Factor out reference printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 type = check_typedef (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 type = check_typedef (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 type = check_typedef (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369 static void
370 print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373 {
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387 }
388
389 /* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391 static void
392 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397 {
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426 }
427
428 /* generic_val_print helper for TYPE_CODE_PTR. */
429
430 static void
431 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435 {
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449 }
450
451
452 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454 static void
455 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459 {
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462 }
463
464 /* generic_val_print helper for TYPE_CODE_REF. */
465
466 static void
467 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510 }
511
512 /* A generic val_print that is suitable for use by language
513 implementations of the la_val_print method. This function can
514 handle most type codes, though not all, notably exception
515 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
516 the caller.
517
518 Most arguments are as to val_print.
519
520 The additional DECORATIONS argument can be used to customize the
521 output in some small, language-specific ways. */
522
523 void
524 generic_val_print (struct type *type, const gdb_byte *valaddr,
525 int embedded_offset, CORE_ADDR address,
526 struct ui_file *stream, int recurse,
527 const struct value *original_value,
528 const struct value_print_options *options,
529 const struct generic_val_print_decorations *decorations)
530 {
531 struct gdbarch *gdbarch = get_type_arch (type);
532 unsigned int i = 0; /* Number of characters printed. */
533 unsigned len;
534 struct type *unresolved_type = type;
535 LONGEST val;
536
537 type = check_typedef (type);
538 switch (TYPE_CODE (type))
539 {
540 case TYPE_CODE_ARRAY:
541 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
542 recurse, original_value, options);
543 break;
544
545 case TYPE_CODE_MEMBERPTR:
546 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
547 original_value, options);
548 break;
549
550 case TYPE_CODE_PTR:
551 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
552 original_value, options);
553 break;
554
555 case TYPE_CODE_REF:
556 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
557 original_value, options);
558 break;
559
560 case TYPE_CODE_ENUM:
561 if (options->format)
562 {
563 val_print_scalar_formatted (type, valaddr, embedded_offset,
564 original_value, options, 0, stream);
565 break;
566 }
567 len = TYPE_NFIELDS (type);
568 val = unpack_long (type, valaddr + embedded_offset);
569 for (i = 0; i < len; i++)
570 {
571 QUIT;
572 if (val == TYPE_FIELD_ENUMVAL (type, i))
573 {
574 break;
575 }
576 }
577 if (i < len)
578 {
579 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
580 }
581 else if (TYPE_FLAG_ENUM (type))
582 {
583 int first = 1;
584
585 /* We have a "flag" enum, so we try to decompose it into
586 pieces as appropriate. A flag enum has disjoint
587 constants by definition. */
588 fputs_filtered ("(", stream);
589 for (i = 0; i < len; ++i)
590 {
591 QUIT;
592
593 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
594 {
595 if (!first)
596 fputs_filtered (" | ", stream);
597 first = 0;
598
599 val &= ~TYPE_FIELD_ENUMVAL (type, i);
600 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
601 }
602 }
603
604 if (first || val != 0)
605 {
606 if (!first)
607 fputs_filtered (" | ", stream);
608 fputs_filtered ("unknown: ", stream);
609 print_longest (stream, 'd', 0, val);
610 }
611
612 fputs_filtered (")", stream);
613 }
614 else
615 print_longest (stream, 'd', 0, val);
616 break;
617
618 case TYPE_CODE_FLAGS:
619 if (options->format)
620 val_print_scalar_formatted (type, valaddr, embedded_offset,
621 original_value, options, 0, stream);
622 else
623 val_print_type_code_flags (type, valaddr + embedded_offset,
624 stream);
625 break;
626
627 case TYPE_CODE_FUNC:
628 case TYPE_CODE_METHOD:
629 if (options->format)
630 {
631 val_print_scalar_formatted (type, valaddr, embedded_offset,
632 original_value, options, 0, stream);
633 break;
634 }
635 /* FIXME, we should consider, at least for ANSI C language,
636 eliminating the distinction made between FUNCs and POINTERs
637 to FUNCs. */
638 fprintf_filtered (stream, "{");
639 type_print (type, "", stream, -1);
640 fprintf_filtered (stream, "} ");
641 /* Try to print what function it points to, and its address. */
642 print_address_demangle (options, gdbarch, address, stream, demangle);
643 break;
644
645 case TYPE_CODE_BOOL:
646 if (options->format || options->output_format)
647 {
648 struct value_print_options opts = *options;
649 opts.format = (options->format ? options->format
650 : options->output_format);
651 val_print_scalar_formatted (type, valaddr, embedded_offset,
652 original_value, &opts, 0, stream);
653 }
654 else
655 {
656 val = unpack_long (type, valaddr + embedded_offset);
657 if (val == 0)
658 fputs_filtered (decorations->false_name, stream);
659 else if (val == 1)
660 fputs_filtered (decorations->true_name, stream);
661 else
662 print_longest (stream, 'd', 0, val);
663 }
664 break;
665
666 case TYPE_CODE_RANGE:
667 /* FIXME: create_static_range_type does not set the unsigned bit in a
668 range type (I think it probably should copy it from the
669 target type), so we won't print values which are too large to
670 fit in a signed integer correctly. */
671 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
672 print with the target type, though, because the size of our
673 type and the target type might differ). */
674
675 /* FALLTHROUGH */
676
677 case TYPE_CODE_INT:
678 if (options->format || options->output_format)
679 {
680 struct value_print_options opts = *options;
681
682 opts.format = (options->format ? options->format
683 : options->output_format);
684 val_print_scalar_formatted (type, valaddr, embedded_offset,
685 original_value, &opts, 0, stream);
686 }
687 else
688 val_print_type_code_int (type, valaddr + embedded_offset, stream);
689 break;
690
691 case TYPE_CODE_CHAR:
692 if (options->format || options->output_format)
693 {
694 struct value_print_options opts = *options;
695
696 opts.format = (options->format ? options->format
697 : options->output_format);
698 val_print_scalar_formatted (type, valaddr, embedded_offset,
699 original_value, &opts, 0, stream);
700 }
701 else
702 {
703 val = unpack_long (type, valaddr + embedded_offset);
704 if (TYPE_UNSIGNED (type))
705 fprintf_filtered (stream, "%u", (unsigned int) val);
706 else
707 fprintf_filtered (stream, "%d", (int) val);
708 fputs_filtered (" ", stream);
709 LA_PRINT_CHAR (val, unresolved_type, stream);
710 }
711 break;
712
713 case TYPE_CODE_FLT:
714 if (options->format)
715 {
716 val_print_scalar_formatted (type, valaddr, embedded_offset,
717 original_value, options, 0, stream);
718 }
719 else
720 {
721 print_floating (valaddr + embedded_offset, type, stream);
722 }
723 break;
724
725 case TYPE_CODE_DECFLOAT:
726 if (options->format)
727 val_print_scalar_formatted (type, valaddr, embedded_offset,
728 original_value, options, 0, stream);
729 else
730 print_decimal_floating (valaddr + embedded_offset,
731 type, stream);
732 break;
733
734 case TYPE_CODE_VOID:
735 fputs_filtered (decorations->void_name, stream);
736 break;
737
738 case TYPE_CODE_ERROR:
739 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
740 break;
741
742 case TYPE_CODE_UNDEF:
743 /* This happens (without TYPE_FLAG_STUB set) on systems which
744 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
745 "struct foo *bar" and no complete type for struct foo in that
746 file. */
747 fprintf_filtered (stream, _("<incomplete type>"));
748 break;
749
750 case TYPE_CODE_COMPLEX:
751 fprintf_filtered (stream, "%s", decorations->complex_prefix);
752 if (options->format)
753 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
754 valaddr, embedded_offset,
755 original_value, options, 0, stream);
756 else
757 print_floating (valaddr + embedded_offset,
758 TYPE_TARGET_TYPE (type),
759 stream);
760 fprintf_filtered (stream, "%s", decorations->complex_infix);
761 if (options->format)
762 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
763 valaddr,
764 embedded_offset
765 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
766 original_value,
767 options, 0, stream);
768 else
769 print_floating (valaddr + embedded_offset
770 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
771 TYPE_TARGET_TYPE (type),
772 stream);
773 fprintf_filtered (stream, "%s", decorations->complex_suffix);
774 break;
775
776 case TYPE_CODE_UNION:
777 case TYPE_CODE_STRUCT:
778 case TYPE_CODE_METHODPTR:
779 default:
780 error (_("Unhandled type code %d in symbol table."),
781 TYPE_CODE (type));
782 }
783 gdb_flush (stream);
784 }
785
786 /* Print using the given LANGUAGE the data of type TYPE located at
787 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
788 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
789 STREAM according to OPTIONS. VAL is the whole object that came
790 from ADDRESS. VALADDR must point to the head of VAL's contents
791 buffer.
792
793 The language printers will pass down an adjusted EMBEDDED_OFFSET to
794 further helper subroutines as subfields of TYPE are printed. In
795 such cases, VALADDR is passed down unadjusted, as well as VAL, so
796 that VAL can be queried for metadata about the contents data being
797 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
798 buffer. For example: "has this field been optimized out", or "I'm
799 printing an object while inspecting a traceframe; has this
800 particular piece of data been collected?".
