remove msymbol_objfile
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
210
211 /* If the value has been released. */
212 unsigned int released : 1;
213
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
328
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
333 };
334
335 int
336 value_bytes_available (const struct value *value, int offset, int length)
337 {
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341 }
342
343 int
344 value_entirely_available (struct value *value)
345 {
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354 }
355
356 void
357 mark_value_bytes_unavailable (struct value *value, int offset, int length)
358 {
359 range_s newr;
360 int i;
361
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
364
365 newr.offset = offset;
366 newr.length = length;
367
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
373
374 #1 - overlaps with previous
375
376 R
377 |-...-|
378 |---| |---| |------| ... |--|
379 0 1 2 N
380
381 I=1
382
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
387
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
390
391 #2 - contiguous with previous
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=1
399
400 If there's no overlap with the previous range, as in:
401
402 #3 - not overlapping and not contiguous
403
404 R
405 |-...-|
406 |--| |---| |------| ... |--|
407 0 1 2 N
408
409 I=1
410
411 or if I is 0:
412
413 #4 - R is the range with lowest offset
414
415 R
416 |-...-|
417 |--| |---| |------| ... |--|
418 0 1 2 N
419
420 I=0
421
422 ... we just push the new range to I.
423
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
427
428 #5 - overlapping following ranges
429
430 R
431 |------------------------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=0
436
437 or:
438
439 R
440 |-------|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 */
447
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
449 if (i > 0)
450 {
451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
452
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
454 {
455 /* #1 */
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
458
459 bef->offset = l;
460 bef->length = h - l;
461 i--;
462 }
463 else if (offset == bef->offset + bef->length)
464 {
465 /* #2 */
466 bef->length += length;
467 i--;
468 }
469 else
470 {
471 /* #3 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474 }
475 else
476 {
477 /* #4 */
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
479 }
480
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
484 {
485 struct range *t;
486 struct range *r;
487 int removed = 0;
488 int next = i + 1;
489
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
492 removed = 0;
493
494 i = next;
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
497 {
498 ULONGEST l, h;
499
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
502
503 t->offset = l;
504 t->length = h - l;
505
506 removed++;
507 }
508 else
509 {
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
513 break;
514 }
515
516 if (removed != 0)
517 VEC_block_remove (range_s, value->unavailable, next, removed);
518 }
519 }
520
521 /* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
525
526 static int
527 find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
529 {
530 range_s *r;
531 int i;
532
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
535 return i;
536
537 return -1;
538 }
539
540 int
541 value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
543 int length)
544 {
545 int idx1 = 0, idx2 = 0;
546
547 /* See function description in value.h. */
548 gdb_assert (!val1->lazy && !val2->lazy);
549
550 while (length > 0)
551 {
552 range_s *r1, *r2;
553 ULONGEST l1, h1;
554 ULONGEST l2, h2;
555
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
557 offset1, length);
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
559 offset2, length);
560
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
565 length) == 0);
566 /* The contents only match equal if the available set matches as
567 well. */
568 else if (idx1 == -1 || idx2 == -1)
569 return 0;
570
571 gdb_assert (idx1 != -1 && idx2 != -1);
572
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
575
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
581
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
584
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
587 l1 -= offset1;
588 h1 -= offset1;
589
590 l2 -= offset2;
591 h2 -= offset2;
592
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
595 return 0;
596
597 /* Compare the _available_ contents. */
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
600 l1) != 0)
601 return 0;
602
603 length -= h1;
604 offset1 += h1;
605 offset2 += h1;
606 }
607
608 return 1;
609 }
610
611 /* Prototypes for local functions. */
612
613 static void show_values (char *, int);
614
615 static void show_convenience (char *, int);
616
617
618 /* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
623
624 #define VALUE_HISTORY_CHUNK 60
625
626 struct value_history_chunk
627 {
628 struct value_history_chunk *next;
629 struct value *values[VALUE_HISTORY_CHUNK];
630 };
631
632 /* Chain of chunks now in use. */
633
634 static struct value_history_chunk *value_history_chain;
635
636 static int value_history_count; /* Abs number of last entry stored. */
637
638 \f
639 /* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
642
643 static struct value *all_values;
644
645 /* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
648
649 struct value *
650 allocate_value_lazy (struct type *type)
651 {
652 struct value *val;
653
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
661
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
664 val->next = all_values;
665 all_values = val;
666 val->type = type;
667 val->enclosing_type = type;
668 VALUE_LVAL (val) = not_lval;
669 val->location.address = 0;
670 VALUE_FRAME_ID (val) = null_frame_id;
671 val->offset = 0;
672 val->bitpos = 0;
673 val->bitsize = 0;
674 VALUE_REGNUM (val) = -1;
675 val->lazy = 1;
676 val->optimized_out = 0;
677 val->embedded_offset = 0;
678 val->pointed_to_offset = 0;
679 val->modifiable = 1;
680 val->initialized = 1; /* Default to initialized. */
681
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
684
685 return val;
686 }
687
688 /* Allocate the contents of VAL if it has not been allocated yet. */
689
690 void
691 allocate_value_contents (struct value *val)
692 {
693 if (!val->contents)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
695 }
696
697 /* Allocate a value and its contents for type TYPE. */
698
699 struct value *
700 allocate_value (struct type *type)
701 {
702 struct value *val = allocate_value_lazy (type);
703
704 allocate_value_contents (val);
705 val->lazy = 0;
706 return val;
707 }
708
709 /* Allocate a value that has the correct length
710 for COUNT repetitions of type TYPE. */
711
712 struct value *
713 allocate_repeat_value (struct type *type, int count)
714 {
715 int low_bound = current_language->string_lower_bound; /* ??? */
716 /* FIXME-type-allocation: need a way to free this type when we are
717 done with it. */
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
720
721 return allocate_value (array_type);
722 }
723
724 struct value *
725 allocate_computed_value (struct type *type,
726 const struct lval_funcs *funcs,
727 void *closure)
728 {
729 struct value *v = allocate_value_lazy (type);
730
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
734
735 return v;
736 }
737
738 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
739
740 struct value *
741 allocate_optimized_out_value (struct type *type)
742 {
743 struct value *retval = allocate_value_lazy (type);
744
745 set_value_optimized_out (retval, 1);
746
747 return retval;
748 }
749
750 /* Accessor methods. */
751
752 struct value *
753 value_next (struct value *value)
754 {
755 return value->next;
756 }
757
758 struct type *
759 value_type (const struct value *value)
760 {
761 return value->type;
762 }
763 void
764 deprecated_set_value_type (struct value *value, struct type *type)
765 {
766 value->type = type;
767 }
768
769 int
770 value_offset (const struct value *value)
771 {
772 return value->offset;
773 }
774 void
775 set_value_offset (struct value *value, int offset)
776 {
777 value->offset = offset;
778 }
779
780 int
781 value_bitpos (const struct value *value)
782 {
783 return value->bitpos;
784 }
785 void
786 set_value_bitpos (struct value *value, int bit)
787 {
788 value->bitpos = bit;
789 }
790
791 int
792 value_bitsize (const struct value *value)
793 {
794 return value->bitsize;
795 }
796 void
797 set_value_bitsize (struct value *value, int bit)
798 {
799 value->bitsize = bit;
800 }
801
802 struct value *
803 value_parent (struct value *value)
804 {
805 return value->parent;
806 }
807
808 /* See value.h. */
809
810 void
811 set_value_parent (struct value *value, struct value *parent)
812 {
813 struct value *old = value->parent;
814
815 value->parent = parent;
816 if (parent != NULL)
817 value_incref (parent);
818 value_free (old);
819 }
820
821 gdb_byte *
822 value_contents_raw (struct value *value)
823 {
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
826 }
827
828 gdb_byte *
829 value_contents_all_raw (struct value *value)
830 {
831 allocate_value_contents (value);
832 return value->contents;
833 }
834
835 struct type *
836 value_enclosing_type (struct value *value)
837 {
838 return value->enclosing_type;
839 }
840
841 /* Look at value.h for description. */
842
843 struct type *
844 value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
846 {
847 struct value_print_options opts;
848 struct type *result;
849
850 get_user_print_options (&opts);
851
852 if (real_type_found)
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
856 {
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
860 || TYPE_CODE (result) == TYPE_CODE_REF)
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
862 == TYPE_CODE_STRUCT)
863 {
864 struct type *real_type;
865
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
867 if (real_type)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = real_type;
872 }
873 }
874 else if (resolve_simple_types)
875 {
876 if (real_type_found)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
879 }
880 }
881
882 return result;
883 }
884
885 static void
886 require_not_optimized_out (const struct value *value)
887 {
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
890 }
891
892 static void
893 require_available (const struct value *value)
894 {
895 if (!VEC_empty (range_s, value->unavailable))
896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
897 }
898
899 const gdb_byte *
900 value_contents_for_printing (struct value *value)
901 {
902 if (value->lazy)
903 value_fetch_lazy (value);
904 return value->contents;
905 }
906
907 const gdb_byte *
908 value_contents_for_printing_const (const struct value *value)
909 {
910 gdb_assert (!value->lazy);
911 return value->contents;
912 }
913
914 const gdb_byte *
915 value_contents_all (struct value *value)
916 {
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
919 require_available (value);
920 return result;
921 }
922
923 /* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
928 values.
