gdb/
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 struct value
46 {
47 /* Type of value; either not an lval, or one of the various
48 different possible kinds of lval. */
49 enum lval_type lval;
50
51 /* Is it modifiable? Only relevant if lval != not_lval. */
52 int modifiable;
53
54 /* Location of value (if lval). */
55 union
56 {
57 /* If lval == lval_memory, this is the address in the inferior.
58 If lval == lval_register, this is the byte offset into the
59 registers structure. */
60 CORE_ADDR address;
61
62 /* Pointer to internal variable. */
63 struct internalvar *internalvar;
64 } location;
65
66 /* Describes offset of a value within lval of a structure in bytes.
67 If lval == lval_memory, this is an offset to the address. If
68 lval == lval_register, this is a further offset from
69 location.address within the registers structure. Note also the
70 member embedded_offset below. */
71 int offset;
72
73 /* Only used for bitfields; number of bits contained in them. */
74 int bitsize;
75
76 /* Only used for bitfields; position of start of field. For
77 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
78 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
79 int bitpos;
80
81 /* Frame register value is relative to. This will be described in
82 the lval enum above as "lval_register". */
83 struct frame_id frame_id;
84
85 /* Type of the value. */
86 struct type *type;
87
88 /* If a value represents a C++ object, then the `type' field gives
89 the object's compile-time type. If the object actually belongs
90 to some class derived from `type', perhaps with other base
91 classes and additional members, then `type' is just a subobject
92 of the real thing, and the full object is probably larger than
93 `type' would suggest.
94
95 If `type' is a dynamic class (i.e. one with a vtable), then GDB
96 can actually determine the object's run-time type by looking at
97 the run-time type information in the vtable. When this
98 information is available, we may elect to read in the entire
99 object, for several reasons:
100
101 - When printing the value, the user would probably rather see the
102 full object, not just the limited portion apparent from the
103 compile-time type.
104
105 - If `type' has virtual base classes, then even printing `type'
106 alone may require reaching outside the `type' portion of the
107 object to wherever the virtual base class has been stored.
108
109 When we store the entire object, `enclosing_type' is the run-time
110 type -- the complete object -- and `embedded_offset' is the
111 offset of `type' within that larger type, in bytes. The
112 value_contents() macro takes `embedded_offset' into account, so
113 most GDB code continues to see the `type' portion of the value,
114 just as the inferior would.
115
116 If `type' is a pointer to an object, then `enclosing_type' is a
117 pointer to the object's run-time type, and `pointed_to_offset' is
118 the offset in bytes from the full object to the pointed-to object
119 -- that is, the value `embedded_offset' would have if we followed
120 the pointer and fetched the complete object. (I don't really see
121 the point. Why not just determine the run-time type when you
122 indirect, and avoid the special case? The contents don't matter
123 until you indirect anyway.)
124
125 If we're not doing anything fancy, `enclosing_type' is equal to
126 `type', and `embedded_offset' is zero, so everything works
127 normally. */
128 struct type *enclosing_type;
129 int embedded_offset;
130 int pointed_to_offset;
131
132 /* Values are stored in a chain, so that they can be deleted easily
133 over calls to the inferior. Values assigned to internal
134 variables or put into the value history are taken off this
135 list. */
136 struct value *next;
137
138 /* Register number if the value is from a register. */
139 short regnum;
140
141 /* If zero, contents of this value are in the contents field. If
142 nonzero, contents are in inferior memory at address in the
143 location.address field plus the offset field (and the lval field
144 should be lval_memory).
145
146 WARNING: This field is used by the code which handles watchpoints
147 (see breakpoint.c) to decide whether a particular value can be
148 watched by hardware watchpoints. If the lazy flag is set for
149 some member of a value chain, it is assumed that this member of
150 the chain doesn't need to be watched as part of watching the
151 value itself. This is how GDB avoids watching the entire struct
152 or array when the user wants to watch a single struct member or
153 array element. If you ever change the way lazy flag is set and
154 reset, be sure to consider this use as well! */
155 char lazy;
156
157 /* If nonzero, this is the value of a variable which does not
158 actually exist in the program. */
159 char optimized_out;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 gdb_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176 };
177
178 /* Prototypes for local functions. */
179
180 static void show_values (char *, int);
181
182 static void show_convenience (char *, int);
183
184
185 /* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191 #define VALUE_HISTORY_CHUNK 60
192
193 struct value_history_chunk
194 {
195 struct value_history_chunk *next;
196 struct value *values[VALUE_HISTORY_CHUNK];
197 };
198
199 /* Chain of chunks now in use. */
200
201 static struct value_history_chunk *value_history_chain;
202
203 static int value_history_count; /* Abs number of last entry stored */
204 \f
205 /* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
209 static struct value *all_values;
210
211 /* Allocate a value that has the correct length for type TYPE. */
212
213 struct value *
214 allocate_value (struct type *type)
215 {
216 struct value *val;
217 struct type *atype = check_typedef (type);
218
219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220 val->next = all_values;
221 all_values = val;
222 val->type = type;
223 val->enclosing_type = type;
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
226 VALUE_FRAME_ID (val) = null_frame_id;
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
230 VALUE_REGNUM (val) = -1;
231 val->lazy = 0;
232 val->optimized_out = 0;
233 val->embedded_offset = 0;
234 val->pointed_to_offset = 0;
235 val->modifiable = 1;
236 return val;
237 }
238
239 /* Allocate a value that has the correct length
240 for COUNT repetitions type TYPE. */
241
242 struct value *