801
802 RECURSE indicates the amount of indentation to supply before
803 continuation lines; this amount is roughly twice the value of
804 RECURSE. */
805
806 void
807 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
808 CORE_ADDR address, struct ui_file *stream, int recurse,
809 const struct value *val,
810 const struct value_print_options *options,
811 const struct language_defn *language)
812 {
813 int ret = 0;
814 struct value_print_options local_opts = *options;
815 struct type *real_type = check_typedef (type);
816
817 if (local_opts.prettyformat == Val_prettyformat_default)
818 local_opts.prettyformat = (local_opts.prettyformat_structs
819 ? Val_prettyformat : Val_no_prettyformat);
820
821 QUIT;
822
823 /* Ensure that the type is complete and not just a stub. If the type is
824 only a stub and we can't find and substitute its complete type, then
825 print appropriate string and return. */
826
827 if (TYPE_STUB (real_type))
828 {
829 fprintf_filtered (stream, _("<incomplete type>"));
830 gdb_flush (stream);
831 return;
832 }
833
834 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
835 return;
836
837 if (!options->raw)
838 {
839 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
840 address, stream, recurse,
841 val, options, language);
842 if (ret)
843 return;
844 }
845
846 /* Handle summary mode. If the value is a scalar, print it;
847 otherwise, print an ellipsis. */
848 if (options->summary && !val_print_scalar_type_p (type))
849 {
850 fprintf_filtered (stream, "...");
851 return;
852 }
853
854 TRY
855 {
856 language->la_val_print (type, valaddr, embedded_offset, address,
857 stream, recurse, val,
858 &local_opts);
859 }
860 CATCH (except, RETURN_MASK_ERROR)
861 {
862 fprintf_filtered (stream, _("<error reading variable>"));
863 }
864 END_CATCH
865 }
866
867 /* Check whether the value VAL is printable. Return 1 if it is;
868 return 0 and print an appropriate error message to STREAM according to
869 OPTIONS if it is not. */
870
871 static int
872 value_check_printable (struct value *val, struct ui_file *stream,
873 const struct value_print_options *options)
874 {
875 if (val == 0)
876 {
877 fprintf_filtered (stream, _("<address of value unknown>"));
878 return 0;
879 }
880
881 if (value_entirely_optimized_out (val))
882 {
883 if (options->summary && !val_print_scalar_type_p (value_type (val)))
884 fprintf_filtered (stream, "...");
885 else
886 val_print_optimized_out (val, stream);
887 return 0;
888 }
889
890 if (value_entirely_unavailable (val))
891 {
892 if (options->summary && !val_print_scalar_type_p (value_type (val)))
893 fprintf_filtered (stream, "...");
894 else
895 val_print_unavailable (stream);
896 return 0;
897 }
898
899 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
900 {
901 fprintf_filtered (stream, _("<internal function %s>"),
902 value_internal_function_name (val));
903 return 0;
904 }
905
906 return 1;
907 }
908
909 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
910 to OPTIONS.
911
912 This is a preferable interface to val_print, above, because it uses
913 GDB's value mechanism. */
914
915 void
916 common_val_print (struct value *val, struct ui_file *stream, int recurse,
917 const struct value_print_options *options,
918 const struct language_defn *language)
919 {
920 if (!value_check_printable (val, stream, options))
921 return;
922
923 if (language->la_language == language_ada)
924 /* The value might have a dynamic type, which would cause trouble
925 below when trying to extract the value contents (since the value
926 size is determined from the type size which is unknown). So
927 get a fixed representation of our value. */
928 val = ada_to_fixed_value (val);
929
930 val_print (value_type (val), value_contents_for_printing (val),
931 value_embedded_offset (val), value_address (val),
932 stream, recurse,
933 val, options, language);
934 }
935
936 /* Print on stream STREAM the value VAL according to OPTIONS. The value
937 is printed using the current_language syntax. */
938
939 void
940 value_print (struct value *val, struct ui_file *stream,
941 const struct value_print_options *options)
942 {
943 if (!value_check_printable (val, stream, options))
944 return;
945
946 if (!options->raw)
947 {
948 int r
949 = apply_ext_lang_val_pretty_printer (value_type (val),
950 value_contents_for_printing (val),
951 value_embedded_offset (val),
952 value_address (val),
953 stream, 0,
954 val, options, current_language);
955
956 if (r)
957 return;
958 }
959
960 LA_VALUE_PRINT (val, stream, options);
961 }
962
963 /* Called by various <lang>_val_print routines to print
964 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
965 value. STREAM is where to print the value. */
966
967 void
968 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
969 struct ui_file *stream)
970 {
971 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
972
973 if (TYPE_LENGTH (type) > sizeof (LONGEST))
974 {
975 LONGEST val;
976
977 if (TYPE_UNSIGNED (type)
978 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
979 byte_order, &val))
980 {
981 print_longest (stream, 'u', 0, val);
982 }
983 else
984 {
985 /* Signed, or we couldn't turn an unsigned value into a
986 LONGEST. For signed values, one could assume two's
987 complement (a reasonable assumption, I think) and do
988 better than this. */
989 print_hex_chars (stream, (unsigned char *) valaddr,
990 TYPE_LENGTH (type), byte_order);
991 }
992 }
993 else
994 {
995 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
996 unpack_long (type, valaddr));
997 }
998 }
999
1000 void
1001 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1002 struct ui_file *stream)
1003 {
1004 ULONGEST val = unpack_long (type, valaddr);
1005 int bitpos, nfields = TYPE_NFIELDS (type);
1006
1007 fputs_filtered ("[ ", stream);
1008 for (bitpos = 0; bitpos < nfields; bitpos++)
1009 {
1010 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1011 && (val & ((ULONGEST)1 << bitpos)))
1012 {
1013 if (TYPE_FIELD_NAME (type, bitpos))
1014 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1015 else
1016 fprintf_filtered (stream, "#%d ", bitpos);
1017 }
1018 }
1019 fputs_filtered ("]", stream);
1020 }
1021
1022 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1023 according to OPTIONS and SIZE on STREAM. Format i is not supported
1024 at this level.
1025
1026 This is how the elements of an array or structure are printed
1027 with a format. */
1028
1029 void
1030 val_print_scalar_formatted (struct type *type,
1031 const gdb_byte *valaddr, int embedded_offset,
1032 const struct value *val,
1033 const struct value_print_options *options,
1034 int size,
1035 struct ui_file *stream)
1036 {
1037 gdb_assert (val != NULL);
1038 gdb_assert (valaddr == value_contents_for_printing_const (val));
1039
1040 /* If we get here with a string format, try again without it. Go
1041 all the way back to the language printers, which may call us
1042 again. */
1043 if (options->format == 's')
1044 {
1045 struct value_print_options opts = *options;
1046 opts.format = 0;
1047 opts.deref_ref = 0;
1048 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1049 current_language);
1050 return;
1051 }
1052
1053 /* A scalar object that does not have all bits available can't be
1054 printed, because all bits contribute to its representation. */
1055 if (value_bits_any_optimized_out (val,
1056 TARGET_CHAR_BIT * embedded_offset,
1057 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1058 val_print_optimized_out (val, stream);
1059 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1060 val_print_unavailable (stream);
1061 else
1062 print_scalar_formatted (valaddr + embedded_offset, type,
1063 options, size, stream);
1064 }
1065
1066 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1067 The raison d'etre of this function is to consolidate printing of
1068 LONG_LONG's into this one function. The format chars b,h,w,g are
1069 from print_scalar_formatted(). Numbers are printed using C
1070 format.
1071
1072 USE_C_FORMAT means to use C format in all cases. Without it,
1073 'o' and 'x' format do not include the standard C radix prefix
1074 (leading 0 or 0x).
1075
1076 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1077 and was intended to request formating according to the current
1078 language and would be used for most integers that GDB prints. The
1079 exceptional cases were things like protocols where the format of
1080 the integer is a protocol thing, not a user-visible thing). The
1081 parameter remains to preserve the information of what things might
1082 be printed with language-specific format, should we ever resurrect
1083 that capability. */
1084
1085 void
1086 print_longest (struct ui_file *stream, int format, int use_c_format,
1087 LONGEST val_long)
1088 {
1089 const char *val;
1090
1091 switch (format)
1092 {
1093 case 'd':
1094 val = int_string (val_long, 10, 1, 0, 1); break;
1095 case 'u':
1096 val = int_string (val_long, 10, 0, 0, 1); break;
1097 case 'x':
1098 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1099 case 'b':
1100 val = int_string (val_long, 16, 0, 2, 1); break;
1101 case 'h':
1102 val = int_string (val_long, 16, 0, 4, 1); break;
1103 case 'w':
1104 val = int_string (val_long, 16, 0, 8, 1); break;
1105 case 'g':
1106 val = int_string (val_long, 16, 0, 16, 1); break;
1107 break;
1108 case 'o':
1109 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1110 default:
1111 internal_error (__FILE__, __LINE__,
1112 _("failed internal consistency check"));
1113 }
1114 fputs_filtered (val, stream);
1115 }
1116
1117 /* This used to be a macro, but I don't think it is called often enough
1118 to merit such treatment. */
1119 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1120 arguments to a function, number in a value history, register number, etc.)
