Revert the entire VLA series.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "extension.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
215
216 /* If the value has been released. */
217 unsigned int released : 1;
218
219 /* Register number if the value is from a register. */
220 short regnum;
221
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
232
233 /* If lval == lval_computed, this is a set of function pointers
234 to use to access and describe the value, and a closure pointer
235 for them to use. */
236 struct
237 {
238 /* Functions to call. */
239 const struct lval_funcs *funcs;
240
241 /* Closure for those functions to use. */
242 void *closure;
243 } computed;
244 } location;
245
246 /* Describes offset of a value within lval of a structure in bytes.
247 If lval == lval_memory, this is an offset to the address. If
248 lval == lval_register, this is a further offset from
249 location.address within the registers structure. Note also the
250 member embedded_offset below. */
251 int offset;
252
253 /* Only used for bitfields; number of bits contained in them. */
254 int bitsize;
255
256 /* Only used for bitfields; position of start of field. For
257 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
258 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
259 int bitpos;
260
261 /* The number of references to this value. When a value is created,
262 the value chain holds a reference, so REFERENCE_COUNT is 1. If
263 release_value is called, this value is removed from the chain but
264 the caller of release_value now has a reference to this value.
265 The caller must arrange for a call to value_free later. */
266 int reference_count;
267
268 /* Only used for bitfields; the containing value. This allows a
269 single read from the target when displaying multiple
270 bitfields. */
271 struct value *parent;
272
273 /* Frame register value is relative to. This will be described in
274 the lval enum above as "lval_register". */
275 struct frame_id frame_id;
276
277 /* Type of the value. */
278 struct type *type;
279
280 /* If a value represents a C++ object, then the `type' field gives
281 the object's compile-time type. If the object actually belongs
282 to some class derived from `type', perhaps with other base
283 classes and additional members, then `type' is just a subobject
284 of the real thing, and the full object is probably larger than
285 `type' would suggest.
286
287 If `type' is a dynamic class (i.e. one with a vtable), then GDB
288 can actually determine the object's run-time type by looking at
289 the run-time type information in the vtable. When this
290 information is available, we may elect to read in the entire
291 object, for several reasons:
292
293 - When printing the value, the user would probably rather see the
294 full object, not just the limited portion apparent from the
295 compile-time type.
296
297 - If `type' has virtual base classes, then even printing `type'
298 alone may require reaching outside the `type' portion of the
299 object to wherever the virtual base class has been stored.
300
301 When we store the entire object, `enclosing_type' is the run-time
302 type -- the complete object -- and `embedded_offset' is the
303 offset of `type' within that larger type, in bytes. The
304 value_contents() macro takes `embedded_offset' into account, so
305 most GDB code continues to see the `type' portion of the value,
306 just as the inferior would.
307
308 If `type' is a pointer to an object, then `enclosing_type' is a
309 pointer to the object's run-time type, and `pointed_to_offset' is
310 the offset in bytes from the full object to the pointed-to object
311 -- that is, the value `embedded_offset' would have if we followed
312 the pointer and fetched the complete object. (I don't really see
313 the point. Why not just determine the run-time type when you
314 indirect, and avoid the special case? The contents don't matter
315 until you indirect anyway.)
316
317 If we're not doing anything fancy, `enclosing_type' is equal to
318 `type', and `embedded_offset' is zero, so everything works
319 normally. */
320 struct type *enclosing_type;
321 int embedded_offset;
322 int pointed_to_offset;
323
324 /* Values are stored in a chain, so that they can be deleted easily
325 over calls to the inferior. Values assigned to internal
326 variables, put into the value history or exposed to Python are
327 taken off this list. */
328 struct value *next;
329
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
332 gdb_byte *contents;
333
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. The
337 unavailable ranges are tracked in bits. */
338 VEC(range_s) *unavailable;
339 };
340
341 int
342 value_bits_available (const struct value *value, int offset, int length)
343 {
344 gdb_assert (!value->lazy);
345
346 return !ranges_contain (value->unavailable, offset, length);
347 }
348
349 int
350 value_bytes_available (const struct value *value, int offset, int length)
351 {
352 return value_bits_available (value,
353 offset * TARGET_CHAR_BIT,
354 length * TARGET_CHAR_BIT);
355 }
356
357 int
358 value_entirely_available (struct value *value)
359 {
360 /* We can only tell whether the whole value is available when we try
361 to read it. */
362 if (value->lazy)
363 value_fetch_lazy (value);
364
365 if (VEC_empty (range_s, value->unavailable))
366 return 1;
367 return 0;
368 }
369
370 int
371 value_entirely_unavailable (struct value *value)
372 {
373 /* We can only tell whether the whole value is available when we try
374 to read it. */
375 if (value->lazy)
376 value_fetch_lazy (value);
377
378 if (VEC_length (range_s, value->unavailable) == 1)
379 {
380 struct range *t = VEC_index (range_s, value->unavailable, 0);
381
382 if (t->offset == 0
383 && t->length == (TARGET_CHAR_BIT
384 * TYPE_LENGTH (value_enclosing_type (value))))
385 return 1;
386 }
387
388 return 0;
389 }
390
391 void
392 mark_value_bits_unavailable (struct value *value, int offset, int length)
393 {
394 range_s newr;
395 int i;
396
397 /* Insert the range sorted. If there's overlap or the new range
398 would be contiguous with an existing range, merge. */
399
400 newr.offset = offset;
401 newr.length = length;
402
403 /* Do a binary search for the position the given range would be
404 inserted if we only considered the starting OFFSET of ranges.
405 Call that position I. Since we also have LENGTH to care for
406 (this is a range afterall), we need to check if the _previous_
407 range overlaps the I range. E.g., calling R the new range:
408
409 #1 - overlaps with previous
410
411 R
412 |-...-|
413 |---| |---| |------| ... |--|
414 0 1 2 N
415
416 I=1
417
418 In the case #1 above, the binary search would return `I=1',
419 meaning, this OFFSET should be inserted at position 1, and the
420 current position 1 should be pushed further (and become 2). But,
421 note that `0' overlaps with R, so we want to merge them.
422
423 A similar consideration needs to be taken if the new range would
424 be contiguous with the previous range:
425
426 #2 - contiguous with previous
427
428 R
429 |-...-|
430 |--| |---| |------| ... |--|
431 0 1 2 N
432
433 I=1
434
435 If there's no overlap with the previous range, as in:
436
437 #3 - not overlapping and not contiguous
438
439 R
440 |-...-|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 or if I is 0:
447
448 #4 - R is the range with lowest offset
449
450 R
451 |-...-|
452 |--| |---| |------| ... |--|
453 0 1 2 N
454
455 I=0
456
457 ... we just push the new range to I.
458
459 All the 4 cases above need to consider that the new range may
460 also overlap several of the ranges that follow, or that R may be
461 contiguous with the following range, and merge. E.g.,
462
463 #5 - overlapping following ranges
464
465 R
466 |------------------------|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=0
471
472 or:
473
474 R
475 |-------|
476 |--| |---| |------| ... |--|
477 0 1 2 N
478
479 I=1
480
481 */
482
483 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
484 if (i > 0)
485 {
486 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
487
488 if (ranges_overlap (bef->offset, bef->length, offset, length))
489 {
490 /* #1 */
491 ULONGEST l = min (bef->offset, offset);
492 ULONGEST h = max (bef->offset + bef->length, offset + length);
493
494 bef->offset = l;
495 bef->length = h - l;
496 i--;
497 }
498 else if (offset == bef->offset + bef->length)
499 {
500 /* #2 */
501 bef->length += length;
502 i--;
503 }
504 else
505 {
506 /* #3 */
507 VEC_safe_insert (range_s, value->unavailable, i, &newr);
508 }
509 }
510 else
511 {
512 /* #4 */
513 VEC_safe_insert (range_s, value->unavailable, i, &newr);
514 }
515
516 /* Check whether the ranges following the one we've just added or
517 touched can be folded in (#5 above). */
518 if (i + 1 < VEC_length (range_s, value->unavailable))
519 {
520 struct range *t;
521 struct range *r;
522 int removed = 0;
523 int next = i + 1;
524
525 /* Get the range we just touched. */
526 t = VEC_index (range_s, value->unavailable, i);
527 removed = 0;
528
529 i = next;
530 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
531 if (r->offset <= t->offset + t->length)
532 {
533 ULONGEST l, h;
534
535 l = min (t->offset, r->offset);
536 h = max (t->offset + t->length, r->offset + r->length);
537
538 t->offset = l;
539 t->length = h - l;
540
541 removed++;
542 }
543 else
544 {
545 /* If we couldn't merge this one, we won't be able to
546 merge following ones either, since the ranges are
547 always sorted by OFFSET. */
548 break;
549 }
550
551 if (removed != 0)
552 VEC_block_remove (range_s, value->unavailable, next, removed);
553 }
554 }
555
556 void
557 mark_value_bytes_unavailable (struct value *value, int offset, int length)
558 {
559 mark_value_bits_unavailable (value,
560 offset * TARGET_CHAR_BIT,
561 length * TARGET_CHAR_BIT);
562 }
563
564 /* Find the first range in RANGES that overlaps the range defined by
565 OFFSET and LENGTH, starting at element POS in the RANGES vector,
566 Returns the index into RANGES where such overlapping range was
567 found, or -1 if none was found. */
568
569 static int
570 find_first_range_overlap (VEC(range_s) *ranges, int pos,
571 int offset, int length)
572 {
573 range_s *r;
574 int i;
575
576 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
577 if (ranges_overlap (r->offset, r->length, offset, length))
578 return i;
579
580 return -1;
581 }
582
583 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
584 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
585 return non-zero.
586
587 It must always be the case that:
588 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
589
590 It is assumed that memory can be accessed from:
591 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
592 to:
593 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
594 / TARGET_CHAR_BIT) */
595 static int
596 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
597 const gdb_byte *ptr2, size_t offset2_bits,
598 size_t length_bits)
599 {
600 gdb_assert (offset1_bits % TARGET_CHAR_BIT
601 == offset2_bits % TARGET_CHAR_BIT);
602
603 if (offset1_bits % TARGET_CHAR_BIT != 0)
604 {
605 size_t bits;
606 gdb_byte mask, b1, b2;
607
608 /* The offset from the base pointers PTR1 and PTR2 is not a complete
609 number of bytes. A number of bits up to either the next exact
610 byte boundary, or LENGTH_BITS (which ever is sooner) will be
611 compared. */
612 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
613 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
614 mask = (1 << bits) - 1;
615
616 if (length_bits < bits)
617 {
618 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
619 bits = length_bits;
620 }
621
622 /* Now load the two bytes and mask off the bits we care about. */
623 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
624 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
625
626 if (b1 != b2)
627 return 1;
628
629 /* Now update the length and offsets to take account of the bits
630 we've just compared. */
631 length_bits -= bits;
632 offset1_bits += bits;
633 offset2_bits += bits;
634 }
635
636 if (length_bits % TARGET_CHAR_BIT != 0)
637 {
638 size_t bits;
639 size_t o1, o2;
640 gdb_byte mask, b1, b2;
641
642 /* The length is not an exact number of bytes. After the previous
643 IF.. block then the offsets are byte aligned, or the
644 length is zero (in which case this code is not reached). Compare
645 a number of bits at the end of the region, starting from an exact
646 byte boundary. */
647 bits = length_bits % TARGET_CHAR_BIT;
648 o1 = offset1_bits + length_bits - bits;
649 o2 = offset2_bits + length_bits - bits;
650
651 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
652 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
653
654 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
655 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
656
657 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
658 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
659
660 if (b1 != b2)
661 return 1;
662
663 length_bits -= bits;
664 }
665
666 if (length_bits > 0)
667 {
668 /* We've now taken care of any stray "bits" at the start, or end of
669 the region to compare, the remainder can be covered with a simple
670 memcmp. */
671 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
672 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
673 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
674
675 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
676 ptr2 + offset2_bits / TARGET_CHAR_BIT,
677 length_bits / TARGET_CHAR_BIT);
678 }
679
680 /* Length is zero, regions match. */
681 return 0;
682 }
683
684 /* Helper function for value_available_contents_eq. The only difference is
685 that this function is bit rather than byte based.
