gdb/mi: add new --group-by-objfile flag for -file-list-exec-source-files
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46 #include "cli/cli-style.h"
47 #include "expop.h"
48 #include "inferior.h"
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 LONGEST offset;
71
72 /* Length of the range. */
73 LONGEST length;
74
75 /* Returns true if THIS is strictly less than OTHER, useful for
76 searching. We keep ranges sorted by offset and coalesce
77 overlapping and contiguous ranges, so this just compares the
78 starting offset. */
79
80 bool operator< (const range &other) const
81 {
82 return offset < other.offset;
83 }
84
85 /* Returns true if THIS is equal to OTHER. */
86 bool operator== (const range &other) const
87 {
88 return offset == other.offset && length == other.length;
89 }
90 };
91
92 /* Returns true if the ranges defined by [offset1, offset1+len1) and
93 [offset2, offset2+len2) overlap. */
94
95 static int
96 ranges_overlap (LONGEST offset1, LONGEST len1,
97 LONGEST offset2, LONGEST len2)
98 {
99 ULONGEST h, l;
100
101 l = std::max (offset1, offset2);
102 h = std::min (offset1 + len1, offset2 + len2);
103 return (l < h);
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
111 LONGEST length)
112 {
113 range what;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149
150 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
151
152 if (i > ranges.begin ())
153 {
154 const struct range &bef = *(i - 1);
155
156 if (ranges_overlap (bef.offset, bef.length, offset, length))
157 return 1;
158 }
159
160 if (i < ranges.end ())
161 {
162 const struct range &r = *i;
163
164 if (ranges_overlap (r.offset, r.length, offset, length))
165 return 1;
166 }
167
168 return 0;
169 }
170
171 static struct cmd_list_element *functionlist;
172
173 /* Note that the fields in this structure are arranged to save a bit
174 of memory. */
175
176 struct value
177 {
178 explicit value (struct type *type_)
179 : modifiable (1),
180 lazy (1),
181 initialized (1),
182 stack (0),
183 type (type_),
184 enclosing_type (type_)
185 {
186 }
187
188 ~value ()
189 {
190 if (VALUE_LVAL (this) == lval_computed)
191 {
192 const struct lval_funcs *funcs = location.computed.funcs;
193
194 if (funcs->free_closure)
195 funcs->free_closure (this);
196 }
197 else if (VALUE_LVAL (this) == lval_xcallable)
198 delete location.xm_worker;
199 }
200
201 DISABLE_COPY_AND_ASSIGN (value);
202
203 /* Type of value; either not an lval, or one of the various
204 different possible kinds of lval. */
205 enum lval_type lval = not_lval;
206
207 /* Is it modifiable? Only relevant if lval != not_lval. */
208 unsigned int modifiable : 1;
209
210 /* If zero, contents of this value are in the contents field. If
211 nonzero, contents are in inferior. If the lval field is lval_memory,
212 the contents are in inferior memory at location.address plus offset.
213 The lval field may also be lval_register.
214
215 WARNING: This field is used by the code which handles watchpoints
216 (see breakpoint.c) to decide whether a particular value can be
217 watched by hardware watchpoints. If the lazy flag is set for
218 some member of a value chain, it is assumed that this member of
219 the chain doesn't need to be watched as part of watching the
220 value itself. This is how GDB avoids watching the entire struct
221 or array when the user wants to watch a single struct member or
222 array element. If you ever change the way lazy flag is set and
223 reset, be sure to consider this use as well! */
224 unsigned int lazy : 1;
225
226 /* If value is a variable, is it initialized or not. */
227 unsigned int initialized : 1;
228
229 /* If value is from the stack. If this is set, read_stack will be
230 used instead of read_memory to enable extra caching. */
231 unsigned int stack : 1;
232
233 /* Location of value (if lval). */
234 union
235 {
236 /* If lval == lval_memory, this is the address in the inferior */
237 CORE_ADDR address;
238
239 /*If lval == lval_register, the value is from a register. */
240 struct
241 {
242 /* Register number. */
243 int regnum;
244 /* Frame ID of "next" frame to which a register value is relative.
245 If the register value is found relative to frame F, then the
246 frame id of F->next will be stored in next_frame_id. */
247 struct frame_id next_frame_id;
248 } reg;
249
250 /* Pointer to internal variable. */
251 struct internalvar *internalvar;
252
253 /* Pointer to xmethod worker. */
254 struct xmethod_worker *xm_worker;
255
256 /* If lval == lval_computed, this is a set of function pointers
257 to use to access and describe the value, and a closure pointer
258 for them to use. */
259 struct
260 {
261 /* Functions to call. */
262 const struct lval_funcs *funcs;
263
264 /* Closure for those functions to use. */
265 void *closure;
266 } computed;
267 } location {};
268
269 /* Describes offset of a value within lval of a structure in target
270 addressable memory units. Note also the member embedded_offset
271 below. */
272 LONGEST offset = 0;
273
274 /* Only used for bitfields; number of bits contained in them. */
275 LONGEST bitsize = 0;
276
277 /* Only used for bitfields; position of start of field. For
278 little-endian targets, it is the position of the LSB. For
279 big-endian targets, it is the position of the MSB. */
280 LONGEST bitpos = 0;
281
282 /* The number of references to this value. When a value is created,
283 the value chain holds a reference, so REFERENCE_COUNT is 1. If
284 release_value is called, this value is removed from the chain but
285 the caller of release_value now has a reference to this value.
286 The caller must arrange for a call to value_free later. */
287 int reference_count = 1;
288
289 /* Only used for bitfields; the containing value. This allows a
290 single read from the target when displaying multiple
291 bitfields. */
292 value_ref_ptr parent;
293
294 /* Type of the value. */
295 struct type *type;
296
297 /* If a value represents a C++ object, then the `type' field gives
298 the object's compile-time type. If the object actually belongs
299 to some class derived from `type', perhaps with other base
300 classes and additional members, then `type' is just a subobject
301 of the real thing, and the full object is probably larger than
302 `type' would suggest.
303
304 If `type' is a dynamic class (i.e. one with a vtable), then GDB
305 can actually determine the object's run-time type by looking at
306 the run-time type information in the vtable. When this
307 information is available, we may elect to read in the entire
308 object, for several reasons:
309
310 - When printing the value, the user would probably rather see the
311 full object, not just the limited portion apparent from the
312 compile-time type.
313
314 - If `type' has virtual base classes, then even printing `type'
315 alone may require reaching outside the `type' portion of the
316 object to wherever the virtual base class has been stored.
317
318 When we store the entire object, `enclosing_type' is the run-time
319 type -- the complete object -- and `embedded_offset' is the
320 offset of `type' within that larger type, in target addressable memory
321 units. The value_contents() macro takes `embedded_offset' into account,
322 so most GDB code continues to see the `type' portion of the value, just
323 as the inferior would.
324
325 If `type' is a pointer to an object, then `enclosing_type' is a
326 pointer to the object's run-time type, and `pointed_to_offset' is
327 the offset in target addressable memory units from the full object
328 to the pointed-to object -- that is, the value `embedded_offset' would
329 have if we followed the pointer and fetched the complete object.
330 (I don't really see the point. Why not just determine the
331 run-time type when you indirect, and avoid the special case? The
332 contents don't matter until you indirect anyway.)
333
334 If we're not doing anything fancy, `enclosing_type' is equal to
335 `type', and `embedded_offset' is zero, so everything works
336 normally. */
337 struct type *enclosing_type;
338 LONGEST embedded_offset = 0;
339 LONGEST pointed_to_offset = 0;
340
341 /* Actual contents of the value. Target byte-order. NULL or not
342 valid if lazy is nonzero. */
343 gdb::unique_xmalloc_ptr<gdb_byte> contents;
344
345 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
346 rather than available, since the common and default case is for a
347 value to be available. This is filled in at value read time.
348 The unavailable ranges are tracked in bits. Note that a contents
349 bit that has been optimized out doesn't really exist in the
350 program, so it can't be marked unavailable either. */
351 std::vector<range> unavailable;
352
353 /* Likewise, but for optimized out contents (a chunk of the value of
354 a variable that does not actually exist in the program). If LVAL
355 is lval_register, this is a register ($pc, $sp, etc., never a
356 program variable) that has not been saved in the frame. Not
357 saved registers and optimized-out program variables values are
358 treated pretty much the same, except not-saved registers have a
359 different string representation and related error strings. */
360 std::vector<range> optimized_out;
361 };
362
363 /* See value.h. */
364
365 struct gdbarch *
366 get_value_arch (const struct value *value)
367 {
368 return value_type (value)->arch ();
369 }
370
371 int
372 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
373 {
374 gdb_assert (!value->lazy);
375
376 return !ranges_contain (value->unavailable, offset, length);
377 }
378
379 int
380 value_bytes_available (const struct value *value,
381 LONGEST offset, LONGEST length)
382 {
383 return value_bits_available (value,
384 offset * TARGET_CHAR_BIT,
385 length * TARGET_CHAR_BIT);
386 }
387
388 int
389 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
390 {
391 gdb_assert (!value->lazy);
392
393 return ranges_contain (value->optimized_out, bit_offset, bit_length);
394 }
395
396 int
397 value_entirely_available (struct value *value)
398 {
399 /* We can only tell whether the whole value is available when we try
400 to read it. */
401 if (value->lazy)
402 value_fetch_lazy (value);
403
404 if (value->unavailable.empty ())
405 return 1;
406 return 0;
407 }
408
409 /* Returns true if VALUE is entirely covered by RANGES. If the value
410 is lazy, it'll be read now. Note that RANGE is a pointer to
411 pointer because reading the value might change *RANGE. */
412
413 static int
414 value_entirely_covered_by_range_vector (struct value *value,
415 const std::vector<range> &ranges)
416 {
417 /* We can only tell whether the whole value is optimized out /
418 unavailable when we try to read it. */
419 if (value->lazy)
420 value_fetch_lazy (value);
421
422 if (ranges.size () == 1)
423 {
424 const struct range &t = ranges[0];
425
426 if (t.offset == 0
427 && t.length == (TARGET_CHAR_BIT
428 * TYPE_LENGTH (value_enclosing_type (value))))
429 return 1;
430 }
431
432 return 0;
433 }
434
435 int
436 value_entirely_unavailable (struct value *value)
437 {
438 return value_entirely_covered_by_range_vector (value, value->unavailable);
439 }
440
441 int
442 value_entirely_optimized_out (struct value *value)
443 {
444 return value_entirely_covered_by_range_vector (value, value->optimized_out);
445 }
446
447 /* Insert into the vector pointed to by VECTORP the bit range starting of
448 OFFSET bits, and extending for the next LENGTH bits. */
449
450 static void
451 insert_into_bit_range_vector (std::vector<range> *vectorp,
452 LONGEST offset, LONGEST length)
453 {
454 range newr;
455
456 /* Insert the range sorted. If there's overlap or the new range
457 would be contiguous with an existing range, merge. */
458
459 newr.offset = offset;
460 newr.length = length;
461
462 /* Do a binary search for the position the given range would be
463 inserted if we only considered the starting OFFSET of ranges.
464 Call that position I. Since we also have LENGTH to care for
465 (this is a range afterall), we need to check if the _previous_
466 range overlaps the I range. E.g., calling R the new range:
467
468 #1 - overlaps with previous
469
470 R
471 |-...-|
472 |---| |---| |------| ... |--|
473 0 1 2 N
474
475 I=1
476
477 In the case #1 above, the binary search would return `I=1',
478 meaning, this OFFSET should be inserted at position 1, and the
479 current position 1 should be pushed further (and become 2). But,
480 note that `0' overlaps with R, so we want to merge them.