1121 where the value must not be larger than can fit in an int. */
1122
1123 int
1124 longest_to_int (LONGEST arg)
1125 {
1126 /* Let the compiler do the work. */
1127 int rtnval = (int) arg;
1128
1129 /* Check for overflows or underflows. */
1130 if (sizeof (LONGEST) > sizeof (int))
1131 {
1132 if (rtnval != arg)
1133 {
1134 error (_("Value out of range."));
1135 }
1136 }
1137 return (rtnval);
1138 }
1139
1140 /* Print a floating point value of type TYPE (not always a
1141 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1142
1143 void
1144 print_floating (const gdb_byte *valaddr, struct type *type,
1145 struct ui_file *stream)
1146 {
1147 DOUBLEST doub;
1148 int inv;
1149 const struct floatformat *fmt = NULL;
1150 unsigned len = TYPE_LENGTH (type);
1151 enum float_kind kind;
1152
1153 /* If it is a floating-point, check for obvious problems. */
1154 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1155 fmt = floatformat_from_type (type);
1156 if (fmt != NULL)
1157 {
1158 kind = floatformat_classify (fmt, valaddr);
1159 if (kind == float_nan)
1160 {
1161 if (floatformat_is_negative (fmt, valaddr))
1162 fprintf_filtered (stream, "-");
1163 fprintf_filtered (stream, "nan(");
1164 fputs_filtered ("0x", stream);
1165 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1166 fprintf_filtered (stream, ")");
1167 return;
1168 }
1169 else if (kind == float_infinite)
1170 {
1171 if (floatformat_is_negative (fmt, valaddr))
1172 fputs_filtered ("-", stream);
1173 fputs_filtered ("inf", stream);
1174 return;
1175 }
1176 }
1177
1178 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1179 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1180 needs to be used as that takes care of any necessary type
1181 conversions. Such conversions are of course direct to DOUBLEST
1182 and disregard any possible target floating point limitations.
1183 For instance, a u64 would be converted and displayed exactly on a
1184 host with 80 bit DOUBLEST but with loss of information on a host
1185 with 64 bit DOUBLEST. */
1186
1187 doub = unpack_double (type, valaddr, &inv);
1188 if (inv)
1189 {
1190 fprintf_filtered (stream, "<invalid float value>");
1191 return;
1192 }
1193
1194 /* FIXME: kettenis/2001-01-20: The following code makes too much
1195 assumptions about the host and target floating point format. */
1196
1197 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1198 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1199 instead uses the type's length to determine the precision of the
1200 floating-point value being printed. */
1201
1202 if (len < sizeof (double))
1203 fprintf_filtered (stream, "%.9g", (double) doub);
1204 else if (len == sizeof (double))
1205 fprintf_filtered (stream, "%.17g", (double) doub);
1206 else
1207 #ifdef PRINTF_HAS_LONG_DOUBLE
1208 fprintf_filtered (stream, "%.35Lg", doub);
1209 #else
1210 /* This at least wins with values that are representable as
1211 doubles. */
1212 fprintf_filtered (stream, "%.17g", (double) doub);
1213 #endif
1214 }
1215
1216 void
1217 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1218 struct ui_file *stream)
1219 {
1220 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1221 char decstr[MAX_DECIMAL_STRING];
1222 unsigned len = TYPE_LENGTH (type);
1223
1224 decimal_to_string (valaddr, len, byte_order, decstr);
1225 fputs_filtered (decstr, stream);
1226 return;
1227 }
1228
1229 void
1230 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1231 unsigned len, enum bfd_endian byte_order)
1232 {
1233
1234 #define BITS_IN_BYTES 8
1235
1236 const gdb_byte *p;
1237 unsigned int i;
1238 int b;
1239
1240 /* Declared "int" so it will be signed.
1241 This ensures that right shift will shift in zeros. */
1242
1243 const int mask = 0x080;
1244
1245 /* FIXME: We should be not printing leading zeroes in most cases. */
1246
1247 if (byte_order == BFD_ENDIAN_BIG)
1248 {
1249 for (p = valaddr;
1250 p < valaddr + len;
1251 p++)
1252 {
1253 /* Every byte has 8 binary characters; peel off
1254 and print from the MSB end. */
1255
1256 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1257 {
1258 if (*p & (mask >> i))
1259 b = 1;
1260 else
1261 b = 0;
1262
1263 fprintf_filtered (stream, "%1d", b);
1264 }
1265 }
1266 }
1267 else
1268 {
1269 for (p = valaddr + len - 1;
1270 p >= valaddr;
1271 p--)
1272 {
1273 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1274 {
1275 if (*p & (mask >> i))
1276 b = 1;
1277 else
1278 b = 0;
1279
1280 fprintf_filtered (stream, "%1d", b);
1281 }
1282 }
1283 }
1284 }
1285
1286 /* VALADDR points to an integer of LEN bytes.
1287 Print it in octal on stream or format it in buf. */
1288
1289 void
1290 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1291 unsigned len, enum bfd_endian byte_order)
1292 {
1293 const gdb_byte *p;
1294 unsigned char octa1, octa2, octa3, carry;
1295 int cycle;
1296
1297 /* FIXME: We should be not printing leading zeroes in most cases. */
1298
1299
1300 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1301 * the extra bits, which cycle every three bytes:
1302 *
1303 * Byte side: 0 1 2 3
1304 * | | | |
1305 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1306 *
1307 * Octal side: 0 1 carry 3 4 carry ...
1308 *
1309 * Cycle number: 0 1 2
1310 *
1311 * But of course we are printing from the high side, so we have to
1312 * figure out where in the cycle we are so that we end up with no
1313 * left over bits at the end.
1314 */
1315 #define BITS_IN_OCTAL 3
1316 #define HIGH_ZERO 0340
1317 #define LOW_ZERO 0016
1318 #define CARRY_ZERO 0003
1319 #define HIGH_ONE 0200
1320 #define MID_ONE 0160
1321 #define LOW_ONE 0016
1322 #define CARRY_ONE 0001
1323 #define HIGH_TWO 0300
1324 #define MID_TWO 0070
1325 #define LOW_TWO 0007
1326
1327 /* For 32 we start in cycle 2, with two bits and one bit carry;
1328 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1329
1330 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1331 carry = 0;
1332
1333 fputs_filtered ("0", stream);
1334 if (byte_order == BFD_ENDIAN_BIG)
1335 {
1336 for (p = valaddr;
1337 p < valaddr + len;
1338 p++)
1339 {
1340 switch (cycle)
1341 {
1342 case 0:
1343 /* No carry in, carry out two bits. */
1344
1345 octa1 = (HIGH_ZERO & *p) >> 5;
1346 octa2 = (LOW_ZERO & *p) >> 2;
1347 carry = (CARRY_ZERO & *p);
1348 fprintf_filtered (stream, "%o", octa1);
1349 fprintf_filtered (stream, "%o", octa2);
1350 break;
1351
1352 case 1:
1353 /* Carry in two bits, carry out one bit. */
1354
1355 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1356 octa2 = (MID_ONE & *p) >> 4;
1357 octa3 = (LOW_ONE & *p) >> 1;
1358 carry = (CARRY_ONE & *p);
1359 fprintf_filtered (stream, "%o", octa1);
1360 fprintf_filtered (stream, "%o", octa2);
1361 fprintf_filtered (stream, "%o", octa3);
1362 break;
1363
1364 case 2:
1365 /* Carry in one bit, no carry out. */
1366
1367 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1368 octa2 = (MID_TWO & *p) >> 3;
1369 octa3 = (LOW_TWO & *p);
1370 carry = 0;
1371 fprintf_filtered (stream, "%o", octa1);
1372 fprintf_filtered (stream, "%o", octa2);
1373 fprintf_filtered (stream, "%o", octa3);
1374 break;
1375
1376 default:
1377 error (_("Internal error in octal conversion;"));
1378 }
1379
1380 cycle++;
1381 cycle = cycle % BITS_IN_OCTAL;
1382 }
1383 }
1384 else
1385 {
1386 for (p = valaddr + len - 1;
1387 p >= valaddr;
1388 p--)
1389 {
1390 switch (cycle)
1391 {
1392 case 0:
1393 /* Carry out, no carry in */
1394
1395 octa1 = (HIGH_ZERO & *p) >> 5;
1396 octa2 = (LOW_ZERO & *p) >> 2;
1397 carry = (CARRY_ZERO & *p);
1398 fprintf_filtered (stream, "%o", octa1);
1399 fprintf_filtered (stream, "%o", octa2);
1400 break;
1401
1402 case 1:
1403 /* Carry in, carry out */
1404
1405 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1406 octa2 = (MID_ONE & *p) >> 4;
1407 octa3 = (LOW_ONE & *p) >> 1;
1408 carry = (CARRY_ONE & *p);
1409 fprintf_filtered (stream, "%o", octa1);
1410 fprintf_filtered (stream, "%o", octa2);
1411 fprintf_filtered (stream, "%o", octa3);
1412 break;
1413
1414 case 2:
1415 /* Carry in, no carry out */
1416
1417 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1418 octa2 = (MID_TWO & *p) >> 3;
1419 octa3 = (LOW_TWO & *p);
1420 carry = 0;
1421 fprintf_filtered (stream, "%o", octa1);
1422 fprintf_filtered (stream, "%o", octa2);
1423 fprintf_filtered (stream, "%o", octa3);
1424 break;
1425
1426 default:
1427 error (_("Internal error in octal conversion;"));
1428 }
1429
1430 cycle++;
1431 cycle = cycle % BITS_IN_OCTAL;
1432 }
1433 }
1434
1435 }
1436
1437 /* VALADDR points to an integer of LEN bytes.