686
687 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
688 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
689 if the available bits match. */
690
691 static int
692 value_available_contents_bits_eq (const struct value *val1, int offset1,
693 const struct value *val2, int offset2,
694 int length)
695 {
696 int idx1 = 0, idx2 = 0;
697
698 /* See function description in value.h. */
699 gdb_assert (!val1->lazy && !val2->lazy);
700
701 while (length > 0)
702 {
703 range_s *r1, *r2;
704 ULONGEST l1, h1;
705 ULONGEST l2, h2;
706
707 idx1 = find_first_range_overlap (val1->unavailable, idx1,
708 offset1, length);
709 idx2 = find_first_range_overlap (val2->unavailable, idx2,
710 offset2, length);
711
712 /* The usual case is for both values to be completely available. */
713 if (idx1 == -1 && idx2 == -1)
714 return (memcmp_with_bit_offsets (val1->contents, offset1,
715 val2->contents, offset2,
716 length) == 0);
717 /* The contents only match equal if the available set matches as
718 well. */
719 else if (idx1 == -1 || idx2 == -1)
720 return 0;
721
722 gdb_assert (idx1 != -1 && idx2 != -1);
723
724 r1 = VEC_index (range_s, val1->unavailable, idx1);
725 r2 = VEC_index (range_s, val2->unavailable, idx2);
726
727 /* Get the unavailable windows intersected by the incoming
728 ranges. The first and last ranges that overlap the argument
729 range may be wider than said incoming arguments ranges. */
730 l1 = max (offset1, r1->offset);
731 h1 = min (offset1 + length, r1->offset + r1->length);
732
733 l2 = max (offset2, r2->offset);
734 h2 = min (offset2 + length, r2->offset + r2->length);
735
736 /* Make them relative to the respective start offsets, so we can
737 compare them for equality. */
738 l1 -= offset1;
739 h1 -= offset1;
740
741 l2 -= offset2;
742 h2 -= offset2;
743
744 /* Different availability, no match. */
745 if (l1 != l2 || h1 != h2)
746 return 0;
747
748 /* Compare the _available_ contents. */
749 if (memcmp_with_bit_offsets (val1->contents, offset1,
750 val2->contents, offset2, l1) != 0)
751 return 0;
752
753 length -= h1;
754 offset1 += h1;
755 offset2 += h1;
756 }
757
758 return 1;
759 }
760
761 int
762 value_available_contents_eq (const struct value *val1, int offset1,
763 const struct value *val2, int offset2,
764 int length)
765 {
766 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
767 val2, offset2 * TARGET_CHAR_BIT,
768 length * TARGET_CHAR_BIT);
769 }
770
771 /* Prototypes for local functions. */
772
773 static void show_values (char *, int);
774
775 static void show_convenience (char *, int);
776
777
778 /* The value-history records all the values printed
779 by print commands during this session. Each chunk
780 records 60 consecutive values. The first chunk on
781 the chain records the most recent values.
782 The total number of values is in value_history_count. */
783
784 #define VALUE_HISTORY_CHUNK 60
785
786 struct value_history_chunk
787 {
788 struct value_history_chunk *next;
789 struct value *values[VALUE_HISTORY_CHUNK];
790 };
791
792 /* Chain of chunks now in use. */
793
794 static struct value_history_chunk *value_history_chain;
795
796 static int value_history_count; /* Abs number of last entry stored. */
797
798 \f
799 /* List of all value objects currently allocated
800 (except for those released by calls to release_value)
801 This is so they can be freed after each command. */
802
803 static struct value *all_values;
804
805 /* Allocate a lazy value for type TYPE. Its actual content is
806 "lazily" allocated too: the content field of the return value is
807 NULL; it will be allocated when it is fetched from the target. */
808
809 struct value *
810 allocate_value_lazy (struct type *type)
811 {
812 struct value *val;
813
814 /* Call check_typedef on our type to make sure that, if TYPE
815 is a TYPE_CODE_TYPEDEF, its length is set to the length
816 of the target type instead of zero. However, we do not
817 replace the typedef type by the target type, because we want
818 to keep the typedef in order to be able to set the VAL's type
819 description correctly. */
820 check_typedef (type);
821
822 val = (struct value *) xzalloc (sizeof (struct value));
823 val->contents = NULL;
824 val->next = all_values;
825 all_values = val;
826 val->type = type;
827 val->enclosing_type = type;
828 VALUE_LVAL (val) = not_lval;
829 val->location.address = 0;
830 VALUE_FRAME_ID (val) = null_frame_id;
831 val->offset = 0;
832 val->bitpos = 0;
833 val->bitsize = 0;
834 VALUE_REGNUM (val) = -1;
835 val->lazy = 1;
836 val->optimized_out = 0;
837 val->embedded_offset = 0;
838 val->pointed_to_offset = 0;
839 val->modifiable = 1;
840 val->initialized = 1; /* Default to initialized. */
841
842 /* Values start out on the all_values chain. */
843 val->reference_count = 1;
844
845 return val;
846 }
847
848 /* Allocate the contents of VAL if it has not been allocated yet. */
849
850 static void
851 allocate_value_contents (struct value *val)
852 {
853 if (!val->contents)
854 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
855 }
856
857 /* Allocate a value and its contents for type TYPE. */
858
859 struct value *
860 allocate_value (struct type *type)
861 {
862 struct value *val = allocate_value_lazy (type);
863
864 allocate_value_contents (val);
865 val->lazy = 0;
866 return val;
867 }
868
869 /* Allocate a value that has the correct length
870 for COUNT repetitions of type TYPE. */
871
872 struct value *
873 allocate_repeat_value (struct type *type, int count)
874 {
875 int low_bound = current_language->string_lower_bound; /* ??? */
876 /* FIXME-type-allocation: need a way to free this type when we are
877 done with it. */
878 struct type *array_type
879 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
880
881 return allocate_value (array_type);
882 }
883
884 struct value *
885 allocate_computed_value (struct type *type,
886 const struct lval_funcs *funcs,
887 void *closure)
888 {
889 struct value *v = allocate_value_lazy (type);
890
891 VALUE_LVAL (v) = lval_computed;
892 v->location.computed.funcs = funcs;
893 v->location.computed.closure = closure;
894
895 return v;
896 }
897
898 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
899
900 struct value *
901 allocate_optimized_out_value (struct type *type)
902 {
903 struct value *retval = allocate_value_lazy (type);
904
905 set_value_optimized_out (retval, 1);
906 set_value_lazy (retval, 0);
907 return retval;
908 }
909
910 /* Accessor methods. */
911
912 struct value *
913 value_next (struct value *value)
914 {
915 return value->next;
916 }
917
918 struct type *
919 value_type (const struct value *value)
920 {
921 return value->type;
922 }
923 void
924 deprecated_set_value_type (struct value *value, struct type *type)
925 {
926 value->type = type;
927 }
928
929 int
930 value_offset (const struct value *value)
931 {
932 return value->offset;
933 }
934 void
935 set_value_offset (struct value *value, int offset)
936 {
937 value->offset = offset;
938 }
939
940 int
941 value_bitpos (const struct value *value)
942 {
943 return value->bitpos;
944 }
945 void
946 set_value_bitpos (struct value *value, int bit)
947 {
948 value->bitpos = bit;
949 }
950
951 int
952 value_bitsize (const struct value *value)
953 {
954 return value->bitsize;
955 }
956 void
957 set_value_bitsize (struct value *value, int bit)
958 {
959 value->bitsize = bit;
960 }
961
962 struct value *
963 value_parent (struct value *value)
964 {
965 return value->parent;
966 }
967
968 /* See value.h. */
969
970 void
971 set_value_parent (struct value *value, struct value *parent)
972 {
973 struct value *old = value->parent;
974
975 value->parent = parent;
976 if (parent != NULL)
977 value_incref (parent);
978 value_free (old);
979 }
980
981 gdb_byte *
982 value_contents_raw (struct value *value)
983 {
984 allocate_value_contents (value);
985 return value->contents + value->embedded_offset;
986 }
987
988 gdb_byte *
989 value_contents_all_raw (struct value *value)
990 {
991 allocate_value_contents (value);
992 return value->contents;
993 }
994
995 struct type *
996 value_enclosing_type (struct value *value)
997 {
998 return value->enclosing_type;
999 }
1000
1001 /* Look at value.h for description. */
1002
1003 struct type *
1004 value_actual_type (struct value *value, int resolve_simple_types,
1005 int *real_type_found)
1006 {
1007 struct value_print_options opts;
1008 struct type *result;
1009
1010 get_user_print_options (&opts);
1011
1012 if (real_type_found)
1013 *real_type_found = 0;
1014 result = value_type (value);
1015 if (opts.objectprint)
1016 {
1017 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1018 fetch its rtti type. */
1019 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1020 || TYPE_CODE (result) == TYPE_CODE_REF)
1021 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1022 == TYPE_CODE_STRUCT)
1023 {
1024 struct type *real_type;
1025
1026 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1027 if (real_type)
1028 {
1029 if (real_type_found)
1030 *real_type_found = 1;
1031 result = real_type;
1032 }
1033 }
1034 else if (resolve_simple_types)
1035 {
1036 if (real_type_found)
1037 *real_type_found = 1;
1038 result = value_enclosing_type (value);
1039 }
1040 }
1041
1042 return result;
1043 }
1044
1045 void
1046 error_value_optimized_out (void)
1047 {
1048 error (_("value has been optimized out"));
1049 }
1050
1051 static void
1052 require_not_optimized_out (const struct value *value)
1053 {
1054 if (value->optimized_out)
1055 {
1056 if (value->lval == lval_register)
1057 error (_("register has not been saved in frame"));
1058 else
1059 error_value_optimized_out ();
1060 }
1061 }
1062
1063 static void
1064 require_available (const struct value *value)
1065 {
1066 if (!VEC_empty (range_s, value->unavailable))
1067 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1068 }
1069
1070 const gdb_byte *
1071 value_contents_for_printing (struct value *value)
1072 {
1073 if (value->lazy)
1074 value_fetch_lazy (value);
1075 return value->contents;
1076 }
1077
1078 const gdb_byte *
1079 value_contents_for_printing_const (const struct value *value)
1080 {
1081 gdb_assert (!value->lazy);
1082 return value->contents;
1083 }
1084
1085 const gdb_byte *
1086 value_contents_all (struct value *value)
1087 {
1088 const gdb_byte *result = value_contents_for_printing (value);
1089 require_not_optimized_out (value);
1090 require_available (value);
1091 return result;
1092 }
1093
1094 /* Copy LENGTH bytes of SRC value's (all) contents
1095 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1096 contents, starting at DST_OFFSET. If unavailable contents are
1097 being copied from SRC, the corresponding DST contents are marked
1098 unavailable accordingly. Neither DST nor SRC may be lazy
1099 values.
1100
1101 It is assumed the contents of DST in the [DST_OFFSET,
1102 DST_OFFSET+LENGTH) range are wholly available. */
1103
1104 void
1105 value_contents_copy_raw (struct value *dst, int dst_offset,
1106 struct value *src, int src_offset, int length)
1107 {
1108 range_s *r;
1109 int i;
1110 int src_bit_offset, dst_bit_offset, bit_length;
1111
1112 /* A lazy DST would make that this copy operation useless, since as
1113 soon as DST's contents were un-lazied (by a later value_contents
1114 call, say), the contents would be overwritten. A lazy SRC would
1115 mean we'd be copying garbage. */
1116 gdb_assert (!dst->lazy && !src->lazy);
1117
1118 /* The overwritten DST range gets unavailability ORed in, not
1119 replaced. Make sure to remember to implement replacing if it
1120 turns out actually necessary. */
1121 gdb_assert (value_bytes_available (dst, dst_offset, length));
1122
1123 /* Copy the data. */
1124 memcpy (value_contents_all_raw (dst) + dst_offset,
1125 value_contents_all_raw (src) + src_offset,
1126 length);
1127
1128 /* Copy the meta-data, adjusted. */
1129 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1130 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1131 bit_length = length * TARGET_CHAR_BIT;
1132 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1133 {
1134 ULONGEST h, l;
1135
1136 l = max (r->offset, src_bit_offset);
1137 h = min (r->offset + r->length, src_bit_offset + bit_length);
1138
1139 if (l < h)
1140 mark_value_bits_unavailable (dst,
1141 dst_bit_offset + (l - src_bit_offset),
1142 h - l);
1143 }
1144 }
1145
1146 /* Copy LENGTH bytes of SRC value's (all) contents
1147 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1148 (all) contents, starting at DST_OFFSET. If unavailable contents
1149 are being copied from SRC, the corresponding DST contents are
1150 marked unavailable accordingly. DST must not be lazy. If SRC is
1151 lazy, it will be fetched now. If SRC is not valid (is optimized
1152 out), an error is thrown.