243 allocate_repeat_value (struct type *type, int count)
244 {
245 int low_bound = current_language->string_lower_bound; /* ??? */
246 /* FIXME-type-allocation: need a way to free this type when we are
247 done with it. */
248 struct type *range_type
249 = create_range_type ((struct type *) NULL, builtin_type_int,
250 low_bound, count + low_bound - 1);
251 /* FIXME-type-allocation: need a way to free this type when we are
252 done with it. */
253 return allocate_value (create_array_type ((struct type *) NULL,
254 type, range_type));
255 }
256
257 /* Accessor methods. */
258
259 struct value *
260 value_next (struct value *value)
261 {
262 return value->next;
263 }
264
265 struct type *
266 value_type (struct value *value)
267 {
268 return value->type;
269 }
270 void
271 deprecated_set_value_type (struct value *value, struct type *type)
272 {
273 value->type = type;
274 }
275
276 int
277 value_offset (struct value *value)
278 {
279 return value->offset;
280 }
281 void
282 set_value_offset (struct value *value, int offset)
283 {
284 value->offset = offset;
285 }
286
287 int
288 value_bitpos (struct value *value)
289 {
290 return value->bitpos;
291 }
292 void
293 set_value_bitpos (struct value *value, int bit)
294 {
295 value->bitpos = bit;
296 }
297
298 int
299 value_bitsize (struct value *value)
300 {
301 return value->bitsize;
302 }
303 void
304 set_value_bitsize (struct value *value, int bit)
305 {
306 value->bitsize = bit;
307 }
308
309 gdb_byte *
310 value_contents_raw (struct value *value)
311 {
312 return value->aligner.contents + value->embedded_offset;
313 }
314
315 gdb_byte *
316 value_contents_all_raw (struct value *value)
317 {
318 return value->aligner.contents;
319 }
320
321 struct type *
322 value_enclosing_type (struct value *value)
323 {
324 return value->enclosing_type;
325 }
326
327 const gdb_byte *
328 value_contents_all (struct value *value)
329 {
330 if (value->lazy)
331 value_fetch_lazy (value);
332 return value->aligner.contents;
333 }
334
335 int
336 value_lazy (struct value *value)
337 {
338 return value->lazy;
339 }
340
341 void
342 set_value_lazy (struct value *value, int val)
343 {
344 value->lazy = val;
345 }
346
347 const gdb_byte *
348 value_contents (struct value *value)
349 {
350 return value_contents_writeable (value);
351 }
352
353 gdb_byte *
354 value_contents_writeable (struct value *value)
355 {
356 if (value->lazy)
357 value_fetch_lazy (value);
358 return value_contents_raw (value);
359 }
360
361 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
362 this function is different from value_equal; in C the operator ==
363 can return 0 even if the two values being compared are equal. */
364
365 int
366 value_contents_equal (struct value *val1, struct value *val2)
367 {
368 struct type *type1;
369 struct type *type2;
370 int len;
371
372 type1 = check_typedef (value_type (val1));
373 type2 = check_typedef (value_type (val2));
374 len = TYPE_LENGTH (type1);
375 if (len != TYPE_LENGTH (type2))
376 return 0;
377
378 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
379 }
380
381 int
382 value_optimized_out (struct value *value)
383 {
384 return value->optimized_out;
385 }
386
387 void
388 set_value_optimized_out (struct value *value, int val)
389 {
390 value->optimized_out = val;
391 }
392
393 int
394 value_embedded_offset (struct value *value)
395 {
396 return value->embedded_offset;
397 }
398
399 void
400 set_value_embedded_offset (struct value *value, int val)
401 {
402 value->embedded_offset = val;
403 }
404
405 int
406 value_pointed_to_offset (struct value *value)
407 {
408 return value->pointed_to_offset;
409 }
410
411 void
412 set_value_pointed_to_offset (struct value *value, int val)
413 {
414 value->pointed_to_offset = val;
415 }
416
417 enum lval_type *
418 deprecated_value_lval_hack (struct value *value)
419 {
420 return &value->lval;
421 }
422
423 CORE_ADDR *
424 deprecated_value_address_hack (struct value *value)
425 {
426 return &value->location.address;
427 }
428
429 struct internalvar **
430 deprecated_value_internalvar_hack (struct value *value)
431 {
432 return &value->location.internalvar;
433 }
434
435 struct frame_id *
436 deprecated_value_frame_id_hack (struct value *value)
437 {
438 return &value->frame_id;
439 }
440
441 short *
442 deprecated_value_regnum_hack (struct value *value)
443 {
444 return &value->regnum;
445 }
446
447 int
448 deprecated_value_modifiable (struct value *value)
449 {
450 return value->modifiable;
451 }
452 void
453 deprecated_set_value_modifiable (struct value *value, int modifiable)
454 {
455 value->modifiable = modifiable;
456 }
457 \f
458 /* Return a mark in the value chain. All values allocated after the
459 mark is obtained (except for those released) are subject to being freed
460 if a subsequent value_free_to_mark is passed the mark. */
461 struct value *
462 value_mark (void)
463 {
464 return all_values;
465 }
466
467 /* Free all values allocated since MARK was obtained by value_mark
468 (except for those released). */
469 void
470 value_free_to_mark (struct value *mark)
471 {
472 struct value *val;
473 struct value *next;
474
475 for (val = all_values; val && val != mark; val = next)
476 {
477 next = val->next;
478 value_free (val);
479 }
480 all_values = val;
481 }
482
483 /* Free all the values that have been allocated (except for those released).
484 Called after each command, successful or not. */
485
486 void
487 free_all_values (void)
488 {
489 struct value *val;
490 struct value *next;
491
492 for (val = all_values; val; val = next)
493 {
494 next = val->next;
495 value_free (val);
496 }
497
498 all_values = 0;
499 }
500
501 /* Remove VAL from the chain all_values
502 so it will not be freed automatically. */
503
504 void
505 release_value (struct value *val)
506 {
507 struct value *v;
508
509 if (all_values == val)
510 {
511 all_values = val->next;
512 return;
513 }
514
515 for (v = all_values; v; v = v->next)
516 {
517 if (v->next == val)
518 {
519 v->next = val->next;
520 break;
521 }
522 }
523 }
524
525 /* Release all values up to mark */
526 struct value *
527 value_release_to_mark (struct value *mark)
528 {
529 struct value *val;
530 struct value *next;
531
532 for (val = next = all_values; next; next = next->next)
533 if (next->next == mark)
534 {
535 all_values = next->next;
536 next->next = NULL;
537 return val;
538 }
539 all_values = 0;
540 return val;
541 }
542
543 /* Return a copy of the value ARG.