1438 Print it in decimal on stream or format it in buf. */
1439
1440 void
1441 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1442 unsigned len, enum bfd_endian byte_order)
1443 {
1444 #define TEN 10
1445 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1446 #define CARRY_LEFT( x ) ((x) % TEN)
1447 #define SHIFT( x ) ((x) << 4)
1448 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1449 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1450
1451 const gdb_byte *p;
1452 unsigned char *digits;
1453 int carry;
1454 int decimal_len;
1455 int i, j, decimal_digits;
1456 int dummy;
1457 int flip;
1458
1459 /* Base-ten number is less than twice as many digits
1460 as the base 16 number, which is 2 digits per byte. */
1461
1462 decimal_len = len * 2 * 2;
1463 digits = xmalloc (decimal_len);
1464
1465 for (i = 0; i < decimal_len; i++)
1466 {
1467 digits[i] = 0;
1468 }
1469
1470 /* Ok, we have an unknown number of bytes of data to be printed in
1471 * decimal.
1472 *
1473 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1474 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1475 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1476 *
1477 * The trick is that "digits" holds a base-10 number, but sometimes
1478 * the individual digits are > 10.
1479 *
1480 * Outer loop is per nibble (hex digit) of input, from MSD end to
1481 * LSD end.
1482 */
1483 decimal_digits = 0; /* Number of decimal digits so far */
1484 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1485 flip = 0;
1486 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1487 {
1488 /*
1489 * Multiply current base-ten number by 16 in place.
1490 * Each digit was between 0 and 9, now is between
1491 * 0 and 144.
1492 */
1493 for (j = 0; j < decimal_digits; j++)
1494 {
1495 digits[j] = SHIFT (digits[j]);
1496 }
1497
1498 /* Take the next nibble off the input and add it to what
1499 * we've got in the LSB position. Bottom 'digit' is now
1500 * between 0 and 159.
1501 *
1502 * "flip" is used to run this loop twice for each byte.
1503 */
1504 if (flip == 0)
1505 {
1506 /* Take top nibble. */
1507
1508 digits[0] += HIGH_NIBBLE (*p);
1509 flip = 1;
1510 }
1511 else
1512 {
1513 /* Take low nibble and bump our pointer "p". */
1514
1515 digits[0] += LOW_NIBBLE (*p);
1516 if (byte_order == BFD_ENDIAN_BIG)
1517 p++;
1518 else
1519 p--;
1520 flip = 0;
1521 }
1522
1523 /* Re-decimalize. We have to do this often enough
1524 * that we don't overflow, but once per nibble is
1525 * overkill. Easier this way, though. Note that the
1526 * carry is often larger than 10 (e.g. max initial
1527 * carry out of lowest nibble is 15, could bubble all
1528 * the way up greater than 10). So we have to do
1529 * the carrying beyond the last current digit.
1530 */
1531 carry = 0;
1532 for (j = 0; j < decimal_len - 1; j++)
1533 {
1534 digits[j] += carry;
1535
1536 /* "/" won't handle an unsigned char with
1537 * a value that if signed would be negative.
1538 * So extend to longword int via "dummy".
1539 */
1540 dummy = digits[j];
1541 carry = CARRY_OUT (dummy);
1542 digits[j] = CARRY_LEFT (dummy);
1543
1544 if (j >= decimal_digits && carry == 0)
1545 {
1546 /*
1547 * All higher digits are 0 and we
1548 * no longer have a carry.
1549 *
1550 * Note: "j" is 0-based, "decimal_digits" is
1551 * 1-based.
1552 */
1553 decimal_digits = j + 1;
1554 break;
1555 }
1556 }
1557 }
1558
1559 /* Ok, now "digits" is the decimal representation, with
1560 the "decimal_digits" actual digits. Print! */
1561
1562 for (i = decimal_digits - 1; i >= 0; i--)
1563 {
1564 fprintf_filtered (stream, "%1d", digits[i]);
1565 }
1566 xfree (digits);
1567 }
1568
1569 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1570
1571 void
1572 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1573 unsigned len, enum bfd_endian byte_order)
1574 {
1575 const gdb_byte *p;
1576
1577 /* FIXME: We should be not printing leading zeroes in most cases. */
1578
1579 fputs_filtered ("0x", stream);
1580 if (byte_order == BFD_ENDIAN_BIG)
1581 {
1582 for (p = valaddr;
1583 p < valaddr + len;
1584 p++)
1585 {
1586 fprintf_filtered (stream, "%02x", *p);
1587 }
1588 }
1589 else
1590 {
1591 for (p = valaddr + len - 1;
1592 p >= valaddr;
1593 p--)
1594 {
1595 fprintf_filtered (stream, "%02x", *p);
1596 }
1597 }
1598 }
1599
1600 /* VALADDR points to a char integer of LEN bytes.
1601 Print it out in appropriate language form on stream.
1602 Omit any leading zero chars. */
1603
1604 void
1605 print_char_chars (struct ui_file *stream, struct type *type,
1606 const gdb_byte *valaddr,
1607 unsigned len, enum bfd_endian byte_order)
1608 {
1609 const gdb_byte *p;
1610
1611 if (byte_order == BFD_ENDIAN_BIG)
1612 {
1613 p = valaddr;
1614 while (p < valaddr + len - 1 && *p == 0)
1615 ++p;
1616
1617 while (p < valaddr + len)
1618 {
1619 LA_EMIT_CHAR (*p, type, stream, '\'');
1620 ++p;
1621 }
1622 }
1623 else
1624 {
1625 p = valaddr + len - 1;
1626 while (p > valaddr && *p == 0)
1627 --p;
1628
1629 while (p >= valaddr)
1630 {
1631 LA_EMIT_CHAR (*p, type, stream, '\'');
1632 --p;
1633 }
1634 }
1635 }
1636
1637 /* Print function pointer with inferior address ADDRESS onto stdio
1638 stream STREAM. */
1639
1640 void
1641 print_function_pointer_address (const struct value_print_options *options,
1642 struct gdbarch *gdbarch,
1643 CORE_ADDR address,
1644 struct ui_file *stream)
1645 {
1646 CORE_ADDR func_addr
1647 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1648 &current_target);
1649
1650 /* If the function pointer is represented by a description, print
1651 the address of the description. */
1652 if (options->addressprint && func_addr != address)
1653 {
1654 fputs_filtered ("@", stream);
1655 fputs_filtered (paddress (gdbarch, address), stream);
1656 fputs_filtered (": ", stream);
1657 }
1658 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1659 }
1660
1661
1662 /* Print on STREAM using the given OPTIONS the index for the element
1663 at INDEX of an array whose index type is INDEX_TYPE. */
1664
1665 void
1666 maybe_print_array_index (struct type *index_type, LONGEST index,
1667 struct ui_file *stream,
1668 const struct value_print_options *options)
1669 {
1670 struct value *index_value;
1671
1672 if (!options->print_array_indexes)
1673 return;
1674
1675 index_value = value_from_longest (index_type, index);
1676
1677 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1678 }
1679
1680 /* Called by various <lang>_val_print routines to print elements of an
1681 array in the form "<elem1>, <elem2>, <elem3>, ...".
1682
1683 (FIXME?) Assumes array element separator is a comma, which is correct
1684 for all languages currently handled.