1153
1154 It is assumed the contents of DST in the [DST_OFFSET,
1155 DST_OFFSET+LENGTH) range are wholly available. */
1156
1157 void
1158 value_contents_copy (struct value *dst, int dst_offset,
1159 struct value *src, int src_offset, int length)
1160 {
1161 require_not_optimized_out (src);
1162
1163 if (src->lazy)
1164 value_fetch_lazy (src);
1165
1166 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1167 }
1168
1169 int
1170 value_lazy (struct value *value)
1171 {
1172 return value->lazy;
1173 }
1174
1175 void
1176 set_value_lazy (struct value *value, int val)
1177 {
1178 value->lazy = val;
1179 }
1180
1181 int
1182 value_stack (struct value *value)
1183 {
1184 return value->stack;
1185 }
1186
1187 void
1188 set_value_stack (struct value *value, int val)
1189 {
1190 value->stack = val;
1191 }
1192
1193 const gdb_byte *
1194 value_contents (struct value *value)
1195 {
1196 const gdb_byte *result = value_contents_writeable (value);
1197 require_not_optimized_out (value);
1198 require_available (value);
1199 return result;
1200 }
1201
1202 gdb_byte *
1203 value_contents_writeable (struct value *value)
1204 {
1205 if (value->lazy)
1206 value_fetch_lazy (value);
1207 return value_contents_raw (value);
1208 }
1209
1210 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1211 this function is different from value_equal; in C the operator ==
1212 can return 0 even if the two values being compared are equal. */
1213
1214 int
1215 value_contents_equal (struct value *val1, struct value *val2)
1216 {
1217 struct type *type1;
1218 struct type *type2;
1219
1220 type1 = check_typedef (value_type (val1));
1221 type2 = check_typedef (value_type (val2));
1222 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1223 return 0;
1224
1225 return (memcmp (value_contents (val1), value_contents (val2),
1226 TYPE_LENGTH (type1)) == 0);
1227 }
1228
1229 int
1230 value_optimized_out (struct value *value)
1231 {
1232 /* We can only know if a value is optimized out once we have tried to
1233 fetch it. */
1234 if (!value->optimized_out && value->lazy)
1235 value_fetch_lazy (value);
1236
1237 return value->optimized_out;
1238 }
1239
1240 int
1241 value_optimized_out_const (const struct value *value)
1242 {
1243 return value->optimized_out;
1244 }
1245
1246 void
1247 set_value_optimized_out (struct value *value, int val)
1248 {
1249 value->optimized_out = val;
1250 }
1251
1252 int
1253 value_entirely_optimized_out (const struct value *value)
1254 {
1255 if (!value->optimized_out)
1256 return 0;
1257 if (value->lval != lval_computed
1258 || !value->location.computed.funcs->check_any_valid)
1259 return 1;
1260 return !value->location.computed.funcs->check_any_valid (value);
1261 }
1262
1263 int
1264 value_bits_valid (const struct value *value, int offset, int length)
1265 {
1266 if (!value->optimized_out)
1267 return 1;
1268 if (value->lval != lval_computed
1269 || !value->location.computed.funcs->check_validity)
1270 return 0;
1271 return value->location.computed.funcs->check_validity (value, offset,
1272 length);
1273 }
1274
1275 int
1276 value_bits_synthetic_pointer (const struct value *value,
1277 int offset, int length)
1278 {
1279 if (value->lval != lval_computed
1280 || !value->location.computed.funcs->check_synthetic_pointer)
1281 return 0;
1282 return value->location.computed.funcs->check_synthetic_pointer (value,
1283 offset,
1284 length);
1285 }
1286
1287 int
1288 value_embedded_offset (struct value *value)
1289 {
1290 return value->embedded_offset;
1291 }
1292
1293 void
1294 set_value_embedded_offset (struct value *value, int val)
1295 {
1296 value->embedded_offset = val;
1297 }
1298
1299 int
1300 value_pointed_to_offset (struct value *value)
1301 {
1302 return value->pointed_to_offset;
1303 }
1304
1305 void
1306 set_value_pointed_to_offset (struct value *value, int val)
1307 {
1308 value->pointed_to_offset = val;
1309 }
1310
1311 const struct lval_funcs *
1312 value_computed_funcs (const struct value *v)
1313 {
1314 gdb_assert (value_lval_const (v) == lval_computed);
1315
1316 return v->location.computed.funcs;
1317 }
1318
1319 void *
1320 value_computed_closure (const struct value *v)
1321 {
1322 gdb_assert (v->lval == lval_computed);
1323
1324 return v->location.computed.closure;
1325 }
1326
1327 enum lval_type *
1328 deprecated_value_lval_hack (struct value *value)
1329 {
1330 return &value->lval;
1331 }
1332
1333 enum lval_type
1334 value_lval_const (const struct value *value)
1335 {
1336 return value->lval;
1337 }
1338
1339 CORE_ADDR
1340 value_address (const struct value *value)
1341 {
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component)
1344 return 0;
1345 if (value->parent != NULL)
1346 return value_address (value->parent) + value->offset;
1347 else
1348 return value->location.address + value->offset;
1349 }
1350
1351 CORE_ADDR
1352 value_raw_address (struct value *value)
1353 {
1354 if (value->lval == lval_internalvar
1355 || value->lval == lval_internalvar_component)
1356 return 0;
1357 return value->location.address;
1358 }
1359
1360 void
1361 set_value_address (struct value *value, CORE_ADDR addr)
1362 {
1363 gdb_assert (value->lval != lval_internalvar
1364 && value->lval != lval_internalvar_component);
1365 value->location.address = addr;
1366 }
1367
1368 struct internalvar **
1369 deprecated_value_internalvar_hack (struct value *value)
1370 {
1371 return &value->location.internalvar;
1372 }
1373
1374 struct frame_id *
1375 deprecated_value_frame_id_hack (struct value *value)
1376 {
1377 return &value->frame_id;
1378 }
1379
1380 short *
1381 deprecated_value_regnum_hack (struct value *value)
1382 {
1383 return &value->regnum;
1384 }
1385
1386 int
1387 deprecated_value_modifiable (struct value *value)
1388 {
1389 return value->modifiable;
1390 }
1391 \f
1392 /* Return a mark in the value chain. All values allocated after the
1393 mark is obtained (except for those released) are subject to being freed
1394 if a subsequent value_free_to_mark is passed the mark. */
1395 struct value *
1396 value_mark (void)
1397 {
1398 return all_values;
1399 }
1400
1401 /* Take a reference to VAL. VAL will not be deallocated until all
1402 references are released. */
1403
1404 void
1405 value_incref (struct value *val)
1406 {
1407 val->reference_count++;
1408 }
1409
1410 /* Release a reference to VAL, which was acquired with value_incref.
1411 This function is also called to deallocate values from the value
1412 chain. */
1413
1414 void
1415 value_free (struct value *val)
1416 {
1417 if (val)
1418 {
1419 gdb_assert (val->reference_count > 0);
1420 val->reference_count--;
1421 if (val->reference_count > 0)
1422 return;
1423
1424 /* If there's an associated parent value, drop our reference to
1425 it. */
1426 if (val->parent != NULL)
1427 value_free (val->parent);
1428
1429 if (VALUE_LVAL (val) == lval_computed)
1430 {
1431 const struct lval_funcs *funcs = val->location.computed.funcs;
1432
1433 if (funcs->free_closure)
1434 funcs->free_closure (val);
1435 }
1436
1437 xfree (val->contents);
1438 VEC_free (range_s, val->unavailable);
1439 }
1440 xfree (val);
1441 }
1442
1443 /* Free all values allocated since MARK was obtained by value_mark
1444 (except for those released). */
1445 void
1446 value_free_to_mark (struct value *mark)
1447 {
1448 struct value *val;
1449 struct value *next;
1450
1451 for (val = all_values; val && val != mark; val = next)
1452 {
1453 next = val->next;
1454 val->released = 1;
1455 value_free (val);
1456 }
1457 all_values = val;
1458 }
1459
1460 /* Free all the values that have been allocated (except for those released).
1461 Call after each command, successful or not.
1462 In practice this is called before each command, which is sufficient. */
1463
1464 void
1465 free_all_values (void)
1466 {
1467 struct value *val;
1468 struct value *next;
1469
1470 for (val = all_values; val; val = next)
1471 {
1472 next = val->next;
1473 val->released = 1;
1474 value_free (val);
1475 }
1476
1477 all_values = 0;
1478 }
1479
1480 /* Frees all the elements in a chain of values. */
1481
1482 void
1483 free_value_chain (struct value *v)
1484 {
1485 struct value *next;
1486
1487 for (; v; v = next)
1488 {
1489 next = value_next (v);
1490 value_free (v);
1491 }
1492 }
1493
1494 /* Remove VAL from the chain all_values
1495 so it will not be freed automatically. */
1496
1497 void
1498 release_value (struct value *val)
1499 {
1500 struct value *v;
1501
1502 if (all_values == val)
1503 {
1504 all_values = val->next;
1505 val->next = NULL;
1506 val->released = 1;
1507 return;
1508 }
1509
1510 for (v = all_values; v; v = v->next)
1511 {
1512 if (v->next == val)
1513 {
1514 v->next = val->next;
1515 val->next = NULL;
1516 val->released = 1;
1517 break;
1518 }
1519 }
1520 }
1521
1522 /* If the value is not already released, release it.
1523 If the value is already released, increment its reference count.
1524 That is, this function ensures that the value is released from the
1525 value chain and that the caller owns a reference to it. */
1526
1527 void
1528 release_value_or_incref (struct value *val)
1529 {
1530 if (val->released)
1531 value_incref (val);
1532 else
1533 release_value (val);
1534 }
1535
1536 /* Release all values up to mark */
1537 struct value *
1538 value_release_to_mark (struct value *mark)
1539 {
1540 struct value *val;
1541 struct value *next;
1542
1543 for (val = next = all_values; next; next = next->next)
1544 {
1545 if (next->next == mark)
1546 {
1547 all_values = next->next;
1548 next->next = NULL;
1549 return val;
1550 }
1551 next->released = 1;
1552 }
1553 all_values = 0;
1554 return val;
1555 }
1556
1557 /* Return a copy of the value ARG.
1558 It contains the same contents, for same memory address,
1559 but it's a different block of storage. */
1560
1561 struct value *
1562 value_copy (struct value *arg)
1563 {
1564 struct type *encl_type = value_enclosing_type (arg);
1565 struct value *val;
1566
1567 if (value_lazy (arg))
1568 val = allocate_value_lazy (encl_type);
1569 else
1570 val = allocate_value (encl_type);
1571 val->type = arg->type;
1572 VALUE_LVAL (val) = VALUE_LVAL (arg);
1573 val->location = arg->location;
1574 val->offset = arg->offset;
1575 val->bitpos = arg->bitpos;
1576 val->bitsize = arg->bitsize;
1577 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1578 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1579 val->lazy = arg->lazy;
1580 val->optimized_out = arg->optimized_out;
1581 val->embedded_offset = value_embedded_offset (arg);
1582 val->pointed_to_offset = arg->pointed_to_offset;
1583 val->modifiable = arg->modifiable;
1584 if (!value_lazy (val))
1585 {
1586 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1587 TYPE_LENGTH (value_enclosing_type (arg)));
1588
1589 }
1590 val->unavailable = VEC_copy (range_s, arg->unavailable);
1591 set_value_parent (val, arg->parent);
1592 if (VALUE_LVAL (val) == lval_computed)
1593 {
1594 const struct lval_funcs *funcs = val->location.computed.funcs;
1595
1596 if (funcs->copy_closure)
1597 val->location.computed.closure = funcs->copy_closure (val);
1598 }
1599 return val;
1600 }
1601
1602 /* Return a version of ARG that is non-lvalue. */
1603
1604 struct value *
1605 value_non_lval (struct value *arg)
1606 {
1607 if (VALUE_LVAL (arg) != not_lval)
1608 {
1609 struct type *enc_type = value_enclosing_type (arg);
1610 struct value *val = allocate_value (enc_type);
1611
1612 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1613 TYPE_LENGTH (enc_type));
1614 val->type = arg->type;
1615 set_value_embedded_offset (val, value_embedded_offset (arg));
1616 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1617 return val;
1618 }
1619 return arg;
1620 }
1621
1622 void
1623 set_value_component_location (struct value *component,
1624 const struct value *whole)
1625 {
1626 if (whole->lval == lval_internalvar)
1627 VALUE_LVAL (component) = lval_internalvar_component;
1628 else
1629 VALUE_LVAL (component) = whole->lval;
1630
1631 component->location = whole->location;
1632 if (whole->lval == lval_computed)
1633 {
1634 const struct lval_funcs *funcs = whole->location.computed.funcs;
1635
1636 if (funcs->copy_closure)
1637 component->location.computed.closure = funcs->copy_closure (whole);
1638 }
1639 }
1640
1641 \f
1642 /* Access to the value history. */
1643
1644 /* Record a new value in the value history.
1645 Returns the absolute history index of the entry. */
1646
1647 int
1648 record_latest_value (struct value *val)
1649 {
1650 int i;
1651
1652 /* We don't want this value to have anything to do with the inferior anymore.