544 It contains the same contents, for same memory address,
545 but it's a different block of storage. */
546
547 struct value *
548 value_copy (struct value *arg)
549 {
550 struct type *encl_type = value_enclosing_type (arg);
551 struct value *val = allocate_value (encl_type);
552 val->type = arg->type;
553 VALUE_LVAL (val) = VALUE_LVAL (arg);
554 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
555 val->offset = arg->offset;
556 val->bitpos = arg->bitpos;
557 val->bitsize = arg->bitsize;
558 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
559 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
560 val->lazy = arg->lazy;
561 val->optimized_out = arg->optimized_out;
562 val->embedded_offset = value_embedded_offset (arg);
563 val->pointed_to_offset = arg->pointed_to_offset;
564 val->modifiable = arg->modifiable;
565 if (!value_lazy (val))
566 {
567 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
568 TYPE_LENGTH (value_enclosing_type (arg)));
569
570 }
571 return val;
572 }
573 \f
574 /* Access to the value history. */
575
576 /* Record a new value in the value history.
577 Returns the absolute history index of the entry.
578 Result of -1 indicates the value was not saved; otherwise it is the
579 value history index of this new item. */
580
581 int
582 record_latest_value (struct value *val)
583 {
584 int i;
585
586 /* We don't want this value to have anything to do with the inferior anymore.
587 In particular, "set $1 = 50" should not affect the variable from which
588 the value was taken, and fast watchpoints should be able to assume that
589 a value on the value history never changes. */
590 if (value_lazy (val))
591 value_fetch_lazy (val);
592 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
593 from. This is a bit dubious, because then *&$1 does not just return $1
594 but the current contents of that location. c'est la vie... */
595 val->modifiable = 0;
596 release_value (val);
597
598 /* Here we treat value_history_count as origin-zero
599 and applying to the value being stored now. */
600
601 i = value_history_count % VALUE_HISTORY_CHUNK;
602 if (i == 0)
603 {
604 struct value_history_chunk *new
605 = (struct value_history_chunk *)
606 xmalloc (sizeof (struct value_history_chunk));
607 memset (new->values, 0, sizeof new->values);
608 new->next = value_history_chain;
609 value_history_chain = new;
610 }
611
612 value_history_chain->values[i] = val;
613
614 /* Now we regard value_history_count as origin-one
615 and applying to the value just stored. */
616
617 return ++value_history_count;
618 }
619
620 /* Return a copy of the value in the history with sequence number NUM. */
621
622 struct value *
623 access_value_history (int num)
624 {
625 struct value_history_chunk *chunk;
626 int i;
627 int absnum = num;
628
629 if (absnum <= 0)
630 absnum += value_history_count;
631
632 if (absnum <= 0)
633 {
634 if (num == 0)
635 error (_("The history is empty."));
636 else if (num == 1)
637 error (_("There is only one value in the history."));
638 else
639 error (_("History does not go back to $$%d."), -num);
640 }
641 if (absnum > value_history_count)
642 error (_("History has not yet reached $%d."), absnum);
643
644 absnum--;
645
646 /* Now absnum is always absolute and origin zero. */
647
648 chunk = value_history_chain;
649 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
650 i > 0; i--)
651 chunk = chunk->next;
652
653 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
654 }
655
656 static void
657 show_values (char *num_exp, int from_tty)
658 {
659 int i;
660 struct value *val;
661 static int num = 1;
662
663 if (num_exp)
664 {
665 /* "info history +" should print from the stored position.
666 "info history <exp>" should print around value number <exp>. */
667 if (num_exp[0] != '+' || num_exp[1] != '\0')
668 num = parse_and_eval_long (num_exp) - 5;
669 }
670 else
671 {
672 /* "info history" means print the last 10 values. */
673 num = value_history_count - 9;
674 }
675
676 if (num <= 0)
677 num = 1;
678
679 for (i = num; i < num + 10 && i <= value_history_count; i++)
680 {
681 val = access_value_history (i);
682 printf_filtered (("$%d = "), i);
683 value_print (val, gdb_stdout, 0, Val_pretty_default);
684 printf_filtered (("\n"));
685 }
686
687 /* The next "info history +" should start after what we just printed. */
688 num += 10;
689
690 /* Hitting just return after this command should do the same thing as
691 "info history +". If num_exp is null, this is unnecessary, since
692 "info history +" is not useful after "info history". */
693 if (from_tty && num_exp)
694 {
695 num_exp[0] = '+';
696 num_exp[1] = '\0';
697 }
698 }
699 \f
700 /* Internal variables. These are variables within the debugger
701 that hold values assigned by debugger commands.
702 The user refers to them with a '$' prefix
703 that does not appear in the variable names stored internally. */
704
705 static struct internalvar *internalvars;
706
707 /* If the variable does not already exist create it and give it the value given.
708 If no value is given then the default is zero. */
709 static void
710 init_if_undefined_command (char* args, int from_tty)
711 {
712 struct internalvar* intvar;
713
714 /* Parse the expression - this is taken from set_command(). */
715 struct expression *expr = parse_expression (args);
716 register struct cleanup *old_chain =
717 make_cleanup (free_current_contents, &expr);
718
719 /* Validate the expression.
720 Was the expression an assignment?
721 Or even an expression at all? */
722 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
723 error (_("Init-if-undefined requires an assignment expression."));
724
725 /* Extract the variable from the parsed expression.
726 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
727 if (expr->elts[1].opcode != OP_INTERNALVAR)
728 error (_("The first parameter to init-if-undefined should be a GDB variable."));
729 intvar = expr->elts[2].internalvar;
730
731 /* Only evaluate the expression if the lvalue is void.