929
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
932
933 void
934 value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
936 {
937 range_s *r;
938 int i;
939
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
945
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
950
951 /* Copy the data. */
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
954 length);
955
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
958 {
959 ULONGEST h, l;
960
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
963
964 if (l < h)
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
967 h - l);
968 }
969 }
970
971 /* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
978
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
981
982 void
983 value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
985 {
986 require_not_optimized_out (src);
987
988 if (src->lazy)
989 value_fetch_lazy (src);
990
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
992 }
993
994 int
995 value_lazy (struct value *value)
996 {
997 return value->lazy;
998 }
999
1000 void
1001 set_value_lazy (struct value *value, int val)
1002 {
1003 value->lazy = val;
1004 }
1005
1006 int
1007 value_stack (struct value *value)
1008 {
1009 return value->stack;
1010 }
1011
1012 void
1013 set_value_stack (struct value *value, int val)
1014 {
1015 value->stack = val;
1016 }
1017
1018 const gdb_byte *
1019 value_contents (struct value *value)
1020 {
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
1023 require_available (value);
1024 return result;
1025 }
1026
1027 gdb_byte *
1028 value_contents_writeable (struct value *value)
1029 {
1030 if (value->lazy)
1031 value_fetch_lazy (value);
1032 return value_contents_raw (value);
1033 }
1034
1035 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1038
1039 int
1040 value_contents_equal (struct value *val1, struct value *val2)
1041 {
1042 struct type *type1;
1043 struct type *type2;
1044
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1048 return 0;
1049
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
1052 }
1053
1054 int
1055 value_optimized_out (struct value *value)
1056 {
1057 /* We can only know if a value is optimized out once we have tried to
1058 fetch it. */
1059 if (!value->optimized_out && value->lazy)
1060 value_fetch_lazy (value);
1061
1062 return value->optimized_out;
1063 }
1064
1065 int
1066 value_optimized_out_const (const struct value *value)
1067 {
1068 return value->optimized_out;
1069 }
1070
1071 void
1072 set_value_optimized_out (struct value *value, int val)
1073 {
1074 value->optimized_out = val;
1075 }
1076
1077 int
1078 value_entirely_optimized_out (const struct value *value)
1079 {
1080 if (!value->optimized_out)
1081 return 0;
1082 if (value->lval != lval_computed
1083 || !value->location.computed.funcs->check_any_valid)
1084 return 1;
1085 return !value->location.computed.funcs->check_any_valid (value);
1086 }
1087
1088 int
1089 value_bits_valid (const struct value *value, int offset, int length)
1090 {
1091 if (!value->optimized_out)
1092 return 1;
1093 if (value->lval != lval_computed
1094 || !value->location.computed.funcs->check_validity)
1095 return 0;
1096 return value->location.computed.funcs->check_validity (value, offset,
1097 length);
1098 }
1099
1100 int
1101 value_bits_synthetic_pointer (const struct value *value,
1102 int offset, int length)
1103 {
1104 if (value->lval != lval_computed
1105 || !value->location.computed.funcs->check_synthetic_pointer)
1106 return 0;
1107 return value->location.computed.funcs->check_synthetic_pointer (value,
1108 offset,
1109 length);
1110 }
1111
1112 int
1113 value_embedded_offset (struct value *value)
1114 {
1115 return value->embedded_offset;
1116 }
1117
1118 void
1119 set_value_embedded_offset (struct value *value, int val)
1120 {
1121 value->embedded_offset = val;
1122 }
1123
1124 int
1125 value_pointed_to_offset (struct value *value)
1126 {
1127 return value->pointed_to_offset;
1128 }
1129
1130 void
1131 set_value_pointed_to_offset (struct value *value, int val)
1132 {
1133 value->pointed_to_offset = val;
1134 }
1135
1136 const struct lval_funcs *
1137 value_computed_funcs (const struct value *v)
1138 {
1139 gdb_assert (value_lval_const (v) == lval_computed);
1140
1141 return v->location.computed.funcs;
1142 }
1143
1144 void *
1145 value_computed_closure (const struct value *v)
1146 {
1147 gdb_assert (v->lval == lval_computed);
1148
1149 return v->location.computed.closure;
1150 }
1151
1152 enum lval_type *
1153 deprecated_value_lval_hack (struct value *value)
1154 {
1155 return &value->lval;
1156 }
1157
1158 enum lval_type
1159 value_lval_const (const struct value *value)
1160 {
1161 return value->lval;
1162 }
1163
1164 CORE_ADDR
1165 value_address (const struct value *value)
1166 {
1167 if (value->lval == lval_internalvar
1168 || value->lval == lval_internalvar_component)
1169 return 0;
1170 if (value->parent != NULL)
1171 return value_address (value->parent) + value->offset;
1172 else
1173 return value->location.address + value->offset;
1174 }
1175
1176 CORE_ADDR
1177 value_raw_address (struct value *value)
1178 {
1179 if (value->lval == lval_internalvar
1180 || value->lval == lval_internalvar_component)
1181 return 0;
1182 return value->location.address;
1183 }
1184
1185 void
1186 set_value_address (struct value *value, CORE_ADDR addr)
1187 {
1188 gdb_assert (value->lval != lval_internalvar
1189 && value->lval != lval_internalvar_component);
1190 value->location.address = addr;
1191 }
1192
1193 struct internalvar **
1194 deprecated_value_internalvar_hack (struct value *value)
1195 {
1196 return &value->location.internalvar;
1197 }
1198
1199 struct frame_id *
1200 deprecated_value_frame_id_hack (struct value *value)
1201 {
1202 return &value->frame_id;
1203 }
1204
1205 short *
1206 deprecated_value_regnum_hack (struct value *value)
1207 {
1208 return &value->regnum;
1209 }
1210
1211 int
1212 deprecated_value_modifiable (struct value *value)
1213 {
1214 return value->modifiable;
1215 }
1216 \f
1217 /* Return a mark in the value chain. All values allocated after the
1218 mark is obtained (except for those released) are subject to being freed
1219 if a subsequent value_free_to_mark is passed the mark. */
1220 struct value *
1221 value_mark (void)
1222 {
1223 return all_values;
1224 }
1225
1226 /* Take a reference to VAL. VAL will not be deallocated until all
1227 references are released. */
1228
1229 void
1230 value_incref (struct value *val)
1231 {
1232 val->reference_count++;
1233 }
1234
1235 /* Release a reference to VAL, which was acquired with value_incref.
1236 This function is also called to deallocate values from the value
1237 chain. */
1238
1239 void
1240 value_free (struct value *val)
1241 {
1242 if (val)
1243 {
1244 gdb_assert (val->reference_count > 0);
1245 val->reference_count--;
1246 if (val->reference_count > 0)
1247 return;
1248
1249 /* If there's an associated parent value, drop our reference to
1250 it. */
1251 if (val->parent != NULL)
1252 value_free (val->parent);
1253
1254 if (VALUE_LVAL (val) == lval_computed)
1255 {
1256 const struct lval_funcs *funcs = val->location.computed.funcs;
1257
1258 if (funcs->free_closure)
1259 funcs->free_closure (val);
1260 }
1261
1262 xfree (val->contents);
1263 VEC_free (range_s, val->unavailable);
1264 }
1265 xfree (val);
1266 }
1267
1268 /* Free all values allocated since MARK was obtained by value_mark
1269 (except for those released). */
1270 void
1271 value_free_to_mark (struct value *mark)
1272 {
1273 struct value *val;
1274 struct value *next;
1275
1276 for (val = all_values; val && val != mark; val = next)
1277 {
1278 next = val->next;
1279 val->released = 1;
1280 value_free (val);
1281 }
1282 all_values = val;
1283 }
1284
1285 /* Free all the values that have been allocated (except for those released).
1286 Call after each command, successful or not.
1287 In practice this is called before each command, which is sufficient. */
1288
1289 void
1290 free_all_values (void)
1291 {
1292 struct value *val;
1293 struct value *next;
1294
1295 for (val = all_values; val; val = next)
1296 {
1297 next = val->next;
1298 val->released = 1;
1299 value_free (val);
1300 }
1301
1302 all_values = 0;
1303 }
1304
1305 /* Frees all the elements in a chain of values. */
1306
1307 void
1308 free_value_chain (struct value *v)
1309 {
1310 struct value *next;
1311
1312 for (; v; v = next)
1313 {
1314 next = value_next (v);
1315 value_free (v);
1316 }
1317 }
1318
1319 /* Remove VAL from the chain all_values
1320 so it will not be freed automatically. */
1321
1322 void
1323 release_value (struct value *val)
1324 {
1325 struct value *v;
1326
1327 if (all_values == val)
1328 {
1329 all_values = val->next;
1330 val->next = NULL;
1331 val->released = 1;
1332 return;
1333 }
1334
1335 for (v = all_values; v; v = v->next)
1336 {
1337 if (v->next == val)
1338 {
1339 v->next = val->next;
1340 val->next = NULL;
1341 val->released = 1;
1342 break;
1343 }
1344 }
1345 }
1346
1347 /* If the value is not already released, release it.
1348 If the value is already released, increment its reference count.
1349 That is, this function ensures that the value is released from the
1350 value chain and that the caller owns a reference to it. */
1351
1352 void
1353 release_value_or_incref (struct value *val)
1354 {
1355 if (val->released)
1356 value_incref (val);
1357 else
1358 release_value (val);
1359 }
1360
1361 /* Release all values up to mark */
1362 struct value *
1363 value_release_to_mark (struct value *mark)
1364 {
1365 struct value *val;
1366 struct value *next;
1367
1368 for (val = next = all_values; next; next = next->next)
1369 {
1370 if (next->next == mark)
1371 {
1372 all_values = next->next;
1373 next->next = NULL;
1374 return val;
1375 }
1376 next->released = 1;
1377 }
1378 all_values = 0;
1379 return val;
1380 }
1381
1382 /* Return a copy of the value ARG.
1383 It contains the same contents, for same memory address,
1384 but it's a different block of storage. */
1385
1386 struct value *
1387 value_copy (struct value *arg)
1388 {
1389 struct type *encl_type = value_enclosing_type (arg);
1390 struct value *val;
1391
1392 if (value_lazy (arg))
1393 val = allocate_value_lazy (encl_type);
1394 else
1395 val = allocate_value (encl_type);
1396 val->type = arg->type;
1397 VALUE_LVAL (val) = VALUE_LVAL (arg);
1398 val->location = arg->location;
1399 val->offset = arg->offset;
1400 val->bitpos = arg->bitpos;
1401 val->bitsize = arg->bitsize;
1402 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1403 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1404 val->lazy = arg->lazy;
1405 val->optimized_out = arg->optimized_out;
1406 val->embedded_offset = value_embedded_offset (arg);
1407 val->pointed_to_offset = arg->pointed_to_offset;
1408 val->modifiable = arg->modifiable;
1409 if (!value_lazy (val))
1410 {
1411 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1412 TYPE_LENGTH (value_enclosing_type (arg)));
1413
1414 }
1415 val->unavailable = VEC_copy (range_s, arg->unavailable);
1416 set_value_parent (val, arg->parent);
1417 if (VALUE_LVAL (val) == lval_computed)
1418 {
1419 const struct lval_funcs *funcs = val->location.computed.funcs;
1420
1421 if (funcs->copy_closure)
1422 val->location.computed.closure = funcs->copy_closure (val);
1423 }
1424 return val;
1425 }
1426
1427 /* Return a version of ARG that is non-lvalue. */
1428
1429 struct value *
1430 value_non_lval (struct value *arg)
1431 {
1432 if (VALUE_LVAL (arg) != not_lval)
1433 {
1434 struct type *enc_type = value_enclosing_type (arg);
1435 struct value *val = allocate_value (enc_type);
1436
1437 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1438 TYPE_LENGTH (enc_type));
1439 val->type = arg->type;
1440 set_value_embedded_offset (val, value_embedded_offset (arg));
1441 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1442 return val;
1443 }
1444 return arg;
1445 }
1446
1447 void
1448 set_value_component_location (struct value *component,
1449 const struct value *whole)
1450 {
1451 if (whole->lval == lval_internalvar)
1452 VALUE_LVAL (component) = lval_internalvar_component;
1453 else
1454 VALUE_LVAL (component) = whole->lval;
1455
1456 component->location = whole->location;
1457 if (whole->lval == lval_computed)
1458 {
1459 const struct lval_funcs *funcs = whole->location.computed.funcs;
1460
1461 if (funcs->copy_closure)
1462 component->location.computed.closure = funcs->copy_closure (whole);
1463 }
1464 }
1465
1466 \f
1467 /* Access to the value history. */
1468
1469 /* Record a new value in the value history.
