carry = 1;
1740 for (unsigned i = 0; i < len; ++i)
1741 {
1742 unsigned tem = (0xff & ~bytes[i]) + carry;
1743 (*out_vec)[i] = tem & 0xff;
1744 carry = tem / 256;
1745 }
1746 }
1747 else
1748 {
1749 unsigned carry = 1;
1750 for (unsigned i = len; i > 0; --i)
1751 {
1752 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1753 (*out_vec)[i - 1] = tem & 0xff;
1754 carry = tem / 256;
1755 }
1756 }
1757
1758 return true;
1759 }
1760
1761 /* VALADDR points to an integer of LEN bytes.
1762 Print it in decimal on stream or format it in buf. */
1763
1764 void
1765 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1766 unsigned len, bool is_signed,
1767 enum bfd_endian byte_order)
1768 {
1769 #define TEN 10
1770 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1771 #define CARRY_LEFT( x ) ((x) % TEN)
1772 #define SHIFT( x ) ((x) << 4)
1773 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1774 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1775
1776 const gdb_byte *p;
1777 int carry;
1778 int decimal_len;
1779 int i, j, decimal_digits;
1780 int dummy;
1781 int flip;
1782
1783 std::vector<gdb_byte> negated_bytes;
1784 if (is_signed
1785 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1786 {
1787 fputs_filtered ("-", stream);
1788 valaddr = negated_bytes.data ();
1789 }
1790
1791 /* Base-ten number is less than twice as many digits
1792 as the base 16 number, which is 2 digits per byte. */
1793
1794 decimal_len = len * 2 * 2;
1795 std::vector<unsigned char> digits (decimal_len, 0);
1796
1797 /* Ok, we have an unknown number of bytes of data to be printed in
1798 * decimal.
1799 *
1800 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1801 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1802 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1803 *
1804 * The trick is that "digits" holds a base-10 number, but sometimes
1805 * the individual digits are > 10.
1806 *
1807 * Outer loop is per nibble (hex digit) of input, from MSD end to
1808 * LSD end.
1809 */
1810 decimal_digits = 0; /* Number of decimal digits so far */
1811 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1812 flip = 0;
1813 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1814 {
1815 /*
1816 * Multiply current base-ten number by 16 in place.
1817 * Each digit was between 0 and 9, now is between
1818 * 0 and 144.
1819 */
1820 for (j = 0; j < decimal_digits; j++)
1821 {
1822 digits[j] = SHIFT (digits[j]);
1823 }
1824
1825 /* Take the next nibble off the input and add it to what
1826 * we've got in the LSB position. Bottom 'digit' is now
1827 * between 0 and 159.
1828 *
1829 * "flip" is used to run this loop twice for each byte.
1830 */
1831 if (flip == 0)
1832 {
1833 /* Take top nibble. */
1834
1835 digits[0] += HIGH_NIBBLE (*p);
1836 flip = 1;
1837 }
1838 else
1839 {
1840 /* Take low nibble and bump our pointer "p". */
1841
1842 digits[0] += LOW_NIBBLE (*p);
1843 if (byte_order == BFD_ENDIAN_BIG)
1844 p++;
1845 else
1846 p--;
1847 flip = 0;
1848 }
1849
1850 /* Re-decimalize. We have to do this often enough
1851 * that we don't overflow, but once per nibble is
1852 * overkill. Easier this way, though. Note that the
1853 * carry is often larger than 10 (e.g. max initial
1854 * carry out of lowest nibble is 15, could bubble all
1855 * the way up greater than 10). So we have to do
1856 * the carrying beyond the last current digit.
1857 */
1858 carry = 0;
1859 for (j = 0; j < decimal_len - 1; j++)
1860 {
1861 digits[j] += carry;
1862
1863 /* "/" won't handle an unsigned char with
1864 * a value that if signed would be negative.
1865 * So extend to longword int via "dummy".
1866 */
1867 dummy = digits[j];
1868 carry = CARRY_OUT (dummy);
1869 digits[j] = CARRY_LEFT (dummy);
1870
1871 if (j >= decimal_digits && carry == 0)
1872 {
1873 /*
1874 * All higher digits are 0 and we
1875 * no longer have a carry.
1876 *
1877 * Note: "j" is 0-based, "decimal_digits" is
1878 * 1-based.
1879 */
1880 decimal_digits = j + 1;
1881 break;
1882 }
1883 }
1884 }
1885
1886 /* Ok, now "digits" is the decimal representation, with
1887 the "decimal_digits" actual digits. Print! */
1888
1889 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1890 ;
1891
1892 for (; i >= 0; i--)
1893 {
1894 fprintf_filtered (stream, "%1d", digits[i]);
1895 }
1896 }
1897
1898 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1899
1900 void
1901 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1902 unsigned len, enum bfd_endian byte_order,
1903 bool zero_pad)
1904 {
1905 const gdb_byte *p;
1906
1907 fputs_filtered ("0x", stream);
1908 if (byte_order == BFD_ENDIAN_BIG)
1909 {
1910 p = valaddr;
1911
1912 if (!zero_pad)
1913 {
1914 /* Strip leading 0 bytes, but be sure to leave at least a
1915 single byte at the end. */
1916 for (; p < valaddr + len - 1 && !*p; ++p)
1917 ;
1918 }
1919
1920 const gdb_byte *first = p;
1921 for (;
1922 p < valaddr + len;
1923 p++)
1924 {
1925 /* When not zero-padding, use a different format for the
1926 very first byte printed. */
1927 if (!zero_pad && p == first)
1928 fprintf_filtered (stream, "%x", *p);
1929 else
1930 fprintf_filtered (stream, "%02x", *p);
1931 }
1932 }
1933 else
1934 {
1935 p = valaddr + len - 1;
1936
1937 if (!zero_pad)
1938 {
1939 /* Strip leading 0 bytes, but be sure to leave at least a
1940 single byte at the end. */
1941 for (; p >= valaddr + 1 && !*p; --p)
1942 ;
1943 }
1944
1945 const gdb_byte *first = p;
1946 for (;
1947 p >= valaddr;
1948 p--)
1949 {
1950 /* When not zero-padding, use a different format for the
1951 very first byte printed. */
1952 if (!zero_pad && p == first)
1953 fprintf_filtered (stream, "%x", *p);
1954 else
1955 fprintf_filtered (stream, "%02x", *p);
1956 }
1957 }
1958 }
1959
1960 /* VALADDR points to a char integer of LEN bytes.