1653 In particular, "set $1 = 50" should not affect the variable from which
1654 the value was taken, and fast watchpoints should be able to assume that
1655 a value on the value history never changes. */
1656 if (value_lazy (val))
1657 value_fetch_lazy (val);
1658 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1659 from. This is a bit dubious, because then *&$1 does not just return $1
1660 but the current contents of that location. c'est la vie... */
1661 val->modifiable = 0;
1662
1663 /* The value may have already been released, in which case we're adding a
1664 new reference for its entry in the history. That is why we call
1665 release_value_or_incref here instead of release_value. */
1666 release_value_or_incref (val);
1667
1668 /* Here we treat value_history_count as origin-zero
1669 and applying to the value being stored now. */
1670
1671 i = value_history_count % VALUE_HISTORY_CHUNK;
1672 if (i == 0)
1673 {
1674 struct value_history_chunk *new
1675 = (struct value_history_chunk *)
1676
1677 xmalloc (sizeof (struct value_history_chunk));
1678 memset (new->values, 0, sizeof new->values);
1679 new->next = value_history_chain;
1680 value_history_chain = new;
1681 }
1682
1683 value_history_chain->values[i] = val;
1684
1685 /* Now we regard value_history_count as origin-one
1686 and applying to the value just stored. */
1687
1688 return ++value_history_count;
1689 }
1690
1691 /* Return a copy of the value in the history with sequence number NUM. */
1692
1693 struct value *
1694 access_value_history (int num)
1695 {
1696 struct value_history_chunk *chunk;
1697 int i;
1698 int absnum = num;
1699
1700 if (absnum <= 0)
1701 absnum += value_history_count;
1702
1703 if (absnum <= 0)
1704 {
1705 if (num == 0)
1706 error (_("The history is empty."));
1707 else if (num == 1)
1708 error (_("There is only one value in the history."));
1709 else
1710 error (_("History does not go back to $$%d."), -num);
1711 }
1712 if (absnum > value_history_count)
1713 error (_("History has not yet reached $%d."), absnum);
1714
1715 absnum--;
1716
1717 /* Now absnum is always absolute and origin zero. */
1718
1719 chunk = value_history_chain;
1720 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1721 - absnum / VALUE_HISTORY_CHUNK;
1722 i > 0; i--)
1723 chunk = chunk->next;
1724
1725 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1726 }
1727
1728 static void
1729 show_values (char *num_exp, int from_tty)
1730 {
1731 int i;
1732 struct value *val;
1733 static int num = 1;
1734
1735 if (num_exp)
1736 {
1737 /* "show values +" should print from the stored position.
1738 "show values <exp>" should print around value number <exp>. */
1739 if (num_exp[0] != '+' || num_exp[1] != '\0')
1740 num = parse_and_eval_long (num_exp) - 5;
1741 }
1742 else
1743 {
1744 /* "show values" means print the last 10 values. */
1745 num = value_history_count - 9;
1746 }
1747
1748 if (num <= 0)
1749 num = 1;
1750
1751 for (i = num; i < num + 10 && i <= value_history_count; i++)
1752 {
1753 struct value_print_options opts;
1754
1755 val = access_value_history (i);
1756 printf_filtered (("$%d = "), i);
1757 get_user_print_options (&opts);
1758 value_print (val, gdb_stdout, &opts);
1759 printf_filtered (("\n"));
1760 }
1761
1762 /* The next "show values +" should start after what we just printed. */
1763 num += 10;
1764
1765 /* Hitting just return after this command should do the same thing as
1766 "show values +". If num_exp is null, this is unnecessary, since
1767 "show values +" is not useful after "show values". */
1768 if (from_tty && num_exp)
1769 {
1770 num_exp[0] = '+';
1771 num_exp[1] = '\0';
1772 }
1773 }
1774 \f
1775 /* Internal variables. These are variables within the debugger
1776 that hold values assigned by debugger commands.
1777 The user refers to them with a '$' prefix
1778 that does not appear in the variable names stored internally. */
1779
1780 struct internalvar
1781 {
1782 struct internalvar *next;
1783 char *name;
1784
1785 /* We support various different kinds of content of an internal variable.
1786 enum internalvar_kind specifies the kind, and union internalvar_data
1787 provides the data associated with this particular kind. */
1788
1789 enum internalvar_kind
1790 {
1791 /* The internal variable is empty. */
1792 INTERNALVAR_VOID,
1793
1794 /* The value of the internal variable is provided directly as
1795 a GDB value object. */
1796 INTERNALVAR_VALUE,
1797
1798 /* A fresh value is computed via a call-back routine on every
1799 access to the internal variable. */
1800 INTERNALVAR_MAKE_VALUE,
1801
1802 /* The internal variable holds a GDB internal convenience function. */
1803 INTERNALVAR_FUNCTION,
1804
1805 /* The variable holds an integer value. */
1806 INTERNALVAR_INTEGER,
1807
1808 /* The variable holds a GDB-provided string. */
1809 INTERNALVAR_STRING,
1810
1811 } kind;
1812
1813 union internalvar_data
1814 {
1815 /* A value object used with INTERNALVAR_VALUE. */
1816 struct value *value;
1817
1818 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1819 struct
1820 {
1821 /* The functions to call. */
1822 const struct internalvar_funcs *functions;
1823
1824 /* The function's user-data. */
1825 void *data;
1826 } make_value;
1827
1828 /* The internal function used with INTERNALVAR_FUNCTION. */
1829 struct
1830 {
1831 struct internal_function *function;
1832 /* True if this is the canonical name for the function. */
1833 int canonical;
1834 } fn;
1835
1836 /* An integer value used with INTERNALVAR_INTEGER. */
1837 struct
1838 {
1839 /* If type is non-NULL, it will be used as the type to generate
1840 a value for this internal variable. If type is NULL, a default
1841 integer type for the architecture is used. */
1842 struct type *type;
1843 LONGEST val;
1844 } integer;
1845
1846 /* A string value used with INTERNALVAR_STRING. */
1847 char *string;
1848 } u;
1849 };
1850
1851 static struct internalvar *internalvars;
1852
1853 /* If the variable does not already exist create it and give it the
1854 value given. If no value is given then the default is zero. */
1855 static void
1856 init_if_undefined_command (char* args, int from_tty)
1857 {
1858 struct internalvar* intvar;
1859
1860 /* Parse the expression - this is taken from set_command(). */
1861 struct expression *expr = parse_expression (args);
1862 register struct cleanup *old_chain =
1863 make_cleanup (free_current_contents, &expr);
1864
1865 /* Validate the expression.
1866 Was the expression an assignment?
1867 Or even an expression at all? */
1868 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1869 error (_("Init-if-undefined requires an assignment expression."));
1870
1871 /* Extract the variable from the parsed expression.
1872 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1873 if (expr->elts[1].opcode != OP_INTERNALVAR)
1874 error (_("The first parameter to init-if-undefined "
1875 "should be a GDB variable."));
1876 intvar = expr->elts[2].internalvar;
1877
1878 /* Only evaluate the expression if the lvalue is void.
1879 This may still fail if the expresssion is invalid. */
1880 if (intvar->kind == INTERNALVAR_VOID)
1881 evaluate_expression (expr);
1882
1883 do_cleanups (old_chain);
1884 }
1885
1886
1887 /* Look up an internal variable with name NAME. NAME should not
1888 normally include a dollar sign.
1889
1890 If the specified internal variable does not exist,
1891 the return value is NULL. */
1892
1893 struct internalvar *
1894 lookup_only_internalvar (const char *name)
1895 {
1896 struct internalvar *var;
1897
1898 for (var = internalvars; var; var = var->next)
1899 if (strcmp (var->name, name) == 0)
1900 return var;
1901
1902 return NULL;
1903 }
1904
1905 /* Complete NAME by comparing it to the names of internal variables.
1906 Returns a vector of newly allocated strings, or NULL if no matches
1907 were found. */
1908
1909 VEC (char_ptr) *
1910 complete_internalvar (const char *name)
1911 {
1912 VEC (char_ptr) *result = NULL;
1913 struct internalvar *var;
1914 int len;
1915
1916 len = strlen (name);
1917
1918 for (var = internalvars; var; var = var->next)
1919 if (strncmp (var->name, name, len) == 0)
1920 {
1921 char *r = xstrdup (var->name);
1922
1923 VEC_safe_push (char_ptr, result, r);
1924 }
1925
1926 return result;
1927 }
1928
1929 /* Create an internal variable with name NAME and with a void value.
1930 NAME should not normally include a dollar sign. */
1931
1932 struct internalvar *
1933 create_internalvar (const char *name)
1934 {
1935 struct internalvar *var;
1936
1937 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1938 var->name = concat (name, (char *)NULL);
1939 var->kind = INTERNALVAR_VOID;
1940 var->next = internalvars;
1941 internalvars = var;
1942 return var;
1943 }
1944
1945 /* Create an internal variable with name NAME and register FUN as the
1946 function that value_of_internalvar uses to create a value whenever
1947 this variable is referenced. NAME should not normally include a
1948 dollar sign. DATA is passed uninterpreted to FUN when it is
1949 called. CLEANUP, if not NULL, is called when the internal variable
1950 is destroyed. It is passed DATA as its only argument. */
1951
1952 struct internalvar *
1953 create_internalvar_type_lazy (const char *name,
1954 const struct internalvar_funcs *funcs,
1955 void *data)
1956 {
1957 struct internalvar *var = create_internalvar (name);
1958
1959 var->kind = INTERNALVAR_MAKE_VALUE;
1960 var->u.make_value.functions = funcs;
1961 var->u.make_value.data = data;
1962 return var;
1963 }
1964
1965 /* See documentation in value.h. */
1966
1967 int
1968 compile_internalvar_to_ax (struct internalvar *var,
1969 struct agent_expr *expr,
1970 struct axs_value *value)
1971 {
1972 if (var->kind != INTERNALVAR_MAKE_VALUE
1973 || var->u.make_value.functions->compile_to_ax == NULL)
1974 return 0;
1975
1976 var->u.make_value.functions->compile_to_ax (var, expr, value,
1977 var->u.make_value.data);
1978 return 1;
1979 }
1980
1981 /* Look up an internal variable with name NAME. NAME should not
1982 normally include a dollar sign.
1983
1984 If the specified internal variable does not exist,
1985 one is created, with a void value. */
1986
1987 struct internalvar *
1988 lookup_internalvar (const char *name)
1989 {
1990 struct internalvar *var;
1991
1992 var = lookup_only_internalvar (name);
1993 if (var)
1994 return var;
1995
1996 return create_internalvar (name);
1997 }
1998
1999 /* Return current value of internal variable VAR. For variables that
2000 are not inherently typed, use a value type appropriate for GDBARCH. */
2001
2002 struct value *
2003 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2004 {
2005 struct value *val;
2006 struct trace_state_variable *tsv;
2007
2008 /* If there is a trace state variable of the same name, assume that
2009 is what we really want to see. */
2010 tsv = find_trace_state_variable (var->name);
2011 if (tsv)
2012 {
2013 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2014 &(tsv->value));
2015 if (tsv->value_known)
2016 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2017 tsv->value);
2018 else
2019 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2020 return val;
2021 }
2022
2023 switch (var->kind)
2024 {
2025 case INTERNALVAR_VOID:
2026 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2027 break;
2028
2029 case INTERNALVAR_FUNCTION:
2030 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2031 break;
2032
2033 case INTERNALVAR_INTEGER:
2034 if (!var->u.integer.type)
2035 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2036 var->u.integer.val);
2037 else
2038 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2039 break;
2040
2041 case INTERNALVAR_STRING:
2042 val = value_cstring (var->u.string, strlen (var->u.string),
2043 builtin_type (gdbarch)->builtin_char);
2044 break;
2045
2046 case INTERNALVAR_VALUE:
2047 val = value_copy (var->u.value);
2048 if (value_lazy (val))
2049 value_fetch_lazy (val);
2050 break;
2051
2052 case INTERNALVAR_MAKE_VALUE:
2053 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2054 var->u.make_value.data);
2055 break;
2056
2057 default:
2058 internal_error (__FILE__, __LINE__, _("bad kind"));
2059 }
2060
2061 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2062 on this value go back to affect the original internal variable.
2063
2064 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2065 no underlying modifyable state in the internal variable.
2066
2067 Likewise, if the variable's value is a computed lvalue, we want
2068 references to it to produce another computed lvalue, where
2069 references and assignments actually operate through the
2070 computed value's functions.