732 This may still fail if the expresssion is invalid. */
733 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
734 evaluate_expression (expr);
735
736 do_cleanups (old_chain);
737 }
738
739
740 /* Look up an internal variable with name NAME. NAME should not
741 normally include a dollar sign.
742
743 If the specified internal variable does not exist,
744 one is created, with a void value. */
745
746 struct internalvar *
747 lookup_internalvar (char *name)
748 {
749 struct internalvar *var;
750
751 for (var = internalvars; var; var = var->next)
752 if (strcmp (var->name, name) == 0)
753 return var;
754
755 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
756 var->name = concat (name, (char *)NULL);
757 var->value = allocate_value (builtin_type_void);
758 release_value (var->value);
759 var->next = internalvars;
760 internalvars = var;
761 return var;
762 }
763
764 struct value *
765 value_of_internalvar (struct internalvar *var)
766 {
767 struct value *val;
768
769 val = value_copy (var->value);
770 if (value_lazy (val))
771 value_fetch_lazy (val);
772 VALUE_LVAL (val) = lval_internalvar;
773 VALUE_INTERNALVAR (val) = var;
774 return val;
775 }
776
777 void
778 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
779 int bitsize, struct value *newval)
780 {
781 gdb_byte *addr = value_contents_writeable (var->value) + offset;
782
783 if (bitsize)
784 modify_field (addr, value_as_long (newval),
785 bitpos, bitsize);
786 else
787 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
788 }
789
790 void
791 set_internalvar (struct internalvar *var, struct value *val)
792 {
793 struct value *newval;
794
795 newval = value_copy (val);
796 newval->modifiable = 1;
797
798 /* Force the value to be fetched from the target now, to avoid problems
799 later when this internalvar is referenced and the target is gone or
800 has changed. */
801 if (value_lazy (newval))
802 value_fetch_lazy (newval);
803
804 /* Begin code which must not call error(). If var->value points to
805 something free'd, an error() obviously leaves a dangling pointer.
806 But we also get a danling pointer if var->value points to
807 something in the value chain (i.e., before release_value is
808 called), because after the error free_all_values will get called before
809 long. */
810 xfree (var->value);
811 var->value = newval;
812 release_value (newval);
813 /* End code which must not call error(). */
814 }
815
816 char *
817 internalvar_name (struct internalvar *var)
818 {
819 return var->name;
820 }
821
822 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
823 prevent cycles / duplicates. */
824
825 static void
826 preserve_one_value (struct value *value, struct objfile *objfile,
827 htab_t copied_types)
828 {
829 if (TYPE_OBJFILE (value->type) == objfile)
830 value->type = copy_type_recursive (objfile, value->type, copied_types);
831
832 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
833 value->enclosing_type = copy_type_recursive (objfile,
834 value->enclosing_type,
835 copied_types);
836 }
837
838 /* Update the internal variables and value history when OBJFILE is
839 discarded; we must copy the types out of the objfile. New global types
840 will be created for every convenience variable which currently points to
841 this objfile's types, and the convenience variables will be adjusted to
842 use the new global types. */
843
844 void
845 preserve_values (struct objfile *objfile)
846 {
847 htab_t copied_types;
848 struct value_history_chunk *cur;
849 struct internalvar *var;
850 int i;
851
852 /* Create the hash table. We allocate on the objfile's obstack, since
853 it is soon to be deleted. */
854 copied_types = create_copied_types_hash (objfile);
855
856 for (cur = value_history_chain; cur; cur = cur->next)
857 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
858 if (cur->values[i])
859 preserve_one_value (cur->values[i], objfile, copied_types);
860
861 for (var = internalvars; var; var = var->next)
862 preserve_one_value (var->value, objfile, copied_types);
863
864 htab_delete (copied_types);
865 }
866
867 static void
868 show_convenience (char *ignore, int from_tty)
869 {
870 struct internalvar *var;
871 int varseen = 0;
872
873 for (var = internalvars; var; var = var->next)
874 {
875 if (!varseen)
876 {
877 varseen = 1;
878 }
879 printf_filtered (("$%s = "), var->name);
880 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
881 printf_filtered (("\n"));
882 }
883 if (!varseen)
884 printf_unfiltered (_("\
885 No debugger convenience variables now defined.\n\
886 Convenience variables have names starting with \"$\";\n\
887 use \"set\" as in \"set $foo = 5\" to define them.\n"));
888 }
889 \f
890 /* Extract a value as a C number (either long or double).
891 Knows how to convert fixed values to double, or
892 floating values to long.
893 Does not deallocate the value. */
894
895 LONGEST
896 value_as_long (struct value *val)
897 {
898 /* This coerces arrays and functions, which is necessary (e.g.
899 in disassemble_command). It also dereferences references, which
900 I suspect is the most logical thing to do. */
901 val = coerce_array (val);
902 return unpack_long (value_type (val), value_contents (val));
903 }
904
905 DOUBLEST
906 value_as_double (struct value *val)
907 {
908 DOUBLEST foo;
909 int inv;
910
911 foo = unpack_double (value_type (val), value_contents (val), &inv);
912 if (inv)
913 error (_("Invalid floating value found in program."));
914 return foo;
915 }
916 /* Extract a value as a C pointer. Does not deallocate the value.
917 Note that val's type may not actually be a pointer; value_as_long
918 handles all the cases. */
919 CORE_ADDR
920 value_as_address (struct value *val)
921 {
922 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
923 whether we want this to be true eventually. */
924 #if 0
925 /* ADDR_BITS_REMOVE is wrong if we are being called for a
926 non-address (e.g. argument to "signal", "info break", etc.), or
927 for pointers to char, in which the low bits *are* significant. */
928 return ADDR_BITS_REMOVE (value_as_long (val));
929 #else
930
931 /* There are several targets (IA-64, PowerPC, and others) which
932 don't represent pointers to functions as simply the address of
933 the function's entry point. For example, on the IA-64, a
934 function pointer points to a two-word descriptor, generated by
935 the linker, which contains the function's entry point, and the
936 value the IA-64 "global pointer" register should have --- to
937 support position-independent code. The linker generates
938 descriptors only for those functions whose addresses are taken.