1961 Print it out in appropriate language form on stream.
1962 Omit any leading zero chars. */
1963
1964 void
1965 print_char_chars (struct ui_file *stream, struct type *type,
1966 const gdb_byte *valaddr,
1967 unsigned len, enum bfd_endian byte_order)
1968 {
1969 const gdb_byte *p;
1970
1971 if (byte_order == BFD_ENDIAN_BIG)
1972 {
1973 p = valaddr;
1974 while (p < valaddr + len - 1 && *p == 0)
1975 ++p;
1976
1977 while (p < valaddr + len)
1978 {
1979 LA_EMIT_CHAR (*p, type, stream, '\'');
1980 ++p;
1981 }
1982 }
1983 else
1984 {
1985 p = valaddr + len - 1;
1986 while (p > valaddr && *p == 0)
1987 --p;
1988
1989 while (p >= valaddr)
1990 {
1991 LA_EMIT_CHAR (*p, type, stream, '\'');
1992 --p;
1993 }
1994 }
1995 }
1996
1997 /* Print function pointer with inferior address ADDRESS onto stdio
1998 stream STREAM. */
1999
2000 void
2001 print_function_pointer_address (const struct value_print_options *options,
2002 struct gdbarch *gdbarch,
2003 CORE_ADDR address,
2004 struct ui_file *stream)
2005 {
2006 CORE_ADDR func_addr
2007 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2008 &current_target);
2009
2010 /* If the function pointer is represented by a description, print
2011 the address of the description. */
2012 if (options->addressprint && func_addr != address)
2013 {
2014 fputs_filtered ("@", stream);
2015 fputs_filtered (paddress (gdbarch, address), stream);
2016 fputs_filtered (": ", stream);
2017 }
2018 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2019 }
2020
2021
2022 /* Print on STREAM using the given OPTIONS the index for the element
2023 at INDEX of an array whose index type is INDEX_TYPE. */
2024
2025 void
2026 maybe_print_array_index (struct type *index_type, LONGEST index,
2027 struct ui_file *stream,
2028 const struct value_print_options *options)
2029 {
2030 struct value *index_value;
2031
2032 if (!options->print_array_indexes)
2033 return;
2034
2035 index_value = value_from_longest (index_type, index);
2036
2037 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2038 }
2039
2040 /* Called by various <lang>_val_print routines to print elements of an
2041 array in the form "<elem1>, <elem2>, <elem3>, ...".
2042
2043 (FIXME?) Assumes array element separator is a comma, which is correct
2044 for all languages currently handled.
2045 (FIXME?) Some languages have a notation for repeated array elements,
2046 perhaps we should try to use that notation when appropriate. */
2047
2048 void
2049 val_print_array_elements (struct type *type,
2050 LONGEST embedded_offset,
2051 CORE_ADDR address, struct ui_file *stream,
2052 int recurse,
2053 struct value *val,
2054 const struct value_print_options *options,
2055 unsigned int i)
2056 {
2057 unsigned int things_printed = 0;
2058 unsigned len;
2059 struct type *elttype, *index_type, *base_index_type;
2060 unsigned eltlen;
2061 /* Position of the array element we are examining to see
2062 whether it is repeated. */
2063 unsigned int rep1;
2064 /* Number of repetitions we have detected so far. */
2065 unsigned int reps;
2066 LONGEST low_bound, high_bound;
2067 LONGEST low_pos, high_pos;
2068
2069 elttype = TYPE_TARGET_TYPE (type);
2070 eltlen = type_length_units (check_typedef (elttype));
2071 index_type = TYPE_INDEX_TYPE (type);
2072
2073 if (get_array_bounds (type, &low_bound, &high_bound))
2074 {
2075 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2076 base_index_type = TYPE_TARGET_TYPE (index_type);
2077 else
2078 base_index_type = index_type;
2079
2080 /* Non-contiguous enumerations types can by used as index types
2081 in some languages (e.g. Ada). In this case, the array length
2082 shall be computed from the positions of the first and last
2083 literal in the enumeration type, and not from the values
2084 of these literals. */
2085 if (!discrete_position (base_index_type, low_bound, &low_pos)
2086 || !discrete_position (base_index_type, high_bound, &high_pos))
2087 {
2088 warning (_("unable to get positions in array, use bounds instead"));
2089 low_pos = low_bound;
2090 high_pos = high_bound;
2091 }
2092
2093 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2094 But we have to be a little extra careful, because some languages
2095 such as Ada allow LOW_POS to be greater than HIGH_POS for
2096 empty arrays. In that situation, the array length is just zero,
2097 not negative! */
2098 if (low_pos > high_pos)
2099 len = 0;
2100 else
2101 len = high_pos - low_pos + 1;
2102 }
2103 else
2104 {
2105 warning (_("unable to get bounds of array, assuming null array"));
2106 low_bound = 0;
2107 len = 0;
2108 }
2109
2110 annotate_array_section_begin (i, elttype);
2111
2112 for (; i < len && things_printed < options->print_max; i++)
2113 {
2114 if (i != 0)
2115 {
2116 if (options->prettyformat_arrays)
2117 {
2118 fprintf_filtered (stream, ",\n");
2119 print_spaces_filtered (2 + 2 * recurse, stream);
2120 }
2121 else
2122 {
2123 fprintf_filtered (stream, ", ");
2124 }
2125 }
2126 wrap_here (n_spaces (2 + 2 * recurse));
2127 maybe_print_array_index (index_type, i + low_bound,
2128 stream, options);
2129
2130 rep1 = i + 1;
2131 reps = 1;
2132 /* Only check for reps if repeat_count_threshold is not set to
2133 UINT_MAX (unlimited). */
2134 if (options->repeat_count_threshold < UINT_MAX)
2135 {
2136 while (rep1 < len
2137 && value_contents_eq (val,
2138 embedded_offset + i * eltlen,
2139 val,
2140 (embedded_offset
2141 + rep1 * eltlen),
2142 eltlen))
2143 {
2144 ++reps;
2145 ++rep1;
2146 }
2147 }
2148
2149 if (reps > options->repeat_count_threshold)
2150 {
2151 val_print (elttype, embedded_offset + i * eltlen,
2152 address, stream, recurse + 1, val, options,
2153 current_language);
2154 annotate_elt_rep (reps);
2155 fprintf_filtered (stream, " <repeats %u times>", reps);
2156 annotate_elt_rep_end ();
2157
2158 i = rep1 - 1;
2159 things_printed += options->repeat_count_threshold;
2160 }
2161 else
2162 {
2163 val_print (elttype, embedded_offset + i * eltlen,
2164 address,
2165 stream, recurse + 1, val, options, current_language);
2166 annotate_elt ();
2167 things_printed++;
2168 }
2169 }
2170 annotate_array_section_end ();
2171 if (i < len)
2172 {
2173 fprintf_filtered (stream, "...");
2174 }
2175 }
2176
2177 /* Read LEN bytes of target memory at address MEMADDR, placing the
2178 results in GDB's memory at MYADDR. Returns a count of the bytes
2179 actually read, and optionally a target_xfer_status value in the
2180 location pointed to by ERRPTR if ERRPTR is non-null. */
2181
2182 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2183 function be eliminated. */
2184
2185 static int
2186 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2187 int len, int *errptr)