1470 Returns the absolute history index of the entry.
1471 Result of -1 indicates the value was not saved; otherwise it is the
1472 value history index of this new item. */
1473
1474 int
1475 record_latest_value (struct value *val)
1476 {
1477 int i;
1478
1479 /* We don't want this value to have anything to do with the inferior anymore.
1480 In particular, "set $1 = 50" should not affect the variable from which
1481 the value was taken, and fast watchpoints should be able to assume that
1482 a value on the value history never changes. */
1483 if (value_lazy (val))
1484 value_fetch_lazy (val);
1485 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1486 from. This is a bit dubious, because then *&$1 does not just return $1
1487 but the current contents of that location. c'est la vie... */
1488 val->modifiable = 0;
1489 release_value (val);
1490
1491 /* Here we treat value_history_count as origin-zero
1492 and applying to the value being stored now. */
1493
1494 i = value_history_count % VALUE_HISTORY_CHUNK;
1495 if (i == 0)
1496 {
1497 struct value_history_chunk *new
1498 = (struct value_history_chunk *)
1499
1500 xmalloc (sizeof (struct value_history_chunk));
1501 memset (new->values, 0, sizeof new->values);
1502 new->next = value_history_chain;
1503 value_history_chain = new;
1504 }
1505
1506 value_history_chain->values[i] = val;
1507
1508 /* Now we regard value_history_count as origin-one
1509 and applying to the value just stored. */
1510
1511 return ++value_history_count;
1512 }
1513
1514 /* Return a copy of the value in the history with sequence number NUM. */
1515
1516 struct value *
1517 access_value_history (int num)
1518 {
1519 struct value_history_chunk *chunk;
1520 int i;
1521 int absnum = num;
1522
1523 if (absnum <= 0)
1524 absnum += value_history_count;
1525
1526 if (absnum <= 0)
1527 {
1528 if (num == 0)
1529 error (_("The history is empty."));
1530 else if (num == 1)
1531 error (_("There is only one value in the history."));
1532 else
1533 error (_("History does not go back to $$%d."), -num);
1534 }
1535 if (absnum > value_history_count)
1536 error (_("History has not yet reached $%d."), absnum);
1537
1538 absnum--;
1539
1540 /* Now absnum is always absolute and origin zero. */
1541
1542 chunk = value_history_chain;
1543 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1544 - absnum / VALUE_HISTORY_CHUNK;
1545 i > 0; i--)
1546 chunk = chunk->next;
1547
1548 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1549 }
1550
1551 static void
1552 show_values (char *num_exp, int from_tty)
1553 {
1554 int i;
1555 struct value *val;
1556 static int num = 1;
1557
1558 if (num_exp)
1559 {
1560 /* "show values +" should print from the stored position.
1561 "show values <exp>" should print around value number <exp>. */
1562 if (num_exp[0] != '+' || num_exp[1] != '\0')
1563 num = parse_and_eval_long (num_exp) - 5;
1564 }
1565 else
1566 {
1567 /* "show values" means print the last 10 values. */
1568 num = value_history_count - 9;
1569 }
1570
1571 if (num <= 0)
1572 num = 1;
1573
1574 for (i = num; i < num + 10 && i <= value_history_count; i++)
1575 {
1576 struct value_print_options opts;
1577
1578 val = access_value_history (i);
1579 printf_filtered (("$%d = "), i);
1580 get_user_print_options (&opts);
1581 value_print (val, gdb_stdout, &opts);
1582 printf_filtered (("\n"));
1583 }
1584
1585 /* The next "show values +" should start after what we just printed. */
1586 num += 10;
1587
1588 /* Hitting just return after this command should do the same thing as
1589 "show values +". If num_exp is null, this is unnecessary, since
1590 "show values +" is not useful after "show values". */
1591 if (from_tty && num_exp)
1592 {
1593 num_exp[0] = '+';
1594 num_exp[1] = '\0';
1595 }
1596 }
1597 \f
1598 /* Internal variables. These are variables within the debugger
1599 that hold values assigned by debugger commands.
1600 The user refers to them with a '$' prefix
1601 that does not appear in the variable names stored internally. */
1602
1603 struct internalvar
1604 {
1605 struct internalvar *next;
1606 char *name;
1607
1608 /* We support various different kinds of content of an internal variable.
1609 enum internalvar_kind specifies the kind, and union internalvar_data
1610 provides the data associated with this particular kind. */
1611
1612 enum internalvar_kind
1613 {
1614 /* The internal variable is empty. */
1615 INTERNALVAR_VOID,
1616
1617 /* The value of the internal variable is provided directly as
1618 a GDB value object. */
1619 INTERNALVAR_VALUE,
1620
1621 /* A fresh value is computed via a call-back routine on every
1622 access to the internal variable. */
1623 INTERNALVAR_MAKE_VALUE,
1624
1625 /* The internal variable holds a GDB internal convenience function. */
1626 INTERNALVAR_FUNCTION,
1627
1628 /* The variable holds an integer value. */
1629 INTERNALVAR_INTEGER,
1630
1631 /* The variable holds a GDB-provided string. */
1632 INTERNALVAR_STRING,
1633
1634 } kind;
1635
1636 union internalvar_data
1637 {
1638 /* A value object used with INTERNALVAR_VALUE. */
1639 struct value *value;
1640
1641 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1642 struct
1643 {
1644 /* The functions to call. */
1645 const struct internalvar_funcs *functions;
1646
1647 /* The function's user-data. */
1648 void *data;
1649 } make_value;
1650
1651 /* The internal function used with INTERNALVAR_FUNCTION. */
1652 struct
1653 {
1654 struct internal_function *function;
1655 /* True if this is the canonical name for the function. */
1656 int canonical;
1657 } fn;
1658
1659 /* An integer value used with INTERNALVAR_INTEGER. */
1660 struct
1661 {
1662 /* If type is non-NULL, it will be used as the type to generate
1663 a value for this internal variable. If type is NULL, a default
1664 integer type for the architecture is used. */
1665 struct type *type;
1666 LONGEST val;
1667 } integer;
1668
1669 /* A string value used with INTERNALVAR_STRING. */
1670 char *string;
1671 } u;
1672 };
1673
1674 static struct internalvar *internalvars;
1675
1676 /* If the variable does not already exist create it and give it the
1677 value given. If no value is given then the default is zero. */
1678 static void
1679 init_if_undefined_command (char* args, int from_tty)
1680 {
1681 struct internalvar* intvar;
1682
1683 /* Parse the expression - this is taken from set_command(). */
1684 struct expression *expr = parse_expression (args);
1685 register struct cleanup *old_chain =
1686 make_cleanup (free_current_contents, &expr);
1687
1688 /* Validate the expression.
1689 Was the expression an assignment?
1690 Or even an expression at all? */
1691 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1692 error (_("Init-if-undefined requires an assignment expression."));
1693
1694 /* Extract the variable from the parsed expression.
1695 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1696 if (expr->elts[1].opcode != OP_INTERNALVAR)
1697 error (_("The first parameter to init-if-undefined "
1698 "should be a GDB variable."));
1699 intvar = expr->elts[2].internalvar;
1700
1701 /* Only evaluate the expression if the lvalue is void.
1702 This may still fail if the expresssion is invalid. */
1703 if (intvar->kind == INTERNALVAR_VOID)
1704 evaluate_expression (expr);
1705
1706 do_cleanups (old_chain);
1707 }
1708
1709
1710 /* Look up an internal variable with name NAME. NAME should not
1711 normally include a dollar sign.
1712
1713 If the specified internal variable does not exist,
1714 the return value is NULL. */
1715
1716 struct internalvar *
1717 lookup_only_internalvar (const char *name)
1718 {
1719 struct internalvar *var;
1720
1721 for (var = internalvars; var; var = var->next)
1722 if (strcmp (var->name, name) == 0)
1723 return var;
1724
1725 return NULL;
1726 }
1727
1728 /* Complete NAME by comparing it to the names of internal variables.
1729 Returns a vector of newly allocated strings, or NULL if no matches
1730 were found. */
1731
1732 VEC (char_ptr) *
1733 complete_internalvar (const char *name)
1734 {
1735 VEC (char_ptr) *result = NULL;
1736 struct internalvar *var;
1737 int len;
1738
1739 len = strlen (name);
1740
1741 for (var = internalvars; var; var = var->next)
1742 if (strncmp (var->name, name, len) == 0)
1743 {
1744 char *r = xstrdup (var->name);
1745
1746 VEC_safe_push (char_ptr, result, r);
1747 }
1748
1749 return result;
1750 }
1751
1752 /* Create an internal variable with name NAME and with a void value.
1753 NAME should not normally include a dollar sign. */
1754
1755 struct internalvar *
1756 create_internalvar (const char *name)
1757 {
1758 struct internalvar *var;
1759
1760 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1761 var->name = concat (name, (char *)NULL);
1762 var->kind = INTERNALVAR_VOID;
1763 var->next = internalvars;
1764 internalvars = var;
1765 return var;
1766 }
1767
1768 /* Create an internal variable with name NAME and register FUN as the
1769 function that value_of_internalvar uses to create a value whenever
1770 this variable is referenced. NAME should not normally include a
1771 dollar sign. DATA is passed uninterpreted to FUN when it is
1772 called. CLEANUP, if not NULL, is called when the internal variable
1773 is destroyed. It is passed DATA as its only argument. */
1774
1775 struct internalvar *
1776 create_internalvar_type_lazy (const char *name,
1777 const struct internalvar_funcs *funcs,
1778 void *data)
1779 {
1780 struct internalvar *var = create_internalvar (name);
1781
1782 var->kind = INTERNALVAR_MAKE_VALUE;
1783 var->u.make_value.functions = funcs;
1784 var->u.make_value.data = data;
1785 return var;
1786 }
1787
1788 /* See documentation in value.h. */
1789
1790 int
1791 compile_internalvar_to_ax (struct internalvar *var,
1792 struct agent_expr *expr,
1793 struct axs_value *value)
1794 {
1795 if (var->kind != INTERNALVAR_MAKE_VALUE
1796 || var->u.make_value.functions->compile_to_ax == NULL)
1797 return 0;
1798
1799 var->u.make_value.functions->compile_to_ax (var, expr, value,
1800 var->u.make_value.data);
1801 return 1;
1802 }
1803
1804 /* Look up an internal variable with name NAME. NAME should not
1805 normally include a dollar sign.