2071
2072 This means that internal variables with computed values
2073 behave a little differently from other internal variables:
2074 assignments to them don't just replace the previous value
2075 altogether. At the moment, this seems like the behavior we
2076 want. */
2077
2078 if (var->kind != INTERNALVAR_MAKE_VALUE
2079 && val->lval != lval_computed)
2080 {
2081 VALUE_LVAL (val) = lval_internalvar;
2082 VALUE_INTERNALVAR (val) = var;
2083 }
2084
2085 return val;
2086 }
2087
2088 int
2089 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2090 {
2091 if (var->kind == INTERNALVAR_INTEGER)
2092 {
2093 *result = var->u.integer.val;
2094 return 1;
2095 }
2096
2097 if (var->kind == INTERNALVAR_VALUE)
2098 {
2099 struct type *type = check_typedef (value_type (var->u.value));
2100
2101 if (TYPE_CODE (type) == TYPE_CODE_INT)
2102 {
2103 *result = value_as_long (var->u.value);
2104 return 1;
2105 }
2106 }
2107
2108 return 0;
2109 }
2110
2111 static int
2112 get_internalvar_function (struct internalvar *var,
2113 struct internal_function **result)
2114 {
2115 switch (var->kind)
2116 {
2117 case INTERNALVAR_FUNCTION:
2118 *result = var->u.fn.function;
2119 return 1;
2120
2121 default:
2122 return 0;
2123 }
2124 }
2125
2126 void
2127 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2128 int bitsize, struct value *newval)
2129 {
2130 gdb_byte *addr;
2131
2132 switch (var->kind)
2133 {
2134 case INTERNALVAR_VALUE:
2135 addr = value_contents_writeable (var->u.value);
2136
2137 if (bitsize)
2138 modify_field (value_type (var->u.value), addr + offset,
2139 value_as_long (newval), bitpos, bitsize);
2140 else
2141 memcpy (addr + offset, value_contents (newval),
2142 TYPE_LENGTH (value_type (newval)));
2143 break;
2144
2145 default:
2146 /* We can never get a component of any other kind. */
2147 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2148 }
2149 }
2150
2151 void
2152 set_internalvar (struct internalvar *var, struct value *val)
2153 {
2154 enum internalvar_kind new_kind;
2155 union internalvar_data new_data = { 0 };
2156
2157 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2158 error (_("Cannot overwrite convenience function %s"), var->name);
2159
2160 /* Prepare new contents. */
2161 switch (TYPE_CODE (check_typedef (value_type (val))))
2162 {
2163 case TYPE_CODE_VOID:
2164 new_kind = INTERNALVAR_VOID;
2165 break;
2166
2167 case TYPE_CODE_INTERNAL_FUNCTION:
2168 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2169 new_kind = INTERNALVAR_FUNCTION;
2170 get_internalvar_function (VALUE_INTERNALVAR (val),
2171 &new_data.fn.function);
2172 /* Copies created here are never canonical. */
2173 break;
2174
2175 default:
2176 new_kind = INTERNALVAR_VALUE;
2177 new_data.value = value_copy (val);
2178 new_data.value->modifiable = 1;
2179
2180 /* Force the value to be fetched from the target now, to avoid problems
2181 later when this internalvar is referenced and the target is gone or
2182 has changed. */
2183 if (value_lazy (new_data.value))
2184 value_fetch_lazy (new_data.value);
2185
2186 /* Release the value from the value chain to prevent it from being
2187 deleted by free_all_values. From here on this function should not
2188 call error () until new_data is installed into the var->u to avoid
2189 leaking memory. */
2190 release_value (new_data.value);
2191 break;
2192 }
2193
2194 /* Clean up old contents. */
2195 clear_internalvar (var);
2196
2197 /* Switch over. */
2198 var->kind = new_kind;
2199 var->u = new_data;
2200 /* End code which must not call error(). */
2201 }
2202
2203 void
2204 set_internalvar_integer (struct internalvar *var, LONGEST l)
2205 {
2206 /* Clean up old contents. */
2207 clear_internalvar (var);
2208
2209 var->kind = INTERNALVAR_INTEGER;
2210 var->u.integer.type = NULL;
2211 var->u.integer.val = l;
2212 }
2213
2214 void
2215 set_internalvar_string (struct internalvar *var, const char *string)
2216 {
2217 /* Clean up old contents. */
2218 clear_internalvar (var);
2219
2220 var->kind = INTERNALVAR_STRING;
2221 var->u.string = xstrdup (string);
2222 }
2223
2224 static void
2225 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2226 {
2227 /* Clean up old contents. */
2228 clear_internalvar (var);
2229
2230 var->kind = INTERNALVAR_FUNCTION;
2231 var->u.fn.function = f;
2232 var->u.fn.canonical = 1;
2233 /* Variables installed here are always the canonical version. */
2234 }
2235
2236 void
2237 clear_internalvar (struct internalvar *var)
2238 {
2239 /* Clean up old contents. */
2240 switch (var->kind)
2241 {
2242 case INTERNALVAR_VALUE:
2243 value_free (var->u.value);
2244 break;
2245
2246 case INTERNALVAR_STRING:
2247 xfree (var->u.string);
2248 break;
2249
2250 case INTERNALVAR_MAKE_VALUE:
2251 if (var->u.make_value.functions->destroy != NULL)
2252 var->u.make_value.functions->destroy (var->u.make_value.data);
2253 break;
2254
2255 default:
2256 break;
2257 }
2258
2259 /* Reset to void kind. */
2260 var->kind = INTERNALVAR_VOID;
2261 }
2262
2263 char *
2264 internalvar_name (struct internalvar *var)
2265 {
2266 return var->name;
2267 }
2268
2269 static struct internal_function *
2270 create_internal_function (const char *name,
2271 internal_function_fn handler, void *cookie)
2272 {
2273 struct internal_function *ifn = XNEW (struct internal_function);
2274
2275 ifn->name = xstrdup (name);
2276 ifn->handler = handler;
2277 ifn->cookie = cookie;
2278 return ifn;
2279 }
2280
2281 char *
2282 value_internal_function_name (struct value *val)
2283 {
2284 struct internal_function *ifn;
2285 int result;
2286
2287 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2288 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2289 gdb_assert (result);
2290
2291 return ifn->name;
2292 }
2293
2294 struct value *
2295 call_internal_function (struct gdbarch *gdbarch,
2296 const struct language_defn *language,
2297 struct value *func, int argc, struct value **argv)
2298 {
2299 struct internal_function *ifn;
2300 int result;
2301
2302 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2303 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2304 gdb_assert (result);
2305
2306 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2307 }
2308
2309 /* The 'function' command. This does nothing -- it is just a
2310 placeholder to let "help function NAME" work. This is also used as
2311 the implementation of the sub-command that is created when
2312 registering an internal function. */
2313 static void
2314 function_command (char *command, int from_tty)
2315 {
2316 /* Do nothing. */
2317 }
2318
2319 /* Clean up if an internal function's command is destroyed. */
2320 static void
2321 function_destroyer (struct cmd_list_element *self, void *ignore)
2322 {
2323 xfree ((char *) self->name);
2324 xfree (self->doc);
2325 }
2326
2327 /* Add a new internal function. NAME is the name of the function; DOC
2328 is a documentation string describing the function. HANDLER is
2329 called when the function is invoked. COOKIE is an arbitrary
2330 pointer which is passed to HANDLER and is intended for "user
2331 data". */
2332 void
2333 add_internal_function (const char *name, const char *doc,
2334 internal_function_fn handler, void *cookie)
2335 {
2336 struct cmd_list_element *cmd;
2337 struct internal_function *ifn;
2338 struct internalvar *var = lookup_internalvar (name);
2339
2340 ifn = create_internal_function (name, handler, cookie);
2341 set_internalvar_function (var, ifn);
2342
2343 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2344 &functionlist);
2345 cmd->destroyer = function_destroyer;
2346 }
2347
2348 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2349 prevent cycles / duplicates. */
2350
2351 void
2352 preserve_one_value (struct value *value, struct objfile *objfile,
2353 htab_t copied_types)
2354 {
2355 if (TYPE_OBJFILE (value->type) == objfile)
2356 value->type = copy_type_recursive (objfile, value->type, copied_types);
2357
2358 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2359 value->enclosing_type = copy_type_recursive (objfile,
2360 value->enclosing_type,
2361 copied_types);
2362 }
2363
2364 /* Likewise for internal variable VAR. */
2365
2366 static void
2367 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2368 htab_t copied_types)
2369 {
2370 switch (var->kind)
2371 {
2372 case INTERNALVAR_INTEGER:
2373 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2374 var->u.integer.type
2375 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2376 break;
2377
2378 case INTERNALVAR_VALUE:
2379 preserve_one_value (var->u.value, objfile, copied_types);
2380 break;
2381 }
2382 }
2383
2384 /* Update the internal variables and value history when OBJFILE is
2385 discarded; we must copy the types out of the objfile. New global types
2386 will be created for every convenience variable which currently points to
2387 this objfile's types, and the convenience variables will be adjusted to
2388 use the new global types. */
2389
2390 void
2391 preserve_values (struct objfile *objfile)
2392 {
2393 htab_t copied_types;
2394 struct value_history_chunk *cur;
2395 struct internalvar *var;
2396 int i;
2397
2398 /* Create the hash table. We allocate on the objfile's obstack, since
2399 it is soon to be deleted. */
2400 copied_types = create_copied_types_hash (objfile);
2401
2402 for (cur = value_history_chain; cur; cur = cur->next)
2403 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2404 if (cur->values[i])
2405 preserve_one_value (cur->values[i], objfile, copied_types);
2406
2407 for (var = internalvars; var; var = var->next)
2408 preserve_one_internalvar (var, objfile, copied_types);
2409
2410 preserve_ext_lang_values (objfile, copied_types);
2411
2412 htab_delete (copied_types);
2413 }
2414
2415 static void
2416 show_convenience (char *ignore, int from_tty)
2417 {
2418 struct gdbarch *gdbarch = get_current_arch ();
2419 struct internalvar *var;
2420 int varseen = 0;
2421 struct value_print_options opts;
2422
2423 get_user_print_options (&opts);
2424 for (var = internalvars; var; var = var->next)
2425 {
2426 volatile struct gdb_exception ex;
2427
2428 if (!varseen)
2429 {
2430 varseen = 1;
2431 }
2432 printf_filtered (("$%s = "), var->name);
2433
2434 TRY_CATCH (ex, RETURN_MASK_ERROR)
2435 {
2436 struct value *val;
2437
2438 val = value_of_internalvar (gdbarch, var);
2439 value_print (val, gdb_stdout, &opts);
2440 }
2441 if (ex.reason < 0)
2442 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2443 printf_filtered (("\n"));
2444 }
2445 if (!varseen)
2446 {
2447 /* This text does not mention convenience functions on purpose.
2448 The user can't create them except via Python, and if Python support
2449 is installed this message will never be printed ($_streq will
2450 exist). */
2451 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2452 "Convenience variables have "
2453 "names starting with \"$\";\n"
2454 "use \"set\" as in \"set "
2455 "$foo = 5\" to define them.\n"));
2456 }
2457 }
2458 \f
2459 /* Extract a value as a C number (either long or double).
2460 Knows how to convert fixed values to double, or
2461 floating values to long.
2462 Does not deallocate the value. */
2463
2464 LONGEST
2465 value_as_long (struct value *val)
2466 {
2467 /* This coerces arrays and functions, which is necessary (e.g.
2468 in disassemble_command). It also dereferences references, which
2469 I suspect is the most logical thing to do. */
2470 val = coerce_array (val);
2471 return unpack_long (value_type (val), value_contents (val));
2472 }
2473
2474 DOUBLEST
2475 value_as_double (struct value *val)
2476 {
2477 DOUBLEST foo;
2478 int inv;
2479
2480 foo = unpack_double (value_type (val), value_contents (val), &inv);
2481 if (inv)
2482 error (_("Invalid floating value found in program."));
2483 return foo;
2484 }
2485
2486 /* Extract a value as a C pointer. Does not deallocate the value.
2487 Note that val's type may not actually be a pointer; value_as_long
2488 handles all the cases. */
2489 CORE_ADDR
2490 value_as_address (struct value *val)
2491 {
2492 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2493
2494 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2495 whether we want this to be true eventually. */
2496 #if 0
2497 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2498 non-address (e.g. argument to "signal", "info break", etc.), or
2499 for pointers to char, in which the low bits *are* significant. */
2500 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2501 #else
2502
2503 /* There are several targets (IA-64, PowerPC, and others) which
2504 don't represent pointers to functions as simply the address of
2505 the function's entry point. For example, on the IA-64, a
2506 function pointer points to a two-word descriptor, generated by
2507 the linker, which contains the function's entry point, and the
2508 value the IA-64 "global pointer" register should have --- to
2509 support position-independent code. The linker generates
2510 descriptors only for those functions whose addresses are taken.
2511
2512 On such targets, it's difficult for GDB to convert an arbitrary
2513 function address into a function pointer; it has to either find
2514 an existing descriptor for that function, or call malloc and
2515 build its own. On some targets, it is impossible for GDB to
2516 build a descriptor at all: the descriptor must contain a jump
2517 instruction; data memory cannot be executed; and code memory
2518 cannot be modified.
2519
2520 Upon entry to this function, if VAL is a value of type `function'
2521 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2522 value_address (val) is the address of the function. This is what
2523 you'll get if you evaluate an expression like `main'. The call
2524 to COERCE_ARRAY below actually does all the usual unary
2525 conversions, which includes converting values of type `function'
2526 to `pointer to function'. This is the challenging conversion
2527 discussed above. Then, `unpack_long' will convert that pointer
2528 back into an address.
2529
2530 So, suppose the user types `disassemble foo' on an architecture
2531 with a strange function pointer representation, on which GDB
2532 cannot build its own descriptors, and suppose further that `foo'
2533 has no linker-built descriptor. The address->pointer conversion
2534 will signal an error and prevent the command from running, even
2535 though the next step would have been to convert the pointer
2536 directly back into the same address.