481
482 A similar consideration needs to be taken if the new range would
483 be contiguous with the previous range:
484
485 #2 - contiguous with previous
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=1
493
494 If there's no overlap with the previous range, as in:
495
496 #3 - not overlapping and not contiguous
497
498 R
499 |-...-|
500 |--| |---| |------| ... |--|
501 0 1 2 N
502
503 I=1
504
505 or if I is 0:
506
507 #4 - R is the range with lowest offset
508
509 R
510 |-...-|
511 |--| |---| |------| ... |--|
512 0 1 2 N
513
514 I=0
515
516 ... we just push the new range to I.
517
518 All the 4 cases above need to consider that the new range may
519 also overlap several of the ranges that follow, or that R may be
520 contiguous with the following range, and merge. E.g.,
521
522 #5 - overlapping following ranges
523
524 R
525 |------------------------|
526 |--| |---| |------| ... |--|
527 0 1 2 N
528
529 I=0
530
531 or:
532
533 R
534 |-------|
535 |--| |---| |------| ... |--|
536 0 1 2 N
537
538 I=1
539
540 */
541
542 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
543 if (i > vectorp->begin ())
544 {
545 struct range &bef = *(i - 1);
546
547 if (ranges_overlap (bef.offset, bef.length, offset, length))
548 {
549 /* #1 */
550 ULONGEST l = std::min (bef.offset, offset);
551 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
552
553 bef.offset = l;
554 bef.length = h - l;
555 i--;
556 }
557 else if (offset == bef.offset + bef.length)
558 {
559 /* #2 */
560 bef.length += length;
561 i--;
562 }
563 else
564 {
565 /* #3 */
566 i = vectorp->insert (i, newr);
567 }
568 }
569 else
570 {
571 /* #4 */
572 i = vectorp->insert (i, newr);
573 }
574
575 /* Check whether the ranges following the one we've just added or
576 touched can be folded in (#5 above). */
577 if (i != vectorp->end () && i + 1 < vectorp->end ())
578 {
579 int removed = 0;
580 auto next = i + 1;
581
582 /* Get the range we just touched. */
583 struct range &t = *i;
584 removed = 0;
585
586 i = next;
587 for (; i < vectorp->end (); i++)
588 {
589 struct range &r = *i;
590 if (r.offset <= t.offset + t.length)
591 {
592 ULONGEST l, h;
593
594 l = std::min (t.offset, r.offset);
595 h = std::max (t.offset + t.length, r.offset + r.length);
596
597 t.offset = l;
598 t.length = h - l;
599
600 removed++;
601 }
602 else
603 {
604 /* If we couldn't merge this one, we won't be able to
605 merge following ones either, since the ranges are
606 always sorted by OFFSET. */
607 break;
608 }
609 }
610
611 if (removed != 0)
612 vectorp->erase (next, next + removed);
613 }
614 }
615
616 void
617 mark_value_bits_unavailable (struct value *value,
618 LONGEST offset, LONGEST length)
619 {
620 insert_into_bit_range_vector (&value->unavailable, offset, length);
621 }
622
623 void
624 mark_value_bytes_unavailable (struct value *value,
625 LONGEST offset, LONGEST length)
626 {
627 mark_value_bits_unavailable (value,
628 offset * TARGET_CHAR_BIT,
629 length * TARGET_CHAR_BIT);
630 }
631
632 /* Find the first range in RANGES that overlaps the range defined by
633 OFFSET and LENGTH, starting at element POS in the RANGES vector,
634 Returns the index into RANGES where such overlapping range was
635 found, or -1 if none was found. */
636
637 static int
638 find_first_range_overlap (const std::vector<range> *ranges, int pos,
639 LONGEST offset, LONGEST length)
640 {
641 int i;
642
643 for (i = pos; i < ranges->size (); i++)
644 {
645 const range &r = (*ranges)[i];
646 if (ranges_overlap (r.offset, r.length, offset, length))
647 return i;
648 }
649
650 return -1;
651 }
652
653 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
654 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
655 return non-zero.
656
657 It must always be the case that:
658 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
659
660 It is assumed that memory can be accessed from:
661 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
662 to:
663 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
664 / TARGET_CHAR_BIT) */
665 static int
666 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
667 const gdb_byte *ptr2, size_t offset2_bits,
668 size_t length_bits)
669 {
670 gdb_assert (offset1_bits % TARGET_CHAR_BIT
671 == offset2_bits % TARGET_CHAR_BIT);
672
673 if (offset1_bits % TARGET_CHAR_BIT != 0)
674 {
675 size_t bits;
676 gdb_byte mask, b1, b2;
677
678 /* The offset from the base pointers PTR1 and PTR2 is not a complete
679 number of bytes. A number of bits up to either the next exact
680 byte boundary, or LENGTH_BITS (which ever is sooner) will be
681 compared. */
682 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
683 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
684 mask = (1 << bits) - 1;
685
686 if (length_bits < bits)
687 {
688 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
689 bits = length_bits;
690 }
691
692 /* Now load the two bytes and mask off the bits we care about. */
693 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 /* Now update the length and offsets to take account of the bits
700 we've just compared. */
701 length_bits -= bits;
702 offset1_bits += bits;
703 offset2_bits += bits;
704 }
705
706 if (length_bits % TARGET_CHAR_BIT != 0)
707 {
708 size_t bits;
709 size_t o1, o2;
710 gdb_byte mask, b1, b2;
711
712 /* The length is not an exact number of bytes. After the previous
713 IF.. block then the offsets are byte aligned, or the
714 length is zero (in which case this code is not reached). Compare
715 a number of bits at the end of the region, starting from an exact
716 byte boundary. */
717 bits = length_bits % TARGET_CHAR_BIT;
718 o1 = offset1_bits + length_bits - bits;
719 o2 = offset2_bits + length_bits - bits;
720
721 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
722 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
723
724 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
725 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
726
727 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
728 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
729
730 if (b1 != b2)
731 return 1;
732
733 length_bits -= bits;
734 }
735
736 if (length_bits > 0)
737 {
738 /* We've now taken care of any stray "bits" at the start, or end of
739 the region to compare, the remainder can be covered with a simple
740 memcmp. */
741 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
742 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
743 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
744
745 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
746 ptr2 + offset2_bits / TARGET_CHAR_BIT,
747 length_bits / TARGET_CHAR_BIT);
748 }
749
750 /* Length is zero, regions match. */
751 return 0;
752 }
753
754 /* Helper struct for find_first_range_overlap_and_match and
755 value_contents_bits_eq. Keep track of which slot of a given ranges
756 vector have we last looked at. */
757
758 struct ranges_and_idx
759 {
760 /* The ranges. */
761 const std::vector<range> *ranges;
762
763 /* The range we've last found in RANGES. Given ranges are sorted,
764 we can start the next lookup here. */
765 int idx;
766 };
767
768 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
769 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
770 ranges starting at OFFSET2 bits. Return true if the ranges match
771 and fill in *L and *H with the overlapping window relative to
772 (both) OFFSET1 or OFFSET2. */
773
774 static int
775 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
776 struct ranges_and_idx *rp2,
777 LONGEST offset1, LONGEST offset2,
778 LONGEST length, ULONGEST *l, ULONGEST *h)
779 {
780 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
781 offset1, length);
782 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
783 offset2, length);
784
785 if (rp1->idx == -1 && rp2->idx == -1)
786 {
787 *l = length;
788 *h = length;
789 return 1;
790 }
791 else if (rp1->idx == -1 || rp2->idx == -1)
792 return 0;
793 else
794 {
795 const range *r1, *r2;
796 ULONGEST l1, h1;
797 ULONGEST l2, h2;
798
799 r1 = &(*rp1->ranges)[rp1->idx];
800 r2 = &(*rp2->ranges)[rp2->idx];
801
802 /* Get the unavailable windows intersected by the incoming
803 ranges. The first and last ranges that overlap the argument
804 range may be wider than said incoming arguments ranges. */
805 l1 = std::max (offset1, r1->offset);
806 h1 = std::min (offset1 + length, r1->offset + r1->length);
807
808 l2 = std::max (offset2, r2->offset);
809 h2 = std::min (offset2 + length, offset2 + r2->length);
810
811 /* Make them relative to the respective start offsets, so we can
812 compare them for equality. */
813 l1 -= offset1;
814 h1 -= offset1;
815
816 l2 -= offset2;
817 h2 -= offset2;
818
819 /* Different ranges, no match. */
820 if (l1 != l2 || h1 != h2)
821 return 0;
822
823 *h = h1;
824 *l = l1;
825 return 1;
826 }
827 }
828
829 /* Helper function for value_contents_eq. The only difference is that
830 this function is bit rather than byte based.
831
832 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
833 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
834 Return true if the available bits match. */
835
836 static bool
837 value_contents_bits_eq (const struct value *val1, int offset1,
838 const struct value *val2, int offset2,
839 int length)
840 {
841 /* Each array element corresponds to a ranges source (unavailable,
842 optimized out). '1' is for VAL1, '2' for VAL2. */
843 struct ranges_and_idx rp1[2], rp2[2];
844
845 /* See function description in value.h. */
846 gdb_assert (!val1->lazy && !val2->lazy);
847
848 /* We shouldn't be trying to compare past the end of the values. */
849 gdb_assert (offset1 + length
850 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
851 gdb_assert (offset2 + length
852 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
853
854 memset (&rp1, 0, sizeof (rp1));
855 memset (&rp2, 0, sizeof (rp2));
856 rp1[0].ranges = &val1->unavailable;
857 rp2[0].ranges = &val2->unavailable;
858 rp1[1].ranges = &val1->optimized_out;
859 rp2[1].ranges = &val2->optimized_out;
860
861 while (length > 0)
862 {
863 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
864 int i;
865
866 for (i = 0; i < 2; i++)
867 {
868 ULONGEST l_tmp, h_tmp;
869
870 /* The contents only match equal if the invalid/unavailable
871 contents ranges match as well. */
872 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
873 offset1, offset2, length,
874 &l_tmp, &h_tmp))
875 return false;
876
877 /* We're interested in the lowest/first range found. */
878 if (i == 0 || l_tmp < l)
879 {
880 l = l_tmp;
881 h = h_tmp;
882 }
883 }
884
885 /* Compare the available/valid contents. */
886 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
887 val2->contents.get (), offset2, l) != 0)
888 return false;
889
890 length -= h;
891 offset1 += h;
892 offset2 += h;
893 }
894
895 return true;
896 }
897
898 bool
899 value_contents_eq (const struct value *val1, LONGEST offset1,
900 const struct value *val2, LONGEST offset2,
901 LONGEST length)
902 {
903 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
904 val2, offset2 * TARGET_CHAR_BIT,
905 length * TARGET_CHAR_BIT);
906 }
907
908
909 /* The value-history records all the values printed by print commands
910 during this session. */
911
912 static std::vector<value_ref_ptr> value_history;
913
914 \f
915 /* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
919 static std::vector<value_ref_ptr> all_values;
920
921 /* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
924
925 struct value *
926 allocate_value_lazy (struct type *type)
927 {
928 struct value *val;
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
937
938 val = new struct value (type);
939
940 /* Values start out on the all_values chain. */
941 all_values.emplace_back (val);
942
943 return val;
944 }
945
946 /* The maximum size, in bytes, that GDB will try to allocate for a value.
947 The initial value of 64k was not selected for any specific reason, it is
948 just a reasonable starting point. */
949
950 static int max_value_size = 65536; /* 64k bytes */
951
952 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
953 LONGEST, otherwise GDB will not be able to parse integer values from the
954 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
955 be unable to parse "set max-value-size 2".