2188 {
2189 int nread; /* Number of bytes actually read. */
2190 int errcode; /* Error from last read. */
2191
2192 /* First try a complete read. */
2193 errcode = target_read_memory (memaddr, myaddr, len);
2194 if (errcode == 0)
2195 {
2196 /* Got it all. */
2197 nread = len;
2198 }
2199 else
2200 {
2201 /* Loop, reading one byte at a time until we get as much as we can. */
2202 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2203 {
2204 errcode = target_read_memory (memaddr++, myaddr++, 1);
2205 }
2206 /* If an error, the last read was unsuccessful, so adjust count. */
2207 if (errcode != 0)
2208 {
2209 nread--;
2210 }
2211 }
2212 if (errptr != NULL)
2213 {
2214 *errptr = errcode;
2215 }
2216 return (nread);
2217 }
2218
2219 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2220 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2221 allocated buffer containing the string, which the caller is responsible to
2222 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2223 success, or a target_xfer_status on failure.
2224
2225 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2226 (including eventual NULs in the middle or end of the string).
2227
2228 If LEN is -1, stops at the first null character (not necessarily
2229 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2230 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2231 the string.
2232
2233 Unless an exception is thrown, BUFFER will always be allocated, even on
2234 failure. In this case, some characters might have been read before the
2235 failure happened. Check BYTES_READ to recognize this situation.
2236
2237 Note: There was a FIXME asking to make this code use target_read_string,
2238 but this function is more general (can read past null characters, up to
2239 given LEN). Besides, it is used much more often than target_read_string
2240 so it is more tested. Perhaps callers of target_read_string should use
2241 this function instead? */
2242
2243 int
2244 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2245 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2246 {
2247 int errcode; /* Errno returned from bad reads. */
2248 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2249 gdb_byte *bufptr; /* Pointer to next available byte in
2250 buffer. */
2251 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2252
2253 /* Loop until we either have all the characters, or we encounter
2254 some error, such as bumping into the end of the address space. */
2255
2256 *buffer = NULL;
2257
2258 old_chain = make_cleanup (free_current_contents, buffer);
2259
2260 if (len > 0)
2261 {
2262 /* We want fetchlimit chars, so we might as well read them all in
2263 one operation. */
2264 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2265
2266 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2267 bufptr = *buffer;
2268
2269 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2270 / width;
2271 addr += nfetch * width;
2272 bufptr += nfetch * width;
2273 }
2274 else if (len == -1)
2275 {
2276 unsigned long bufsize = 0;
2277 unsigned int chunksize; /* Size of each fetch, in chars. */
2278 int found_nul; /* Non-zero if we found the nul char. */
2279 gdb_byte *limit; /* First location past end of fetch buffer. */
2280
2281 found_nul = 0;
2282 /* We are looking for a NUL terminator to end the fetching, so we
2283 might as well read in blocks that are large enough to be efficient,
2284 but not so large as to be slow if fetchlimit happens to be large.
2285 So we choose the minimum of 8 and fetchlimit. We used to use 200
2286 instead of 8 but 200 is way too big for remote debugging over a
2287 serial line. */
2288 chunksize = std::min (8u, fetchlimit);
2289
2290 do
2291 {
2292 QUIT;
2293 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2294
2295 if (*buffer == NULL)
2296 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2297 else
2298 *buffer = (gdb_byte *) xrealloc (*buffer,
2299 (nfetch + bufsize) * width);
2300
2301 bufptr = *buffer + bufsize * width;
2302 bufsize += nfetch;
2303
2304 /* Read as much as we can. */
2305 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2306 / width;
2307
2308 /* Scan this chunk for the null character that terminates the string
2309 to print. If found, we don't need to fetch any more. Note
2310 that bufptr is explicitly left pointing at the next character
2311 after the null character, or at the next character after the end
2312 of the buffer. */
2313
2314 limit = bufptr + nfetch * width;
2315 while (bufptr < limit)
2316 {
2317 unsigned long c;
2318
2319 c = extract_unsigned_integer (bufptr, width, byte_order);
2320 addr += width;
2321 bufptr += width;
2322 if (c == 0)
2323 {
2324 /* We don't care about any error which happened after
2325 the NUL terminator. */
2326 errcode = 0;
2327 found_nul = 1;
2328 break;
2329 }
2330 }
2331 }
2332 while (errcode == 0 /* no error */
2333 && bufptr - *buffer < fetchlimit * width /* no overrun */
2334 && !found_nul); /* haven't found NUL yet */
2335 }
2336 else
2337 { /* Length of string is really 0! */
2338 /* We always allocate *buffer. */
2339 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2340 errcode = 0;
2341 }
2342
2343 /* bufptr and addr now point immediately beyond the last byte which we
2344 consider part of the string (including a '\0' which ends the string). */
2345 *bytes_read = bufptr - *buffer;
2346
2347 QUIT;
2348
2349 discard_cleanups (old_chain);
2350
2351 return errcode;
2352 }
2353
2354 /* Return true if print_wchar can display W without resorting to a
2355 numeric escape, false otherwise. */
2356
2357 static int
2358 wchar_printable (gdb_wchar_t w)
2359 {
2360 return (gdb_iswprint (w)
2361 || w == LCST ('\a') || w == LCST ('\b')
2362 || w == LCST ('\f') || w == LCST ('\n')
2363 || w == LCST ('\r') || w == LCST ('\t')
2364 || w == LCST ('\v'));
2365 }
2366
2367 /* A helper function that converts the contents of STRING to wide
2368 characters and then appends them to OUTPUT. */
2369
2370 static void
2371 append_string_as_wide (const char *string,
2372 struct obstack *output)
2373 {
2374 for (; *string; ++string)
2375 {
2376 gdb_wchar_t w = gdb_btowc (*string);
2377 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2378 }
2379 }
2380
2381 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2382 original (target) bytes representing the character, ORIG_LEN is the
2383 number of valid bytes. WIDTH is the number of bytes in a base
2384 characters of the type. OUTPUT is an obstack to which wide
2385 characters are emitted. QUOTER is a (narrow) character indicating
2386 the style of quotes surrounding the character to be printed.