1685 (FIXME?) Some languages have a notation for repeated array elements,
1686 perhaps we should try to use that notation when appropriate. */
1687
1688 void
1689 val_print_array_elements (struct type *type,
1690 const gdb_byte *valaddr, int embedded_offset,
1691 CORE_ADDR address, struct ui_file *stream,
1692 int recurse,
1693 const struct value *val,
1694 const struct value_print_options *options,
1695 unsigned int i)
1696 {
1697 unsigned int things_printed = 0;
1698 unsigned len;
1699 struct type *elttype, *index_type, *base_index_type;
1700 unsigned eltlen;
1701 /* Position of the array element we are examining to see
1702 whether it is repeated. */
1703 unsigned int rep1;
1704 /* Number of repetitions we have detected so far. */
1705 unsigned int reps;
1706 LONGEST low_bound, high_bound;
1707 LONGEST low_pos, high_pos;
1708
1709 elttype = TYPE_TARGET_TYPE (type);
1710 eltlen = TYPE_LENGTH (check_typedef (elttype));
1711 index_type = TYPE_INDEX_TYPE (type);
1712
1713 if (get_array_bounds (type, &low_bound, &high_bound))
1714 {
1715 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1716 base_index_type = TYPE_TARGET_TYPE (index_type);
1717 else
1718 base_index_type = index_type;
1719
1720 /* Non-contiguous enumerations types can by used as index types
1721 in some languages (e.g. Ada). In this case, the array length
1722 shall be computed from the positions of the first and last
1723 literal in the enumeration type, and not from the values
1724 of these literals. */
1725 if (!discrete_position (base_index_type, low_bound, &low_pos)
1726 || !discrete_position (base_index_type, high_bound, &high_pos))
1727 {
1728 warning (_("unable to get positions in array, use bounds instead"));
1729 low_pos = low_bound;
1730 high_pos = high_bound;
1731 }
1732
1733 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1734 But we have to be a little extra careful, because some languages
1735 such as Ada allow LOW_POS to be greater than HIGH_POS for
1736 empty arrays. In that situation, the array length is just zero,
1737 not negative! */
1738 if (low_pos > high_pos)
1739 len = 0;
1740 else
1741 len = high_pos - low_pos + 1;
1742 }
1743 else
1744 {
1745 warning (_("unable to get bounds of array, assuming null array"));
1746 low_bound = 0;
1747 len = 0;
1748 }
1749
1750 annotate_array_section_begin (i, elttype);
1751
1752 for (; i < len && things_printed < options->print_max; i++)
1753 {
1754 if (i != 0)
1755 {
1756 if (options->prettyformat_arrays)
1757 {
1758 fprintf_filtered (stream, ",\n");
1759 print_spaces_filtered (2 + 2 * recurse, stream);
1760 }
1761 else
1762 {
1763 fprintf_filtered (stream, ", ");
1764 }
1765 }
1766 wrap_here (n_spaces (2 + 2 * recurse));
1767 maybe_print_array_index (index_type, i + low_bound,
1768 stream, options);
1769
1770 rep1 = i + 1;
1771 reps = 1;
1772 /* Only check for reps if repeat_count_threshold is not set to
1773 UINT_MAX (unlimited). */
1774 if (options->repeat_count_threshold < UINT_MAX)
1775 {
1776 while (rep1 < len
1777 && value_contents_eq (val,
1778 embedded_offset + i * eltlen,
1779 val,
1780 (embedded_offset
1781 + rep1 * eltlen),
1782 eltlen))
1783 {
1784 ++reps;
1785 ++rep1;
1786 }
1787 }
1788
1789 if (reps > options->repeat_count_threshold)
1790 {
1791 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1792 address, stream, recurse + 1, val, options,
1793 current_language);
1794 annotate_elt_rep (reps);
1795 fprintf_filtered (stream, " <repeats %u times>", reps);
1796 annotate_elt_rep_end ();
1797
1798 i = rep1 - 1;
1799 things_printed += options->repeat_count_threshold;
1800 }
1801 else
1802 {
1803 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1804 address,
1805 stream, recurse + 1, val, options, current_language);
1806 annotate_elt ();
1807 things_printed++;
1808 }
1809 }
1810 annotate_array_section_end ();
1811 if (i < len)
1812 {
1813 fprintf_filtered (stream, "...");
1814 }
1815 }
1816
1817 /* Read LEN bytes of target memory at address MEMADDR, placing the
1818 results in GDB's memory at MYADDR. Returns a count of the bytes
1819 actually read, and optionally a target_xfer_status value in the
1820 location pointed to by ERRPTR if ERRPTR is non-null. */
1821
1822 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1823 function be eliminated. */
1824
1825 static int
1826 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1827 int len, int *errptr)
1828 {
1829 int nread; /* Number of bytes actually read. */
1830 int errcode; /* Error from last read. */
1831
1832 /* First try a complete read. */
1833 errcode = target_read_memory (memaddr, myaddr, len);
1834 if (errcode == 0)
1835 {
1836 /* Got it all. */
1837 nread = len;
1838 }
1839 else
1840 {
1841 /* Loop, reading one byte at a time until we get as much as we can. */
1842 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1843 {
1844 errcode = target_read_memory (memaddr++, myaddr++, 1);
1845 }
1846 /* If an error, the last read was unsuccessful, so adjust count. */
1847 if (errcode != 0)
1848 {
1849 nread--;
1850 }
1851 }
1852 if (errptr != NULL)
1853 {
1854 *errptr = errcode;
1855 }
1856 return (nread);
1857 }
1858
1859 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1860 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1861 allocated buffer containing the string, which the caller is responsible to
1862 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1863 success, or a target_xfer_status on failure.
1864
1865 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1866 (including eventual NULs in the middle or end of the string).
1867
1868 If LEN is -1, stops at the first null character (not necessarily
1869 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1870 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1871 the string.
1872
1873 Unless an exception is thrown, BUFFER will always be allocated, even on
1874 failure. In this case, some characters might have been read before the
1875 failure happened. Check BYTES_READ to recognize this situation.
1876
1877 Note: There was a FIXME asking to make this code use target_read_string,
1878 but this function is more general (can read past null characters, up to
1879 given LEN). Besides, it is used much more often than target_read_string
1880 so it is more tested. Perhaps callers of target_read_string should use
1881 this function instead? */
1882
1883 int
1884 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1885 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1886 {
1887 int errcode; /* Errno returned from bad reads. */
1888 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1889 gdb_byte *bufptr; /* Pointer to next available byte in
1890 buffer. */
1891 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1892
1893 /* Loop until we either have all the characters, or we encounter
1894 some error, such as bumping into the end of the address space. */
1895
1896 *buffer = NULL;
1897
1898 old_chain = make_cleanup (free_current_contents, buffer);
1899
1900 if (len > 0)
1901 {
1902 /* We want fetchlimit chars, so we might as well read them all in
1903 one operation. */
1904 unsigned int fetchlen = min (len, fetchlimit);
1905
1906 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1907 bufptr = *buffer;
1908
1909 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1910 / width;
1911 addr += nfetch * width;
1912 bufptr += nfetch * width;
1913 }
1914 else if (len == -1)
1915 {
1916 unsigned long bufsize = 0;
1917 unsigned int chunksize; /* Size of each fetch, in chars. */
1918 int found_nul; /* Non-zero if we found the nul char. */
1919 gdb_byte *limit; /* First location past end of fetch buffer. */
1920
1921 found_nul = 0;
1922 /* We are looking for a NUL terminator to end the fetching, so we
1923 might as well read in blocks that are large enough to be efficient,
1924 but not so large as to be slow if fetchlimit happens to be large.
1925 So we choose the minimum of 8 and fetchlimit. We used to use 200
1926 instead of 8 but 200 is way too big for remote debugging over a
1927 serial line. */
1928 chunksize = min (8, fetchlimit);
1929
1930 do
1931 {
1932 QUIT;
1933 nfetch = min (chunksize, fetchlimit - bufsize);
1934
1935 if (*buffer == NULL)
1936 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1937 else
1938 *buffer = (gdb_byte *) xrealloc (*buffer,
1939 (nfetch + bufsize) * width);
1940
1941 bufptr = *buffer + bufsize * width;
1942 bufsize += nfetch;
1943
1944 /* Read as much as we can. */
1945 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1946 / width;
1947
1948 /* Scan this chunk for the null character that terminates the string
1949 to print. If found, we don't need to fetch any more. Note
1950 that bufptr is explicitly left pointing at the next character
1951 after the null character, or at the next character after the end
1952 of the buffer. */
1953
1954 limit = bufptr + nfetch * width;
1955 while (bufptr < limit)
1956 {
1957 unsigned long c;
1958
1959 c = extract_unsigned_integer (bufptr, width, byte_order);
1960 addr += width;
1961 bufptr += width;
1962 if (c == 0)
1963 {
1964 /* We don't care about any error which happened after
1965 the NUL terminator. */
1966 errcode = 0;
1967 found_nul = 1;
1968 break;
1969 }
1970 }
1971 }
1972 while (errcode == 0 /* no error */
1973 && bufptr - *buffer < fetchlimit * width /* no overrun */
1974 && !found_nul); /* haven't found NUL yet */
1975 }
1976 else
1977 { /* Length of string is really 0! */
1978 /* We always allocate *buffer. */
1979 *buffer = bufptr = xmalloc (1);
1980 errcode = 0;
1981 }
1982
1983 /* bufptr and addr now point immediately beyond the last byte which we
1984 consider part of the string (including a '\0' which ends the string). */
1985 *bytes_read = bufptr - *buffer;
1986
1987 QUIT;
1988
1989 discard_cleanups (old_chain);
1990
1991 return errcode;
1992 }
1993
1994 /* Return true if print_wchar can display W without resorting to a
1995 numeric escape, false otherwise. */
1996
1997 static int
1998 wchar_printable (gdb_wchar_t w)
1999 {
2000 return (gdb_iswprint (w)
2001 || w == LCST ('\a') || w == LCST ('\b')
2002 || w == LCST ('\f') || w == LCST ('\n')
2003 || w == LCST ('\r') || w == LCST ('\t')
2004 || w == LCST ('\v'));
2005 }
2006
2007 /* A helper function that converts the contents of STRING to wide
2008 characters and then appends them to OUTPUT. */
2009
2010 static void
2011 append_string_as_wide (const char *string,
2012 struct obstack *output)
2013 {
2014 for (; *string; ++string)
2015 {
2016 gdb_wchar_t w = gdb_btowc (*string);
2017 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2018 }
2019 }
2020
2021 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2022 original (target) bytes representing the character, ORIG_LEN is the
2023 number of valid bytes. WIDTH is the number of bytes in a base
2024 characters of the type. OUTPUT is an obstack to which wide
2025 characters are emitted. QUOTER is a (narrow) character indicating
2026 the style of quotes surrounding the character to be printed.
2027 NEED_ESCAPE is an in/out flag which is used to track numeric
2028 escapes across calls. */
2029
2030 static void
2031 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2032 int orig_len, int width,
2033 enum bfd_endian byte_order,
2034 struct obstack *output,
2035 int quoter, int *need_escapep)
2036 {
2037 int need_escape = *need_escapep;
2038
2039 *need_escapep = 0;
2040
2041 /* iswprint implementation on Windows returns 1 for tab character.