956
957 As we want a consistent GDB experience across hosts with different sizes
958 of LONGEST, this arbitrary minimum value was selected, so long as this
959 is bigger than LONGEST on all GDB supported hosts we're fine. */
960
961 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
962 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
963
964 /* Implement the "set max-value-size" command. */
965
966 static void
967 set_max_value_size (const char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 gdb_assert (max_value_size == -1 || max_value_size >= 0);
971
972 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
973 {
974 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
975 error (_("max-value-size set too low, increasing to %d bytes"),
976 max_value_size);
977 }
978 }
979
980 /* Implement the "show max-value-size" command. */
981
982 static void
983 show_max_value_size (struct ui_file *file, int from_tty,
984 struct cmd_list_element *c, const char *value)
985 {
986 if (max_value_size == -1)
987 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
988 else
989 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
990 max_value_size);
991 }
992
993 /* Called before we attempt to allocate or reallocate a buffer for the
994 contents of a value. TYPE is the type of the value for which we are
995 allocating the buffer. If the buffer is too large (based on the user
996 controllable setting) then throw an error. If this function returns
997 then we should attempt to allocate the buffer. */
998
999 static void
1000 check_type_length_before_alloc (const struct type *type)
1001 {
1002 ULONGEST length = TYPE_LENGTH (type);
1003
1004 if (max_value_size > -1 && length > max_value_size)
1005 {
1006 if (type->name () != NULL)
1007 error (_("value of type `%s' requires %s bytes, which is more "
1008 "than max-value-size"), type->name (), pulongest (length));
1009 else
1010 error (_("value requires %s bytes, which is more than "
1011 "max-value-size"), pulongest (length));
1012 }
1013 }
1014
1015 /* Allocate the contents of VAL if it has not been allocated yet. */
1016
1017 static void
1018 allocate_value_contents (struct value *val)
1019 {
1020 if (!val->contents)
1021 {
1022 check_type_length_before_alloc (val->enclosing_type);
1023 val->contents.reset
1024 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1025 }
1026 }
1027
1028 /* Allocate a value and its contents for type TYPE. */
1029
1030 struct value *
1031 allocate_value (struct type *type)
1032 {
1033 struct value *val = allocate_value_lazy (type);
1034
1035 allocate_value_contents (val);
1036 val->lazy = 0;
1037 return val;
1038 }
1039
1040 /* Allocate a value that has the correct length
1041 for COUNT repetitions of type TYPE. */
1042
1043 struct value *
1044 allocate_repeat_value (struct type *type, int count)
1045 {
1046 /* Despite the fact that we are really creating an array of TYPE here, we
1047 use the string lower bound as the array lower bound. This seems to
1048 work fine for now. */
1049 int low_bound = current_language->string_lower_bound ();
1050 /* FIXME-type-allocation: need a way to free this type when we are
1051 done with it. */
1052 struct type *array_type
1053 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1054
1055 return allocate_value (array_type);
1056 }
1057
1058 struct value *
1059 allocate_computed_value (struct type *type,
1060 const struct lval_funcs *funcs,
1061 void *closure)
1062 {
1063 struct value *v = allocate_value_lazy (type);
1064
1065 VALUE_LVAL (v) = lval_computed;
1066 v->location.computed.funcs = funcs;
1067 v->location.computed.closure = closure;
1068
1069 return v;
1070 }
1071
1072 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1073
1074 struct value *
1075 allocate_optimized_out_value (struct type *type)
1076 {
1077 struct value *retval = allocate_value_lazy (type);
1078
1079 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1080 set_value_lazy (retval, 0);
1081 return retval;
1082 }
1083
1084 /* Accessor methods. */
1085
1086 struct type *
1087 value_type (const struct value *value)
1088 {
1089 return value->type;
1090 }
1091 void
1092 deprecated_set_value_type (struct value *value, struct type *type)
1093 {
1094 value->type = type;
1095 }
1096
1097 LONGEST
1098 value_offset (const struct value *value)
1099 {
1100 return value->offset;
1101 }
1102 void
1103 set_value_offset (struct value *value, LONGEST offset)
1104 {
1105 value->offset = offset;
1106 }
1107
1108 LONGEST
1109 value_bitpos (const struct value *value)
1110 {
1111 return value->bitpos;
1112 }
1113 void
1114 set_value_bitpos (struct value *value, LONGEST bit)
1115 {
1116 value->bitpos = bit;
1117 }
1118
1119 LONGEST
1120 value_bitsize (const struct value *value)
1121 {
1122 return value->bitsize;
1123 }
1124 void
1125 set_value_bitsize (struct value *value, LONGEST bit)
1126 {
1127 value->bitsize = bit;
1128 }
1129
1130 struct value *
1131 value_parent (const struct value *value)
1132 {
1133 return value->parent.get ();
1134 }
1135
1136 /* See value.h. */
1137
1138 void
1139 set_value_parent (struct value *value, struct value *parent)
1140 {
1141 value->parent = value_ref_ptr::new_reference (parent);
1142 }
1143
1144 gdb_byte *
1145 value_contents_raw (struct value *value)
1146 {
1147 struct gdbarch *arch = get_value_arch (value);
1148 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1149
1150 allocate_value_contents (value);
1151 return value->contents.get () + value->embedded_offset * unit_size;
1152 }
1153
1154 gdb_byte *
1155 value_contents_all_raw (struct value *value)
1156 {
1157 allocate_value_contents (value);
1158 return value->contents.get ();
1159 }
1160
1161 struct type *
1162 value_enclosing_type (const struct value *value)
1163 {
1164 return value->enclosing_type;
1165 }
1166
1167 /* Look at value.h for description. */
1168
1169 struct type *
1170 value_actual_type (struct value *value, int resolve_simple_types,
1171 int *real_type_found)
1172 {
1173 struct value_print_options opts;
1174 struct type *result;
1175
1176 get_user_print_options (&opts);
1177
1178 if (real_type_found)
1179 *real_type_found = 0;
1180 result = value_type (value);
1181 if (opts.objectprint)
1182 {
1183 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1184 fetch its rtti type. */
1185 if ((result->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1186 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1187 == TYPE_CODE_STRUCT)
1188 && !value_optimized_out (value))
1189 {
1190 struct type *real_type;
1191
1192 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1193 if (real_type)
1194 {
1195 if (real_type_found)
1196 *real_type_found = 1;
1197 result = real_type;
1198 }
1199 }
1200 else if (resolve_simple_types)
1201 {
1202 if (real_type_found)
1203 *real_type_found = 1;
1204 result = value_enclosing_type (value);
1205 }
1206 }
1207
1208 return result;
1209 }
1210
1211 void
1212 error_value_optimized_out (void)
1213 {
1214 error (_("value has been optimized out"));
1215 }
1216
1217 static void
1218 require_not_optimized_out (const struct value *value)
1219 {
1220 if (!value->optimized_out.empty ())
1221 {
1222 if (value->lval == lval_register)
1223 error (_("register has not been saved in frame"));
1224 else
1225 error_value_optimized_out ();
1226 }
1227 }
1228
1229 static void
1230 require_available (const struct value *value)
1231 {
1232 if (!value->unavailable.empty ())
1233 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1234 }
1235
1236 const gdb_byte *
1237 value_contents_for_printing (struct value *value)
1238 {
1239 if (value->lazy)
1240 value_fetch_lazy (value);
1241 return value->contents.get ();
1242 }
1243
1244 const gdb_byte *
1245 value_contents_for_printing_const (const struct value *value)
1246 {
1247 gdb_assert (!value->lazy);
1248 return value->contents.get ();
1249 }
1250
1251 const gdb_byte *
1252 value_contents_all (struct value *value)
1253 {
1254 const gdb_byte *result = value_contents_for_printing (value);
1255 require_not_optimized_out (value);
1256 require_available (value);
1257 return result;
1258 }
1259
1260 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1261 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1262
1263 static void
1264 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1265 const std::vector<range> &src_range, int src_bit_offset,
1266 int bit_length)
1267 {
1268 for (const range &r : src_range)
1269 {
1270 ULONGEST h, l;
1271
1272 l = std::max (r.offset, (LONGEST) src_bit_offset);
1273 h = std::min (r.offset + r.length,
1274 (LONGEST) src_bit_offset + bit_length);
1275
1276 if (l < h)
1277 insert_into_bit_range_vector (dst_range,
1278 dst_bit_offset + (l - src_bit_offset),
1279 h - l);
1280 }
1281 }
1282
1283 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1284 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1285
1286 static void
1287 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1288 const struct value *src, int src_bit_offset,
1289 int bit_length)
1290 {
1291 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1292 src->unavailable, src_bit_offset,
1293 bit_length);
1294 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1295 src->optimized_out, src_bit_offset,
1296 bit_length);
1297 }
1298
1299 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1300 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1301 contents, starting at DST_OFFSET. If unavailable contents are
1302 being copied from SRC, the corresponding DST contents are marked
1303 unavailable accordingly. Neither DST nor SRC may be lazy
1304 values.
1305
1306 It is assumed the contents of DST in the [DST_OFFSET,
1307 DST_OFFSET+LENGTH) range are wholly available. */
1308
1309 static void
1310 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1311 struct value *src, LONGEST src_offset, LONGEST length)
1312 {
1313 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1314 struct gdbarch *arch = get_value_arch (src);
1315 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1316
1317 /* A lazy DST would make that this copy operation useless, since as
1318 soon as DST's contents were un-lazied (by a later value_contents
1319 call, say), the contents would be overwritten. A lazy SRC would
1320 mean we'd be copying garbage. */
1321 gdb_assert (!dst->lazy && !src->lazy);
1322
1323 /* The overwritten DST range gets unavailability ORed in, not
1324 replaced. Make sure to remember to implement replacing if it
1325 turns out actually necessary. */
1326 gdb_assert (value_bytes_available (dst, dst_offset, length));
1327 gdb_assert (!value_bits_any_optimized_out (dst,
1328 TARGET_CHAR_BIT * dst_offset,
1329 TARGET_CHAR_BIT * length));
1330
1331 /* Copy the data. */
1332 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1333 value_contents_all_raw (src) + src_offset * unit_size,
1334 length * unit_size);
1335
1336 /* Copy the meta-data, adjusted. */
1337 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1338 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1339 bit_length = length * unit_size * HOST_CHAR_BIT;
1340
1341 value_ranges_copy_adjusted (dst, dst_bit_offset,
1342 src, src_bit_offset,
1343 bit_length);
1344 }
1345
1346 /* Copy LENGTH bytes of SRC value's (all) contents
1347 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1348 (all) contents, starting at DST_OFFSET. If unavailable contents
1349 are being copied from SRC, the corresponding DST contents are
1350 marked unavailable accordingly. DST must not be lazy. If SRC is
1351 lazy, it will be fetched now.