1806
1807 If the specified internal variable does not exist,
1808 one is created, with a void value. */
1809
1810 struct internalvar *
1811 lookup_internalvar (const char *name)
1812 {
1813 struct internalvar *var;
1814
1815 var = lookup_only_internalvar (name);
1816 if (var)
1817 return var;
1818
1819 return create_internalvar (name);
1820 }
1821
1822 /* Return current value of internal variable VAR. For variables that
1823 are not inherently typed, use a value type appropriate for GDBARCH. */
1824
1825 struct value *
1826 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1827 {
1828 struct value *val;
1829 struct trace_state_variable *tsv;
1830
1831 /* If there is a trace state variable of the same name, assume that
1832 is what we really want to see. */
1833 tsv = find_trace_state_variable (var->name);
1834 if (tsv)
1835 {
1836 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1837 &(tsv->value));
1838 if (tsv->value_known)
1839 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1840 tsv->value);
1841 else
1842 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1843 return val;
1844 }
1845
1846 switch (var->kind)
1847 {
1848 case INTERNALVAR_VOID:
1849 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1850 break;
1851
1852 case INTERNALVAR_FUNCTION:
1853 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1854 break;
1855
1856 case INTERNALVAR_INTEGER:
1857 if (!var->u.integer.type)
1858 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1859 var->u.integer.val);
1860 else
1861 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1862 break;
1863
1864 case INTERNALVAR_STRING:
1865 val = value_cstring (var->u.string, strlen (var->u.string),
1866 builtin_type (gdbarch)->builtin_char);
1867 break;
1868
1869 case INTERNALVAR_VALUE:
1870 val = value_copy (var->u.value);
1871 if (value_lazy (val))
1872 value_fetch_lazy (val);
1873 break;
1874
1875 case INTERNALVAR_MAKE_VALUE:
1876 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1877 var->u.make_value.data);
1878 break;
1879
1880 default:
1881 internal_error (__FILE__, __LINE__, _("bad kind"));
1882 }
1883
1884 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1885 on this value go back to affect the original internal variable.
1886
1887 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1888 no underlying modifyable state in the internal variable.
1889
1890 Likewise, if the variable's value is a computed lvalue, we want
1891 references to it to produce another computed lvalue, where
1892 references and assignments actually operate through the
1893 computed value's functions.
1894
1895 This means that internal variables with computed values
1896 behave a little differently from other internal variables:
1897 assignments to them don't just replace the previous value
1898 altogether. At the moment, this seems like the behavior we
1899 want. */
1900
1901 if (var->kind != INTERNALVAR_MAKE_VALUE
1902 && val->lval != lval_computed)
1903 {
1904 VALUE_LVAL (val) = lval_internalvar;
1905 VALUE_INTERNALVAR (val) = var;
1906 }
1907
1908 return val;
1909 }
1910
1911 int
1912 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1913 {
1914 if (var->kind == INTERNALVAR_INTEGER)
1915 {
1916 *result = var->u.integer.val;
1917 return 1;
1918 }
1919
1920 if (var->kind == INTERNALVAR_VALUE)
1921 {
1922 struct type *type = check_typedef (value_type (var->u.value));
1923
1924 if (TYPE_CODE (type) == TYPE_CODE_INT)
1925 {
1926 *result = value_as_long (var->u.value);
1927 return 1;
1928 }
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int
1935 get_internalvar_function (struct internalvar *var,
1936 struct internal_function **result)
1937 {
1938 switch (var->kind)
1939 {
1940 case INTERNALVAR_FUNCTION:
1941 *result = var->u.fn.function;
1942 return 1;
1943
1944 default:
1945 return 0;
1946 }
1947 }
1948
1949 void
1950 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1951 int bitsize, struct value *newval)
1952 {
1953 gdb_byte *addr;
1954
1955 switch (var->kind)
1956 {
1957 case INTERNALVAR_VALUE:
1958 addr = value_contents_writeable (var->u.value);
1959
1960 if (bitsize)
1961 modify_field (value_type (var->u.value), addr + offset,
1962 value_as_long (newval), bitpos, bitsize);
1963 else
1964 memcpy (addr + offset, value_contents (newval),
1965 TYPE_LENGTH (value_type (newval)));
1966 break;
1967
1968 default:
1969 /* We can never get a component of any other kind. */
1970 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1971 }
1972 }
1973
1974 void
1975 set_internalvar (struct internalvar *var, struct value *val)
1976 {
1977 enum internalvar_kind new_kind;
1978 union internalvar_data new_data = { 0 };
1979
1980 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1981 error (_("Cannot overwrite convenience function %s"), var->name);
1982
1983 /* Prepare new contents. */
1984 switch (TYPE_CODE (check_typedef (value_type (val))))
1985 {
1986 case TYPE_CODE_VOID:
1987 new_kind = INTERNALVAR_VOID;
1988 break;
1989
1990 case TYPE_CODE_INTERNAL_FUNCTION:
1991 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1992 new_kind = INTERNALVAR_FUNCTION;
1993 get_internalvar_function (VALUE_INTERNALVAR (val),
1994 &new_data.fn.function);
1995 /* Copies created here are never canonical. */
1996 break;
1997
1998 default:
1999 new_kind = INTERNALVAR_VALUE;
2000 new_data.value = value_copy (val);
2001 new_data.value->modifiable = 1;
2002
2003 /* Force the value to be fetched from the target now, to avoid problems
2004 later when this internalvar is referenced and the target is gone or
2005 has changed. */
2006 if (value_lazy (new_data.value))
2007 value_fetch_lazy (new_data.value);
2008
2009 /* Release the value from the value chain to prevent it from being
2010 deleted by free_all_values. From here on this function should not
2011 call error () until new_data is installed into the var->u to avoid
2012 leaking memory. */
2013 release_value (new_data.value);
2014 break;
2015 }
2016
2017 /* Clean up old contents. */
2018 clear_internalvar (var);
2019
2020 /* Switch over. */
2021 var->kind = new_kind;
2022 var->u = new_data;
2023 /* End code which must not call error(). */
2024 }
2025
2026 void
2027 set_internalvar_integer (struct internalvar *var, LONGEST l)
2028 {
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2031
2032 var->kind = INTERNALVAR_INTEGER;
2033 var->u.integer.type = NULL;
2034 var->u.integer.val = l;
2035 }
2036
2037 void
2038 set_internalvar_string (struct internalvar *var, const char *string)
2039 {
2040 /* Clean up old contents. */
2041 clear_internalvar (var);
2042
2043 var->kind = INTERNALVAR_STRING;
2044 var->u.string = xstrdup (string);
2045 }
2046
2047 static void
2048 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2049 {
2050 /* Clean up old contents. */
2051 clear_internalvar (var);
2052
2053 var->kind = INTERNALVAR_FUNCTION;
2054 var->u.fn.function = f;
2055 var->u.fn.canonical = 1;
2056 /* Variables installed here are always the canonical version. */
2057 }
2058
2059 void
2060 clear_internalvar (struct internalvar *var)
2061 {
2062 /* Clean up old contents. */
2063 switch (var->kind)
2064 {
2065 case INTERNALVAR_VALUE:
2066 value_free (var->u.value);
2067 break;
2068
2069 case INTERNALVAR_STRING:
2070 xfree (var->u.string);
2071 break;
2072
2073 case INTERNALVAR_MAKE_VALUE:
2074 if (var->u.make_value.functions->destroy != NULL)
2075 var->u.make_value.functions->destroy (var->u.make_value.data);
2076 break;
2077
2078 default:
2079 break;
2080 }
2081
2082 /* Reset to void kind. */
2083 var->kind = INTERNALVAR_VOID;
2084 }
2085
2086 char *
2087 internalvar_name (struct internalvar *var)
2088 {
2089 return var->name;
2090 }
2091
2092 static struct internal_function *
2093 create_internal_function (const char *name,
2094 internal_function_fn handler, void *cookie)
2095 {
2096 struct internal_function *ifn = XNEW (struct internal_function);
2097
2098 ifn->name = xstrdup (name);
2099 ifn->handler = handler;
2100 ifn->cookie = cookie;
2101 return ifn;
2102 }
2103
2104 char *
2105 value_internal_function_name (struct value *val)
2106 {
2107 struct internal_function *ifn;
2108 int result;
2109
2110 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2111 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2112 gdb_assert (result);
2113
2114 return ifn->name;
2115 }
2116
2117 struct value *
2118 call_internal_function (struct gdbarch *gdbarch,
2119 const struct language_defn *language,
2120 struct value *func, int argc, struct value **argv)
2121 {
2122 struct internal_function *ifn;
2123 int result;
2124
2125 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2126 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2127 gdb_assert (result);
2128
2129 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2130 }
2131
2132 /* The 'function' command. This does nothing -- it is just a
2133 placeholder to let "help function NAME" work. This is also used as
2134 the implementation of the sub-command that is created when
2135 registering an internal function. */
2136 static void
2137 function_command (char *command, int from_tty)
2138 {
2139 /* Do nothing. */
2140 }
2141
2142 /* Clean up if an internal function's command is destroyed. */
2143 static void
2144 function_destroyer (struct cmd_list_element *self, void *ignore)
2145 {
2146 xfree ((char *) self->name);
2147 xfree (self->doc);
2148 }
2149
2150 /* Add a new internal function. NAME is the name of the function; DOC
2151 is a documentation string describing the function. HANDLER is
2152 called when the function is invoked. COOKIE is an arbitrary
2153 pointer which is passed to HANDLER and is intended for "user
2154 data". */
2155 void
2156 add_internal_function (const char *name, const char *doc,
2157 internal_function_fn handler, void *cookie)
2158 {
2159 struct cmd_list_element *cmd;
2160 struct internal_function *ifn;
2161 struct internalvar *var = lookup_internalvar (name);
2162
2163 ifn = create_internal_function (name, handler, cookie);
2164 set_internalvar_function (var, ifn);
2165
2166 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2167 &functionlist);
2168 cmd->destroyer = function_destroyer;
2169 }
2170
2171 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2172 prevent cycles / duplicates. */
2173
2174 void
2175 preserve_one_value (struct value *value, struct objfile *objfile,
2176 htab_t copied_types)
2177 {
2178 if (TYPE_OBJFILE (value->type) == objfile)
2179 value->type = copy_type_recursive (objfile, value->type, copied_types);
2180
2181 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2182 value->enclosing_type = copy_type_recursive (objfile,
2183 value->enclosing_type,
2184 copied_types);
2185 }
2186
2187 /* Likewise for internal variable VAR. */
2188
2189 static void
2190 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2191 htab_t copied_types)
2192 {
2193 switch (var->kind)
2194 {
2195 case INTERNALVAR_INTEGER:
2196 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2197 var->u.integer.type
2198 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2199 break;
2200
2201 case INTERNALVAR_VALUE:
2202 preserve_one_value (var->u.value, objfile, copied_types);
2203 break;
2204 }
2205 }
2206
2207 /* Update the internal variables and value history when OBJFILE is
2208 discarded; we must copy the types out of the objfile. New global types
2209 will be created for every convenience variable which currently points to
2210 this objfile's types, and the convenience variables will be adjusted to
2211 use the new global types. */
2212
2213 void
2214 preserve_values (struct objfile *objfile)
2215 {
2216 htab_t copied_types;
2217 struct value_history_chunk *cur;
2218 struct internalvar *var;
2219 int i;
2220
2221 /* Create the hash table. We allocate on the objfile's obstack, since
2222 it is soon to be deleted. */
2223 copied_types = create_copied_types_hash (objfile);
2224
2225 for (cur = value_history_chain; cur; cur = cur->next)
2226 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2227 if (cur->values[i])
2228 preserve_one_value (cur->values[i], objfile, copied_types);
2229
2230 for (var = internalvars; var; var = var->next)
2231 preserve_one_internalvar (var, objfile, copied_types);
2232
2233 preserve_python_values (objfile, copied_types);
2234
2235 htab_delete (copied_types);
2236 }
2237
2238 static void
2239 show_convenience (char *ignore, int from_tty)
2240 {
2241 struct gdbarch *gdbarch = get_current_arch ();
2242 struct internalvar *var;
2243 int varseen = 0;
2244 struct value_print_options opts;
2245
2246 get_user_print_options (&opts);
2247 for (var = internalvars; var; var = var->next)
2248 {
2249 volatile struct gdb_exception ex;
2250
2251 if (!varseen)
2252 {
2253 varseen = 1;
2254 }
2255 printf_filtered (("$%s = "), var->name);
2256
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 struct value *val;
2260
2261 val = value_of_internalvar (gdbarch, var);
2262 value_print (val, gdb_stdout, &opts);
2263 }
2264 if (ex.reason < 0)
2265 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2266 printf_filtered (("\n"));
2267 }
2268 if (!varseen)
2269 {
2270 /* This text does not mention convenience functions on purpose.