2042 In order to avoid different printout on this host, we explicitly
2043 use wchar_printable function. */
2044 switch (w)
2045 {
2046 case LCST ('\a'):
2047 obstack_grow_wstr (output, LCST ("\\a"));
2048 break;
2049 case LCST ('\b'):
2050 obstack_grow_wstr (output, LCST ("\\b"));
2051 break;
2052 case LCST ('\f'):
2053 obstack_grow_wstr (output, LCST ("\\f"));
2054 break;
2055 case LCST ('\n'):
2056 obstack_grow_wstr (output, LCST ("\\n"));
2057 break;
2058 case LCST ('\r'):
2059 obstack_grow_wstr (output, LCST ("\\r"));
2060 break;
2061 case LCST ('\t'):
2062 obstack_grow_wstr (output, LCST ("\\t"));
2063 break;
2064 case LCST ('\v'):
2065 obstack_grow_wstr (output, LCST ("\\v"));
2066 break;
2067 default:
2068 {
2069 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2070 && w != LCST ('8')
2071 && w != LCST ('9'))))
2072 {
2073 gdb_wchar_t wchar = w;
2074
2075 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2076 obstack_grow_wstr (output, LCST ("\\"));
2077 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2078 }
2079 else
2080 {
2081 int i;
2082
2083 for (i = 0; i + width <= orig_len; i += width)
2084 {
2085 char octal[30];
2086 ULONGEST value;
2087
2088 value = extract_unsigned_integer (&orig[i], width,
2089 byte_order);
2090 /* If the value fits in 3 octal digits, print it that
2091 way. Otherwise, print it as a hex escape. */
2092 if (value <= 0777)
2093 xsnprintf (octal, sizeof (octal), "\\%.3o",
2094 (int) (value & 0777));
2095 else
2096 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2097 append_string_as_wide (octal, output);
2098 }
2099 /* If we somehow have extra bytes, print them now. */
2100 while (i < orig_len)
2101 {
2102 char octal[5];
2103
2104 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2105 append_string_as_wide (octal, output);
2106 ++i;
2107 }
2108
2109 *need_escapep = 1;
2110 }
2111 break;
2112 }
2113 }
2114 }
2115
2116 /* Print the character C on STREAM as part of the contents of a
2117 literal string whose delimiter is QUOTER. ENCODING names the
2118 encoding of C. */
2119
2120 void
2121 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2122 int quoter, const char *encoding)
2123 {
2124 enum bfd_endian byte_order
2125 = gdbarch_byte_order (get_type_arch (type));
2126 struct obstack wchar_buf, output;
2127 struct cleanup *cleanups;
2128 gdb_byte *buf;
2129 struct wchar_iterator *iter;
2130 int need_escape = 0;
2131
2132 buf = alloca (TYPE_LENGTH (type));
2133 pack_long (buf, type, c);
2134
2135 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2136 encoding, TYPE_LENGTH (type));
2137 cleanups = make_cleanup_wchar_iterator (iter);
2138
2139 /* This holds the printable form of the wchar_t data. */
2140 obstack_init (&wchar_buf);
2141 make_cleanup_obstack_free (&wchar_buf);
2142
2143 while (1)
2144 {
2145 int num_chars;
2146 gdb_wchar_t *chars;
2147 const gdb_byte *buf;
2148 size_t buflen;
2149 int print_escape = 1;
2150 enum wchar_iterate_result result;
2151
2152 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2153 if (num_chars < 0)
2154 break;
2155 if (num_chars > 0)
2156 {
2157 /* If all characters are printable, print them. Otherwise,
2158 we're going to have to print an escape sequence. We
2159 check all characters because we want to print the target
2160 bytes in the escape sequence, and we don't know character
2161 boundaries there. */
2162 int i;
2163
2164 print_escape = 0;
2165 for (i = 0; i < num_chars; ++i)
2166 if (!wchar_printable (chars[i]))
2167 {
2168 print_escape = 1;
2169 break;
2170 }
2171
2172 if (!print_escape)
2173 {
2174 for (i = 0; i < num_chars; ++i)
2175 print_wchar (chars[i], buf, buflen,
2176 TYPE_LENGTH (type), byte_order,
2177 &wchar_buf, quoter, &need_escape);
2178 }
2179 }
2180
2181 /* This handles the NUM_CHARS == 0 case as well. */
2182 if (print_escape)
2183 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2184 byte_order, &wchar_buf, quoter, &need_escape);
2185 }
2186
2187 /* The output in the host encoding. */
2188 obstack_init (&output);
2189 make_cleanup_obstack_free (&output);
2190
2191 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2192 (gdb_byte *) obstack_base (&wchar_buf),
2193 obstack_object_size (&wchar_buf),
2194 sizeof (gdb_wchar_t), &output, translit_char);
2195 obstack_1grow (&output, '\0');
2196
2197 fputs_filtered (obstack_base (&output), stream);
2198
2199 do_cleanups (cleanups);
2200 }
2201
2202 /* Return the repeat count of the next character/byte in ITER,
2203 storing the result in VEC. */
2204
2205 static int
2206 count_next_character (struct wchar_iterator *iter,
2207 VEC (converted_character_d) **vec)
2208 {
2209 struct converted_character *current;
2210
2211 if (VEC_empty (converted_character_d, *vec))
2212 {
2213 struct converted_character tmp;
2214 gdb_wchar_t *chars;
2215
2216 tmp.num_chars
2217 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2218 if (tmp.num_chars > 0)
2219 {
2220 gdb_assert (tmp.num_chars < MAX_WCHARS);
2221 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2222 }
2223 VEC_safe_push (converted_character_d, *vec, &tmp);
2224 }
2225
2226 current = VEC_last (converted_character_d, *vec);
2227
2228 /* Count repeated characters or bytes. */
2229 current->repeat_count = 1;
2230 if (current->num_chars == -1)
2231 {
2232 /* EOF */
2233 return -1;
2234 }
2235 else
2236 {
2237 gdb_wchar_t *chars;
2238 struct converted_character d;
2239 int repeat;
2240
2241 d.repeat_count = 0;
2242
2243 while (1)
2244 {
2245 /* Get the next character. */
2246 d.num_chars
2247 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2248
2249 /* If a character was successfully converted, save the character
2250 into the converted character. */
2251 if (d.num_chars > 0)
2252 {
2253 gdb_assert (d.num_chars < MAX_WCHARS);
2254 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2255 }
2256
2257 /* Determine if the current character is the same as this
2258 new character. */
2259 if (d.num_chars == current->num_chars && d.result == current->result)
2260 {
2261 /* There are two cases to consider:
2262
2263 1) Equality of converted character (num_chars > 0)
2264 2) Equality of non-converted character (num_chars == 0) */
2265 if ((current->num_chars > 0
2266 && memcmp (current->chars, d.chars,
2267 WCHAR_BUFLEN (current->num_chars)) == 0)
2268 || (current->num_chars == 0
2269 && current->buflen == d.buflen
2270 && memcmp (current->buf, d.buf, current->buflen) == 0))
2271 ++current->repeat_count;
2272 else
2273 break;
2274 }
2275 else
2276 break;
2277 }
2278
2279 /* Push this next converted character onto the result vector. */
2280 repeat = current->repeat_count;
2281 VEC_safe_push (converted_character_d, *vec, &d);
2282 return repeat;
2283 }
2284 }
2285
2286 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2287 character to use with string output. WIDTH is the size of the output
2288 character type. BYTE_ORDER is the the target byte order. OPTIONS
2289 is the user's print options. */
2290
2291 static void
2292 print_converted_chars_to_obstack (struct obstack *obstack,
2293 VEC (converted_character_d) *chars,
2294 int quote_char, int width,
2295 enum bfd_endian byte_order,
2296 const struct value_print_options *options)
2297 {
2298 unsigned int idx;
2299 struct converted_character *elem;
2300 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2301 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2302 int need_escape = 0;
2303
2304 /* Set the start state. */
2305 idx = 0;
2306 last = state = START;
2307 elem = NULL;
2308
2309 while (1)
2310 {
2311 switch (state)
2312 {
2313 case START:
2314 /* Nothing to do. */
2315 break;
2316
2317 case SINGLE:
2318 {
2319 int j;
2320
2321 /* We are outputting a single character
2322 (< options->repeat_count_threshold). */
2323
2324 if (last != SINGLE)
2325 {
2326 /* We were outputting some other type of content, so we
2327 must output and a comma and a quote. */
2328 if (last != START)
2329 obstack_grow_wstr (obstack, LCST (", "));
2330 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2331 }
2332 /* Output the character. */
2333 for (j = 0; j < elem->repeat_count; ++j)
2334 {
2335 if (elem->result == wchar_iterate_ok)
2336 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2337 byte_order, obstack, quote_char, &need_escape);
2338 else
2339 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2340 byte_order, obstack, quote_char, &need_escape);
2341 }
2342 }
2343 break;
2344
2345 case REPEAT:
2346 {
2347 int j;
2348 char *s;
2349
2350 /* We are outputting a character with a repeat count
2351 greater than options->repeat_count_threshold. */
2352
2353 if (last == SINGLE)
2354 {
2355 /* We were outputting a single string. Terminate the
2356 string. */
2357 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2358 }
2359 if (last != START)
2360 obstack_grow_wstr (obstack, LCST (", "));
2361
2362 /* Output the character and repeat string. */
2363 obstack_grow_wstr (obstack, LCST ("'"));
2364 if (elem->result == wchar_iterate_ok)
2365 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2366 byte_order, obstack, quote_char, &need_escape);
2367 else
2368 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2369 byte_order, obstack, quote_char, &need_escape);
2370 obstack_grow_wstr (obstack, LCST ("'"));
2371 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2372 for (j = 0; s[j]; ++j)
2373 {
2374 gdb_wchar_t w = gdb_btowc (s[j]);
2375 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2376 }
2377 xfree (s);
2378 }
2379 break;
2380
2381 case INCOMPLETE:
2382 /* We are outputting an incomplete sequence. */
2383 if (last == SINGLE)
2384 {
2385 /* If we were outputting a string of SINGLE characters,
2386 terminate the quote. */
2387 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2388 }
2389 if (last != START)