939
940 On such targets, it's difficult for GDB to convert an arbitrary
941 function address into a function pointer; it has to either find
942 an existing descriptor for that function, or call malloc and
943 build its own. On some targets, it is impossible for GDB to
944 build a descriptor at all: the descriptor must contain a jump
945 instruction; data memory cannot be executed; and code memory
946 cannot be modified.
947
948 Upon entry to this function, if VAL is a value of type `function'
949 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
950 VALUE_ADDRESS (val) is the address of the function. This is what
951 you'll get if you evaluate an expression like `main'. The call
952 to COERCE_ARRAY below actually does all the usual unary
953 conversions, which includes converting values of type `function'
954 to `pointer to function'. This is the challenging conversion
955 discussed above. Then, `unpack_long' will convert that pointer
956 back into an address.
957
958 So, suppose the user types `disassemble foo' on an architecture
959 with a strange function pointer representation, on which GDB
960 cannot build its own descriptors, and suppose further that `foo'
961 has no linker-built descriptor. The address->pointer conversion
962 will signal an error and prevent the command from running, even
963 though the next step would have been to convert the pointer
964 directly back into the same address.
965
966 The following shortcut avoids this whole mess. If VAL is a
967 function, just return its address directly. */
968 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
969 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
970 return VALUE_ADDRESS (val);
971
972 val = coerce_array (val);
973
974 /* Some architectures (e.g. Harvard), map instruction and data
975 addresses onto a single large unified address space. For
976 instance: An architecture may consider a large integer in the
977 range 0x10000000 .. 0x1000ffff to already represent a data
978 addresses (hence not need a pointer to address conversion) while
979 a small integer would still need to be converted integer to
980 pointer to address. Just assume such architectures handle all
981 integer conversions in a single function. */
982
983 /* JimB writes:
984
985 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
986 must admonish GDB hackers to make sure its behavior matches the
987 compiler's, whenever possible.
988
989 In general, I think GDB should evaluate expressions the same way
990 the compiler does. When the user copies an expression out of
991 their source code and hands it to a `print' command, they should
992 get the same value the compiler would have computed. Any
993 deviation from this rule can cause major confusion and annoyance,
994 and needs to be justified carefully. In other words, GDB doesn't
995 really have the freedom to do these conversions in clever and
996 useful ways.
997
998 AndrewC pointed out that users aren't complaining about how GDB
999 casts integers to pointers; they are complaining that they can't
1000 take an address from a disassembly listing and give it to `x/i'.
1001 This is certainly important.
1002
1003 Adding an architecture method like integer_to_address() certainly
1004 makes it possible for GDB to "get it right" in all circumstances
1005 --- the target has complete control over how things get done, so
1006 people can Do The Right Thing for their target without breaking
1007 anyone else. The standard doesn't specify how integers get
1008 converted to pointers; usually, the ABI doesn't either, but
1009 ABI-specific code is a more reasonable place to handle it. */
1010
1011 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1012 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1013 && gdbarch_integer_to_address_p (current_gdbarch))
1014 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1015 value_contents (val));
1016
1017 return unpack_long (value_type (val), value_contents (val));
1018 #endif
1019 }
1020 \f
1021 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1022 as a long, or as a double, assuming the raw data is described
1023 by type TYPE. Knows how to convert different sizes of values
1024 and can convert between fixed and floating point. We don't assume
1025 any alignment for the raw data. Return value is in host byte order.
1026
1027 If you want functions and arrays to be coerced to pointers, and
1028 references to be dereferenced, call value_as_long() instead.
1029
1030 C++: It is assumed that the front-end has taken care of
1031 all matters concerning pointers to members. A pointer
1032 to member which reaches here is considered to be equivalent
1033 to an INT (or some size). After all, it is only an offset. */
1034
1035 LONGEST
1036 unpack_long (struct type *type, const gdb_byte *valaddr)
1037 {
1038 enum type_code code = TYPE_CODE (type);
1039 int len = TYPE_LENGTH (type);
1040 int nosign = TYPE_UNSIGNED (type);
1041
1042 if (current_language->la_language == language_scm
1043 && is_scmvalue_type (type))
1044 return scm_unpack (type, valaddr, TYPE_CODE_INT);
1045
1046 switch (code)
1047 {
1048 case TYPE_CODE_TYPEDEF:
1049 return unpack_long (check_typedef (type), valaddr);
1050 case TYPE_CODE_ENUM:
1051 case TYPE_CODE_FLAGS:
1052 case TYPE_CODE_BOOL:
1053 case TYPE_CODE_INT:
1054 case TYPE_CODE_CHAR:
1055 case TYPE_CODE_RANGE:
1056 if (nosign)
1057 return extract_unsigned_integer (valaddr, len);
1058 else
1059 return extract_signed_integer (valaddr, len);
1060
1061 case TYPE_CODE_FLT:
1062 return extract_typed_floating (valaddr, type);
1063
1064 case TYPE_CODE_PTR:
1065 case TYPE_CODE_REF:
1066 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1067 whether we want this to be true eventually. */
1068 return extract_typed_address (valaddr, type);
1069
1070 case TYPE_CODE_MEMBER:
1071 error (_("not implemented: member types in unpack_long"));
1072
1073 default:
1074 error (_("Value can't be converted to integer."));
1075 }
1076 return 0; /* Placate lint. */
1077 }
1078
1079 /* Return a double value from the specified type and address.