2387 NEED_ESCAPE is an in/out flag which is used to track numeric
2388 escapes across calls. */
2389
2390 static void
2391 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2392 int orig_len, int width,
2393 enum bfd_endian byte_order,
2394 struct obstack *output,
2395 int quoter, int *need_escapep)
2396 {
2397 int need_escape = *need_escapep;
2398
2399 *need_escapep = 0;
2400
2401 /* iswprint implementation on Windows returns 1 for tab character.
2402 In order to avoid different printout on this host, we explicitly
2403 use wchar_printable function. */
2404 switch (w)
2405 {
2406 case LCST ('\a'):
2407 obstack_grow_wstr (output, LCST ("\\a"));
2408 break;
2409 case LCST ('\b'):
2410 obstack_grow_wstr (output, LCST ("\\b"));
2411 break;
2412 case LCST ('\f'):
2413 obstack_grow_wstr (output, LCST ("\\f"));
2414 break;
2415 case LCST ('\n'):
2416 obstack_grow_wstr (output, LCST ("\\n"));
2417 break;
2418 case LCST ('\r'):
2419 obstack_grow_wstr (output, LCST ("\\r"));
2420 break;
2421 case LCST ('\t'):
2422 obstack_grow_wstr (output, LCST ("\\t"));
2423 break;
2424 case LCST ('\v'):
2425 obstack_grow_wstr (output, LCST ("\\v"));
2426 break;
2427 default:
2428 {
2429 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2430 && w != LCST ('8')
2431 && w != LCST ('9'))))
2432 {
2433 gdb_wchar_t wchar = w;
2434
2435 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2436 obstack_grow_wstr (output, LCST ("\\"));
2437 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2438 }
2439 else
2440 {
2441 int i;
2442
2443 for (i = 0; i + width <= orig_len; i += width)
2444 {
2445 char octal[30];
2446 ULONGEST value;
2447
2448 value = extract_unsigned_integer (&orig[i], width,
2449 byte_order);
2450 /* If the value fits in 3 octal digits, print it that
2451 way. Otherwise, print it as a hex escape. */
2452 if (value <= 0777)
2453 xsnprintf (octal, sizeof (octal), "\\%.3o",
2454 (int) (value & 0777));
2455 else
2456 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2457 append_string_as_wide (octal, output);
2458 }
2459 /* If we somehow have extra bytes, print them now. */
2460 while (i < orig_len)
2461 {
2462 char octal[5];
2463
2464 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2465 append_string_as_wide (octal, output);
2466 ++i;
2467 }
2468
2469 *need_escapep = 1;
2470 }
2471 break;
2472 }
2473 }
2474 }
2475
2476 /* Print the character C on STREAM as part of the contents of a
2477 literal string whose delimiter is QUOTER. ENCODING names the
2478 encoding of C. */
2479
2480 void
2481 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2482 int quoter, const char *encoding)
2483 {
2484 enum bfd_endian byte_order
2485 = gdbarch_byte_order (get_type_arch (type));
2486 struct obstack wchar_buf, output;
2487 struct cleanup *cleanups;
2488 gdb_byte *buf;
2489 int need_escape = 0;
2490
2491 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2492 pack_long (buf, type, c);
2493
2494 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2495
2496 /* This holds the printable form of the wchar_t data. */
2497 obstack_init (&wchar_buf);
2498 cleanups = make_cleanup_obstack_free (&wchar_buf);
2499
2500 while (1)
2501 {
2502 int num_chars;
2503 gdb_wchar_t *chars;
2504 const gdb_byte *buf;
2505 size_t buflen;
2506 int print_escape = 1;
2507 enum wchar_iterate_result result;
2508
2509 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2510 if (num_chars < 0)
2511 break;
2512 if (num_chars > 0)
2513 {
2514 /* If all characters are printable, print them. Otherwise,
2515 we're going to have to print an escape sequence. We
2516 check all characters because we want to print the target
2517 bytes in the escape sequence, and we don't know character
2518 boundaries there. */
2519 int i;
2520
2521 print_escape = 0;
2522 for (i = 0; i < num_chars; ++i)
2523 if (!wchar_printable (chars[i]))
2524 {
2525 print_escape = 1;
2526 break;
2527 }
2528
2529 if (!print_escape)
2530 {
2531 for (i = 0; i < num_chars; ++i)
2532 print_wchar (chars[i], buf, buflen,
2533 TYPE_LENGTH (type), byte_order,
2534 &wchar_buf, quoter, &need_escape);
2535 }
2536 }
2537
2538 /* This handles the NUM_CHARS == 0 case as well. */
2539 if (print_escape)
2540 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2541 byte_order, &wchar_buf, quoter, &need_escape);
2542 }
2543
2544 /* The output in the host encoding. */
2545 obstack_init (&output);
2546 make_cleanup_obstack_free (&output);
2547
2548 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2549 (gdb_byte *) obstack_base (&wchar_buf),
2550 obstack_object_size (&wchar_buf),
2551 sizeof (gdb_wchar_t), &output, translit_char);
2552 obstack_1grow (&output, '\0');
2553
2554 fputs_filtered ((const char *) obstack_base (&output), stream);
2555
2556 do_cleanups (cleanups);
2557 }
2558
2559 /* Return the repeat count of the next character/byte in ITER,
2560 storing the result in VEC. */
2561
2562 static int
2563 count_next_character (wchar_iterator *iter,
2564 VEC (converted_character_d) **vec)
2565 {
2566 struct converted_character *current;
2567
2568 if (VEC_empty (converted_character_d, *vec))
2569 {
2570 struct converted_character tmp;
2571 gdb_wchar_t *chars;
2572
2573 tmp.num_chars
2574 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2575 if (tmp.num_chars > 0)
2576 {
2577 gdb_assert (tmp.num_chars < MAX_WCHARS);
2578 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2579 }
2580 VEC_safe_push (converted_character_d, *vec, &tmp);
2581 }
2582
2583 current = VEC_last (converted_character_d, *vec);
2584
2585 /* Count repeated characters or bytes. */
2586 current->repeat_count = 1;
2587 if (current->num_chars == -1)
2588 {
2589 /* EOF */
2590 return -1;
2591 }
2592 else
2593 {
2594 gdb_wchar_t *chars;
2595 struct converted_character d;
2596 int repeat;
2597
2598 d.repeat_count = 0;
2599
2600 while (1)
2601 {
2602 /* Get the next character. */
2603 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2604
2605 /* If a character was successfully converted, save the character
2606 into the converted character. */
2607 if (d.num_chars > 0)
2608 {
2609 gdb_assert (d.num_chars < MAX_WCHARS);