1352
1353 It is assumed the contents of DST in the [DST_OFFSET,
1354 DST_OFFSET+LENGTH) range are wholly available. */
1355
1356 void
1357 value_contents_copy (struct value *dst, LONGEST dst_offset,
1358 struct value *src, LONGEST src_offset, LONGEST length)
1359 {
1360 if (src->lazy)
1361 value_fetch_lazy (src);
1362
1363 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1364 }
1365
1366 int
1367 value_lazy (const struct value *value)
1368 {
1369 return value->lazy;
1370 }
1371
1372 void
1373 set_value_lazy (struct value *value, int val)
1374 {
1375 value->lazy = val;
1376 }
1377
1378 int
1379 value_stack (const struct value *value)
1380 {
1381 return value->stack;
1382 }
1383
1384 void
1385 set_value_stack (struct value *value, int val)
1386 {
1387 value->stack = val;
1388 }
1389
1390 const gdb_byte *
1391 value_contents (struct value *value)
1392 {
1393 const gdb_byte *result = value_contents_writeable (value);
1394 require_not_optimized_out (value);
1395 require_available (value);
1396 return result;
1397 }
1398
1399 gdb_byte *
1400 value_contents_writeable (struct value *value)
1401 {
1402 if (value->lazy)
1403 value_fetch_lazy (value);
1404 return value_contents_raw (value);
1405 }
1406
1407 int
1408 value_optimized_out (struct value *value)
1409 {
1410 /* We can only know if a value is optimized out once we have tried to
1411 fetch it. */
1412 if (value->optimized_out.empty () && value->lazy)
1413 {
1414 try
1415 {
1416 value_fetch_lazy (value);
1417 }
1418 catch (const gdb_exception_error &ex)
1419 {
1420 switch (ex.error)
1421 {
1422 case MEMORY_ERROR:
1423 case OPTIMIZED_OUT_ERROR:
1424 case NOT_AVAILABLE_ERROR:
1425 /* These can normally happen when we try to access an
1426 optimized out or unavailable register, either in a
1427 physical register or spilled to memory. */
1428 break;
1429 default:
1430 throw;
1431 }
1432 }
1433 }
1434
1435 return !value->optimized_out.empty ();
1436 }
1437
1438 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1439 the following LENGTH bytes. */
1440
1441 void
1442 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1443 {
1444 mark_value_bits_optimized_out (value,
1445 offset * TARGET_CHAR_BIT,
1446 length * TARGET_CHAR_BIT);
1447 }
1448
1449 /* See value.h. */
1450
1451 void
1452 mark_value_bits_optimized_out (struct value *value,
1453 LONGEST offset, LONGEST length)
1454 {
1455 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1456 }
1457
1458 int
1459 value_bits_synthetic_pointer (const struct value *value,
1460 LONGEST offset, LONGEST length)
1461 {
1462 if (value->lval != lval_computed
1463 || !value->location.computed.funcs->check_synthetic_pointer)
1464 return 0;
1465 return value->location.computed.funcs->check_synthetic_pointer (value,
1466 offset,
1467 length);
1468 }
1469
1470 LONGEST
1471 value_embedded_offset (const struct value *value)
1472 {
1473 return value->embedded_offset;
1474 }
1475
1476 void
1477 set_value_embedded_offset (struct value *value, LONGEST val)
1478 {
1479 value->embedded_offset = val;
1480 }
1481
1482 LONGEST
1483 value_pointed_to_offset (const struct value *value)
1484 {
1485 return value->pointed_to_offset;
1486 }
1487
1488 void
1489 set_value_pointed_to_offset (struct value *value, LONGEST val)
1490 {
1491 value->pointed_to_offset = val;
1492 }
1493
1494 const struct lval_funcs *
1495 value_computed_funcs (const struct value *v)
1496 {
1497 gdb_assert (value_lval_const (v) == lval_computed);
1498
1499 return v->location.computed.funcs;
1500 }
1501
1502 void *
1503 value_computed_closure (const struct value *v)
1504 {
1505 gdb_assert (v->lval == lval_computed);
1506
1507 return v->location.computed.closure;
1508 }
1509
1510 enum lval_type *
1511 deprecated_value_lval_hack (struct value *value)
1512 {
1513 return &value->lval;
1514 }
1515
1516 enum lval_type
1517 value_lval_const (const struct value *value)
1518 {
1519 return value->lval;
1520 }
1521
1522 CORE_ADDR
1523 value_address (const struct value *value)
1524 {
1525 if (value->lval != lval_memory)
1526 return 0;
1527 if (value->parent != NULL)
1528 return value_address (value->parent.get ()) + value->offset;
1529 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1530 {
1531 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1532 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1533 }
1534
1535 return value->location.address + value->offset;
1536 }
1537
1538 CORE_ADDR
1539 value_raw_address (const struct value *value)
1540 {
1541 if (value->lval != lval_memory)
1542 return 0;
1543 return value->location.address;
1544 }
1545
1546 void
1547 set_value_address (struct value *value, CORE_ADDR addr)
1548 {
1549 gdb_assert (value->lval == lval_memory);
1550 value->location.address = addr;
1551 }
1552
1553 struct internalvar **
1554 deprecated_value_internalvar_hack (struct value *value)
1555 {
1556 return &value->location.internalvar;
1557 }
1558
1559 struct frame_id *
1560 deprecated_value_next_frame_id_hack (struct value *value)
1561 {
1562 gdb_assert (value->lval == lval_register);
1563 return &value->location.reg.next_frame_id;
1564 }
1565
1566 int *
1567 deprecated_value_regnum_hack (struct value *value)
1568 {
1569 gdb_assert (value->lval == lval_register);
1570 return &value->location.reg.regnum;
1571 }
1572
1573 int
1574 deprecated_value_modifiable (const struct value *value)
1575 {
1576 return value->modifiable;
1577 }
1578 \f
1579 /* Return a mark in the value chain. All values allocated after the
1580 mark is obtained (except for those released) are subject to being freed
1581 if a subsequent value_free_to_mark is passed the mark. */
1582 struct value *
1583 value_mark (void)
1584 {
1585 if (all_values.empty ())
1586 return nullptr;
1587 return all_values.back ().get ();
1588 }
1589
1590 /* See value.h. */
1591
1592 void
1593 value_incref (struct value *val)
1594 {
1595 val->reference_count++;
1596 }
1597
1598 /* Release a reference to VAL, which was acquired with value_incref.
1599 This function is also called to deallocate values from the value
1600 chain. */
1601
1602 void
1603 value_decref (struct value *val)
1604 {
1605 if (val != nullptr)
1606 {
1607 gdb_assert (val->reference_count > 0);
1608 val->reference_count--;
1609 if (val->reference_count == 0)
1610 delete val;
1611 }
1612 }
1613
1614 /* Free all values allocated since MARK was obtained by value_mark
1615 (except for those released). */
1616 void
1617 value_free_to_mark (const struct value *mark)
1618 {
1619 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1620 if (iter == all_values.end ())
1621 all_values.clear ();
1622 else
1623 all_values.erase (iter + 1, all_values.end ());
1624 }
1625
1626 /* Remove VAL from the chain all_values
1627 so it will not be freed automatically. */
1628
1629 value_ref_ptr
1630 release_value (struct value *val)
1631 {
1632 if (val == nullptr)
1633 return value_ref_ptr ();
1634
1635 std::vector<value_ref_ptr>::reverse_iterator iter;
1636 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1637 {
1638 if (*iter == val)
1639 {
1640 value_ref_ptr result = *iter;
1641 all_values.erase (iter.base () - 1);
1642 return result;
1643 }
1644 }
1645
1646 /* We must always return an owned reference. Normally this happens
1647 because we transfer the reference from the value chain, but in
1648 this case the value was not on the chain. */
1649 return value_ref_ptr::new_reference (val);
1650 }
1651
1652 /* See value.h. */
1653
1654 std::vector<value_ref_ptr>
1655 value_release_to_mark (const struct value *mark)
1656 {
1657 std::vector<value_ref_ptr> result;
1658
1659 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1660 if (iter == all_values.end ())
1661 std::swap (result, all_values);
1662 else
1663 {
1664 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1665 all_values.erase (iter + 1, all_values.end ());
1666 }
1667 std::reverse (result.begin (), result.end ());
1668 return result;
1669 }
1670
1671 /* Return a copy of the value ARG.
1672 It contains the same contents, for same memory address,
1673 but it's a different block of storage. */
1674
1675 struct value *
1676 value_copy (struct value *arg)
1677 {
1678 struct type *encl_type = value_enclosing_type (arg);
1679 struct value *val;
1680
1681 if (value_lazy (arg))
1682 val = allocate_value_lazy (encl_type);
1683 else
1684 val = allocate_value (encl_type);
1685 val->type = arg->type;
1686 VALUE_LVAL (val) = VALUE_LVAL (arg);
1687 val->location = arg->location;
1688 val->offset = arg->offset;
1689 val->bitpos = arg->bitpos;
1690 val->bitsize = arg->bitsize;
1691 val->lazy = arg->lazy;
1692 val->embedded_offset = value_embedded_offset (arg);
1693 val->pointed_to_offset = arg->pointed_to_offset;
1694 val->modifiable = arg->modifiable;
1695 if (!value_lazy (val))
1696 {
1697 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1698 TYPE_LENGTH (value_enclosing_type (arg)));
1699
1700 }
1701 val->unavailable = arg->unavailable;
1702 val->optimized_out = arg->optimized_out;
1703 val->parent = arg->parent;
1704 if (VALUE_LVAL (val) == lval_computed)
1705 {
1706 const struct lval_funcs *funcs = val->location.computed.funcs;
1707
1708 if (funcs->copy_closure)
1709 val->location.computed.closure = funcs->copy_closure (val);
1710 }
1711 return val;
1712 }
1713
1714 /* Return a "const" and/or "volatile" qualified version of the value V.
1715 If CNST is true, then the returned value will be qualified with
1716 "const".
1717 if VOLTL is true, then the returned value will be qualified with
1718 "volatile". */
1719
1720 struct value *
1721 make_cv_value (int cnst, int voltl, struct value *v)
1722 {
1723 struct type *val_type = value_type (v);
1724 struct type *enclosing_type = value_enclosing_type (v);
1725 struct value *cv_val = value_copy (v);
1726
1727 deprecated_set_value_type (cv_val,
1728 make_cv_type (cnst, voltl, val_type, NULL));
1729 set_value_enclosing_type (cv_val,
1730 make_cv_type (cnst, voltl, enclosing_type, NULL));
1731
1732 return cv_val;
1733 }
1734
1735 /* Return a version of ARG that is non-lvalue. */
1736
1737 struct value *
1738 value_non_lval (struct value *arg)
1739 {
1740 if (VALUE_LVAL (arg) != not_lval)
1741 {
1742 struct type *enc_type = value_enclosing_type (arg);
1743 struct value *val = allocate_value (enc_type);
1744
1745 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1746 TYPE_LENGTH (enc_type));
1747 val->type = arg->type;
1748 set_value_embedded_offset (val, value_embedded_offset (arg));
1749 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1750 return val;
1751 }
1752 return arg;
1753 }
1754
1755 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1756
1757 void
1758 value_force_lval (struct value *v, CORE_ADDR addr)
1759 {
1760 gdb_assert (VALUE_LVAL (v) == not_lval);
1761
1762 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1763 v->lval = lval_memory;
1764 v->location.address = addr;
1765 }
1766
1767 void
1768 set_value_component_location (struct value *component,
1769 const struct value *whole)
1770 {
1771 struct type *type;
1772
1773 gdb_assert (whole->lval != lval_xcallable);
1774
1775 if (whole->lval == lval_internalvar)
1776 VALUE_LVAL (component) = lval_internalvar_component;
1777 else
1778 VALUE_LVAL (component) = whole->lval;
1779
1780 component->location = whole->location;
1781 if (whole->lval == lval_computed)
1782 {
1783 const struct lval_funcs *funcs = whole->location.computed.funcs;
1784
1785 if (funcs->copy_closure)
1786 component->location.computed.closure = funcs->copy_closure (whole);
1787 }
1788
1789 /* If the WHOLE value has a dynamically resolved location property then
1790 update the address of the COMPONENT. */
1791 type = value_type (whole);
1792 if (NULL != TYPE_DATA_LOCATION (type)
1793 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1794 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1795
1796 /* Similarly, if the COMPONENT value has a dynamically resolved location
1797 property then update its address. */
1798 type = value_type (component);
1799 if (NULL != TYPE_DATA_LOCATION (type)
1800 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1801 {
1802 /* If the COMPONENT has a dynamic location, and is an
1803 lval_internalvar_component, then we change it to a lval_memory.