2271 The user can't create them except via Python, and if Python support
2272 is installed this message will never be printed ($_streq will
2273 exist). */
2274 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2275 "Convenience variables have "
2276 "names starting with \"$\";\n"
2277 "use \"set\" as in \"set "
2278 "$foo = 5\" to define them.\n"));
2279 }
2280 }
2281 \f
2282 /* Extract a value as a C number (either long or double).
2283 Knows how to convert fixed values to double, or
2284 floating values to long.
2285 Does not deallocate the value. */
2286
2287 LONGEST
2288 value_as_long (struct value *val)
2289 {
2290 /* This coerces arrays and functions, which is necessary (e.g.
2291 in disassemble_command). It also dereferences references, which
2292 I suspect is the most logical thing to do. */
2293 val = coerce_array (val);
2294 return unpack_long (value_type (val), value_contents (val));
2295 }
2296
2297 DOUBLEST
2298 value_as_double (struct value *val)
2299 {
2300 DOUBLEST foo;
2301 int inv;
2302
2303 foo = unpack_double (value_type (val), value_contents (val), &inv);
2304 if (inv)
2305 error (_("Invalid floating value found in program."));
2306 return foo;
2307 }
2308
2309 /* Extract a value as a C pointer. Does not deallocate the value.
2310 Note that val's type may not actually be a pointer; value_as_long
2311 handles all the cases. */
2312 CORE_ADDR
2313 value_as_address (struct value *val)
2314 {
2315 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2316
2317 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2318 whether we want this to be true eventually. */
2319 #if 0
2320 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2321 non-address (e.g. argument to "signal", "info break", etc.), or
2322 for pointers to char, in which the low bits *are* significant. */
2323 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2324 #else
2325
2326 /* There are several targets (IA-64, PowerPC, and others) which
2327 don't represent pointers to functions as simply the address of
2328 the function's entry point. For example, on the IA-64, a
2329 function pointer points to a two-word descriptor, generated by
2330 the linker, which contains the function's entry point, and the
2331 value the IA-64 "global pointer" register should have --- to
2332 support position-independent code. The linker generates
2333 descriptors only for those functions whose addresses are taken.
2334
2335 On such targets, it's difficult for GDB to convert an arbitrary
2336 function address into a function pointer; it has to either find
2337 an existing descriptor for that function, or call malloc and
2338 build its own. On some targets, it is impossible for GDB to
2339 build a descriptor at all: the descriptor must contain a jump
2340 instruction; data memory cannot be executed; and code memory
2341 cannot be modified.
2342
2343 Upon entry to this function, if VAL is a value of type `function'
2344 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2345 value_address (val) is the address of the function. This is what
2346 you'll get if you evaluate an expression like `main'. The call
2347 to COERCE_ARRAY below actually does all the usual unary
2348 conversions, which includes converting values of type `function'
2349 to `pointer to function'. This is the challenging conversion
2350 discussed above. Then, `unpack_long' will convert that pointer
2351 back into an address.
2352
2353 So, suppose the user types `disassemble foo' on an architecture
2354 with a strange function pointer representation, on which GDB
2355 cannot build its own descriptors, and suppose further that `foo'
2356 has no linker-built descriptor. The address->pointer conversion
2357 will signal an error and prevent the command from running, even
2358 though the next step would have been to convert the pointer
2359 directly back into the same address.
2360
2361 The following shortcut avoids this whole mess. If VAL is a
2362 function, just return its address directly. */
2363 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2364 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2365 return value_address (val);
2366
2367 val = coerce_array (val);
2368
2369 /* Some architectures (e.g. Harvard), map instruction and data
2370 addresses onto a single large unified address space. For
2371 instance: An architecture may consider a large integer in the
2372 range 0x10000000 .. 0x1000ffff to already represent a data
2373 addresses (hence not need a pointer to address conversion) while
2374 a small integer would still need to be converted integer to
2375 pointer to address. Just assume such architectures handle all
2376 integer conversions in a single function. */
2377
2378 /* JimB writes:
2379
2380 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2381 must admonish GDB hackers to make sure its behavior matches the
2382 compiler's, whenever possible.
2383
2384 In general, I think GDB should evaluate expressions the same way
2385 the compiler does. When the user copies an expression out of
2386 their source code and hands it to a `print' command, they should
2387 get the same value the compiler would have computed. Any
2388 deviation from this rule can cause major confusion and annoyance,
2389 and needs to be justified carefully. In other words, GDB doesn't
2390 really have the freedom to do these conversions in clever and
2391 useful ways.
2392
2393 AndrewC pointed out that users aren't complaining about how GDB
2394 casts integers to pointers; they are complaining that they can't
2395 take an address from a disassembly listing and give it to `x/i'.
2396 This is certainly important.
2397
2398 Adding an architecture method like integer_to_address() certainly
2399 makes it possible for GDB to "get it right" in all circumstances
2400 --- the target has complete control over how things get done, so
2401 people can Do The Right Thing for their target without breaking
2402 anyone else. The standard doesn't specify how integers get
2403 converted to pointers; usually, the ABI doesn't either, but
2404 ABI-specific code is a more reasonable place to handle it. */
2405
2406 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2407 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2408 && gdbarch_integer_to_address_p (gdbarch))
2409 return gdbarch_integer_to_address (gdbarch, value_type (val),
2410 value_contents (val));
2411
2412 return unpack_long (value_type (val), value_contents (val));
2413 #endif
2414 }
2415 \f
2416 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2417 as a long, or as a double, assuming the raw data is described
2418 by type TYPE. Knows how to convert different sizes of values
2419 and can convert between fixed and floating point. We don't assume
2420 any alignment for the raw data. Return value is in host byte order.
2421
2422 If you want functions and arrays to be coerced to pointers, and
2423 references to be dereferenced, call value_as_long() instead.
2424
2425 C++: It is assumed that the front-end has taken care of
2426 all matters concerning pointers to members. A pointer
2427 to member which reaches here is considered to be equivalent
2428 to an INT (or some size). After all, it is only an offset. */
2429
2430 LONGEST
2431 unpack_long (struct type *type, const gdb_byte *valaddr)
2432 {
2433 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2434 enum type_code code = TYPE_CODE (type);
2435 int len = TYPE_LENGTH (type);
2436 int nosign = TYPE_UNSIGNED (type);
2437
2438 switch (code)
2439 {
2440 case TYPE_CODE_TYPEDEF:
2441 return unpack_long (check_typedef (type), valaddr);
2442 case TYPE_CODE_ENUM:
2443 case TYPE_CODE_FLAGS:
2444 case TYPE_CODE_BOOL:
2445 case TYPE_CODE_INT:
2446 case TYPE_CODE_CHAR:
2447 case TYPE_CODE_RANGE:
2448 case TYPE_CODE_MEMBERPTR:
2449 if (nosign)
2450 return extract_unsigned_integer (valaddr, len, byte_order);
2451 else
2452 return extract_signed_integer (valaddr, len, byte_order);
2453
2454 case TYPE_CODE_FLT:
2455 return extract_typed_floating (valaddr, type);
2456
2457 case TYPE_CODE_DECFLOAT:
2458 /* libdecnumber has a function to convert from decimal to integer, but
2459 it doesn't work when the decimal number has a fractional part. */
2460 return decimal_to_doublest (valaddr, len, byte_order);
2461
2462 case TYPE_CODE_PTR:
2463 case TYPE_CODE_REF:
2464 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2465 whether we want this to be true eventually. */
2466 return extract_typed_address (valaddr, type);
2467
2468 default:
2469 error (_("Value can't be converted to integer."));
2470 }
2471 return 0; /* Placate lint. */
2472 }
2473
2474 /* Return a double value from the specified type and address.
2475 INVP points to an int which is set to 0 for valid value,
2476 1 for invalid value (bad float format). In either case,
2477 the returned double is OK to use. Argument is in target
2478 format, result is in host format. */
2479
2480 DOUBLEST
2481 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2482 {
2483 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2484 enum type_code code;
2485 int len;
2486 int nosign;
2487
2488 *invp = 0; /* Assume valid. */
2489 CHECK_TYPEDEF (type);
2490 code = TYPE_CODE (type);
2491 len = TYPE_LENGTH (type);
2492 nosign = TYPE_UNSIGNED (type);
2493 if (code == TYPE_CODE_FLT)
2494 {
2495 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2496 floating-point value was valid (using the macro
2497 INVALID_FLOAT). That test/macro have been removed.
2498
2499 It turns out that only the VAX defined this macro and then
2500 only in a non-portable way. Fixing the portability problem
2501 wouldn't help since the VAX floating-point code is also badly
2502 bit-rotten. The target needs to add definitions for the
2503 methods gdbarch_float_format and gdbarch_double_format - these
2504 exactly describe the target floating-point format. The
2505 problem here is that the corresponding floatformat_vax_f and
2506 floatformat_vax_d values these methods should be set to are
2507 also not defined either. Oops!