2610 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2611 }
2612
2613 /* Determine if the current character is the same as this
2614 new character. */
2615 if (d.num_chars == current->num_chars && d.result == current->result)
2616 {
2617 /* There are two cases to consider:
2618
2619 1) Equality of converted character (num_chars > 0)
2620 2) Equality of non-converted character (num_chars == 0) */
2621 if ((current->num_chars > 0
2622 && memcmp (current->chars, d.chars,
2623 WCHAR_BUFLEN (current->num_chars)) == 0)
2624 || (current->num_chars == 0
2625 && current->buflen == d.buflen
2626 && memcmp (current->buf, d.buf, current->buflen) == 0))
2627 ++current->repeat_count;
2628 else
2629 break;
2630 }
2631 else
2632 break;
2633 }
2634
2635 /* Push this next converted character onto the result vector. */
2636 repeat = current->repeat_count;
2637 VEC_safe_push (converted_character_d, *vec, &d);
2638 return repeat;
2639 }
2640 }
2641
2642 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2643 character to use with string output. WIDTH is the size of the output
2644 character type. BYTE_ORDER is the the target byte order. OPTIONS
2645 is the user's print options. */
2646
2647 static void
2648 print_converted_chars_to_obstack (struct obstack *obstack,
2649 VEC (converted_character_d) *chars,
2650 int quote_char, int width,
2651 enum bfd_endian byte_order,
2652 const struct value_print_options *options)
2653 {
2654 unsigned int idx;
2655 struct converted_character *elem;
2656 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2657 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2658 int need_escape = 0;
2659
2660 /* Set the start state. */
2661 idx = 0;
2662 last = state = START;
2663 elem = NULL;
2664
2665 while (1)
2666 {
2667 switch (state)
2668 {
2669 case START:
2670 /* Nothing to do. */
2671 break;
2672
2673 case SINGLE:
2674 {
2675 int j;
2676
2677 /* We are outputting a single character
2678 (< options->repeat_count_threshold). */
2679
2680 if (last != SINGLE)
2681 {
2682 /* We were outputting some other type of content, so we
2683 must output and a comma and a quote. */
2684 if (last != START)
2685 obstack_grow_wstr (obstack, LCST (", "));
2686 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2687 }
2688 /* Output the character. */
2689 for (j = 0; j < elem->repeat_count; ++j)
2690 {
2691 if (elem->result == wchar_iterate_ok)
2692 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2693 byte_order, obstack, quote_char, &need_escape);
2694 else
2695 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2696 byte_order, obstack, quote_char, &need_escape);
2697 }
2698 }
2699 break;
2700
2701 case REPEAT:
2702 {
2703 int j;
2704 char *s;
2705
2706 /* We are outputting a character with a repeat count
2707 greater than options->repeat_count_threshold. */
2708
2709 if (last == SINGLE)
2710 {
2711 /* We were outputting a single string. Terminate the
2712 string. */
2713 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2714 }
2715 if (last != START)
2716 obstack_grow_wstr (obstack, LCST (", "));
2717
2718 /* Output the character and repeat string. */
2719 obstack_grow_wstr (obstack, LCST ("'"));
2720 if (elem->result == wchar_iterate_ok)
2721 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2722 byte_order, obstack, quote_char, &need_escape);
2723 else
2724 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2725 byte_order, obstack, quote_char, &need_escape);
2726 obstack_grow_wstr (obstack, LCST ("'"));
2727 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2728 for (j = 0; s[j]; ++j)
2729 {
2730 gdb_wchar_t w = gdb_btowc (s[j]);
2731 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2732 }
2733 xfree (s);
2734 }
2735 break;
2736
2737 case INCOMPLETE:
2738 /* We are outputting an incomplete sequence. */
2739 if (last == SINGLE)
2740 {
2741 /* If we were outputting a string of SINGLE characters,
2742 terminate the quote. */
2743 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2744 }
2745 if (last != START)
2746 obstack_grow_wstr (obstack, LCST (", "));
2747
2748 /* Output the incomplete sequence string. */
2749 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2750 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2751 obstack, 0, &need_escape);
2752 obstack_grow_wstr (obstack, LCST (">"));
2753
2754 /* We do not attempt to outupt anything after this. */
2755 state = FINISH;
2756 break;
2757
2758 case FINISH:
2759 /* All done. If we were outputting a string of SINGLE
2760 characters, the string must be terminated. Otherwise,
2761 REPEAT and INCOMPLETE are always left properly terminated. */
2762 if (last == SINGLE)
2763 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2764
2765 return;
2766 }
2767
2768 /* Get the next element and state. */
2769 last = state;
2770 if (state != FINISH)
2771 {
2772 elem = VEC_index (converted_character_d, chars, idx++);
2773 switch (elem->result)
2774 {
2775 case wchar_iterate_ok:
2776 case wchar_iterate_invalid:
2777 if (elem->repeat_count > options->repeat_count_threshold)
2778 state = REPEAT;
2779 else
2780 state = SINGLE;
2781 break;
2782
2783 case wchar_iterate_incomplete:
2784 state = INCOMPLETE;
2785 break;
2786
2787 case wchar_iterate_eof:
2788 state = FINISH;
2789 break;
2790 }
2791 }
2792 }
2793 }
2794
2795 /* Print the character string STRING, printing at most LENGTH
2796 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2797 the type of each character. OPTIONS holds the printing options;
2798 printing stops early if the number hits print_max; repeat counts
2799 are printed as appropriate. Print ellipses at the end if we had to
2800 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2801 QUOTE_CHAR is the character to print at each end of the string. If
2802 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2803 omitted. */
2804
2805 void
2806 generic_printstr (struct ui_file *stream, struct type *type,
2807 const gdb_byte *string, unsigned int length,
2808 const char *encoding, int force_ellipses,
2809 int quote_char, int c_style_terminator,