1804
1805 Usually a component of an internalvar is created non-lazy, and has
1806 its content immediately copied from the parent internalvar.
1807 However, for components with a dynamic location, the content of
1808 the component is not contained within the parent, but is instead
1809 accessed indirectly. Further, the component will be created as a
1810 lazy value.
1811
1812 By changing the type of the component to lval_memory we ensure
1813 that value_fetch_lazy can successfully load the component.
1814
1815 This solution isn't ideal, but a real fix would require values to
1816 carry around both the parent value contents, and the contents of
1817 any dynamic fields within the parent. This is a substantial
1818 change to how values work in GDB. */
1819 if (VALUE_LVAL (component) == lval_internalvar_component)
1820 {
1821 gdb_assert (value_lazy (component));
1822 VALUE_LVAL (component) = lval_memory;
1823 }
1824 else
1825 gdb_assert (VALUE_LVAL (component) == lval_memory);
1826 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1827 }
1828 }
1829
1830 /* Access to the value history. */
1831
1832 /* Record a new value in the value history.
1833 Returns the absolute history index of the entry. */
1834
1835 int
1836 record_latest_value (struct value *val)
1837 {
1838 /* We don't want this value to have anything to do with the inferior anymore.
1839 In particular, "set $1 = 50" should not affect the variable from which
1840 the value was taken, and fast watchpoints should be able to assume that
1841 a value on the value history never changes. */
1842 if (value_lazy (val))
1843 value_fetch_lazy (val);
1844 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1845 from. This is a bit dubious, because then *&$1 does not just return $1
1846 but the current contents of that location. c'est la vie... */
1847 val->modifiable = 0;
1848
1849 value_history.push_back (release_value (val));
1850
1851 return value_history.size ();
1852 }
1853
1854 /* Return a copy of the value in the history with sequence number NUM. */
1855
1856 struct value *
1857 access_value_history (int num)
1858 {
1859 int absnum = num;
1860
1861 if (absnum <= 0)
1862 absnum += value_history.size ();
1863
1864 if (absnum <= 0)
1865 {
1866 if (num == 0)
1867 error (_("The history is empty."));
1868 else if (num == 1)
1869 error (_("There is only one value in the history."));
1870 else
1871 error (_("History does not go back to $$%d."), -num);
1872 }
1873 if (absnum > value_history.size ())
1874 error (_("History has not yet reached $%d."), absnum);
1875
1876 absnum--;
1877
1878 return value_copy (value_history[absnum].get ());
1879 }
1880
1881 static void
1882 show_values (const char *num_exp, int from_tty)
1883 {
1884 int i;
1885 struct value *val;
1886 static int num = 1;
1887
1888 if (num_exp)
1889 {
1890 /* "show values +" should print from the stored position.
1891 "show values <exp>" should print around value number <exp>. */
1892 if (num_exp[0] != '+' || num_exp[1] != '\0')
1893 num = parse_and_eval_long (num_exp) - 5;
1894 }
1895 else
1896 {
1897 /* "show values" means print the last 10 values. */
1898 num = value_history.size () - 9;
1899 }
1900
1901 if (num <= 0)
1902 num = 1;
1903
1904 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1905 {
1906 struct value_print_options opts;
1907
1908 val = access_value_history (i);
1909 printf_filtered (("$%d = "), i);
1910 get_user_print_options (&opts);
1911 value_print (val, gdb_stdout, &opts);
1912 printf_filtered (("\n"));
1913 }
1914
1915 /* The next "show values +" should start after what we just printed. */
1916 num += 10;
1917
1918 /* Hitting just return after this command should do the same thing as
1919 "show values +". If num_exp is null, this is unnecessary, since
1920 "show values +" is not useful after "show values". */
1921 if (from_tty && num_exp)
1922 set_repeat_arguments ("+");
1923 }
1924 \f
1925 enum internalvar_kind
1926 {
1927 /* The internal variable is empty. */
1928 INTERNALVAR_VOID,
1929
1930 /* The value of the internal variable is provided directly as
1931 a GDB value object. */
1932 INTERNALVAR_VALUE,
1933
1934 /* A fresh value is computed via a call-back routine on every
1935 access to the internal variable. */
1936 INTERNALVAR_MAKE_VALUE,
1937
1938 /* The internal variable holds a GDB internal convenience function. */
1939 INTERNALVAR_FUNCTION,
1940
1941 /* The variable holds an integer value. */
1942 INTERNALVAR_INTEGER,
1943
1944 /* The variable holds a GDB-provided string. */
1945 INTERNALVAR_STRING,
1946 };
1947
1948 union internalvar_data
1949 {
1950 /* A value object used with INTERNALVAR_VALUE. */
1951 struct value *value;
1952
1953 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1954 struct
1955 {
1956 /* The functions to call. */
1957 const struct internalvar_funcs *functions;
1958
1959 /* The function's user-data. */
1960 void *data;
1961 } make_value;
1962
1963 /* The internal function used with INTERNALVAR_FUNCTION. */
1964 struct
1965 {
1966 struct internal_function *function;
1967 /* True if this is the canonical name for the function. */
1968 int canonical;
1969 } fn;
1970
1971 /* An integer value used with INTERNALVAR_INTEGER. */
1972 struct
1973 {
1974 /* If type is non-NULL, it will be used as the type to generate
1975 a value for this internal variable. If type is NULL, a default
1976 integer type for the architecture is used. */
1977 struct type *type;
1978 LONGEST val;
1979 } integer;
1980
1981 /* A string value used with INTERNALVAR_STRING. */
1982 char *string;
1983 };
1984
1985 /* Internal variables. These are variables within the debugger
1986 that hold values assigned by debugger commands.
1987 The user refers to them with a '$' prefix
1988 that does not appear in the variable names stored internally. */
1989
1990 struct internalvar
1991 {
1992 struct internalvar *next;
1993 char *name;
1994
1995 /* We support various different kinds of content of an internal variable.
1996 enum internalvar_kind specifies the kind, and union internalvar_data
1997 provides the data associated with this particular kind. */
1998
1999 enum internalvar_kind kind;
2000
2001 union internalvar_data u;
2002 };
2003
2004 static struct internalvar *internalvars;
2005
2006 /* If the variable does not already exist create it and give it the
2007 value given. If no value is given then the default is zero. */
2008 static void
2009 init_if_undefined_command (const char* args, int from_tty)
2010 {
2011 struct internalvar *intvar = nullptr;
2012
2013 /* Parse the expression - this is taken from set_command(). */
2014 expression_up expr = parse_expression (args);
2015
2016 /* Validate the expression.
2017 Was the expression an assignment?
2018 Or even an expression at all? */
2019 if (expr->first_opcode () != BINOP_ASSIGN)
2020 error (_("Init-if-undefined requires an assignment expression."));
2021
2022 /* Extract the variable from the parsed expression. */
2023 expr::assign_operation *assign
2024 = dynamic_cast<expr::assign_operation *> (expr->op.get ());
2025 if (assign != nullptr)
2026 {
2027 expr::operation *lhs = assign->get_lhs ();
2028 expr::internalvar_operation *ivarop
2029 = dynamic_cast<expr::internalvar_operation *> (lhs);
2030 if (ivarop != nullptr)
2031 intvar = ivarop->get_internalvar ();
2032 }
2033
2034 if (intvar == nullptr)
2035 error (_("The first parameter to init-if-undefined "
2036 "should be a GDB variable."));
2037
2038 /* Only evaluate the expression if the lvalue is void.
2039 This may still fail if the expression is invalid. */
2040 if (intvar->kind == INTERNALVAR_VOID)
2041 evaluate_expression (expr.get ());
2042 }
2043
2044
2045 /* Look up an internal variable with name NAME. NAME should not
2046 normally include a dollar sign.
2047
2048 If the specified internal variable does not exist,
2049 the return value is NULL. */
2050
2051 struct internalvar *
2052 lookup_only_internalvar (const char *name)
2053 {
2054 struct internalvar *var;
2055
2056 for (var = internalvars; var; var = var->next)
2057 if (strcmp (var->name, name) == 0)
2058 return var;
2059
2060 return NULL;
2061 }
2062
2063 /* Complete NAME by comparing it to the names of internal
2064 variables. */
2065
2066 void
2067 complete_internalvar (completion_tracker &tracker, const char *name)
2068 {
2069 struct internalvar *var;
2070 int len;
2071
2072 len = strlen (name);
2073
2074 for (var = internalvars; var; var = var->next)
2075 if (strncmp (var->name, name, len) == 0)
2076 tracker.add_completion (make_unique_xstrdup (var->name));
2077 }
2078
2079 /* Create an internal variable with name NAME and with a void value.
2080 NAME should not normally include a dollar sign. */
2081
2082 struct internalvar *
2083 create_internalvar (const char *name)
2084 {
2085 struct internalvar *var = XNEW (struct internalvar);
2086
2087 var->name = xstrdup (name);
2088 var->kind = INTERNALVAR_VOID;
2089 var->next = internalvars;
2090 internalvars = var;
2091 return var;
2092 }
2093
2094 /* Create an internal variable with name NAME and register FUN as the
2095 function that value_of_internalvar uses to create a value whenever
2096 this variable is referenced. NAME should not normally include a
2097 dollar sign. DATA is passed uninterpreted to FUN when it is
2098 called. CLEANUP, if not NULL, is called when the internal variable
2099 is destroyed. It is passed DATA as its only argument. */
2100
2101 struct internalvar *
2102 create_internalvar_type_lazy (const char *name,
2103 const struct internalvar_funcs *funcs,
2104 void *data)
2105 {
2106 struct internalvar *var = create_internalvar (name);
2107
2108 var->kind = INTERNALVAR_MAKE_VALUE;
2109 var->u.make_value.functions = funcs;
2110 var->u.make_value.data = data;
2111 return var;
2112 }
2113
2114 /* See documentation in value.h. */
2115
2116 int
2117 compile_internalvar_to_ax (struct internalvar *var,
2118 struct agent_expr *expr,
2119 struct axs_value *value)
2120 {
2121 if (var->kind != INTERNALVAR_MAKE_VALUE
2122 || var->u.make_value.functions->compile_to_ax == NULL)
2123 return 0;
2124
2125 var->u.make_value.functions->compile_to_ax (var, expr, value,
2126 var->u.make_value.data);
2127 return 1;
2128 }
2129
2130 /* Look up an internal variable with name NAME. NAME should not
2131 normally include a dollar sign.