1080 INVP points to an int which is set to 0 for valid value,
1081 1 for invalid value (bad float format). In either case,
1082 the returned double is OK to use. Argument is in target
1083 format, result is in host format. */
1084
1085 DOUBLEST
1086 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1087 {
1088 enum type_code code;
1089 int len;
1090 int nosign;
1091
1092 *invp = 0; /* Assume valid. */
1093 CHECK_TYPEDEF (type);
1094 code = TYPE_CODE (type);
1095 len = TYPE_LENGTH (type);
1096 nosign = TYPE_UNSIGNED (type);
1097 if (code == TYPE_CODE_FLT)
1098 {
1099 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1100 floating-point value was valid (using the macro
1101 INVALID_FLOAT). That test/macro have been removed.
1102
1103 It turns out that only the VAX defined this macro and then
1104 only in a non-portable way. Fixing the portability problem
1105 wouldn't help since the VAX floating-point code is also badly
1106 bit-rotten. The target needs to add definitions for the
1107 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
1108 exactly describe the target floating-point format. The
1109 problem here is that the corresponding floatformat_vax_f and
1110 floatformat_vax_d values these methods should be set to are
1111 also not defined either. Oops!
1112
1113 Hopefully someone will add both the missing floatformat
1114 definitions and the new cases for floatformat_is_valid (). */
1115
1116 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1117 {
1118 *invp = 1;
1119 return 0.0;
1120 }
1121
1122 return extract_typed_floating (valaddr, type);
1123 }
1124 else if (nosign)
1125 {
1126 /* Unsigned -- be sure we compensate for signed LONGEST. */
1127 return (ULONGEST) unpack_long (type, valaddr);
1128 }
1129 else
1130 {
1131 /* Signed -- we are OK with unpack_long. */
1132 return unpack_long (type, valaddr);
1133 }
1134 }
1135
1136 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1137 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1138 We don't assume any alignment for the raw data. Return value is in
1139 host byte order.
1140
1141 If you want functions and arrays to be coerced to pointers, and
1142 references to be dereferenced, call value_as_address() instead.
1143
1144 C++: It is assumed that the front-end has taken care of
1145 all matters concerning pointers to members. A pointer
1146 to member which reaches here is considered to be equivalent
1147 to an INT (or some size). After all, it is only an offset. */
1148
1149 CORE_ADDR
1150 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1151 {
1152 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1153 whether we want this to be true eventually. */
1154 return unpack_long (type, valaddr);
1155 }
1156
1157 \f
1158 /* Get the value of the FIELDN'th field (which must be static) of
1159 TYPE. Return NULL if the field doesn't exist or has been
1160 optimized out. */
1161
1162 struct value *
1163 value_static_field (struct type *type, int fieldno)
1164 {
1165 struct value *retval;
1166
1167 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1168 {
1169 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1170 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1171 }
1172 else
1173 {
1174 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1175 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1176 if (sym == NULL)
1177 {
1178 /* With some compilers, e.g. HP aCC, static data members are reported
1179 as non-debuggable symbols */
1180 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1181 if (!msym)
1182 return NULL;
1183 else
1184 {
1185 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1186 SYMBOL_VALUE_ADDRESS (msym));
1187 }
1188 }
1189 else
1190 {
1191 /* SYM should never have a SYMBOL_CLASS which will require
1192 read_var_value to use the FRAME parameter. */
1193 if (symbol_read_needs_frame (sym))
1194 warning (_("static field's value depends on the current "
1195 "frame - bad debug info?"));
1196 retval = read_var_value (sym, NULL);
1197 }
1198 if (retval && VALUE_LVAL (retval) == lval_memory)
1199 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1200 VALUE_ADDRESS (retval));
1201 }
1202 return retval;
1203 }
1204
1205 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1206 You have to be careful here, since the size of the data area for the value
1207 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1208 than the old enclosing type, you have to allocate more space for the data.
1209 The return value is a pointer to the new version of this value structure. */
1210
1211 struct value *
1212 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1213 {
1214 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1215 {
1216 val->enclosing_type = new_encl_type;
1217 return val;
1218 }
1219 else
1220 {
1221 struct value *new_val;
1222 struct value *prev;
1223
1224 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1225
1226 new_val->enclosing_type = new_encl_type;
1227
1228 /* We have to make sure this ends up in the same place in the value
1229 chain as the original copy, so it's clean-up behavior is the same.
1230 If the value has been released, this is a waste of time, but there
1231 is no way to tell that in advance, so... */
1232
1233 if (val != all_values)
1234 {
1235 for (prev = all_values; prev != NULL; prev = prev->next)
1236 {
1237 if (prev->next == val)
1238 {
1239 prev->next = new_val;
1240 break;
1241 }
1242 }
1243 }
1244
1245 return new_val;
1246 }
1247 }
1248
1249 /* Given a value ARG1 (offset by OFFSET bytes)
1250 of a struct or union type ARG_TYPE,
1251 extract and return the value of one of its (non-static) fields.
1252 FIELDNO says which field. */
1253
1254 struct value *
1255 value_primitive_field (struct value *arg1, int offset,
1256 int fieldno, struct type *arg_type)
1257 {
1258 struct value *v;
1259 struct type *type;
1260
1261 CHECK_TYPEDEF (arg_type);
1262 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1263
1264 /* Handle packed fields */
1265
1266 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1267 {
1268 v = value_from_longest (type,
1269 unpack_field_as_long (arg_type,
1270 value_contents (arg1)
1271 + offset,
1272 fieldno));
1273 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1274 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1275 v->offset = value_offset (arg1) + offset
1276 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1277 }
1278 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1279 {
1280 /* This field is actually a base subobject, so preserve the
1281 entire object's contents for later references to virtual
1282 bases, etc. */
1283 v = allocate_value (value_enclosing_type (arg1));
1284 v->type = type;
1285 if (value_lazy (arg1))
1286 set_value_lazy (v, 1);
1287 else
1288 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1289 TYPE_LENGTH (value_enclosing_type (arg1)));
1290 v->offset = value_offset (arg1);
1291 v->embedded_offset = (offset + value_embedded_offset (arg1)
1292 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1293 }
1294 else
1295 {
1296 /* Plain old data member */
1297 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1298 v = allocate_value (type);
1299 if (value_lazy (arg1))
1300 set_value_lazy (v, 1);
1301 else
1302 memcpy (value_contents_raw (v),
1303 value_contents_raw (arg1) + offset,
1304 TYPE_LENGTH (type));
1305 v->offset = (value_offset (arg1) + offset
1306 + value_embedded_offset (arg1));
1307 }
1308 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1309 if (VALUE_LVAL (arg1) == lval_internalvar)
1310 VALUE_LVAL (v) = lval_internalvar_component;
1311 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1312 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1313 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1314 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1315 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1316 return v;
1317 }
1318
1319 /* Given a value ARG1 of a struct or union type,
1320 extract and return the value of one of its (non-static) fields.