2810 const struct value_print_options *options)
2811 {
2812 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2813 unsigned int i;
2814 int width = TYPE_LENGTH (type);
2815 struct obstack wchar_buf, output;
2816 struct cleanup *cleanup;
2817 int finished = 0;
2818 struct converted_character *last;
2819 VEC (converted_character_d) *converted_chars;
2820
2821 if (length == -1)
2822 {
2823 unsigned long current_char = 1;
2824
2825 for (i = 0; current_char; ++i)
2826 {
2827 QUIT;
2828 current_char = extract_unsigned_integer (string + i * width,
2829 width, byte_order);
2830 }
2831 length = i;
2832 }
2833
2834 /* If the string was not truncated due to `set print elements', and
2835 the last byte of it is a null, we don't print that, in
2836 traditional C style. */
2837 if (c_style_terminator
2838 && !force_ellipses
2839 && length > 0
2840 && (extract_unsigned_integer (string + (length - 1) * width,
2841 width, byte_order) == 0))
2842 length--;
2843
2844 if (length == 0)
2845 {
2846 fputs_filtered ("\"\"", stream);
2847 return;
2848 }
2849
2850 /* Arrange to iterate over the characters, in wchar_t form. */
2851 wchar_iterator iter (string, length * width, encoding, width);
2852 converted_chars = NULL;
2853 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2854 &converted_chars);
2855
2856 /* Convert characters until the string is over or the maximum
2857 number of printed characters has been reached. */
2858 i = 0;
2859 while (i < options->print_max)
2860 {
2861 int r;
2862
2863 QUIT;
2864
2865 /* Grab the next character and repeat count. */
2866 r = count_next_character (&iter, &converted_chars);
2867
2868 /* If less than zero, the end of the input string was reached. */
2869 if (r < 0)
2870 break;
2871
2872 /* Otherwise, add the count to the total print count and get
2873 the next character. */
2874 i += r;
2875 }
2876
2877 /* Get the last element and determine if the entire string was
2878 processed. */
2879 last = VEC_last (converted_character_d, converted_chars);
2880 finished = (last->result == wchar_iterate_eof);
2881
2882 /* Ensure that CONVERTED_CHARS is terminated. */
2883 last->result = wchar_iterate_eof;
2884
2885 /* WCHAR_BUF is the obstack we use to represent the string in
2886 wchar_t form. */
2887 obstack_init (&wchar_buf);
2888 make_cleanup_obstack_free (&wchar_buf);
2889
2890 /* Print the output string to the obstack. */
2891 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2892 width, byte_order, options);
2893
2894 if (force_ellipses || !finished)
2895 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2896
2897 /* OUTPUT is where we collect `char's for printing. */
2898 obstack_init (&output);
2899 make_cleanup_obstack_free (&output);
2900
2901 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2902 (gdb_byte *) obstack_base (&wchar_buf),
2903 obstack_object_size (&wchar_buf),
2904 sizeof (gdb_wchar_t), &output, translit_char);
2905 obstack_1grow (&output, '\0');
2906
2907 fputs_filtered ((const char *) obstack_base (&output), stream);
2908
2909 do_cleanups (cleanup);
2910 }
2911
2912 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2913 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2914 stops at the first null byte, otherwise printing proceeds (including null
2915 bytes) until either print_max or LEN characters have been printed,
2916 whichever is smaller. ENCODING is the name of the string's
2917 encoding. It can be NULL, in which case the target encoding is
2918 assumed. */
2919
2920 int
2921 val_print_string (struct type *elttype, const char *encoding,
2922 CORE_ADDR addr, int len,
2923 struct ui_file *stream,
2924 const struct value_print_options *options)
2925 {
2926 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2927 int err; /* Non-zero if we got a bad read. */
2928 int found_nul; /* Non-zero if we found the nul char. */
2929 unsigned int fetchlimit; /* Maximum number of chars to print. */
2930 int bytes_read;
2931 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2932 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2933 struct gdbarch *gdbarch = get_type_arch (elttype);
2934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2935 int width = TYPE_LENGTH (elttype);
2936
2937 /* First we need to figure out the limit on the number of characters we are
2938 going to attempt to fetch and print. This is actually pretty simple. If
2939 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2940 LEN is -1, then the limit is print_max. This is true regardless of
2941 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2942 because finding the null byte (or available memory) is what actually
2943 limits the fetch. */
2944
2945 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2946 options->print_max));
2947
2948 err = read_string (addr, len, width, fetchlimit, byte_order,
2949 &buffer, &bytes_read);
2950 old_chain = make_cleanup (xfree, buffer);
2951
2952 addr += bytes_read;
2953
2954 /* We now have either successfully filled the buffer to fetchlimit,
2955 or terminated early due to an error or finding a null char when
2956 LEN is -1. */
2957
2958 /* Determine found_nul by looking at the last character read. */
2959 found_nul = 0;
2960 if (bytes_read >= width)
2961 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2962 byte_order) == 0;
2963 if (len == -1 && !found_nul)
2964 {
2965 gdb_byte *peekbuf;
2966
2967 /* We didn't find a NUL terminator we were looking for. Attempt
2968 to peek at the next character. If not successful, or it is not
2969 a null byte, then force ellipsis to be printed. */
2970
2971 peekbuf = (gdb_byte *) alloca (width);
2972
2973 if (target_read_memory (addr, peekbuf, width) == 0
2974 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2975 force_ellipsis = 1;
2976 }
2977 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2978 {
2979 /* Getting an error when we have a requested length, or fetching less
2980 than the number of characters actually requested, always make us
2981 print ellipsis. */
2982 force_ellipsis = 1;
2983 }
2984
2985 /* If we get an error before fetching anything, don't print a string.