2132
2133 If the specified internal variable does not exist,
2134 one is created, with a void value. */
2135
2136 struct internalvar *
2137 lookup_internalvar (const char *name)
2138 {
2139 struct internalvar *var;
2140
2141 var = lookup_only_internalvar (name);
2142 if (var)
2143 return var;
2144
2145 return create_internalvar (name);
2146 }
2147
2148 /* Return current value of internal variable VAR. For variables that
2149 are not inherently typed, use a value type appropriate for GDBARCH. */
2150
2151 struct value *
2152 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2153 {
2154 struct value *val;
2155 struct trace_state_variable *tsv;
2156
2157 /* If there is a trace state variable of the same name, assume that
2158 is what we really want to see. */
2159 tsv = find_trace_state_variable (var->name);
2160 if (tsv)
2161 {
2162 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2163 &(tsv->value));
2164 if (tsv->value_known)
2165 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2166 tsv->value);
2167 else
2168 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2169 return val;
2170 }
2171
2172 switch (var->kind)
2173 {
2174 case INTERNALVAR_VOID:
2175 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2176 break;
2177
2178 case INTERNALVAR_FUNCTION:
2179 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2180 break;
2181
2182 case INTERNALVAR_INTEGER:
2183 if (!var->u.integer.type)
2184 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2185 var->u.integer.val);
2186 else
2187 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2188 break;
2189
2190 case INTERNALVAR_STRING:
2191 val = value_cstring (var->u.string, strlen (var->u.string),
2192 builtin_type (gdbarch)->builtin_char);
2193 break;
2194
2195 case INTERNALVAR_VALUE:
2196 val = value_copy (var->u.value);
2197 if (value_lazy (val))
2198 value_fetch_lazy (val);
2199 break;
2200
2201 case INTERNALVAR_MAKE_VALUE:
2202 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2203 var->u.make_value.data);
2204 break;
2205
2206 default:
2207 internal_error (__FILE__, __LINE__, _("bad kind"));
2208 }
2209
2210 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2211 on this value go back to affect the original internal variable.
2212
2213 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2214 no underlying modifiable state in the internal variable.
2215
2216 Likewise, if the variable's value is a computed lvalue, we want
2217 references to it to produce another computed lvalue, where
2218 references and assignments actually operate through the
2219 computed value's functions.
2220
2221 This means that internal variables with computed values
2222 behave a little differently from other internal variables:
2223 assignments to them don't just replace the previous value
2224 altogether. At the moment, this seems like the behavior we
2225 want. */
2226
2227 if (var->kind != INTERNALVAR_MAKE_VALUE
2228 && val->lval != lval_computed)
2229 {
2230 VALUE_LVAL (val) = lval_internalvar;
2231 VALUE_INTERNALVAR (val) = var;
2232 }
2233
2234 return val;
2235 }
2236
2237 int
2238 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2239 {
2240 if (var->kind == INTERNALVAR_INTEGER)
2241 {
2242 *result = var->u.integer.val;
2243 return 1;
2244 }
2245
2246 if (var->kind == INTERNALVAR_VALUE)
2247 {
2248 struct type *type = check_typedef (value_type (var->u.value));
2249
2250 if (type->code () == TYPE_CODE_INT)
2251 {
2252 *result = value_as_long (var->u.value);
2253 return 1;
2254 }
2255 }
2256
2257 return 0;
2258 }
2259
2260 static int
2261 get_internalvar_function (struct internalvar *var,
2262 struct internal_function **result)
2263 {
2264 switch (var->kind)
2265 {
2266 case INTERNALVAR_FUNCTION:
2267 *result = var->u.fn.function;
2268 return 1;
2269
2270 default:
2271 return 0;
2272 }
2273 }
2274
2275 void
2276 set_internalvar_component (struct internalvar *var,
2277 LONGEST offset, LONGEST bitpos,
2278 LONGEST bitsize, struct value *newval)
2279 {
2280 gdb_byte *addr;
2281 struct gdbarch *arch;
2282 int unit_size;
2283
2284 switch (var->kind)
2285 {
2286 case INTERNALVAR_VALUE:
2287 addr = value_contents_writeable (var->u.value);
2288 arch = get_value_arch (var->u.value);
2289 unit_size = gdbarch_addressable_memory_unit_size (arch);
2290
2291 if (bitsize)
2292 modify_field (value_type (var->u.value), addr + offset,
2293 value_as_long (newval), bitpos, bitsize);
2294 else
2295 memcpy (addr + offset * unit_size, value_contents (newval),
2296 TYPE_LENGTH (value_type (newval)));
2297 break;
2298
2299 default:
2300 /* We can never get a component of any other kind. */
2301 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2302 }
2303 }
2304
2305 void
2306 set_internalvar (struct internalvar *var, struct value *val)
2307 {
2308 enum internalvar_kind new_kind;
2309 union internalvar_data new_data = { 0 };
2310
2311 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2312 error (_("Cannot overwrite convenience function %s"), var->name);
2313
2314 /* Prepare new contents. */
2315 switch (check_typedef (value_type (val))->code ())
2316 {
2317 case TYPE_CODE_VOID:
2318 new_kind = INTERNALVAR_VOID;
2319 break;
2320
2321 case TYPE_CODE_INTERNAL_FUNCTION:
2322 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2323 new_kind = INTERNALVAR_FUNCTION;
2324 get_internalvar_function (VALUE_INTERNALVAR (val),
2325 &new_data.fn.function);
2326 /* Copies created here are never canonical. */
2327 break;
2328
2329 default:
2330 new_kind = INTERNALVAR_VALUE;
2331 struct value *copy = value_copy (val);
2332 copy->modifiable = 1;
2333
2334 /* Force the value to be fetched from the target now, to avoid problems
2335 later when this internalvar is referenced and the target is gone or
2336 has changed. */
2337 if (value_lazy (copy))
2338 value_fetch_lazy (copy);
2339
2340 /* Release the value from the value chain to prevent it from being
2341 deleted by free_all_values. From here on this function should not
2342 call error () until new_data is installed into the var->u to avoid
2343 leaking memory. */
2344 new_data.value = release_value (copy).release ();
2345
2346 /* Internal variables which are created from values with a dynamic
2347 location don't need the location property of the origin anymore.
2348 The resolved dynamic location is used prior then any other address
2349 when accessing the value.
2350 If we keep it, we would still refer to the origin value.
2351 Remove the location property in case it exist. */
2352 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
2353
2354 break;
2355 }
2356
2357 /* Clean up old contents. */
2358 clear_internalvar (var);
2359
2360 /* Switch over. */
2361 var->kind = new_kind;
2362 var->u = new_data;
2363 /* End code which must not call error(). */
2364 }
2365
2366 void
2367 set_internalvar_integer (struct internalvar *var, LONGEST l)
2368 {
2369 /* Clean up old contents. */
2370 clear_internalvar (var);
2371
2372 var->kind = INTERNALVAR_INTEGER;
2373 var->u.integer.type = NULL;
2374 var->u.integer.val = l;
2375 }
2376
2377 void
2378 set_internalvar_string (struct internalvar *var, const char *string)
2379 {
2380 /* Clean up old contents. */
2381 clear_internalvar (var);
2382
2383 var->kind = INTERNALVAR_STRING;
2384 var->u.string = xstrdup (string);
2385 }
2386
2387 static void
2388 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2389 {
2390 /* Clean up old contents. */
2391 clear_internalvar (var);
2392
2393 var->kind = INTERNALVAR_FUNCTION;
2394 var->u.fn.function = f;
2395 var->u.fn.canonical = 1;
2396 /* Variables installed here are always the canonical version. */
2397 }
2398
2399 void
2400 clear_internalvar (struct internalvar *var)
2401 {
2402 /* Clean up old contents. */
2403 switch (var->kind)
2404 {
2405 case INTERNALVAR_VALUE:
2406 value_decref (var->u.value);
2407 break;
2408
2409 case INTERNALVAR_STRING:
2410 xfree (var->u.string);
2411 break;
2412
2413 case INTERNALVAR_MAKE_VALUE:
2414 if (var->u.make_value.functions->destroy != NULL)
2415 var->u.make_value.functions->destroy (var->u.make_value.data);
2416 break;
2417
2418 default:
2419 break;
2420 }
2421
2422 /* Reset to void kind. */
2423 var->kind = INTERNALVAR_VOID;
2424 }
2425
2426 const char *
2427 internalvar_name (const struct internalvar *var)
2428 {
2429 return var->name;
2430 }
2431
2432 static struct internal_function *
2433 create_internal_function (const char *name,
2434 internal_function_fn handler, void *cookie)
2435 {
2436 struct internal_function *ifn = XNEW (struct internal_function);
2437
2438 ifn->name = xstrdup (name);
2439 ifn->handler = handler;
2440 ifn->cookie = cookie;
2441 return ifn;
2442 }
2443
2444 const char *
2445 value_internal_function_name (struct value *val)
2446 {
2447 struct internal_function *ifn;
2448 int result;
2449
2450 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2451 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2452 gdb_assert (result);
2453
2454 return ifn->name;
2455 }
2456
2457 struct value *
2458 call_internal_function (struct gdbarch *gdbarch,
2459 const struct language_defn *language,
2460 struct value *func, int argc, struct value **argv)
2461 {
2462 struct internal_function *ifn;
2463 int result;
2464
2465 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2466 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2467 gdb_assert (result);
2468
2469 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2470 }
2471
2472 /* The 'function' command. This does nothing -- it is just a
2473 placeholder to let "help function NAME" work. This is also used as
2474 the implementation of the sub-command that is created when
2475 registering an internal function. */
2476 static void
2477 function_command (const char *command, int from_tty)
2478 {
2479 /* Do nothing. */
2480 }
2481
2482 /* Helper function that does the work for add_internal_function. */
2483
2484 static struct cmd_list_element *
2485 do_add_internal_function (const char *name, const char *doc,
2486 internal_function_fn handler, void *cookie)
2487 {
2488 struct internal_function *ifn;
2489 struct internalvar *var = lookup_internalvar (name);
2490
2491 ifn = create_internal_function (name, handler, cookie);
2492 set_internalvar_function (var, ifn);
2493
2494 return add_cmd (name, no_class, function_command, doc, &functionlist);
2495 }
2496
2497 /* See value.h. */
2498
2499 void
2500 add_internal_function (const char *name, const char *doc,
2501 internal_function_fn handler, void *cookie)
2502 {
2503 do_add_internal_function (name, doc, handler, cookie);
2504 }
2505
2506 /* See value.h. */
2507
2508 void
2509 add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2510 gdb::unique_xmalloc_ptr<char> &&doc,
2511 internal_function_fn handler, void *cookie)
2512 {
2513 struct cmd_list_element *cmd
2514 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
2515 doc.release ();
2516 cmd->doc_allocated = 1;
2517 name.release ();
2518 cmd->name_allocated = 1;
2519 }
2520
2521 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2522 prevent cycles / duplicates. */
2523
2524 void
2525 preserve_one_value (struct value *value, struct objfile *objfile,
2526 htab_t copied_types)
2527 {
2528 if (value->type->objfile_owner () == objfile)
2529 value->type = copy_type_recursive (objfile, value->type, copied_types);
2530
2531 if (value->enclosing_type->objfile_owner () == objfile)
2532 value->enclosing_type = copy_type_recursive (objfile,
2533 value->enclosing_type,
2534 copied_types);
2535 }
2536
2537 /* Likewise for internal variable VAR. */
2538
2539 static void
2540 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2541 htab_t copied_types)
2542 {
2543 switch (var->kind)
2544 {
2545 case INTERNALVAR_INTEGER:
2546 if (var->u.integer.type
2547 && var->u.integer.type->objfile_owner () == objfile)
2548 var->u.integer.type
2549 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2550 break;
2551
2552 case INTERNALVAR_VALUE:
2553 preserve_one_value (var->u.value, objfile, copied_types);
2554 break;
2555 }
2556 }
2557
2558 /* Update the internal variables and value history when OBJFILE is
2559 discarded; we must copy the types out of the objfile. New global types
2560 will be created for every convenience variable which currently points to
2561 this objfile's types, and the convenience variables will be adjusted to
2562 use the new global types. */
2563
2564 void
2565 preserve_values (struct objfile *objfile)
2566 {
2567 struct internalvar *var;
2568
2569 /* Create the hash table. We allocate on the objfile's obstack, since
2570 it is soon to be deleted. */
2571 htab_up copied_types = create_copied_types_hash (objfile);
2572
2573 for (const value_ref_ptr &item : value_history)
2574 preserve_one_value (item.get (), objfile, copied_types.get ());
2575
2576 for (var = internalvars; var; var = var->next)
2577 preserve_one_internalvar (var, objfile, copied_types.get ());
2578
2579 preserve_ext_lang_values (objfile, copied_types.get ());
2580 }
2581
2582 static void
2583 show_convenience (const char *ignore, int from_tty)
2584 {
2585 struct gdbarch *gdbarch = get_current_arch ();
2586 struct internalvar *var;
2587 int varseen = 0;
2588 struct value_print_options opts;
2589
2590 get_user_print_options (&opts);
2591 for (var = internalvars; var; var = var->next)
2592 {
2593
2594 if (!varseen)
2595 {
2596 varseen = 1;
2597 }
2598 printf_filtered (("$%s = "), var->name);
2599
2600 try
2601 {
2602 struct value *val;
2603
2604 val = value_of_internalvar (gdbarch, var);
2605 value_print (val, gdb_stdout, &opts);
2606 }
2607 catch (const gdb_exception_error &ex)
2608 {
2609 fprintf_styled (gdb_stdout, metadata_style.style (),
2610 _("<error: %s>"), ex.what ());
2611 }
2612
2613 printf_filtered (("\n"));
2614 }
2615 if (!varseen)
2616 {
2617 /* This text does not mention convenience functions on purpose.