2537
2538 The following shortcut avoids this whole mess. If VAL is a
2539 function, just return its address directly. */
2540 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2541 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2542 return value_address (val);
2543
2544 val = coerce_array (val);
2545
2546 /* Some architectures (e.g. Harvard), map instruction and data
2547 addresses onto a single large unified address space. For
2548 instance: An architecture may consider a large integer in the
2549 range 0x10000000 .. 0x1000ffff to already represent a data
2550 addresses (hence not need a pointer to address conversion) while
2551 a small integer would still need to be converted integer to
2552 pointer to address. Just assume such architectures handle all
2553 integer conversions in a single function. */
2554
2555 /* JimB writes:
2556
2557 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2558 must admonish GDB hackers to make sure its behavior matches the
2559 compiler's, whenever possible.
2560
2561 In general, I think GDB should evaluate expressions the same way
2562 the compiler does. When the user copies an expression out of
2563 their source code and hands it to a `print' command, they should
2564 get the same value the compiler would have computed. Any
2565 deviation from this rule can cause major confusion and annoyance,
2566 and needs to be justified carefully. In other words, GDB doesn't
2567 really have the freedom to do these conversions in clever and
2568 useful ways.
2569
2570 AndrewC pointed out that users aren't complaining about how GDB
2571 casts integers to pointers; they are complaining that they can't
2572 take an address from a disassembly listing and give it to `x/i'.
2573 This is certainly important.
2574
2575 Adding an architecture method like integer_to_address() certainly
2576 makes it possible for GDB to "get it right" in all circumstances
2577 --- the target has complete control over how things get done, so
2578 people can Do The Right Thing for their target without breaking
2579 anyone else. The standard doesn't specify how integers get
2580 converted to pointers; usually, the ABI doesn't either, but
2581 ABI-specific code is a more reasonable place to handle it. */
2582
2583 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2584 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2585 && gdbarch_integer_to_address_p (gdbarch))
2586 return gdbarch_integer_to_address (gdbarch, value_type (val),
2587 value_contents (val));
2588
2589 return unpack_long (value_type (val), value_contents (val));
2590 #endif
2591 }
2592 \f
2593 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2594 as a long, or as a double, assuming the raw data is described
2595 by type TYPE. Knows how to convert different sizes of values
2596 and can convert between fixed and floating point. We don't assume
2597 any alignment for the raw data. Return value is in host byte order.
2598
2599 If you want functions and arrays to be coerced to pointers, and
2600 references to be dereferenced, call value_as_long() instead.
2601
2602 C++: It is assumed that the front-end has taken care of
2603 all matters concerning pointers to members. A pointer
2604 to member which reaches here is considered to be equivalent
2605 to an INT (or some size). After all, it is only an offset. */
2606
2607 LONGEST
2608 unpack_long (struct type *type, const gdb_byte *valaddr)
2609 {
2610 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2611 enum type_code code = TYPE_CODE (type);
2612 int len = TYPE_LENGTH (type);
2613 int nosign = TYPE_UNSIGNED (type);
2614
2615 switch (code)
2616 {
2617 case TYPE_CODE_TYPEDEF:
2618 return unpack_long (check_typedef (type), valaddr);
2619 case TYPE_CODE_ENUM:
2620 case TYPE_CODE_FLAGS:
2621 case TYPE_CODE_BOOL:
2622 case TYPE_CODE_INT:
2623 case TYPE_CODE_CHAR:
2624 case TYPE_CODE_RANGE:
2625 case TYPE_CODE_MEMBERPTR:
2626 if (nosign)
2627 return extract_unsigned_integer (valaddr, len, byte_order);
2628 else
2629 return extract_signed_integer (valaddr, len, byte_order);
2630
2631 case TYPE_CODE_FLT:
2632 return extract_typed_floating (valaddr, type);
2633
2634 case TYPE_CODE_DECFLOAT:
2635 /* libdecnumber has a function to convert from decimal to integer, but
2636 it doesn't work when the decimal number has a fractional part. */
2637 return decimal_to_doublest (valaddr, len, byte_order);
2638
2639 case TYPE_CODE_PTR:
2640 case TYPE_CODE_REF:
2641 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2642 whether we want this to be true eventually. */
2643 return extract_typed_address (valaddr, type);
2644
2645 default:
2646 error (_("Value can't be converted to integer."));
2647 }
2648 return 0; /* Placate lint. */
2649 }
2650
2651 /* Return a double value from the specified type and address.
2652 INVP points to an int which is set to 0 for valid value,
2653 1 for invalid value (bad float format). In either case,
2654 the returned double is OK to use. Argument is in target
2655 format, result is in host format. */
2656
2657 DOUBLEST
2658 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2659 {
2660 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2661 enum type_code code;
2662 int len;
2663 int nosign;
2664
2665 *invp = 0; /* Assume valid. */
2666 CHECK_TYPEDEF (type);
2667 code = TYPE_CODE (type);
2668 len = TYPE_LENGTH (type);
2669 nosign = TYPE_UNSIGNED (type);
2670 if (code == TYPE_CODE_FLT)
2671 {
2672 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2673 floating-point value was valid (using the macro
2674 INVALID_FLOAT). That test/macro have been removed.
2675
2676 It turns out that only the VAX defined this macro and then
2677 only in a non-portable way. Fixing the portability problem
2678 wouldn't help since the VAX floating-point code is also badly
2679 bit-rotten. The target needs to add definitions for the
2680 methods gdbarch_float_format and gdbarch_double_format - these
2681 exactly describe the target floating-point format. The
2682 problem here is that the corresponding floatformat_vax_f and
2683 floatformat_vax_d values these methods should be set to are
2684 also not defined either. Oops!
2685
2686 Hopefully someone will add both the missing floatformat
2687 definitions and the new cases for floatformat_is_valid (). */
2688
2689 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2690 {
2691 *invp = 1;
2692 return 0.0;
2693 }
2694
2695 return extract_typed_floating (valaddr, type);
2696 }
2697 else if (code == TYPE_CODE_DECFLOAT)
2698 return decimal_to_doublest (valaddr, len, byte_order);
2699 else if (nosign)
2700 {
2701 /* Unsigned -- be sure we compensate for signed LONGEST. */
2702 return (ULONGEST) unpack_long (type, valaddr);
2703 }
2704 else
2705 {
2706 /* Signed -- we are OK with unpack_long. */
2707 return unpack_long (type, valaddr);
2708 }
2709 }
2710
2711 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2712 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2713 We don't assume any alignment for the raw data. Return value is in
2714 host byte order.
2715
2716 If you want functions and arrays to be coerced to pointers, and
2717 references to be dereferenced, call value_as_address() instead.
2718
2719 C++: It is assumed that the front-end has taken care of
2720 all matters concerning pointers to members. A pointer
2721 to member which reaches here is considered to be equivalent
2722 to an INT (or some size). After all, it is only an offset. */
2723
2724 CORE_ADDR
2725 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2726 {
2727 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2728 whether we want this to be true eventually. */
2729 return unpack_long (type, valaddr);
2730 }
2731
2732 \f
2733 /* Get the value of the FIELDNO'th field (which must be static) of
2734 TYPE. */
2735
2736 struct value *
2737 value_static_field (struct type *type, int fieldno)
2738 {
2739 struct value *retval;
2740
2741 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2742 {
2743 case FIELD_LOC_KIND_PHYSADDR:
2744 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2745 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2746 break;
2747 case FIELD_LOC_KIND_PHYSNAME:
2748 {
2749 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2750 /* TYPE_FIELD_NAME (type, fieldno); */
2751 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2752
2753 if (sym == NULL)
2754 {
2755 /* With some compilers, e.g. HP aCC, static data members are
2756 reported as non-debuggable symbols. */
2757 struct bound_minimal_symbol msym
2758 = lookup_minimal_symbol (phys_name, NULL, NULL);
2759
2760 if (!msym.minsym)
2761 return allocate_optimized_out_value (type);
2762 else
2763 {
2764 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2765 BMSYMBOL_VALUE_ADDRESS (msym));
2766 }
2767 }
2768 else
2769 retval = value_of_variable (sym, NULL);
2770 break;
2771 }
2772 default:
2773 gdb_assert_not_reached ("unexpected field location kind");
2774 }
2775
2776 return retval;
2777 }
2778
2779 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2780 You have to be careful here, since the size of the data area for the value
2781 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2782 than the old enclosing type, you have to allocate more space for the
2783 data. */
2784
2785 void
2786 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2787 {
2788 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2789 val->contents =
2790 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2791
2792 val->enclosing_type = new_encl_type;
2793 }
2794
2795 /* Given a value ARG1 (offset by OFFSET bytes)
2796 of a struct or union type ARG_TYPE,
2797 extract and return the value of one of its (non-static) fields.
2798 FIELDNO says which field. */
2799
2800 struct value *
2801 value_primitive_field (struct value *arg1, int offset,
2802 int fieldno, struct type *arg_type)
2803 {
2804 struct value *v;
2805 struct type *type;
2806
2807 CHECK_TYPEDEF (arg_type);
2808 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2809
2810 /* Call check_typedef on our type to make sure that, if TYPE
2811 is a TYPE_CODE_TYPEDEF, its length is set to the length
2812 of the target type instead of zero. However, we do not
2813 replace the typedef type by the target type, because we want
2814 to keep the typedef in order to be able to print the type
2815 description correctly. */
2816 check_typedef (type);
2817
2818 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2819 {
2820 /* Handle packed fields.
2821
2822 Create a new value for the bitfield, with bitpos and bitsize
2823 set. If possible, arrange offset and bitpos so that we can
2824 do a single aligned read of the size of the containing type.
2825 Otherwise, adjust offset to the byte containing the first
2826 bit. Assume that the address, offset, and embedded offset
2827 are sufficiently aligned. */
2828
2829 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2830 int container_bitsize = TYPE_LENGTH (type) * 8;
2831
2832 if (arg1->optimized_out)
2833 v = allocate_optimized_out_value (type);
2834 else
2835 {
2836 v = allocate_value_lazy (type);
2837 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2838 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2839 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2840 v->bitpos = bitpos % container_bitsize;
2841 else
2842 v->bitpos = bitpos % 8;
2843 v->offset = (value_embedded_offset (arg1)
2844 + offset
2845 + (bitpos - v->bitpos) / 8);
2846 set_value_parent (v, arg1);
2847 if (!value_lazy (arg1))
2848 value_fetch_lazy (v);
2849 }
2850 }
2851 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2852 {
2853 /* This field is actually a base subobject, so preserve the
2854 entire object's contents for later references to virtual
2855 bases, etc. */
2856 int boffset;
2857
2858 /* Lazy register values with offsets are not supported. */
2859 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2860 value_fetch_lazy (arg1);
2861
2862 /* The optimized_out flag is only set correctly once a lazy value is
2863 loaded, having just loaded some lazy values we should check the
2864 optimized out case now. */
2865 if (arg1->optimized_out)
2866 v = allocate_optimized_out_value (type);
2867 else
2868 {
2869 /* We special case virtual inheritance here because this
2870 requires access to the contents, which we would rather avoid
2871 for references to ordinary fields of unavailable values. */
2872 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2873 boffset = baseclass_offset (arg_type, fieldno,
2874 value_contents (arg1),
2875 value_embedded_offset (arg1),
2876 value_address (arg1),
2877 arg1);
2878 else
2879 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2880
2881 if (value_lazy (arg1))
2882 v = allocate_value_lazy (value_enclosing_type (arg1));
2883 else
2884 {
2885 v = allocate_value (value_enclosing_type (arg1));
2886 value_contents_copy_raw (v, 0, arg1, 0,
2887 TYPE_LENGTH (value_enclosing_type (arg1)));
2888 }
2889 v->type = type;
2890 v->offset = value_offset (arg1);
2891 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2892 }
2893 }
2894 else
2895 {
2896 /* Plain old data member */
2897 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2898
2899 /* Lazy register values with offsets are not supported. */
2900 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2901 value_fetch_lazy (arg1);
2902
2903 /* The optimized_out flag is only set correctly once a lazy value is
2904 loaded, having just loaded some lazy values we should check for
2905 the optimized out case now. */
2906 if (arg1->optimized_out)
2907 v = allocate_optimized_out_value (type);
2908 else if (value_lazy (arg1))
2909 v = allocate_value_lazy (type);
2910 else
2911 {
2912 v = allocate_value (type);
2913 value_contents_copy_raw (v, value_embedded_offset (v),
2914 arg1, value_embedded_offset (arg1) + offset,
2915 TYPE_LENGTH (type));
2916 }
2917 v->offset = (value_offset (arg1) + offset
2918 + value_embedded_offset (arg1));
2919 }
2920 set_value_component_location (v, arg1);
2921 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2922 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2923 return v;
2924 }
2925
2926 /* Given a value ARG1 of a struct or union type,
2927 extract and return the value of one of its (non-static) fields.
2928 FIELDNO says which field. */
2929
2930 struct value *
2931 value_field (struct value *arg1, int fieldno)
2932 {
2933 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2934 }
2935
2936 /* Return a non-virtual function as a value.