2986 But if we fetch something and then get an error, print the string
2987 and then the error message. */
2988 if (err == 0 || bytes_read > 0)
2989 {
2990 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2991 encoding, force_ellipsis, options);
2992 }
2993
2994 if (err != 0)
2995 {
2996 char *str;
2997
2998 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2999 make_cleanup (xfree, str);
3000
3001 fprintf_filtered (stream, "<error: ");
3002 fputs_filtered (str, stream);
3003 fprintf_filtered (stream, ">");
3004 }
3005
3006 gdb_flush (stream);
3007 do_cleanups (old_chain);
3008
3009 return (bytes_read / width);
3010 }
3011 \f
3012
3013 /* The 'set input-radix' command writes to this auxiliary variable.
3014 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3015 it is left unchanged. */
3016
3017 static unsigned input_radix_1 = 10;
3018
3019 /* Validate an input or output radix setting, and make sure the user
3020 knows what they really did here. Radix setting is confusing, e.g.
3021 setting the input radix to "10" never changes it! */
3022
3023 static void
3024 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3025 {
3026 set_input_radix_1 (from_tty, input_radix_1);
3027 }
3028
3029 static void
3030 set_input_radix_1 (int from_tty, unsigned radix)
3031 {
3032 /* We don't currently disallow any input radix except 0 or 1, which don't
3033 make any mathematical sense. In theory, we can deal with any input
3034 radix greater than 1, even if we don't have unique digits for every
3035 value from 0 to radix-1, but in practice we lose on large radix values.
3036 We should either fix the lossage or restrict the radix range more.
3037 (FIXME). */
3038
3039 if (radix < 2)
3040 {
3041 input_radix_1 = input_radix;
3042 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3043 radix);
3044 }
3045 input_radix_1 = input_radix = radix;
3046 if (from_tty)
3047 {
3048 printf_filtered (_("Input radix now set to "
3049 "decimal %u, hex %x, octal %o.\n"),
3050 radix, radix, radix);
3051 }
3052 }
3053
3054 /* The 'set output-radix' command writes to this auxiliary variable.
3055 If the requested radix is valid, OUTPUT_RADIX is updated,
3056 otherwise, it is left unchanged. */
3057
3058 static unsigned output_radix_1 = 10;
3059
3060 static void
3061 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3062 {
3063 set_output_radix_1 (from_tty, output_radix_1);
3064 }
3065
3066 static void
3067 set_output_radix_1 (int from_tty, unsigned radix)
3068 {
3069 /* Validate the radix and disallow ones that we aren't prepared to
3070 handle correctly, leaving the radix unchanged. */
3071 switch (radix)
3072 {
3073 case 16:
3074 user_print_options.output_format = 'x'; /* hex */
3075 break;
3076 case 10:
3077 user_print_options.output_format = 0; /* decimal */
3078 break;
3079 case 8:
3080 user_print_options.output_format = 'o'; /* octal */
3081 break;
3082 default:
3083 output_radix_1 = output_radix;
3084 error (_("Unsupported output radix ``decimal %u''; "
3085 "output radix unchanged."),
3086 radix);
3087 }
3088 output_radix_1 = output_radix = radix;
3089 if (from_tty)
3090 {
3091 printf_filtered (_("Output radix now set to "
3092 "decimal %u, hex %x, octal %o.\n"),
3093 radix, radix, radix);
3094 }
3095 }
3096
3097 /* Set both the input and output radix at once. Try to set the output radix
3098 first, since it has the most restrictive range. An radix that is valid as
3099 an output radix is also valid as an input radix.