2618 The user can't create them except via Python, and if Python support
2619 is installed this message will never be printed ($_streq will
2620 exist). */
2621 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2622 "Convenience variables have "
2623 "names starting with \"$\";\n"
2624 "use \"set\" as in \"set "
2625 "$foo = 5\" to define them.\n"));
2626 }
2627 }
2628 \f
2629
2630 /* See value.h. */
2631
2632 struct value *
2633 value_from_xmethod (xmethod_worker_up &&worker)
2634 {
2635 struct value *v;
2636
2637 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2638 v->lval = lval_xcallable;
2639 v->location.xm_worker = worker.release ();
2640 v->modifiable = 0;
2641
2642 return v;
2643 }
2644
2645 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2646
2647 struct type *
2648 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2649 {
2650 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2651 && method->lval == lval_xcallable && !argv.empty ());
2652
2653 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2654 }
2655
2656 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2657
2658 struct value *
2659 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2660 {
2661 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2662 && method->lval == lval_xcallable && !argv.empty ());
2663
2664 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2665 }
2666 \f
2667 /* Extract a value as a C number (either long or double).
2668 Knows how to convert fixed values to double, or
2669 floating values to long.
2670 Does not deallocate the value. */
2671
2672 LONGEST
2673 value_as_long (struct value *val)
2674 {
2675 /* This coerces arrays and functions, which is necessary (e.g.
2676 in disassemble_command). It also dereferences references, which
2677 I suspect is the most logical thing to do. */
2678 val = coerce_array (val);
2679 return unpack_long (value_type (val), value_contents (val));
2680 }
2681
2682 /* Extract a value as a C pointer. Does not deallocate the value.
2683 Note that val's type may not actually be a pointer; value_as_long
2684 handles all the cases. */
2685 CORE_ADDR
2686 value_as_address (struct value *val)
2687 {
2688 struct gdbarch *gdbarch = value_type (val)->arch ();
2689
2690 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2691 whether we want this to be true eventually. */
2692 #if 0
2693 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2694 non-address (e.g. argument to "signal", "info break", etc.), or
2695 for pointers to char, in which the low bits *are* significant. */
2696 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2697 #else
2698
2699 /* There are several targets (IA-64, PowerPC, and others) which
2700 don't represent pointers to functions as simply the address of
2701 the function's entry point. For example, on the IA-64, a
2702 function pointer points to a two-word descriptor, generated by
2703 the linker, which contains the function's entry point, and the
2704 value the IA-64 "global pointer" register should have --- to
2705 support position-independent code. The linker generates
2706 descriptors only for those functions whose addresses are taken.
2707
2708 On such targets, it's difficult for GDB to convert an arbitrary
2709 function address into a function pointer; it has to either find
2710 an existing descriptor for that function, or call malloc and
2711 build its own. On some targets, it is impossible for GDB to
2712 build a descriptor at all: the descriptor must contain a jump
2713 instruction; data memory cannot be executed; and code memory
2714 cannot be modified.
2715
2716 Upon entry to this function, if VAL is a value of type `function'
2717 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2718 value_address (val) is the address of the function. This is what
2719 you'll get if you evaluate an expression like `main'. The call
2720 to COERCE_ARRAY below actually does all the usual unary
2721 conversions, which includes converting values of type `function'
2722 to `pointer to function'. This is the challenging conversion
2723 discussed above. Then, `unpack_long' will convert that pointer
2724 back into an address.
2725
2726 So, suppose the user types `disassemble foo' on an architecture
2727 with a strange function pointer representation, on which GDB
2728 cannot build its own descriptors, and suppose further that `foo'
2729 has no linker-built descriptor. The address->pointer conversion
2730 will signal an error and prevent the command from running, even
2731 though the next step would have been to convert the pointer
2732 directly back into the same address.
2733
2734 The following shortcut avoids this whole mess. If VAL is a
2735 function, just return its address directly. */
2736 if (value_type (val)->code () == TYPE_CODE_FUNC
2737 || value_type (val)->code () == TYPE_CODE_METHOD)
2738 return value_address (val);
2739
2740 val = coerce_array (val);
2741
2742 /* Some architectures (e.g. Harvard), map instruction and data
2743 addresses onto a single large unified address space. For
2744 instance: An architecture may consider a large integer in the
2745 range 0x10000000 .. 0x1000ffff to already represent a data
2746 addresses (hence not need a pointer to address conversion) while
2747 a small integer would still need to be converted integer to
2748 pointer to address. Just assume such architectures handle all
2749 integer conversions in a single function. */
2750
2751 /* JimB writes:
2752
2753 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2754 must admonish GDB hackers to make sure its behavior matches the
2755 compiler's, whenever possible.
2756
2757 In general, I think GDB should evaluate expressions the same way
2758 the compiler does. When the user copies an expression out of
2759 their source code and hands it to a `print' command, they should
2760 get the same value the compiler would have computed. Any
2761 deviation from this rule can cause major confusion and annoyance,
2762 and needs to be justified carefully. In other words, GDB doesn't
2763 really have the freedom to do these conversions in clever and
2764 useful ways.
2765
2766 AndrewC pointed out that users aren't complaining about how GDB
2767 casts integers to pointers; they are complaining that they can't
2768 take an address from a disassembly listing and give it to `x/i'.
2769 This is certainly important.
2770
2771 Adding an architecture method like integer_to_address() certainly
2772 makes it possible for GDB to "get it right" in all circumstances
2773 --- the target has complete control over how things get done, so
2774 people can Do The Right Thing for their target without breaking
2775 anyone else. The standard doesn't specify how integers get
2776 converted to pointers; usually, the ABI doesn't either, but
2777 ABI-specific code is a more reasonable place to handle it. */
2778
2779 if (value_type (val)->code () != TYPE_CODE_PTR
2780 && !TYPE_IS_REFERENCE (value_type (val))
2781 && gdbarch_integer_to_address_p (gdbarch))
2782 return gdbarch_integer_to_address (gdbarch, value_type (val),
2783 value_contents (val));
2784
2785 return unpack_long (value_type (val), value_contents (val));
2786 #endif
2787 }
2788 \f
2789 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2790 as a long, or as a double, assuming the raw data is described
2791 by type TYPE. Knows how to convert different sizes of values
2792 and can convert between fixed and floating point. We don't assume
2793 any alignment for the raw data. Return value is in host byte order.
2794
2795 If you want functions and arrays to be coerced to pointers, and
2796 references to be dereferenced, call value_as_long() instead.
2797
2798 C++: It is assumed that the front-end has taken care of
2799 all matters concerning pointers to members. A pointer
2800 to member which reaches here is considered to be equivalent
2801 to an INT (or some size). After all, it is only an offset. */
2802
2803 LONGEST
2804 unpack_long (struct type *type, const gdb_byte *valaddr)
2805 {
2806 if (is_fixed_point_type (type))
2807 type = type->fixed_point_type_base_type ();
2808
2809 enum bfd_endian byte_order = type_byte_order (type);
2810 enum type_code code = type->code ();
2811 int len = TYPE_LENGTH (type);
2812 int nosign = type->is_unsigned ();
2813
2814 switch (code)
2815 {
2816 case TYPE_CODE_TYPEDEF:
2817 return unpack_long (check_typedef (type), valaddr);
2818 case TYPE_CODE_ENUM:
2819 case TYPE_CODE_FLAGS:
2820 case TYPE_CODE_BOOL:
2821 case TYPE_CODE_INT:
2822 case TYPE_CODE_CHAR:
2823 case TYPE_CODE_RANGE:
2824 case TYPE_CODE_MEMBERPTR:
2825 {
2826 LONGEST result;
2827
2828 if (type->bit_size_differs_p ())
2829 {
2830 unsigned bit_off = type->bit_offset ();
2831 unsigned bit_size = type->bit_size ();
2832 if (bit_size == 0)
2833 {
2834 /* unpack_bits_as_long doesn't handle this case the
2835 way we'd like, so handle it here. */
2836 result = 0;
2837 }
2838 else
2839 result = unpack_bits_as_long (type, valaddr, bit_off, bit_size);
2840 }
2841 else
2842 {
2843 if (nosign)
2844 result = extract_unsigned_integer (valaddr, len, byte_order);
2845 else
2846 result = extract_signed_integer (valaddr, len, byte_order);
2847 }
2848 if (code == TYPE_CODE_RANGE)
2849 result += type->bounds ()->bias;
2850 return result;
2851 }
2852
2853 case TYPE_CODE_FLT:
2854 case TYPE_CODE_DECFLOAT:
2855 return target_float_to_longest (valaddr, type);
2856
2857 case TYPE_CODE_FIXED_POINT:
2858 {
2859 gdb_mpq vq;
2860 vq.read_fixed_point (gdb::make_array_view (valaddr, len),
2861 byte_order, nosign,
2862 type->fixed_point_scaling_factor ());
2863
2864 gdb_mpz vz;
2865 mpz_tdiv_q (vz.val, mpq_numref (vq.val), mpq_denref (vq.val));
2866 return vz.as_integer<LONGEST> ();
2867 }
2868
2869 case TYPE_CODE_PTR:
2870 case TYPE_CODE_REF:
2871 case TYPE_CODE_RVALUE_REF:
2872 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2873 whether we want this to be true eventually. */
2874 return extract_typed_address (valaddr, type);
2875
2876 default:
2877 error (_("Value can't be converted to integer."));
2878 }
2879 }
2880
2881 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2882 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2883 We don't assume any alignment for the raw data. Return value is in
2884 host byte order.
2885
2886 If you want functions and arrays to be coerced to pointers, and
2887 references to be dereferenced, call value_as_address() instead.