1321 FIELDNO says which field. */
1322
1323 struct value *
1324 value_field (struct value *arg1, int fieldno)
1325 {
1326 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1327 }
1328
1329 /* Return a non-virtual function as a value.
1330 F is the list of member functions which contains the desired method.
1331 J is an index into F which provides the desired method.
1332
1333 We only use the symbol for its address, so be happy with either a
1334 full symbol or a minimal symbol.
1335 */
1336
1337 struct value *
1338 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1339 int offset)
1340 {
1341 struct value *v;
1342 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1343 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1344 struct symbol *sym;
1345 struct minimal_symbol *msym;
1346
1347 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1348 if (sym != NULL)
1349 {
1350 msym = NULL;
1351 }
1352 else
1353 {
1354 gdb_assert (sym == NULL);
1355 msym = lookup_minimal_symbol (physname, NULL, NULL);
1356 if (msym == NULL)
1357 return NULL;
1358 }
1359
1360 v = allocate_value (ftype);
1361 if (sym)
1362 {
1363 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1364 }
1365 else
1366 {
1367 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1368 }
1369
1370 if (arg1p)
1371 {
1372 if (type != value_type (*arg1p))
1373 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1374 value_addr (*arg1p)));
1375
1376 /* Move the `this' pointer according to the offset.
1377 VALUE_OFFSET (*arg1p) += offset;
1378 */
1379 }
1380
1381 return v;
1382 }
1383
1384 \f
1385 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1386 VALADDR.
1387
1388 Extracting bits depends on endianness of the machine. Compute the
1389 number of least significant bits to discard. For big endian machines,
1390 we compute the total number of bits in the anonymous object, subtract
1391 off the bit count from the MSB of the object to the MSB of the
1392 bitfield, then the size of the bitfield, which leaves the LSB discard
1393 count. For little endian machines, the discard count is simply the
1394 number of bits from the LSB of the anonymous object to the LSB of the
1395 bitfield.
1396
1397 If the field is signed, we also do sign extension. */
1398
1399 LONGEST
1400 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1401 {
1402 ULONGEST val;
1403 ULONGEST valmask;
1404 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1405 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1406 int lsbcount;
1407 struct type *field_type;
1408
1409 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1410 field_type = TYPE_FIELD_TYPE (type, fieldno);
1411 CHECK_TYPEDEF (field_type);
1412
1413 /* Extract bits. See comment above. */
1414
1415 if (BITS_BIG_ENDIAN)
1416 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1417 else
1418 lsbcount = (bitpos % 8);
1419 val >>= lsbcount;
1420
1421 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1422 If the field is signed, and is negative, then sign extend. */
1423
1424 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1425 {
1426 valmask = (((ULONGEST) 1) << bitsize) - 1;
1427 val &= valmask;
1428 if (!TYPE_UNSIGNED (field_type))
1429 {
1430 if (val & (valmask ^ (valmask >> 1)))
1431 {
1432 val |= ~valmask;
1433 }
1434 }
1435 }
1436 return (val);
1437 }
1438
1439 /* Modify the value of a bitfield. ADDR points to a block of memory in
1440 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1441 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1442 indicate which bits (in target bit order) comprise the bitfield.
1443 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1444 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1445
1446 void
1447 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1448 {
1449 ULONGEST oword;
1450 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1451
1452 /* If a negative fieldval fits in the field in question, chop
1453 off the sign extension bits. */
1454 if ((~fieldval & ~(mask >> 1)) == 0)
1455 fieldval &= mask;
1456
1457 /* Warn if value is too big to fit in the field in question. */
1458 if (0 != (fieldval & ~mask))
1459 {
1460 /* FIXME: would like to include fieldval in the message, but
1461 we don't have a sprintf_longest. */
1462 warning (_("Value does not fit in %d bits."), bitsize);
1463
1464 /* Truncate it, otherwise adjoining fields may be corrupted. */
1465 fieldval &= mask;
1466 }
1467
1468 oword = extract_unsigned_integer (addr, sizeof oword);
1469
1470 /* Shifting for bit field depends on endianness of the target machine. */
1471 if (BITS_BIG_ENDIAN)
1472 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1473
1474 oword &= ~(mask << bitpos);
1475 oword |= fieldval << bitpos;
1476
1477 store_unsigned_integer (addr, sizeof oword, oword);
1478 }
1479 \f
1480 /* Convert C numbers into newly allocated values */
1481
1482 struct value *
1483 value_from_longest (struct type *type, LONGEST num)
1484 {
1485 struct value *val = allocate_value (type);
1486 enum type_code code;
1487 int len;
1488 retry:
1489 code = TYPE_CODE (type);
1490 len = TYPE_LENGTH (type);
1491
1492 switch (code)
1493 {
1494 case TYPE_CODE_TYPEDEF:
1495 type = check_typedef (type);
1496 goto retry;
1497 case TYPE_CODE_INT:
1498 case TYPE_CODE_CHAR:
1499 case TYPE_CODE_ENUM:
1500 case TYPE_CODE_FLAGS:
1501 case TYPE_CODE_BOOL:
1502 case TYPE_CODE_RANGE:
1503 store_signed_integer (value_contents_raw (val), len, num);
1504 break;
1505
1506 case TYPE_CODE_REF:
1507 case TYPE_CODE_PTR:
1508 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1509 break;
1510
1511 default:
1512 error (_("Unexpected type (%d) encountered for integer constant."), code);
1513 }
1514 return val;
1515 }
1516
1517
1518 /* Create a value representing a pointer of type TYPE to the address
1519 ADDR. */
1520 struct value *
1521 value_from_pointer (struct type *type, CORE_ADDR addr)
1522 {
1523 struct value *val = allocate_value (type);
1524 store_typed_address (value_contents_raw (val), type, addr);
1525 return val;
1526 }
1527
1528
1529 /* Create a value for a string constant to be stored locally
1530 (not in the inferior's memory space, but in GDB memory).