2508
2509 Hopefully someone will add both the missing floatformat
2510 definitions and the new cases for floatformat_is_valid (). */
2511
2512 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2513 {
2514 *invp = 1;
2515 return 0.0;
2516 }
2517
2518 return extract_typed_floating (valaddr, type);
2519 }
2520 else if (code == TYPE_CODE_DECFLOAT)
2521 return decimal_to_doublest (valaddr, len, byte_order);
2522 else if (nosign)
2523 {
2524 /* Unsigned -- be sure we compensate for signed LONGEST. */
2525 return (ULONGEST) unpack_long (type, valaddr);
2526 }
2527 else
2528 {
2529 /* Signed -- we are OK with unpack_long. */
2530 return unpack_long (type, valaddr);
2531 }
2532 }
2533
2534 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2535 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2536 We don't assume any alignment for the raw data. Return value is in
2537 host byte order.
2538
2539 If you want functions and arrays to be coerced to pointers, and
2540 references to be dereferenced, call value_as_address() instead.
2541
2542 C++: It is assumed that the front-end has taken care of
2543 all matters concerning pointers to members. A pointer
2544 to member which reaches here is considered to be equivalent
2545 to an INT (or some size). After all, it is only an offset. */
2546
2547 CORE_ADDR
2548 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2549 {
2550 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2551 whether we want this to be true eventually. */
2552 return unpack_long (type, valaddr);
2553 }
2554
2555 \f
2556 /* Get the value of the FIELDNO'th field (which must be static) of
2557 TYPE. Return NULL if the field doesn't exist or has been
2558 optimized out. */
2559
2560 struct value *
2561 value_static_field (struct type *type, int fieldno)
2562 {
2563 struct value *retval;
2564
2565 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2566 {
2567 case FIELD_LOC_KIND_PHYSADDR:
2568 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2569 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2570 break;
2571 case FIELD_LOC_KIND_PHYSNAME:
2572 {
2573 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2574 /* TYPE_FIELD_NAME (type, fieldno); */
2575 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2576
2577 if (sym == NULL)
2578 {
2579 /* With some compilers, e.g. HP aCC, static data members are
2580 reported as non-debuggable symbols. */
2581 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2582 NULL, NULL);
2583
2584 if (!msym)
2585 return NULL;
2586 else
2587 {
2588 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2589 SYMBOL_VALUE_ADDRESS (msym));
2590 }
2591 }
2592 else
2593 retval = value_of_variable (sym, NULL);
2594 break;
2595 }
2596 default:
2597 gdb_assert_not_reached ("unexpected field location kind");
2598 }
2599
2600 return retval;
2601 }
2602
2603 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2604 You have to be careful here, since the size of the data area for the value
2605 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2606 than the old enclosing type, you have to allocate more space for the
2607 data. */
2608
2609 void
2610 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2611 {
2612 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2613 val->contents =
2614 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2615
2616 val->enclosing_type = new_encl_type;
2617 }
2618
2619 /* Given a value ARG1 (offset by OFFSET bytes)
2620 of a struct or union type ARG_TYPE,
2621 extract and return the value of one of its (non-static) fields.
2622 FIELDNO says which field. */
2623
2624 struct value *
2625 value_primitive_field (struct value *arg1, int offset,
2626 int fieldno, struct type *arg_type)
2627 {
2628 struct value *v;
2629 struct type *type;
2630
2631 CHECK_TYPEDEF (arg_type);
2632 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2633
2634 /* Call check_typedef on our type to make sure that, if TYPE
2635 is a TYPE_CODE_TYPEDEF, its length is set to the length
2636 of the target type instead of zero. However, we do not
2637 replace the typedef type by the target type, because we want
2638 to keep the typedef in order to be able to print the type
2639 description correctly. */
2640 check_typedef (type);
2641
2642 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2643 {
2644 /* Handle packed fields.
2645
2646 Create a new value for the bitfield, with bitpos and bitsize
2647 set. If possible, arrange offset and bitpos so that we can
2648 do a single aligned read of the size of the containing type.
2649 Otherwise, adjust offset to the byte containing the first
2650 bit. Assume that the address, offset, and embedded offset
2651 are sufficiently aligned. */
2652
2653 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2654 int container_bitsize = TYPE_LENGTH (type) * 8;
2655
2656 if (arg1->optimized_out)
2657 v = allocate_optimized_out_value (type);
2658 else
2659 {
2660 v = allocate_value_lazy (type);
2661 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2662 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2663 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2664 v->bitpos = bitpos % container_bitsize;
2665 else
2666 v->bitpos = bitpos % 8;
2667 v->offset = (value_embedded_offset (arg1)
2668 + offset
2669 + (bitpos - v->bitpos) / 8);
2670 set_value_parent (v, arg1);
2671 if (!value_lazy (arg1))
2672 value_fetch_lazy (v);
2673 }
2674 }
2675 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2676 {
2677 /* This field is actually a base subobject, so preserve the
2678 entire object's contents for later references to virtual
2679 bases, etc. */
2680 int boffset;
2681
2682 /* Lazy register values with offsets are not supported. */
2683 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2684 value_fetch_lazy (arg1);
2685
2686 /* The optimized_out flag is only set correctly once a lazy value is
2687 loaded, having just loaded some lazy values we should check the
2688 optimized out case now. */
2689 if (arg1->optimized_out)
2690 v = allocate_optimized_out_value (type);
2691 else
2692 {
2693 /* We special case virtual inheritance here because this
2694 requires access to the contents, which we would rather avoid
2695 for references to ordinary fields of unavailable values. */
2696 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2697 boffset = baseclass_offset (arg_type, fieldno,
2698 value_contents (arg1),
2699 value_embedded_offset (arg1),
2700 value_address (arg1),
2701 arg1);
2702 else
2703 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2704
2705 if (value_lazy (arg1))
2706 v = allocate_value_lazy (value_enclosing_type (arg1));
2707 else
2708 {
2709 v = allocate_value (value_enclosing_type (arg1));
2710 value_contents_copy_raw (v, 0, arg1, 0,
2711 TYPE_LENGTH (value_enclosing_type (arg1)));
2712 }
2713 v->type = type;
2714 v->offset = value_offset (arg1);
2715 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2716 }
2717 }
2718 else
2719 {
2720 /* Plain old data member */
2721 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2722
2723 /* Lazy register values with offsets are not supported. */
2724 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2725 value_fetch_lazy (arg1);
2726
2727 /* The optimized_out flag is only set correctly once a lazy value is
2728 loaded, having just loaded some lazy values we should check for
2729 the optimized out case now. */
2730 if (arg1->optimized_out)
2731 v = allocate_optimized_out_value (type);
2732 else if (value_lazy (arg1))
2733 v = allocate_value_lazy (type);
2734 else
2735 {
2736 v = allocate_value (type);
2737 value_contents_copy_raw (v, value_embedded_offset (v),
2738 arg1, value_embedded_offset (arg1) + offset,
2739 TYPE_LENGTH (type));
2740 }
2741 v->offset = (value_offset (arg1) + offset
2742 + value_embedded_offset (arg1));
2743 }
2744 set_value_component_location (v, arg1);
2745 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2746 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2747 return v;
2748 }
2749
2750 /* Given a value ARG1 of a struct or union type,
2751 extract and return the value of one of its (non-static) fields.
2752 FIELDNO says which field. */
2753
2754 struct value *
2755 value_field (struct value *arg1, int fieldno)
2756 {
2757 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2758 }
2759
2760 /* Return a non-virtual function as a value.
2761 F is the list of member functions which contains the desired method.
2762 J is an index into F which provides the desired method.
2763
2764 We only use the symbol for its address, so be happy with either a
2765 full symbol or a minimal symbol. */
2766
2767 struct value *
2768 value_fn_field (struct value **arg1p, struct fn_field *f,
2769 int j, struct type *type,
2770 int offset)
2771 {
2772 struct value *v;
2773 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2774 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2775 struct symbol *sym;
2776 struct bound_minimal_symbol msym;
2777
2778 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2779 if (sym != NULL)
2780 {
2781 memset (&msym, 0, sizeof (msym));
2782 }
2783 else
2784 {
2785 gdb_assert (sym == NULL);
2786 msym = lookup_bound_minimal_symbol (physname);
2787 if (msym.minsym == NULL)
2788 return NULL;
2789 }
2790
2791 v = allocate_value (ftype);
2792 if (sym)
2793 {
2794 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2795 }
2796 else
2797 {
2798 /* The minimal symbol might point to a function descriptor;
2799 resolve it to the actual code address instead. */
2800 struct objfile *objfile = msym.objfile;
2801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2802
2803 set_value_address (v,
2804 gdbarch_convert_from_func_ptr_addr
2805 (gdbarch, SYMBOL_VALUE_ADDRESS (msym.minsym), &current_target));
2806 }
2807
2808 if (arg1p)
2809 {
2810 if (type != value_type (*arg1p))
2811 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2812 value_addr (*arg1p)));
2813
2814 /* Move the `this' pointer according to the offset.
2815 VALUE_OFFSET (*arg1p) += offset; */
2816 }
2817
2818 return v;
2819 }
2820
2821 \f
2822
2823 /* Helper function for both unpack_value_bits_as_long and
2824 unpack_bits_as_long. See those functions for more details on the
2825 interface; the only difference is that this function accepts either
2826 a NULL or a non-NULL ORIGINAL_VALUE. */
2827
2828 static int
2829 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2830 int embedded_offset, int bitpos, int bitsize,
2831 const struct value *original_value,
2832 LONGEST *result)
2833 {
2834 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2835 ULONGEST val;
2836 ULONGEST valmask;
2837 int lsbcount;
2838 int bytes_read;
2839 int read_offset;
2840
2841 /* Read the minimum number of bytes required; there may not be
2842 enough bytes to read an entire ULONGEST. */
2843 CHECK_TYPEDEF (field_type);
2844 if (bitsize)
2845 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2846 else
2847 bytes_read = TYPE_LENGTH (field_type);
2848
2849 read_offset = bitpos / 8;
2850
2851 if (original_value != NULL
2852 && !value_bytes_available (original_value, embedded_offset + read_offset,
2853 bytes_read))
2854 return 0;
2855
2856 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2857 bytes_read, byte_order);
2858
2859 /* Extract bits. See comment above. */
2860
2861 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2862 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2863 else
2864 lsbcount = (bitpos % 8);
2865 val >>= lsbcount;
2866
2867 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2868 If the field is signed, and is negative, then sign extend. */
2869
2870 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2871 {
2872 valmask = (((ULONGEST) 1) << bitsize) - 1;
2873 val &= valmask;
2874 if (!TYPE_UNSIGNED (field_type))
2875 {
2876 if (val & (valmask ^ (valmask >> 1)))
2877 {
2878 val |= ~valmask;
2879 }
2880 }
2881 }
2882
2883 *result = val;
2884 return 1;
2885 }
2886
2887 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2888 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2889 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2890 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2891 bits.