2937 F is the list of member functions which contains the desired method.
2938 J is an index into F which provides the desired method.
2939
2940 We only use the symbol for its address, so be happy with either a
2941 full symbol or a minimal symbol. */
2942
2943 struct value *
2944 value_fn_field (struct value **arg1p, struct fn_field *f,
2945 int j, struct type *type,
2946 int offset)
2947 {
2948 struct value *v;
2949 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2950 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2951 struct symbol *sym;
2952 struct bound_minimal_symbol msym;
2953
2954 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2955 if (sym != NULL)
2956 {
2957 memset (&msym, 0, sizeof (msym));
2958 }
2959 else
2960 {
2961 gdb_assert (sym == NULL);
2962 msym = lookup_bound_minimal_symbol (physname);
2963 if (msym.minsym == NULL)
2964 return NULL;
2965 }
2966
2967 v = allocate_value (ftype);
2968 if (sym)
2969 {
2970 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2971 }
2972 else
2973 {
2974 /* The minimal symbol might point to a function descriptor;
2975 resolve it to the actual code address instead. */
2976 struct objfile *objfile = msym.objfile;
2977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2978
2979 set_value_address (v,
2980 gdbarch_convert_from_func_ptr_addr
2981 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
2982 }
2983
2984 if (arg1p)
2985 {
2986 if (type != value_type (*arg1p))
2987 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2988 value_addr (*arg1p)));
2989
2990 /* Move the `this' pointer according to the offset.
2991 VALUE_OFFSET (*arg1p) += offset; */
2992 }
2993
2994 return v;
2995 }
2996
2997 \f
2998
2999 /* Helper function for both unpack_value_bits_as_long and
3000 unpack_bits_as_long. See those functions for more details on the
3001 interface; the only difference is that this function accepts either
3002 a NULL or a non-NULL ORIGINAL_VALUE. */
3003
3004 static int
3005 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3006 int embedded_offset, int bitpos, int bitsize,
3007 const struct value *original_value,
3008 LONGEST *result)
3009 {
3010 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3011 ULONGEST val;
3012 ULONGEST valmask;
3013 int lsbcount;
3014 int bytes_read;
3015 int read_offset;
3016
3017 /* Read the minimum number of bytes required; there may not be
3018 enough bytes to read an entire ULONGEST. */
3019 CHECK_TYPEDEF (field_type);
3020 if (bitsize)
3021 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3022 else
3023 bytes_read = TYPE_LENGTH (field_type);
3024
3025 read_offset = bitpos / 8;
3026
3027 if (original_value != NULL
3028 && !value_bits_available (original_value, embedded_offset + bitpos,
3029 bitsize))
3030 return 0;
3031
3032 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3033 bytes_read, byte_order);
3034
3035 /* Extract bits. See comment above. */
3036
3037 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3038 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3039 else
3040 lsbcount = (bitpos % 8);
3041 val >>= lsbcount;
3042
3043 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3044 If the field is signed, and is negative, then sign extend. */
3045
3046 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3047 {
3048 valmask = (((ULONGEST) 1) << bitsize) - 1;
3049 val &= valmask;
3050 if (!TYPE_UNSIGNED (field_type))
3051 {
3052 if (val & (valmask ^ (valmask >> 1)))
3053 {
3054 val |= ~valmask;
3055 }
3056 }
3057 }
3058
3059 *result = val;
3060 return 1;
3061 }
3062
3063 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3064 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3065 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3066 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3067 bits.
3068
3069 Returns false if the value contents are unavailable, otherwise
3070 returns true, indicating a valid value has been stored in *RESULT.
3071
3072 Extracting bits depends on endianness of the machine. Compute the
3073 number of least significant bits to discard. For big endian machines,
3074 we compute the total number of bits in the anonymous object, subtract
3075 off the bit count from the MSB of the object to the MSB of the
3076 bitfield, then the size of the bitfield, which leaves the LSB discard
3077 count. For little endian machines, the discard count is simply the
3078 number of bits from the LSB of the anonymous object to the LSB of the
3079 bitfield.
3080
3081 If the field is signed, we also do sign extension. */
3082
3083 int
3084 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3085 int embedded_offset, int bitpos, int bitsize,
3086 const struct value *original_value,
3087 LONGEST *result)
3088 {
3089 gdb_assert (original_value != NULL);
3090
3091 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3092 bitpos, bitsize, original_value, result);
3093
3094 }
3095
3096 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3097 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3098 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3099 details. */
3100
3101 static int
3102 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3103 int embedded_offset, int fieldno,
3104 const struct value *val, LONGEST *result)
3105 {
3106 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3107 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3108 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3109
3110 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3111 bitpos, bitsize, val,
3112 result);
3113 }
3114
3115 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3116 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3117 ORIGINAL_VALUE, which must not be NULL. See
3118 unpack_value_bits_as_long for more details. */
3119
3120 int
3121 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3122 int embedded_offset, int fieldno,
3123 const struct value *val, LONGEST *result)
3124 {
3125 gdb_assert (val != NULL);
3126
3127 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3128 fieldno, val, result);
3129 }
3130
3131 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3132 object at VALADDR. See unpack_value_bits_as_long for more details.
3133 This function differs from unpack_value_field_as_long in that it
3134 operates without a struct value object. */
3135
3136 LONGEST
3137 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3138 {
3139 LONGEST result;
3140
3141 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3142 return result;
3143 }
3144
3145 /* Return a new value with type TYPE, which is FIELDNO field of the
3146 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3147 of VAL. If the VAL's contents required to extract the bitfield
3148 from are unavailable, the new value is correspondingly marked as
3149 unavailable. */
3150
3151 struct value *
3152 value_field_bitfield (struct type *type, int fieldno,
3153 const gdb_byte *valaddr,
3154 int embedded_offset, const struct value *val)
3155 {
3156 LONGEST l;
3157
3158 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3159 val, &l))
3160 {
3161 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3162 struct value *retval = allocate_value (field_type);
3163 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3164 return retval;
3165 }
3166 else
3167 {
3168 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3169 }
3170 }
3171
3172 /* Modify the value of a bitfield. ADDR points to a block of memory in
3173 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3174 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3175 indicate which bits (in target bit order) comprise the bitfield.
3176 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3177 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3178
3179 void
3180 modify_field (struct type *type, gdb_byte *addr,
3181 LONGEST fieldval, int bitpos, int bitsize)
3182 {
3183 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3184 ULONGEST oword;
3185 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3186 int bytesize;
3187
3188 /* Normalize BITPOS. */
3189 addr += bitpos / 8;
3190 bitpos %= 8;
3191
3192 /* If a negative fieldval fits in the field in question, chop
3193 off the sign extension bits. */
3194 if ((~fieldval & ~(mask >> 1)) == 0)
3195 fieldval &= mask;
3196
3197 /* Warn if value is too big to fit in the field in question. */
3198 if (0 != (fieldval & ~mask))
3199 {
3200 /* FIXME: would like to include fieldval in the message, but
3201 we don't have a sprintf_longest. */
3202 warning (_("Value does not fit in %d bits."), bitsize);
3203
3204 /* Truncate it, otherwise adjoining fields may be corrupted. */
3205 fieldval &= mask;
3206 }
3207
3208 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3209 false valgrind reports. */
3210
3211 bytesize = (bitpos + bitsize + 7) / 8;
3212 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3213
3214 /* Shifting for bit field depends on endianness of the target machine. */
3215 if (gdbarch_bits_big_endian (get_type_arch (type)))
3216 bitpos = bytesize * 8 - bitpos - bitsize;
3217
3218 oword &= ~(mask << bitpos);
3219 oword |= fieldval << bitpos;
3220
3221 store_unsigned_integer (addr, bytesize, byte_order, oword);
3222 }
3223 \f
3224 /* Pack NUM into BUF using a target format of TYPE. */
3225
3226 void
3227 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3228 {
3229 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3230 int len;
3231
3232 type = check_typedef (type);
3233 len = TYPE_LENGTH (type);
3234
3235 switch (TYPE_CODE (type))
3236 {
3237 case TYPE_CODE_INT:
3238 case TYPE_CODE_CHAR:
3239 case TYPE_CODE_ENUM:
3240 case TYPE_CODE_FLAGS:
3241 case TYPE_CODE_BOOL:
3242 case TYPE_CODE_RANGE:
3243 case TYPE_CODE_MEMBERPTR:
3244 store_signed_integer (buf, len, byte_order, num);
3245 break;
3246
3247 case TYPE_CODE_REF:
3248 case TYPE_CODE_PTR:
3249 store_typed_address (buf, type, (CORE_ADDR) num);
3250 break;
3251
3252 default:
3253 error (_("Unexpected type (%d) encountered for integer constant."),
3254 TYPE_CODE (type));
3255 }
3256 }
3257
3258
3259 /* Pack NUM into BUF using a target format of TYPE. */
3260
3261 static void
3262 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3263 {
3264 int len;
3265 enum bfd_endian byte_order;
3266
3267 type = check_typedef (type);
3268 len = TYPE_LENGTH (type);
3269 byte_order = gdbarch_byte_order (get_type_arch (type));
3270
3271 switch (TYPE_CODE (type))
3272 {
3273 case TYPE_CODE_INT:
3274 case TYPE_CODE_CHAR:
3275 case TYPE_CODE_ENUM:
3276 case TYPE_CODE_FLAGS:
3277 case TYPE_CODE_BOOL:
3278 case TYPE_CODE_RANGE:
3279 case TYPE_CODE_MEMBERPTR:
3280 store_unsigned_integer (buf, len, byte_order, num);
3281 break;
3282
3283 case TYPE_CODE_REF:
3284 case TYPE_CODE_PTR:
3285 store_typed_address (buf, type, (CORE_ADDR) num);
3286 break;
3287
3288 default:
3289 error (_("Unexpected type (%d) encountered "
3290 "for unsigned integer constant."),
3291 TYPE_CODE (type));
3292 }
3293 }
3294
3295
3296 /* Convert C numbers into newly allocated values. */
3297
3298 struct value *
3299 value_from_longest (struct type *type, LONGEST num)
3300 {
3301 struct value *val = allocate_value (type);
3302
3303 pack_long (value_contents_raw (val), type, num);
3304 return val;
3305 }
3306
3307
3308 /* Convert C unsigned numbers into newly allocated values. */
3309
3310 struct value *
3311 value_from_ulongest (struct type *type, ULONGEST num)
3312 {
3313 struct value *val = allocate_value (type);
3314
3315 pack_unsigned_long (value_contents_raw (val), type, num);
3316
3317 return val;
3318 }
3319
3320
3321 /* Create a value representing a pointer of type TYPE to the address
3322 ADDR. */
3323 struct value *
3324 value_from_pointer (struct type *type, CORE_ADDR addr)
3325 {
3326 struct value *val = allocate_value (type);
3327
3328 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3329 return val;
3330 }
3331
3332
3333 /* Create a value of type TYPE whose contents come from VALADDR, if it
3334 is non-null, and whose memory address (in the inferior) is
3335 ADDRESS. */
3336
3337 struct value *
3338 value_from_contents_and_address (struct type *type,
3339 const gdb_byte *valaddr,
3340 CORE_ADDR address)
3341 {
3342 struct value *v;
3343
3344 if (valaddr == NULL)
3345 v = allocate_value_lazy (type);
3346 else
3347 v = value_from_contents (type, valaddr);
3348 set_value_address (v, address);
3349 VALUE_LVAL (v) = lval_memory;
3350 return v;
3351 }
3352
3353 /* Create a value of type TYPE holding the contents CONTENTS.