1531 This is analogous to value_from_longest, which also does not
1532 use inferior memory. String shall NOT contain embedded nulls. */
1533
1534 struct value *
1535 value_from_string (char *ptr)
1536 {
1537 struct value *val;
1538 int len = strlen (ptr);
1539 int lowbound = current_language->string_lower_bound;
1540 struct type *string_char_type;
1541 struct type *rangetype;
1542 struct type *stringtype;
1543
1544 rangetype = create_range_type ((struct type *) NULL,
1545 builtin_type_int,
1546 lowbound, len + lowbound - 1);
1547 string_char_type = language_string_char_type (current_language,
1548 current_gdbarch);
1549 stringtype = create_array_type ((struct type *) NULL,
1550 string_char_type,
1551 rangetype);
1552 val = allocate_value (stringtype);
1553 memcpy (value_contents_raw (val), ptr, len);
1554 return val;
1555 }
1556
1557 struct value *
1558 value_from_double (struct type *type, DOUBLEST num)
1559 {
1560 struct value *val = allocate_value (type);
1561 struct type *base_type = check_typedef (type);
1562 enum type_code code = TYPE_CODE (base_type);
1563 int len = TYPE_LENGTH (base_type);
1564
1565 if (code == TYPE_CODE_FLT)
1566 {
1567 store_typed_floating (value_contents_raw (val), base_type, num);
1568 }
1569 else
1570 error (_("Unexpected type encountered for floating constant."));
1571
1572 return val;
1573 }
1574
1575 struct value *
1576 coerce_ref (struct value *arg)
1577 {
1578 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1579 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1580 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1581 unpack_pointer (value_type (arg),
1582 value_contents (arg)));
1583 return arg;
1584 }
1585
1586 struct value *
1587 coerce_array (struct value *arg)
1588 {
1589 arg = coerce_ref (arg);
1590 if (current_language->c_style_arrays
1591 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1592 arg = value_coerce_array (arg);
1593 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1594 arg = value_coerce_function (arg);
1595 return arg;
1596 }
1597
1598 struct value *
1599 coerce_number (struct value *arg)
1600 {
1601 arg = coerce_array (arg);
1602 arg = coerce_enum (arg);
1603 return arg;
1604 }
1605
1606 struct value *
1607 coerce_enum (struct value *arg)
1608 {
1609 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1610 arg = value_cast (builtin_type_unsigned_int, arg);
1611 return arg;
1612 }
1613 \f
1614
1615 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1616 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1617 is the type (which is known to be struct, union or array).
1618
1619 On most machines, the struct convention is used unless we are
1620 using gcc and the type is of a special size. */
1621 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1622 native compiler. GCC 2.3.3 was the last release that did it the
1623 old way. Since gcc2_compiled was not changed, we have no
1624 way to correctly win in all cases, so we just do the right thing
1625 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1626 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1627 would cause more chaos than dealing with some struct returns being
1628 handled wrong. */
1629 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1630 dead. */
1631
1632 int
1633 generic_use_struct_convention (int gcc_p, struct type *value_type)
1634 {
1635 return !(TYPE_LENGTH (value_type) == 1
1636 || TYPE_LENGTH (value_type) == 2
1637 || TYPE_LENGTH (value_type) == 4
1638 || TYPE_LENGTH (value_type) == 8);
1639 }
1640
1641 /* Return true if the function returning the specified type is using
1642 the convention of returning structures in memory (passing in the
1643 address as a hidden first parameter). GCC_P is nonzero if compiled
1644 with GCC. */
1645
1646 int
1647 using_struct_return (struct type *value_type, int gcc_p)
1648 {
1649 enum type_code code = TYPE_CODE (value_type);
1650
1651 if (code == TYPE_CODE_ERROR)
1652 error (_("Function return type unknown."));
1653
1654 if (code == TYPE_CODE_VOID)
1655 /* A void return value is never in memory. See also corresponding
1656 code in "print_return_value". */
1657 return 0;
1658
1659 /* Probe the architecture for the return-value convention. */
1660 return (gdbarch_return_value (current_gdbarch, value_type,
1661 NULL, NULL, NULL)
1662 != RETURN_VALUE_REGISTER_CONVENTION);
1663 }
1664
1665 void
1666 _initialize_values (void)
1667 {
1668 add_cmd ("convenience", no_class, show_convenience, _("\
1669 Debugger convenience (\"$foo\") variables.\n\
1670 These variables are created when you assign them values;\n\
1671 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1672 \n\
1673 A few convenience variables are given values automatically:\n\
1674 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1675 \"$__\" holds the contents of the last address examined with \"x\"."),
1676 &showlist);
1677
1678 add_cmd ("values", no_class, show_values,
1679 _("Elements of value history around item number IDX (or last ten)."),
1680 &showlist);
1681
1682 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1683 Initialize a convenience variable if necessary.\n\
1684 init-if-undefined VARIABLE = EXPRESSION\n\
1685 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1686 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1687 VARIABLE is already initialized."));
1688 }
This page took 0.082114 seconds and 4 git commands to generate.