2390 obstack_grow_wstr (obstack, LCST (", "));
2391
2392 /* Output the incomplete sequence string. */
2393 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2394 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2395 obstack, 0, &need_escape);
2396 obstack_grow_wstr (obstack, LCST (">"));
2397
2398 /* We do not attempt to outupt anything after this. */
2399 state = FINISH;
2400 break;
2401
2402 case FINISH:
2403 /* All done. If we were outputting a string of SINGLE
2404 characters, the string must be terminated. Otherwise,
2405 REPEAT and INCOMPLETE are always left properly terminated. */
2406 if (last == SINGLE)
2407 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2408
2409 return;
2410 }
2411
2412 /* Get the next element and state. */
2413 last = state;
2414 if (state != FINISH)
2415 {
2416 elem = VEC_index (converted_character_d, chars, idx++);
2417 switch (elem->result)
2418 {
2419 case wchar_iterate_ok:
2420 case wchar_iterate_invalid:
2421 if (elem->repeat_count > options->repeat_count_threshold)
2422 state = REPEAT;
2423 else
2424 state = SINGLE;
2425 break;
2426
2427 case wchar_iterate_incomplete:
2428 state = INCOMPLETE;
2429 break;
2430
2431 case wchar_iterate_eof:
2432 state = FINISH;
2433 break;
2434 }
2435 }
2436 }
2437 }
2438
2439 /* Print the character string STRING, printing at most LENGTH
2440 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2441 the type of each character. OPTIONS holds the printing options;
2442 printing stops early if the number hits print_max; repeat counts
2443 are printed as appropriate. Print ellipses at the end if we had to
2444 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2445 QUOTE_CHAR is the character to print at each end of the string. If
2446 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2447 omitted. */
2448
2449 void
2450 generic_printstr (struct ui_file *stream, struct type *type,
2451 const gdb_byte *string, unsigned int length,
2452 const char *encoding, int force_ellipses,
2453 int quote_char, int c_style_terminator,
2454 const struct value_print_options *options)
2455 {
2456 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2457 unsigned int i;
2458 int width = TYPE_LENGTH (type);
2459 struct obstack wchar_buf, output;
2460 struct cleanup *cleanup;
2461 struct wchar_iterator *iter;
2462 int finished = 0;
2463 struct converted_character *last;
2464 VEC (converted_character_d) *converted_chars;
2465
2466 if (length == -1)
2467 {
2468 unsigned long current_char = 1;
2469
2470 for (i = 0; current_char; ++i)
2471 {
2472 QUIT;
2473 current_char = extract_unsigned_integer (string + i * width,
2474 width, byte_order);
2475 }
2476 length = i;
2477 }
2478
2479 /* If the string was not truncated due to `set print elements', and
2480 the last byte of it is a null, we don't print that, in
2481 traditional C style. */
2482 if (c_style_terminator
2483 && !force_ellipses
2484 && length > 0
2485 && (extract_unsigned_integer (string + (length - 1) * width,
2486 width, byte_order) == 0))
2487 length--;
2488
2489 if (length == 0)
2490 {
2491 fputs_filtered ("\"\"", stream);
2492 return;
2493 }
2494
2495 /* Arrange to iterate over the characters, in wchar_t form. */
2496 iter = make_wchar_iterator (string, length * width, encoding, width);
2497 cleanup = make_cleanup_wchar_iterator (iter);
2498 converted_chars = NULL;
2499 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2500
2501 /* Convert characters until the string is over or the maximum
2502 number of printed characters has been reached. */
2503 i = 0;
2504 while (i < options->print_max)
2505 {
2506 int r;
2507
2508 QUIT;
2509
2510 /* Grab the next character and repeat count. */
2511 r = count_next_character (iter, &converted_chars);
2512
2513 /* If less than zero, the end of the input string was reached. */
2514 if (r < 0)
2515 break;
2516
2517 /* Otherwise, add the count to the total print count and get
2518 the next character. */
2519 i += r;
2520 }
2521
2522 /* Get the last element and determine if the entire string was
2523 processed. */
2524 last = VEC_last (converted_character_d, converted_chars);
2525 finished = (last->result == wchar_iterate_eof);
2526
2527 /* Ensure that CONVERTED_CHARS is terminated. */
2528 last->result = wchar_iterate_eof;
2529
2530 /* WCHAR_BUF is the obstack we use to represent the string in
2531 wchar_t form. */
2532 obstack_init (&wchar_buf);
2533 make_cleanup_obstack_free (&wchar_buf);
2534
2535 /* Print the output string to the obstack. */
2536 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2537 width, byte_order, options);
2538
2539 if (force_ellipses || !finished)
2540 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2541
2542 /* OUTPUT is where we collect `char's for printing. */
2543 obstack_init (&output);
2544 make_cleanup_obstack_free (&output);
2545
2546 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2547 (gdb_byte *) obstack_base (&wchar_buf),
2548 obstack_object_size (&wchar_buf),
2549 sizeof (gdb_wchar_t), &output, translit_char);
2550 obstack_1grow (&output, '\0');
2551
2552 fputs_filtered (obstack_base (&output), stream);
2553
2554 do_cleanups (cleanup);
2555 }
2556
2557 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2558 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2559 stops at the first null byte, otherwise printing proceeds (including null
2560 bytes) until either print_max or LEN characters have been printed,
2561 whichever is smaller. ENCODING is the name of the string's
2562 encoding. It can be NULL, in which case the target encoding is
2563 assumed. */
2564
2565 int
2566 val_print_string (struct type *elttype, const char *encoding,
2567 CORE_ADDR addr, int len,
2568 struct ui_file *stream,
2569 const struct value_print_options *options)
2570 {
2571 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2572 int errcode; /* Errno returned from bad reads. */
2573 int found_nul; /* Non-zero if we found the nul char. */
2574 unsigned int fetchlimit; /* Maximum number of chars to print. */
2575 int bytes_read;
2576 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2577 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2578 struct gdbarch *gdbarch = get_type_arch (elttype);
2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2580 int width = TYPE_LENGTH (elttype);
2581
2582 /* First we need to figure out the limit on the number of characters we are
2583 going to attempt to fetch and print. This is actually pretty simple. If
2584 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2585 LEN is -1, then the limit is print_max. This is true regardless of
2586 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2587 because finding the null byte (or available memory) is what actually
2588 limits the fetch. */
2589
2590 fetchlimit = (len == -1 ? options->print_max : min (len,
2591 options->print_max));
2592
2593 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2594 &buffer, &bytes_read);
2595 old_chain = make_cleanup (xfree, buffer);
2596
2597 addr += bytes_read;
2598
2599 /* We now have either successfully filled the buffer to fetchlimit,
2600 or terminated early due to an error or finding a null char when
2601 LEN is -1. */
2602
2603 /* Determine found_nul by looking at the last character read. */
2604 found_nul = 0;
2605 if (bytes_read >= width)
2606 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2607 byte_order) == 0;
2608 if (len == -1 && !found_nul)
2609 {
2610 gdb_byte *peekbuf;
2611
2612 /* We didn't find a NUL terminator we were looking for. Attempt
2613 to peek at the next character. If not successful, or it is not
2614 a null byte, then force ellipsis to be printed. */
2615
2616 peekbuf = (gdb_byte *) alloca (width);
2617
2618 if (target_read_memory (addr, peekbuf, width) == 0
2619 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2620 force_ellipsis = 1;
2621 }
2622 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2623 {
2624 /* Getting an error when we have a requested length, or fetching less
2625 than the number of characters actually requested, always make us
2626 print ellipsis. */
2627 force_ellipsis = 1;
2628 }
2629
2630 /* If we get an error before fetching anything, don't print a string.
2631 But if we fetch something and then get an error, print the string
2632 and then the error message. */
2633 if (errcode == 0 || bytes_read > 0)
2634 {
2635 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2636 encoding, force_ellipsis, options);
2637 }
2638
2639 if (errcode != 0)
2640 {
2641 char *str;
2642
2643 str = memory_error_message (errcode, gdbarch, addr);
2644 make_cleanup (xfree, str);
2645
2646 fprintf_filtered (stream, "<error: ");
2647 fputs_filtered (str, stream);
2648 fprintf_filtered (stream, ">");
2649 }
2650
2651 gdb_flush (stream);
2652 do_cleanups (old_chain);
2653
2654 return (bytes_read / width);
2655 }
2656 \f
2657
2658 /* The 'set input-radix' command writes to this auxiliary variable.
2659 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2660 it is left unchanged. */
2661
2662 static unsigned input_radix_1 = 10;
2663
2664 /* Validate an input or output radix setting, and make sure the user
2665 knows what they really did here. Radix setting is confusing, e.g.
2666 setting the input radix to "10" never changes it! */
2667
2668 static void
2669 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2670 {
2671 set_input_radix_1 (from_tty, input_radix_1);
2672 }
2673
2674 static void
2675 set_input_radix_1 (int from_tty, unsigned radix)
2676 {
2677 /* We don't currently disallow any input radix except 0 or 1, which don't
2678 make any mathematical sense. In theory, we can deal with any input
2679 radix greater than 1, even if we don't have unique digits for every
2680 value from 0 to radix-1, but in practice we lose on large radix values.