2892
2893 Returns false if the value contents are unavailable, otherwise
2894 returns true, indicating a valid value has been stored in *RESULT.
2895
2896 Extracting bits depends on endianness of the machine. Compute the
2897 number of least significant bits to discard. For big endian machines,
2898 we compute the total number of bits in the anonymous object, subtract
2899 off the bit count from the MSB of the object to the MSB of the
2900 bitfield, then the size of the bitfield, which leaves the LSB discard
2901 count. For little endian machines, the discard count is simply the
2902 number of bits from the LSB of the anonymous object to the LSB of the
2903 bitfield.
2904
2905 If the field is signed, we also do sign extension. */
2906
2907 int
2908 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2909 int embedded_offset, int bitpos, int bitsize,
2910 const struct value *original_value,
2911 LONGEST *result)
2912 {
2913 gdb_assert (original_value != NULL);
2914
2915 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2916 bitpos, bitsize, original_value, result);
2917
2918 }
2919
2920 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2921 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2922 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2923 details. */
2924
2925 static int
2926 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2927 int embedded_offset, int fieldno,
2928 const struct value *val, LONGEST *result)
2929 {
2930 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2931 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2932 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2933
2934 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2935 bitpos, bitsize, val,
2936 result);
2937 }
2938
2939 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2940 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2941 ORIGINAL_VALUE, which must not be NULL. See
2942 unpack_value_bits_as_long for more details. */
2943
2944 int
2945 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2946 int embedded_offset, int fieldno,
2947 const struct value *val, LONGEST *result)
2948 {
2949 gdb_assert (val != NULL);
2950
2951 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2952 fieldno, val, result);
2953 }
2954
2955 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2956 object at VALADDR. See unpack_value_bits_as_long for more details.
2957 This function differs from unpack_value_field_as_long in that it
2958 operates without a struct value object. */
2959
2960 LONGEST
2961 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2962 {
2963 LONGEST result;
2964
2965 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2966 return result;
2967 }
2968
2969 /* Return a new value with type TYPE, which is FIELDNO field of the
2970 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2971 of VAL. If the VAL's contents required to extract the bitfield
2972 from are unavailable, the new value is correspondingly marked as
2973 unavailable. */
2974
2975 struct value *
2976 value_field_bitfield (struct type *type, int fieldno,
2977 const gdb_byte *valaddr,
2978 int embedded_offset, const struct value *val)
2979 {
2980 LONGEST l;
2981
2982 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2983 val, &l))
2984 {
2985 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2986 struct value *retval = allocate_value (field_type);
2987 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2988 return retval;
2989 }
2990 else
2991 {
2992 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2993 }
2994 }
2995
2996 /* Modify the value of a bitfield. ADDR points to a block of memory in
2997 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2998 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2999 indicate which bits (in target bit order) comprise the bitfield.
3000 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3001 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3002
3003 void
3004 modify_field (struct type *type, gdb_byte *addr,
3005 LONGEST fieldval, int bitpos, int bitsize)
3006 {
3007 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3008 ULONGEST oword;
3009 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3010 int bytesize;
3011
3012 /* Normalize BITPOS. */
3013 addr += bitpos / 8;
3014 bitpos %= 8;
3015
3016 /* If a negative fieldval fits in the field in question, chop
3017 off the sign extension bits. */
3018 if ((~fieldval & ~(mask >> 1)) == 0)
3019 fieldval &= mask;
3020
3021 /* Warn if value is too big to fit in the field in question. */
3022 if (0 != (fieldval & ~mask))
3023 {
3024 /* FIXME: would like to include fieldval in the message, but
3025 we don't have a sprintf_longest. */
3026 warning (_("Value does not fit in %d bits."), bitsize);
3027
3028 /* Truncate it, otherwise adjoining fields may be corrupted. */
3029 fieldval &= mask;
3030 }
3031
3032 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3033 false valgrind reports. */
3034
3035 bytesize = (bitpos + bitsize + 7) / 8;
3036 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3037
3038 /* Shifting for bit field depends on endianness of the target machine. */
3039 if (gdbarch_bits_big_endian (get_type_arch (type)))
3040 bitpos = bytesize * 8 - bitpos - bitsize;
3041
3042 oword &= ~(mask << bitpos);
3043 oword |= fieldval << bitpos;
3044
3045 store_unsigned_integer (addr, bytesize, byte_order, oword);
3046 }
3047 \f
3048 /* Pack NUM into BUF using a target format of TYPE. */
3049
3050 void
3051 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3052 {
3053 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3054 int len;
3055
3056 type = check_typedef (type);
3057 len = TYPE_LENGTH (type);
3058
3059 switch (TYPE_CODE (type))
3060 {
3061 case TYPE_CODE_INT:
3062 case TYPE_CODE_CHAR:
3063 case TYPE_CODE_ENUM:
3064 case TYPE_CODE_FLAGS:
3065 case TYPE_CODE_BOOL:
3066 case TYPE_CODE_RANGE:
3067 case TYPE_CODE_MEMBERPTR:
3068 store_signed_integer (buf, len, byte_order, num);
3069 break;
3070
3071 case TYPE_CODE_REF:
3072 case TYPE_CODE_PTR:
3073 store_typed_address (buf, type, (CORE_ADDR) num);
3074 break;
3075
3076 default:
3077 error (_("Unexpected type (%d) encountered for integer constant."),
3078 TYPE_CODE (type));
3079 }
3080 }
3081
3082
3083 /* Pack NUM into BUF using a target format of TYPE. */
3084
3085 static void
3086 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3087 {
3088 int len;
3089 enum bfd_endian byte_order;
3090
3091 type = check_typedef (type);
3092 len = TYPE_LENGTH (type);
3093 byte_order = gdbarch_byte_order (get_type_arch (type));
3094
3095 switch (TYPE_CODE (type))
3096 {
3097 case TYPE_CODE_INT:
3098 case TYPE_CODE_CHAR:
3099 case TYPE_CODE_ENUM:
3100 case TYPE_CODE_FLAGS:
3101 case TYPE_CODE_BOOL:
3102 case TYPE_CODE_RANGE:
3103 case TYPE_CODE_MEMBERPTR:
3104 store_unsigned_integer (buf, len, byte_order, num);
3105 break;
3106
3107 case TYPE_CODE_REF:
3108 case TYPE_CODE_PTR:
3109 store_typed_address (buf, type, (CORE_ADDR) num);
3110 break;
3111
3112 default:
3113 error (_("Unexpected type (%d) encountered "
3114 "for unsigned integer constant."),
3115 TYPE_CODE (type));
3116 }
3117 }
3118
3119
3120 /* Convert C numbers into newly allocated values. */
3121
3122 struct value *
3123 value_from_longest (struct type *type, LONGEST num)
3124 {
3125 struct value *val = allocate_value (type);
3126
3127 pack_long (value_contents_raw (val), type, num);
3128 return val;
3129 }
3130
3131
3132 /* Convert C unsigned numbers into newly allocated values. */
3133
3134 struct value *
3135 value_from_ulongest (struct type *type, ULONGEST num)
3136 {
3137 struct value *val = allocate_value (type);
3138
3139 pack_unsigned_long (value_contents_raw (val), type, num);
3140
3141 return val;
3142 }
3143
3144
3145 /* Create a value representing a pointer of type TYPE to the address
3146 ADDR. */
3147 struct value *
3148 value_from_pointer (struct type *type, CORE_ADDR addr)
3149 {
3150 struct value *val = allocate_value (type);
3151
3152 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3153 return val;
3154 }
3155
3156
3157 /* Create a value of type TYPE whose contents come from VALADDR, if it
3158 is non-null, and whose memory address (in the inferior) is
3159 ADDRESS. */
3160
3161 struct value *
3162 value_from_contents_and_address (struct type *type,
3163 const gdb_byte *valaddr,
3164 CORE_ADDR address)
3165 {
3166 struct value *v;
3167
3168 if (valaddr == NULL)
3169 v = allocate_value_lazy (type);
3170 else
3171 {
3172 v = allocate_value (type);
3173 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3174 }
3175 set_value_address (v, address);
3176 VALUE_LVAL (v) = lval_memory;
3177 return v;
3178 }
3179
3180 /* Create a value of type TYPE holding the contents CONTENTS.