3354 The new value is `not_lval'. */
3355
3356 struct value *
3357 value_from_contents (struct type *type, const gdb_byte *contents)
3358 {
3359 struct value *result;
3360
3361 result = allocate_value (type);
3362 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3363 return result;
3364 }
3365
3366 struct value *
3367 value_from_double (struct type *type, DOUBLEST num)
3368 {
3369 struct value *val = allocate_value (type);
3370 struct type *base_type = check_typedef (type);
3371 enum type_code code = TYPE_CODE (base_type);
3372
3373 if (code == TYPE_CODE_FLT)
3374 {
3375 store_typed_floating (value_contents_raw (val), base_type, num);
3376 }
3377 else
3378 error (_("Unexpected type encountered for floating constant."));
3379
3380 return val;
3381 }
3382
3383 struct value *
3384 value_from_decfloat (struct type *type, const gdb_byte *dec)
3385 {
3386 struct value *val = allocate_value (type);
3387
3388 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3389 return val;
3390 }
3391
3392 /* Extract a value from the history file. Input will be of the form
3393 $digits or $$digits. See block comment above 'write_dollar_variable'
3394 for details. */
3395
3396 struct value *
3397 value_from_history_ref (char *h, char **endp)
3398 {
3399 int index, len;
3400
3401 if (h[0] == '$')
3402 len = 1;
3403 else
3404 return NULL;
3405
3406 if (h[1] == '$')
3407 len = 2;
3408
3409 /* Find length of numeral string. */
3410 for (; isdigit (h[len]); len++)
3411 ;
3412
3413 /* Make sure numeral string is not part of an identifier. */
3414 if (h[len] == '_' || isalpha (h[len]))
3415 return NULL;
3416
3417 /* Now collect the index value. */
3418 if (h[1] == '$')
3419 {
3420 if (len == 2)
3421 {
3422 /* For some bizarre reason, "$$" is equivalent to "$$1",
3423 rather than to "$$0" as it ought to be! */
3424 index = -1;
3425 *endp += len;
3426 }
3427 else
3428 index = -strtol (&h[2], endp, 10);
3429 }
3430 else
3431 {
3432 if (len == 1)
3433 {
3434 /* "$" is equivalent to "$0". */
3435 index = 0;
3436 *endp += len;
3437 }
3438 else
3439 index = strtol (&h[1], endp, 10);
3440 }
3441
3442 return access_value_history (index);
3443 }
3444
3445 struct value *
3446 coerce_ref_if_computed (const struct value *arg)
3447 {
3448 const struct lval_funcs *funcs;
3449
3450 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3451 return NULL;
3452
3453 if (value_lval_const (arg) != lval_computed)
3454 return NULL;
3455
3456 funcs = value_computed_funcs (arg);
3457 if (funcs->coerce_ref == NULL)
3458 return NULL;
3459
3460 return funcs->coerce_ref (arg);
3461 }
3462
3463 /* Look at value.h for description. */
3464
3465 struct value *
3466 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3467 struct type *original_type,
3468 struct value *original_value)
3469 {
3470 /* Re-adjust type. */
3471 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3472
3473 /* Add embedding info. */
3474 set_value_enclosing_type (value, enc_type);
3475 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3476
3477 /* We may be pointing to an object of some derived type. */
3478 return value_full_object (value, NULL, 0, 0, 0);
3479 }
3480
3481 struct value *
3482 coerce_ref (struct value *arg)
3483 {
3484 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3485 struct value *retval;
3486 struct type *enc_type;
3487
3488 retval = coerce_ref_if_computed (arg);
3489 if (retval)
3490 return retval;
3491
3492 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3493 return arg;
3494
3495 enc_type = check_typedef (value_enclosing_type (arg));
3496 enc_type = TYPE_TARGET_TYPE (enc_type);
3497
3498 retval = value_at_lazy (enc_type,
3499 unpack_pointer (value_type (arg),
3500 value_contents (arg)));
3501 return readjust_indirect_value_type (retval, enc_type,
3502 value_type_arg_tmp, arg);
3503 }
3504
3505 struct value *
3506 coerce_array (struct value *arg)
3507 {
3508 struct type *type;
3509
3510 arg = coerce_ref (arg);
3511 type = check_typedef (value_type (arg));
3512
3513 switch (TYPE_CODE (type))
3514 {
3515 case TYPE_CODE_ARRAY:
3516 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3517 arg = value_coerce_array (arg);
3518 break;
3519 case TYPE_CODE_FUNC:
3520 arg = value_coerce_function (arg);
3521 break;
3522 }
3523 return arg;
3524 }
3525 \f
3526
3527 /* Return the return value convention that will be used for the
3528 specified type. */
3529
3530 enum return_value_convention
3531 struct_return_convention (struct gdbarch *gdbarch,
3532 struct value *function, struct type *value_type)
3533 {
3534 enum type_code code = TYPE_CODE (value_type);
3535
3536 if (code == TYPE_CODE_ERROR)
3537 error (_("Function return type unknown."));
3538
3539 /* Probe the architecture for the return-value convention. */
3540 return gdbarch_return_value (gdbarch, function, value_type,
3541 NULL, NULL, NULL);
3542 }
3543
3544 /* Return true if the function returning the specified type is using
3545 the convention of returning structures in memory (passing in the
3546 address as a hidden first parameter). */
3547
3548 int
3549 using_struct_return (struct gdbarch *gdbarch,
3550 struct value *function, struct type *value_type)
3551 {
3552 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3553 /* A void return value is never in memory. See also corresponding
3554 code in "print_return_value". */
3555 return 0;
3556
3557 return (struct_return_convention (gdbarch, function, value_type)
3558 != RETURN_VALUE_REGISTER_CONVENTION);
3559 }
3560
3561 /* Set the initialized field in a value struct. */
3562
3563 void
3564 set_value_initialized (struct value *val, int status)
3565 {
3566 val->initialized = status;
3567 }
3568
3569 /* Return the initialized field in a value struct. */
3570
3571 int
3572 value_initialized (struct value *val)
3573 {
3574 return val->initialized;
3575 }
3576
3577 /* Called only from the value_contents and value_contents_all()
3578 macros, if the current data for a variable needs to be loaded into
3579 value_contents(VAL). Fetches the data from the user's process, and
3580 clears the lazy flag to indicate that the data in the buffer is
3581 valid.
3582
3583 If the value is zero-length, we avoid calling read_memory, which
3584 would abort. We mark the value as fetched anyway -- all 0 bytes of
3585 it.
3586
3587 This function returns a value because it is used in the
3588 value_contents macro as part of an expression, where a void would
3589 not work. The value is ignored. */
3590
3591 int
3592 value_fetch_lazy (struct value *val)
3593 {
3594 gdb_assert (value_lazy (val));
3595 allocate_value_contents (val);
3596 if (value_bitsize (val))
3597 {
3598 /* To read a lazy bitfield, read the entire enclosing value. This
3599 prevents reading the same block of (possibly volatile) memory once
3600 per bitfield. It would be even better to read only the containing
3601 word, but we have no way to record that just specific bits of a
3602 value have been fetched. */
3603 struct type *type = check_typedef (value_type (val));
3604 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3605 struct value *parent = value_parent (val);
3606 LONGEST offset = value_offset (val);
3607 LONGEST num;
3608
3609 if (value_lazy (parent))
3610 value_fetch_lazy (parent);
3611
3612 if (!value_bits_valid (parent,
3613 TARGET_CHAR_BIT * offset + value_bitpos (val),
3614 value_bitsize (val)))
3615 set_value_optimized_out (val, 1);
3616 else if (!unpack_value_bits_as_long (value_type (val),
3617 value_contents_for_printing (parent),
3618 offset,
3619 value_bitpos (val),
3620 value_bitsize (val), parent, &num))
3621 mark_value_bytes_unavailable (val,
3622 value_embedded_offset (val),
3623 TYPE_LENGTH (type));
3624 else
3625 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3626 byte_order, num);
3627 }
3628 else if (VALUE_LVAL (val) == lval_memory)
3629 {
3630 CORE_ADDR addr = value_address (val);
3631 struct type *type = check_typedef (value_enclosing_type (val));
3632
3633 if (TYPE_LENGTH (type))
3634 read_value_memory (val, 0, value_stack (val),
3635 addr, value_contents_all_raw (val),
3636 TYPE_LENGTH (type));
3637 }
3638 else if (VALUE_LVAL (val) == lval_register)
3639 {
3640 struct frame_info *frame;
3641 int regnum;
3642 struct type *type = check_typedef (value_type (val));
3643 struct value *new_val = val, *mark = value_mark ();
3644
3645 /* Offsets are not supported here; lazy register values must
3646 refer to the entire register. */
3647 gdb_assert (value_offset (val) == 0);
3648
3649 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3650 {
3651 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3652
3653 frame = frame_find_by_id (frame_id);
3654 regnum = VALUE_REGNUM (new_val);
3655
3656 gdb_assert (frame != NULL);
3657
3658 /* Convertible register routines are used for multi-register
3659 values and for interpretation in different types
3660 (e.g. float or int from a double register). Lazy
3661 register values should have the register's natural type,
3662 so they do not apply. */
3663 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3664 regnum, type));
3665
3666 new_val = get_frame_register_value (frame, regnum);
3667
3668 /* If we get another lazy lval_register value, it means the
3669 register is found by reading it from the next frame.
3670 get_frame_register_value should never return a value with
3671 the frame id pointing to FRAME. If it does, it means we
3672 either have two consecutive frames with the same frame id
3673 in the frame chain, or some code is trying to unwind
3674 behind get_prev_frame's back (e.g., a frame unwind
3675 sniffer trying to unwind), bypassing its validations. In
3676 any case, it should always be an internal error to end up
3677 in this situation. */
3678 if (VALUE_LVAL (new_val) == lval_register
3679 && value_lazy (new_val)
3680 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3681 internal_error (__FILE__, __LINE__,
3682 _("infinite loop while fetching a register"));
3683 }
3684
3685 /* If it's still lazy (for instance, a saved register on the
3686 stack), fetch it. */
3687 if (value_lazy (new_val))
3688 value_fetch_lazy (new_val);
3689
3690 /* If the register was not saved, mark it optimized out. */
3691 if (value_optimized_out (new_val))
3692 set_value_optimized_out (val, 1);
3693 else
3694 {
3695 set_value_lazy (val, 0);
3696 value_contents_copy (val, value_embedded_offset (val),
3697 new_val, value_embedded_offset (new_val),
3698 TYPE_LENGTH (type));
3699 }
3700
3701 if (frame_debug)
3702 {
3703 struct gdbarch *gdbarch;
3704 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3705 regnum = VALUE_REGNUM (val);
3706 gdbarch = get_frame_arch (frame);
3707
3708 fprintf_unfiltered (gdb_stdlog,
3709 "{ value_fetch_lazy "
3710 "(frame=%d,regnum=%d(%s),...) ",
3711 frame_relative_level (frame), regnum,
3712 user_reg_map_regnum_to_name (gdbarch, regnum));
3713
3714 fprintf_unfiltered (gdb_stdlog, "->");
3715 if (value_optimized_out (new_val))
3716 {
3717 fprintf_unfiltered (gdb_stdlog, " ");
3718 val_print_optimized_out (new_val, gdb_stdlog);
3719 }
3720 else
3721 {
3722 int i;
3723 const gdb_byte *buf = value_contents (new_val);
3724
3725 if (VALUE_LVAL (new_val) == lval_register)
3726 fprintf_unfiltered (gdb_stdlog, " register=%d",
3727 VALUE_REGNUM (new_val));
3728 else if (VALUE_LVAL (new_val) == lval_memory)
3729 fprintf_unfiltered (gdb_stdlog, " address=%s",
3730 paddress (gdbarch,
3731 value_address (new_val)));
3732 else
3733 fprintf_unfiltered (gdb_stdlog, " computed");
3734
3735 fprintf_unfiltered (gdb_stdlog, " bytes=");
3736 fprintf_unfiltered (gdb_stdlog, "[");
3737 for (i = 0; i < register_size (gdbarch, regnum); i++)
3738 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3739 fprintf_unfiltered (gdb_stdlog, "]");
3740 }
3741
3742 fprintf_unfiltered (gdb_stdlog, " }\n");
3743 }
3744
3745 /* Dispose of the intermediate values. This prevents
3746 watchpoints from trying to watch the saved frame pointer. */
3747 value_free_to_mark (mark);
3748 }
3749 else if (VALUE_LVAL (val) == lval_computed
3750 && value_computed_funcs (val)->read != NULL)
3751 value_computed_funcs (val)->read (val);
3752 /* Don't call value_optimized_out on val, doing so would result in a
3753 recursive call back to value_fetch_lazy, instead check the
3754 optimized_out flag directly. */
3755 else if (val->optimized_out)
3756 /* Keep it optimized out. */;
3757 else
3758 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3759
3760 set_value_lazy (val, 0);
3761 return 0;
3762 }
3763
3764 /* Implementation of the convenience function $_isvoid. */
3765
3766 static struct value *
3767 isvoid_internal_fn (struct gdbarch *gdbarch,
3768 const struct language_defn *language,
3769 void *cookie, int argc, struct value **argv)
3770 {
3771 int ret;
3772
3773 if (argc != 1)
3774 error (_("You must provide one argument for $_isvoid."));
3775
3776 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3777
3778 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3779 }
3780
3781 void
3782 _initialize_values (void)
3783 {
3784 add_cmd ("convenience", no_class, show_convenience, _("\
3785 Debugger convenience (\"$foo\") variables and functions.\n\
3786 Convenience variables are created when you assign them values;\n\
3787 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3788 \n\
3789 A few convenience variables are given values automatically:\n\
3790 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3791 \"$__\" holds the contents of the last address examined with \"x\"."
3792 #ifdef HAVE_PYTHON
3793 "\n\n\
3794 Convenience functions are defined via the Python API."
3795 #endif
3796 ), &showlist);
3797 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3798
3799 add_cmd ("values", no_set_class, show_values, _("\
3800 Elements of value history around item number IDX (or last ten)."),
3801 &showlist);
3802
3803 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3804 Initialize a convenience variable if necessary.\n\
3805 init-if-undefined VARIABLE = EXPRESSION\n\
3806 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3807 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3808 VARIABLE is already initialized."));
3809
3810 add_prefix_cmd ("function", no_class, function_command, _("\
3811 Placeholder command for showing help on convenience functions."),
3812 &functionlist, "function ", 0, &cmdlist);
3813
3814 add_internal_function ("_isvoid", _("\
3815 Check whether an expression is void.\n\
3816 Usage: $_isvoid (expression)\n\
3817 Return 1 if the expression is void, zero otherwise."),
3818 isvoid_internal_fn, NULL);
3819 }
This page took 0.108183 seconds and 4 git commands to generate.