2681 We should either fix the lossage or restrict the radix range more.
2682 (FIXME). */
2683
2684 if (radix < 2)
2685 {
2686 input_radix_1 = input_radix;
2687 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2688 radix);
2689 }
2690 input_radix_1 = input_radix = radix;
2691 if (from_tty)
2692 {
2693 printf_filtered (_("Input radix now set to "
2694 "decimal %u, hex %x, octal %o.\n"),
2695 radix, radix, radix);
2696 }
2697 }
2698
2699 /* The 'set output-radix' command writes to this auxiliary variable.
2700 If the requested radix is valid, OUTPUT_RADIX is updated,
2701 otherwise, it is left unchanged. */
2702
2703 static unsigned output_radix_1 = 10;
2704
2705 static void
2706 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2707 {
2708 set_output_radix_1 (from_tty, output_radix_1);
2709 }
2710
2711 static void
2712 set_output_radix_1 (int from_tty, unsigned radix)
2713 {
2714 /* Validate the radix and disallow ones that we aren't prepared to
2715 handle correctly, leaving the radix unchanged. */
2716 switch (radix)
2717 {
2718 case 16:
2719 user_print_options.output_format = 'x'; /* hex */
2720 break;
2721 case 10:
2722 user_print_options.output_format = 0; /* decimal */
2723 break;
2724 case 8:
2725 user_print_options.output_format = 'o'; /* octal */
2726 break;
2727 default:
2728 output_radix_1 = output_radix;
2729 error (_("Unsupported output radix ``decimal %u''; "
2730 "output radix unchanged."),
2731 radix);
2732 }
2733 output_radix_1 = output_radix = radix;
2734 if (from_tty)
2735 {
2736 printf_filtered (_("Output radix now set to "
2737 "decimal %u, hex %x, octal %o.\n"),
2738 radix, radix, radix);
2739 }
2740 }
2741
2742 /* Set both the input and output radix at once. Try to set the output radix
2743 first, since it has the most restrictive range. An radix that is valid as
2744 an output radix is also valid as an input radix.
2745
2746 It may be useful to have an unusual input radix. If the user wishes to
2747 set an input radix that is not valid as an output radix, he needs to use
2748 the 'set input-radix' command. */
2749
2750 static void
2751 set_radix (char *arg, int from_tty)
2752 {
2753 unsigned radix;
2754
2755 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2756 set_output_radix_1 (0, radix);
2757 set_input_radix_1 (0, radix);
2758 if (from_tty)
2759 {
2760 printf_filtered (_("Input and output radices now set to "
2761 "decimal %u, hex %x, octal %o.\n"),
2762 radix, radix, radix);
2763 }
2764 }
2765
2766 /* Show both the input and output radices. */
2767
2768 static void
2769 show_radix (char *arg, int from_tty)
2770 {
2771 if (from_tty)
2772 {
2773 if (input_radix == output_radix)
2774 {
2775 printf_filtered (_("Input and output radices set to "
2776 "decimal %u, hex %x, octal %o.\n"),
2777 input_radix, input_radix, input_radix);
2778 }
2779 else
2780 {
2781 printf_filtered (_("Input radix set to decimal "
2782 "%u, hex %x, octal %o.\n"),
2783 input_radix, input_radix, input_radix);
2784 printf_filtered (_("Output radix set to decimal "
2785 "%u, hex %x, octal %o.\n"),
2786 output_radix, output_radix, output_radix);
2787 }
2788 }
2789 }
2790 \f
2791
2792 static void
2793 set_print (char *arg, int from_tty)
2794 {
2795 printf_unfiltered (
2796 "\"set print\" must be followed by the name of a print subcommand.\n");
2797 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2798 }
2799
2800 static void
2801 show_print (char *args, int from_tty)
2802 {
2803 cmd_show_list (showprintlist, from_tty, "");
2804 }
2805
2806 static void
2807 set_print_raw (char *arg, int from_tty)
2808 {
2809 printf_unfiltered (
2810 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2811 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2812 }
2813
2814 static void
2815 show_print_raw (char *args, int from_tty)
2816 {
2817 cmd_show_list (showprintrawlist, from_tty, "");
2818 }
2819
2820 \f
2821 void
2822 _initialize_valprint (void)
2823 {
2824 add_prefix_cmd ("print", no_class, set_print,
2825 _("Generic command for setting how things print."),
2826 &setprintlist, "set print ", 0, &setlist);
2827 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2828 /* Prefer set print to set prompt. */
2829 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2830
2831 add_prefix_cmd ("print", no_class, show_print,
2832 _("Generic command for showing print settings."),
2833 &showprintlist, "show print ", 0, &showlist);
2834 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2835 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2836
2837 add_prefix_cmd ("raw", no_class, set_print_raw,
2838 _("\
2839 Generic command for setting what things to print in \"raw\" mode."),
2840 &setprintrawlist, "set print raw ", 0, &setprintlist);
2841 add_prefix_cmd ("raw", no_class, show_print_raw,
2842 _("Generic command for showing \"print raw\" settings."),
2843 &showprintrawlist, "show print raw ", 0, &showprintlist);
2844
2845 add_setshow_uinteger_cmd ("elements", no_class,
2846 &user_print_options.print_max, _("\
2847 Set limit on string chars or array elements to print."), _("\
2848 Show limit on string chars or array elements to print."), _("\
2849 \"set print elements unlimited\" causes there to be no limit."),
2850 NULL,
2851 show_print_max,
2852 &setprintlist, &showprintlist);
2853
2854 add_setshow_boolean_cmd ("null-stop", no_class,
2855 &user_print_options.stop_print_at_null, _("\
2856 Set printing of char arrays to stop at first null char."), _("\
2857 Show printing of char arrays to stop at first null char."), NULL,
2858 NULL,
2859 show_stop_print_at_null,
2860 &setprintlist, &showprintlist);
2861
2862 add_setshow_uinteger_cmd ("repeats", no_class,
2863 &user_print_options.repeat_count_threshold, _("\
2864 Set threshold for repeated print elements."), _("\
2865 Show threshold for repeated print elements."), _("\
2866 \"set print repeats unlimited\" causes all elements to be individually printed."),
2867 NULL,
2868 show_repeat_count_threshold,
2869 &setprintlist, &showprintlist);
2870
2871 add_setshow_boolean_cmd ("pretty", class_support,
2872 &user_print_options.prettyformat_structs, _("\
2873 Set pretty formatting of structures."), _("\
2874 Show pretty formatting of structures."), NULL,
2875 NULL,
2876 show_prettyformat_structs,
2877 &setprintlist, &showprintlist);
2878
2879 add_setshow_boolean_cmd ("union", class_support,
2880 &user_print_options.unionprint, _("\
2881 Set printing of unions interior to structures."), _("\
2882 Show printing of unions interior to structures."), NULL,
2883 NULL,
2884 show_unionprint,
2885 &setprintlist, &showprintlist);
2886
2887 add_setshow_boolean_cmd ("array", class_support,
2888 &user_print_options.prettyformat_arrays, _("\
2889 Set pretty formatting of arrays."), _("\
2890 Show pretty formatting of arrays."), NULL,
2891 NULL,
2892 show_prettyformat_arrays,
2893 &setprintlist, &showprintlist);
2894
2895 add_setshow_boolean_cmd ("address", class_support,
2896 &user_print_options.addressprint, _("\
2897 Set printing of addresses."), _("\
2898 Show printing of addresses."), NULL,
2899 NULL,
2900 show_addressprint,
2901 &setprintlist, &showprintlist);
2902
2903 add_setshow_boolean_cmd ("symbol", class_support,
2904 &user_print_options.symbol_print, _("\
2905 Set printing of symbol names when printing pointers."), _("\
2906 Show printing of symbol names when printing pointers."),
2907 NULL, NULL,
2908 show_symbol_print,
2909 &setprintlist, &showprintlist);
2910
2911 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2912 _("\
2913 Set default input radix for entering numbers."), _("\
2914 Show default input radix for entering numbers."), NULL,
2915 set_input_radix,
2916 show_input_radix,
2917 &setlist, &showlist);
2918
2919 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2920 _("\
2921 Set default output radix for printing of values."), _("\
2922 Show default output radix for printing of values."), NULL,
2923 set_output_radix,
2924 show_output_radix,
2925 &setlist, &showlist);
2926
2927 /* The "set radix" and "show radix" commands are special in that
2928 they are like normal set and show commands but allow two normally
2929 independent variables to be either set or shown with a single
2930 command. So the usual deprecated_add_set_cmd() and [deleted]
2931 add_show_from_set() commands aren't really appropriate. */
2932 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2933 longer true - show can display anything. */
2934 add_cmd ("radix", class_support, set_radix, _("\
2935 Set default input and output number radices.\n\
2936 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2937 Without an argument, sets both radices back to the default value of 10."),
2938 &setlist);
2939 add_cmd ("radix", class_support, show_radix, _("\
2940 Show the default input and output number radices.\n\
2941 Use 'show input-radix' or 'show output-radix' to independently show each."),
2942 &showlist);
2943
2944 add_setshow_boolean_cmd ("array-indexes", class_support,
2945 &user_print_options.print_array_indexes, _("\
2946 Set printing of array indexes."), _("\
2947 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2948 &setprintlist, &showprintlist);
2949 }
This page took 0.125193 seconds and 5 git commands to generate.