3181 The new value is `not_lval'. */
3182
3183 struct value *
3184 value_from_contents (struct type *type, const gdb_byte *contents)
3185 {
3186 struct value *result;
3187
3188 result = allocate_value (type);
3189 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3190 return result;
3191 }
3192
3193 struct value *
3194 value_from_double (struct type *type, DOUBLEST num)
3195 {
3196 struct value *val = allocate_value (type);
3197 struct type *base_type = check_typedef (type);
3198 enum type_code code = TYPE_CODE (base_type);
3199
3200 if (code == TYPE_CODE_FLT)
3201 {
3202 store_typed_floating (value_contents_raw (val), base_type, num);
3203 }
3204 else
3205 error (_("Unexpected type encountered for floating constant."));
3206
3207 return val;
3208 }
3209
3210 struct value *
3211 value_from_decfloat (struct type *type, const gdb_byte *dec)
3212 {
3213 struct value *val = allocate_value (type);
3214
3215 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3216 return val;
3217 }
3218
3219 /* Extract a value from the history file. Input will be of the form
3220 $digits or $$digits. See block comment above 'write_dollar_variable'
3221 for details. */
3222
3223 struct value *
3224 value_from_history_ref (char *h, char **endp)
3225 {
3226 int index, len;
3227
3228 if (h[0] == '$')
3229 len = 1;
3230 else
3231 return NULL;
3232
3233 if (h[1] == '$')
3234 len = 2;
3235
3236 /* Find length of numeral string. */
3237 for (; isdigit (h[len]); len++)
3238 ;
3239
3240 /* Make sure numeral string is not part of an identifier. */
3241 if (h[len] == '_' || isalpha (h[len]))
3242 return NULL;
3243
3244 /* Now collect the index value. */
3245 if (h[1] == '$')
3246 {
3247 if (len == 2)
3248 {
3249 /* For some bizarre reason, "$$" is equivalent to "$$1",
3250 rather than to "$$0" as it ought to be! */
3251 index = -1;
3252 *endp += len;
3253 }
3254 else
3255 index = -strtol (&h[2], endp, 10);
3256 }
3257 else
3258 {
3259 if (len == 1)
3260 {
3261 /* "$" is equivalent to "$0". */
3262 index = 0;
3263 *endp += len;
3264 }
3265 else
3266 index = strtol (&h[1], endp, 10);
3267 }
3268
3269 return access_value_history (index);
3270 }
3271
3272 struct value *
3273 coerce_ref_if_computed (const struct value *arg)
3274 {
3275 const struct lval_funcs *funcs;
3276
3277 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3278 return NULL;
3279
3280 if (value_lval_const (arg) != lval_computed)
3281 return NULL;
3282
3283 funcs = value_computed_funcs (arg);
3284 if (funcs->coerce_ref == NULL)
3285 return NULL;
3286
3287 return funcs->coerce_ref (arg);
3288 }
3289
3290 /* Look at value.h for description. */
3291
3292 struct value *
3293 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3294 struct type *original_type,
3295 struct value *original_value)
3296 {
3297 /* Re-adjust type. */
3298 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3299
3300 /* Add embedding info. */
3301 set_value_enclosing_type (value, enc_type);
3302 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3303
3304 /* We may be pointing to an object of some derived type. */
3305 return value_full_object (value, NULL, 0, 0, 0);
3306 }
3307
3308 struct value *
3309 coerce_ref (struct value *arg)
3310 {
3311 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3312 struct value *retval;
3313 struct type *enc_type;
3314
3315 retval = coerce_ref_if_computed (arg);
3316 if (retval)
3317 return retval;
3318
3319 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3320 return arg;
3321
3322 enc_type = check_typedef (value_enclosing_type (arg));
3323 enc_type = TYPE_TARGET_TYPE (enc_type);
3324
3325 retval = value_at_lazy (enc_type,
3326 unpack_pointer (value_type (arg),
3327 value_contents (arg)));
3328 return readjust_indirect_value_type (retval, enc_type,
3329 value_type_arg_tmp, arg);
3330 }
3331
3332 struct value *
3333 coerce_array (struct value *arg)
3334 {
3335 struct type *type;
3336
3337 arg = coerce_ref (arg);
3338 type = check_typedef (value_type (arg));
3339
3340 switch (TYPE_CODE (type))
3341 {
3342 case TYPE_CODE_ARRAY:
3343 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3344 arg = value_coerce_array (arg);
3345 break;
3346 case TYPE_CODE_FUNC:
3347 arg = value_coerce_function (arg);
3348 break;
3349 }
3350 return arg;
3351 }
3352 \f
3353
3354 /* Return the return value convention that will be used for the
3355 specified type. */
3356
3357 enum return_value_convention
3358 struct_return_convention (struct gdbarch *gdbarch,
3359 struct value *function, struct type *value_type)
3360 {
3361 enum type_code code = TYPE_CODE (value_type);
3362
3363 if (code == TYPE_CODE_ERROR)
3364 error (_("Function return type unknown."));
3365
3366 /* Probe the architecture for the return-value convention. */
3367 return gdbarch_return_value (gdbarch, function, value_type,
3368 NULL, NULL, NULL);
3369 }
3370
3371 /* Return true if the function returning the specified type is using
3372 the convention of returning structures in memory (passing in the
3373 address as a hidden first parameter). */
3374
3375 int
3376 using_struct_return (struct gdbarch *gdbarch,
3377 struct value *function, struct type *value_type)
3378 {
3379 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3380 /* A void return value is never in memory. See also corresponding
3381 code in "print_return_value". */
3382 return 0;
3383
3384 return (struct_return_convention (gdbarch, function, value_type)
3385 != RETURN_VALUE_REGISTER_CONVENTION);
3386 }
3387
3388 /* Set the initialized field in a value struct. */
3389
3390 void
3391 set_value_initialized (struct value *val, int status)
3392 {
3393 val->initialized = status;
3394 }
3395
3396 /* Return the initialized field in a value struct. */
3397
3398 int
3399 value_initialized (struct value *val)
3400 {
3401 return val->initialized;
3402 }
3403
3404 /* Called only from the value_contents and value_contents_all()
3405 macros, if the current data for a variable needs to be loaded into
3406 value_contents(VAL). Fetches the data from the user's process, and
3407 clears the lazy flag to indicate that the data in the buffer is
3408 valid.
3409
3410 If the value is zero-length, we avoid calling read_memory, which
3411 would abort. We mark the value as fetched anyway -- all 0 bytes of
3412 it.
3413
3414 This function returns a value because it is used in the
3415 value_contents macro as part of an expression, where a void would
3416 not work. The value is ignored. */
3417
3418 int
3419 value_fetch_lazy (struct value *val)
3420 {
3421 gdb_assert (value_lazy (val));
3422 allocate_value_contents (val);
3423 if (value_bitsize (val))
3424 {
3425 /* To read a lazy bitfield, read the entire enclosing value. This
3426 prevents reading the same block of (possibly volatile) memory once
3427 per bitfield. It would be even better to read only the containing
3428 word, but we have no way to record that just specific bits of a
3429 value have been fetched. */
3430 struct type *type = check_typedef (value_type (val));
3431 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3432 struct value *parent = value_parent (val);
3433 LONGEST offset = value_offset (val);
3434 LONGEST num;
3435
3436 if (value_lazy (parent))
3437 value_fetch_lazy (parent);
3438
3439 if (!value_bits_valid (parent,
3440 TARGET_CHAR_BIT * offset + value_bitpos (val),
3441 value_bitsize (val)))
3442 set_value_optimized_out (val, 1);
3443 else if (!unpack_value_bits_as_long (value_type (val),
3444 value_contents_for_printing (parent),
3445 offset,
3446 value_bitpos (val),
3447 value_bitsize (val), parent, &num))
3448 mark_value_bytes_unavailable (val,
3449 value_embedded_offset (val),
3450 TYPE_LENGTH (type));
3451 else
3452 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3453 byte_order, num);
3454 }
3455 else if (VALUE_LVAL (val) == lval_memory)
3456 {
3457 CORE_ADDR addr = value_address (val);
3458 struct type *type = check_typedef (value_enclosing_type (val));
3459
3460 if (TYPE_LENGTH (type))
3461 read_value_memory (val, 0, value_stack (val),
3462 addr, value_contents_all_raw (val),
3463 TYPE_LENGTH (type));
3464 }
3465 else if (VALUE_LVAL (val) == lval_register)
3466 {
3467 struct frame_info *frame;
3468 int regnum;
3469 struct type *type = check_typedef (value_type (val));
3470 struct value *new_val = val, *mark = value_mark ();
3471
3472 /* Offsets are not supported here; lazy register values must
3473 refer to the entire register. */
3474 gdb_assert (value_offset (val) == 0);
3475
3476 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3477 {
3478 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3479 regnum = VALUE_REGNUM (new_val);
3480
3481 gdb_assert (frame != NULL);
3482
3483 /* Convertible register routines are used for multi-register
3484 values and for interpretation in different types
3485 (e.g. float or int from a double register). Lazy
3486 register values should have the register's natural type,
3487 so they do not apply. */
3488 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3489 regnum, type));
3490
3491 new_val = get_frame_register_value (frame, regnum);
3492 }
3493
3494 /* If it's still lazy (for instance, a saved register on the
3495 stack), fetch it. */
3496 if (value_lazy (new_val))
3497 value_fetch_lazy (new_val);
3498
3499 /* If the register was not saved, mark it optimized out. */
3500 if (value_optimized_out (new_val))
3501 set_value_optimized_out (val, 1);
3502 else
3503 {
3504 set_value_lazy (val, 0);
3505 value_contents_copy (val, value_embedded_offset (val),
3506 new_val, value_embedded_offset (new_val),
3507 TYPE_LENGTH (type));
3508 }
3509
3510 if (frame_debug)
3511 {
3512 struct gdbarch *gdbarch;
3513 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3514 regnum = VALUE_REGNUM (val);
3515 gdbarch = get_frame_arch (frame);
3516
3517 fprintf_unfiltered (gdb_stdlog,
3518 "{ value_fetch_lazy "
3519 "(frame=%d,regnum=%d(%s),...) ",
3520 frame_relative_level (frame), regnum,
3521 user_reg_map_regnum_to_name (gdbarch, regnum));
3522
3523 fprintf_unfiltered (gdb_stdlog, "->");
3524 if (value_optimized_out (new_val))
3525 fprintf_unfiltered (gdb_stdlog, " optimized out");
3526 else
3527 {
3528 int i;
3529 const gdb_byte *buf = value_contents (new_val);
3530
3531 if (VALUE_LVAL (new_val) == lval_register)
3532 fprintf_unfiltered (gdb_stdlog, " register=%d",
3533 VALUE_REGNUM (new_val));
3534 else if (VALUE_LVAL (new_val) == lval_memory)
3535 fprintf_unfiltered (gdb_stdlog, " address=%s",
3536 paddress (gdbarch,
3537 value_address (new_val)));
3538 else
3539 fprintf_unfiltered (gdb_stdlog, " computed");
3540
3541 fprintf_unfiltered (gdb_stdlog, " bytes=");
3542 fprintf_unfiltered (gdb_stdlog, "[");
3543 for (i = 0; i < register_size (gdbarch, regnum); i++)
3544 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3545 fprintf_unfiltered (gdb_stdlog, "]");
3546 }
3547
3548 fprintf_unfiltered (gdb_stdlog, " }\n");
3549 }
3550
3551 /* Dispose of the intermediate values. This prevents
3552 watchpoints from trying to watch the saved frame pointer. */
3553 value_free_to_mark (mark);
3554 }
3555 else if (VALUE_LVAL (val) == lval_computed
3556 && value_computed_funcs (val)->read != NULL)
3557 value_computed_funcs (val)->read (val);
3558 /* Don't call value_optimized_out on val, doing so would result in a
3559 recursive call back to value_fetch_lazy, instead check the
3560 optimized_out flag directly. */
3561 else if (val->optimized_out)
3562 /* Keep it optimized out. */;
3563 else
3564 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3565
3566 set_value_lazy (val, 0);
3567 return 0;
3568 }
3569
3570 void
3571 _initialize_values (void)
3572 {
3573 add_cmd ("convenience", no_class, show_convenience, _("\
3574 Debugger convenience (\"$foo\") variables and functions.\n\
3575 Convenience variables are created when you assign them values;\n\
3576 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3577 \n\
3578 A few convenience variables are given values automatically:\n\
3579 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3580 \"$__\" holds the contents of the last address examined with \"x\"."
3581 #ifdef HAVE_PYTHON
3582 "\n\n\
3583 Convenience functions are defined via the Python API."
3584 #endif
3585 ), &showlist);
3586 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3587
3588 add_cmd ("values", no_set_class, show_values, _("\
3589 Elements of value history around item number IDX (or last ten)."),
3590 &showlist);
3591
3592 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3593 Initialize a convenience variable if necessary.\n\
3594 init-if-undefined VARIABLE = EXPRESSION\n\
3595 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3596 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3597 VARIABLE is already initialized."));
3598
3599 add_prefix_cmd ("function", no_class, function_command, _("\
3600 Placeholder command for showing help on convenience functions."),
3601 &functionlist, "function ", 0, &cmdlist);
3602 }
This page took 0.105088 seconds and 4 git commands to generate.