3100
3101 It may be useful to have an unusual input radix. If the user wishes to
3102 set an input radix that is not valid as an output radix, he needs to use
3103 the 'set input-radix' command. */
3104
3105 static void
3106 set_radix (char *arg, int from_tty)
3107 {
3108 unsigned radix;
3109
3110 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3111 set_output_radix_1 (0, radix);
3112 set_input_radix_1 (0, radix);
3113 if (from_tty)
3114 {
3115 printf_filtered (_("Input and output radices now set to "
3116 "decimal %u, hex %x, octal %o.\n"),
3117 radix, radix, radix);
3118 }
3119 }
3120
3121 /* Show both the input and output radices. */
3122
3123 static void
3124 show_radix (char *arg, int from_tty)
3125 {
3126 if (from_tty)
3127 {
3128 if (input_radix == output_radix)
3129 {
3130 printf_filtered (_("Input and output radices set to "
3131 "decimal %u, hex %x, octal %o.\n"),
3132 input_radix, input_radix, input_radix);
3133 }
3134 else
3135 {
3136 printf_filtered (_("Input radix set to decimal "
3137 "%u, hex %x, octal %o.\n"),
3138 input_radix, input_radix, input_radix);
3139 printf_filtered (_("Output radix set to decimal "
3140 "%u, hex %x, octal %o.\n"),
3141 output_radix, output_radix, output_radix);
3142 }
3143 }
3144 }
3145 \f
3146
3147 static void
3148 set_print (char *arg, int from_tty)
3149 {
3150 printf_unfiltered (
3151 "\"set print\" must be followed by the name of a print subcommand.\n");
3152 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3153 }
3154
3155 static void
3156 show_print (char *args, int from_tty)
3157 {
3158 cmd_show_list (showprintlist, from_tty, "");
3159 }
3160
3161 static void
3162 set_print_raw (char *arg, int from_tty)
3163 {
3164 printf_unfiltered (
3165 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3166 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3167 }
3168
3169 static void
3170 show_print_raw (char *args, int from_tty)
3171 {
3172 cmd_show_list (showprintrawlist, from_tty, "");
3173 }
3174
3175 \f
3176 void
3177 _initialize_valprint (void)
3178 {
3179 add_prefix_cmd ("print", no_class, set_print,
3180 _("Generic command for setting how things print."),
3181 &setprintlist, "set print ", 0, &setlist);
3182 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3183 /* Prefer set print to set prompt. */
3184 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3185
3186 add_prefix_cmd ("print", no_class, show_print,
3187 _("Generic command for showing print settings."),
3188 &showprintlist, "show print ", 0, &showlist);
3189 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3190 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3191
3192 add_prefix_cmd ("raw", no_class, set_print_raw,
3193 _("\
3194 Generic command for setting what things to print in \"raw\" mode."),
3195 &setprintrawlist, "set print raw ", 0, &setprintlist);
3196 add_prefix_cmd ("raw", no_class, show_print_raw,
3197 _("Generic command for showing \"print raw\" settings."),
3198 &showprintrawlist, "show print raw ", 0, &showprintlist);
3199
3200 add_setshow_uinteger_cmd ("elements", no_class,
3201 &user_print_options.print_max, _("\
3202 Set limit on string chars or array elements to print."), _("\
3203 Show limit on string chars or array elements to print."), _("\
3204 \"set print elements unlimited\" causes there to be no limit."),
3205 NULL,
3206 show_print_max,
3207 &setprintlist, &showprintlist);
3208
3209 add_setshow_boolean_cmd ("null-stop", no_class,
3210 &user_print_options.stop_print_at_null, _("\
3211 Set printing of char arrays to stop at first null char."), _("\
3212 Show printing of char arrays to stop at first null char."), NULL,
3213 NULL,
3214 show_stop_print_at_null,
3215 &setprintlist, &showprintlist);
3216
3217 add_setshow_uinteger_cmd ("repeats", no_class,
3218 &user_print_options.repeat_count_threshold, _("\
3219 Set threshold for repeated print elements."), _("\
3220 Show threshold for repeated print elements."), _("\
3221 \"set print repeats unlimited\" causes all elements to be individually printed."),
3222 NULL,
3223 show_repeat_count_threshold,
3224 &setprintlist, &showprintlist);
3225
3226 add_setshow_boolean_cmd ("pretty", class_support,
3227 &user_print_options.prettyformat_structs, _("\
3228 Set pretty formatting of structures."), _("\
3229 Show pretty formatting of structures."), NULL,
3230 NULL,
3231 show_prettyformat_structs,
3232 &setprintlist, &showprintlist);
3233
3234 add_setshow_boolean_cmd ("union", class_support,
3235 &user_print_options.unionprint, _("\
3236 Set printing of unions interior to structures."), _("\
3237 Show printing of unions interior to structures."), NULL,
3238 NULL,
3239 show_unionprint,
3240 &setprintlist, &showprintlist);
3241
3242 add_setshow_boolean_cmd ("array", class_support,
3243 &user_print_options.prettyformat_arrays, _("\
3244 Set pretty formatting of arrays."), _("\
3245 Show pretty formatting of arrays."), NULL,
3246 NULL,
3247 show_prettyformat_arrays,
3248 &setprintlist, &showprintlist);
3249
3250 add_setshow_boolean_cmd ("address", class_support,
3251 &user_print_options.addressprint, _("\
3252 Set printing of addresses."), _("\
3253 Show printing of addresses."), NULL,
3254 NULL,
3255 show_addressprint,
3256 &setprintlist, &showprintlist);
3257
3258 add_setshow_boolean_cmd ("symbol", class_support,
3259 &user_print_options.symbol_print, _("\
3260 Set printing of symbol names when printing pointers."), _("\
3261 Show printing of symbol names when printing pointers."),
3262 NULL, NULL,
3263 show_symbol_print,
3264 &setprintlist, &showprintlist);
3265
3266 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3267 _("\
3268 Set default input radix for entering numbers."), _("\
3269 Show default input radix for entering numbers."), NULL,
3270 set_input_radix,
3271 show_input_radix,
3272 &setlist, &showlist);
3273
3274 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3275 _("\
3276 Set default output radix for printing of values."), _("\
3277 Show default output radix for printing of values."), NULL,
3278 set_output_radix,
3279 show_output_radix,
3280 &setlist, &showlist);
3281
3282 /* The "set radix" and "show radix" commands are special in that
3283 they are like normal set and show commands but allow two normally
3284 independent variables to be either set or shown with a single
3285 command. So the usual deprecated_add_set_cmd() and [deleted]
3286 add_show_from_set() commands aren't really appropriate. */
3287 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3288 longer true - show can display anything. */
3289 add_cmd ("radix", class_support, set_radix, _("\
3290 Set default input and output number radices.\n\
3291 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3292 Without an argument, sets both radices back to the default value of 10."),
3293 &setlist);
3294 add_cmd ("radix", class_support, show_radix, _("\
3295 Show the default input and output number radices.\n\
3296 Use 'show input-radix' or 'show output-radix' to independently show each."),
3297 &showlist);
3298
3299 add_setshow_boolean_cmd ("array-indexes", class_support,
3300 &user_print_options.print_array_indexes, _("\
3301 Set printing of array indexes."), _("\
3302 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3303 &setprintlist, &showprintlist);
3304 }
This page took 0.151435 seconds and 5 git commands to generate.