2888
2889 C++: It is assumed that the front-end has taken care of
2890 all matters concerning pointers to members. A pointer
2891 to member which reaches here is considered to be equivalent
2892 to an INT (or some size). After all, it is only an offset. */
2893
2894 CORE_ADDR
2895 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2896 {
2897 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2898 whether we want this to be true eventually. */
2899 return unpack_long (type, valaddr);
2900 }
2901
2902 bool
2903 is_floating_value (struct value *val)
2904 {
2905 struct type *type = check_typedef (value_type (val));
2906
2907 if (is_floating_type (type))
2908 {
2909 if (!target_float_is_valid (value_contents (val), type))
2910 error (_("Invalid floating value found in program."));
2911 return true;
2912 }
2913
2914 return false;
2915 }
2916
2917 \f
2918 /* Get the value of the FIELDNO'th field (which must be static) of
2919 TYPE. */
2920
2921 struct value *
2922 value_static_field (struct type *type, int fieldno)
2923 {
2924 struct value *retval;
2925
2926 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2927 {
2928 case FIELD_LOC_KIND_PHYSADDR:
2929 retval = value_at_lazy (type->field (fieldno).type (),
2930 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2931 break;
2932 case FIELD_LOC_KIND_PHYSNAME:
2933 {
2934 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2935 /* TYPE_FIELD_NAME (type, fieldno); */
2936 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2937
2938 if (sym.symbol == NULL)
2939 {
2940 /* With some compilers, e.g. HP aCC, static data members are
2941 reported as non-debuggable symbols. */
2942 struct bound_minimal_symbol msym
2943 = lookup_minimal_symbol (phys_name, NULL, NULL);
2944 struct type *field_type = type->field (fieldno).type ();
2945
2946 if (!msym.minsym)
2947 retval = allocate_optimized_out_value (field_type);
2948 else
2949 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2950 }
2951 else
2952 retval = value_of_variable (sym.symbol, sym.block);
2953 break;
2954 }
2955 default:
2956 gdb_assert_not_reached ("unexpected field location kind");
2957 }
2958
2959 return retval;
2960 }
2961
2962 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2963 You have to be careful here, since the size of the data area for the value
2964 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2965 than the old enclosing type, you have to allocate more space for the
2966 data. */
2967
2968 void
2969 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2970 {
2971 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2972 {
2973 check_type_length_before_alloc (new_encl_type);
2974 val->contents
2975 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2976 TYPE_LENGTH (new_encl_type)));
2977 }
2978
2979 val->enclosing_type = new_encl_type;
2980 }
2981
2982 /* Given a value ARG1 (offset by OFFSET bytes)
2983 of a struct or union type ARG_TYPE,
2984 extract and return the value of one of its (non-static) fields.
2985 FIELDNO says which field. */
2986
2987 struct value *
2988 value_primitive_field (struct value *arg1, LONGEST offset,
2989 int fieldno, struct type *arg_type)
2990 {
2991 struct value *v;
2992 struct type *type;
2993 struct gdbarch *arch = get_value_arch (arg1);
2994 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2995
2996 arg_type = check_typedef (arg_type);
2997 type = arg_type->field (fieldno).type ();
2998
2999 /* Call check_typedef on our type to make sure that, if TYPE
3000 is a TYPE_CODE_TYPEDEF, its length is set to the length
3001 of the target type instead of zero. However, we do not
3002 replace the typedef type by the target type, because we want
3003 to keep the typedef in order to be able to print the type
3004 description correctly. */
3005 check_typedef (type);
3006
3007 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3008 {
3009 /* Handle packed fields.
3010
3011 Create a new value for the bitfield, with bitpos and bitsize
3012 set. If possible, arrange offset and bitpos so that we can
3013 do a single aligned read of the size of the containing type.
3014 Otherwise, adjust offset to the byte containing the first
3015 bit. Assume that the address, offset, and embedded offset
3016 are sufficiently aligned. */
3017
3018 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3019 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3020
3021 v = allocate_value_lazy (type);
3022 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3023 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3024 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3025 v->bitpos = bitpos % container_bitsize;
3026 else
3027 v->bitpos = bitpos % 8;
3028 v->offset = (value_embedded_offset (arg1)
3029 + offset
3030 + (bitpos - v->bitpos) / 8);
3031 set_value_parent (v, arg1);
3032 if (!value_lazy (arg1))
3033 value_fetch_lazy (v);
3034 }
3035 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3036 {
3037 /* This field is actually a base subobject, so preserve the
3038 entire object's contents for later references to virtual
3039 bases, etc. */
3040 LONGEST boffset;
3041
3042 /* Lazy register values with offsets are not supported. */
3043 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3044 value_fetch_lazy (arg1);
3045
3046 /* We special case virtual inheritance here because this
3047 requires access to the contents, which we would rather avoid
3048 for references to ordinary fields of unavailable values. */
3049 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3050 boffset = baseclass_offset (arg_type, fieldno,
3051 value_contents (arg1),
3052 value_embedded_offset (arg1),
3053 value_address (arg1),
3054 arg1);
3055 else
3056 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3057
3058 if (value_lazy (arg1))
3059 v = allocate_value_lazy (value_enclosing_type (arg1));
3060 else
3061 {
3062 v = allocate_value (value_enclosing_type (arg1));
3063 value_contents_copy_raw (v, 0, arg1, 0,
3064 TYPE_LENGTH (value_enclosing_type (arg1)));
3065 }
3066 v->type = type;
3067 v->offset = value_offset (arg1);
3068 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3069 }
3070 else if (NULL != TYPE_DATA_LOCATION (type))
3071 {
3072 /* Field is a dynamic data member. */
3073
3074 gdb_assert (0 == offset);
3075 /* We expect an already resolved data location. */
3076 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3077 /* For dynamic data types defer memory allocation
3078 until we actual access the value. */
3079 v = allocate_value_lazy (type);
3080 }
3081 else
3082 {
3083 /* Plain old data member */
3084 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3085 / (HOST_CHAR_BIT * unit_size));
3086
3087 /* Lazy register values with offsets are not supported. */
3088 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3089 value_fetch_lazy (arg1);
3090
3091 if (value_lazy (arg1))
3092 v = allocate_value_lazy (type);
3093 else
3094 {
3095 v = allocate_value (type);
3096 value_contents_copy_raw (v, value_embedded_offset (v),
3097 arg1, value_embedded_offset (arg1) + offset,
3098 type_length_units (type));
3099 }
3100 v->offset = (value_offset (arg1) + offset
3101 + value_embedded_offset (arg1));
3102 }
3103 set_value_component_location (v, arg1);
3104 return v;
3105 }
3106
3107 /* Given a value ARG1 of a struct or union type,
3108 extract and return the value of one of its (non-static) fields.
3109 FIELDNO says which field. */
3110
3111 struct value *
3112 value_field (struct value *arg1, int fieldno)
3113 {
3114 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3115 }
3116
3117 /* Return a non-virtual function as a value.
3118 F is the list of member functions which contains the desired method.
3119 J is an index into F which provides the desired method.
3120
3121 We only use the symbol for its address, so be happy with either a
3122 full symbol or a minimal symbol. */
3123
3124 struct value *
3125 value_fn_field (struct value **arg1p, struct fn_field *f,
3126 int j, struct type *type,
3127 LONGEST offset)
3128 {
3129 struct value *v;
3130 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3131 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3132 struct symbol *sym;
3133 struct bound_minimal_symbol msym;
3134
3135 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3136 if (sym != NULL)
3137 {
3138 memset (&msym, 0, sizeof (msym));
3139 }
3140 else
3141 {
3142 gdb_assert (sym == NULL);
3143 msym = lookup_bound_minimal_symbol (physname);
3144 if (msym.minsym == NULL)
3145 return NULL;
3146 }
3147
3148 v = allocate_value (ftype);
3149 VALUE_LVAL (v) = lval_memory;
3150 if (sym)
3151 {
3152 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3153 }
3154 else
3155 {
3156 /* The minimal symbol might point to a function descriptor;
3157 resolve it to the actual code address instead. */
3158 struct objfile *objfile = msym.objfile;
3159 struct gdbarch *gdbarch = objfile->arch ();
3160
3161 set_value_address (v,
3162 gdbarch_convert_from_func_ptr_addr
3163 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym),
3164 current_inferior ()->top_target ()));
3165 }
3166
3167 if (arg1p)
3168 {
3169 if (type != value_type (*arg1p))
3170 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3171 value_addr (*arg1p)));
3172
3173 /* Move the `this' pointer according to the offset.
3174 VALUE_OFFSET (*arg1p) += offset; */
3175 }
3176
3177 return v;
3178 }
3179
3180 \f
3181
3182 /* See value.h. */
3183
3184 LONGEST
3185 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3186 LONGEST bitpos, LONGEST bitsize)
3187 {
3188 enum bfd_endian byte_order = type_byte_order (field_type);
3189 ULONGEST val;
3190 ULONGEST valmask;
3191 int lsbcount;
3192 LONGEST bytes_read;
3193 LONGEST read_offset;
3194
3195 /* Read the minimum number of bytes required; there may not be
3196 enough bytes to read an entire ULONGEST. */
3197 field_type = check_typedef (field_type);
3198 if (bitsize)
3199 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3200 else
3201 {
3202 bytes_read = TYPE_LENGTH (field_type);
3203 bitsize = 8 * bytes_read;
3204 }
3205
3206 read_offset = bitpos / 8;
3207
3208 val = extract_unsigned_integer (valaddr + read_offset,
3209 bytes_read, byte_order);
3210
3211 /* Extract bits. See comment above. */
3212
3213 if (byte_order == BFD_ENDIAN_BIG)
3214 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3215 else
3216 lsbcount = (bitpos % 8);
3217 val >>= lsbcount;
3218
3219 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3220 If the field is signed, and is negative, then sign extend. */
3221
3222 if (bitsize < 8 * (int) sizeof (val))
3223 {
3224 valmask = (((ULONGEST) 1) << bitsize) - 1;
3225 val &= valmask;
3226 if (!field_type->is_unsigned ())
3227 {
3228 if (val & (valmask ^ (valmask >> 1)))
3229 {
3230 val |= ~valmask;
3231 }
3232 }
3233 }
3234
3235 return val;
3236 }
3237
3238 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3239 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3240 ORIGINAL_VALUE, which must not be NULL. See
3241 unpack_value_bits_as_long for more details. */
3242
3243 int
3244 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3245 LONGEST embedded_offset, int fieldno,
3246 const struct value *val, LONGEST *result)
3247 {
3248 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3249 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3250 struct type *field_type = type->field (fieldno).type ();
3251 int bit_offset;
3252
3253 gdb_assert (val != NULL);
3254
3255 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3256 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3257 || !value_bits_available (val, bit_offset, bitsize))
3258 return 0;
3259
3260 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3261 bitpos, bitsize);
3262 return 1;
3263 }
3264
3265 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3266 object at VALADDR. See unpack_bits_as_long for more details. */
3267
3268 LONGEST
3269 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3270 {
3271 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3272 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3273 struct type *field_type = type->field (fieldno).type ();
3274
3275 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3276 }
3277
3278 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3279 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3280 the contents in DEST_VAL, zero or sign extending if the type of
3281 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3282 VAL. If the VAL's contents required to extract the bitfield from
3283 are unavailable/optimized out, DEST_VAL is correspondingly
3284 marked unavailable/optimized out. */
3285
3286 void
3287 unpack_value_bitfield (struct value *dest_val,
3288 LONGEST bitpos, LONGEST bitsize,
3289 const gdb_byte *valaddr, LONGEST embedded_offset,
3290 const struct value *val)
3291 {
3292 enum bfd_endian byte_order;
3293 int src_bit_offset;
3294 int dst_bit_offset;
3295 struct type *field_type = value_type (dest_val);
3296
3297 byte_order = type_byte_order (field_type);
3298
3299 /* First, unpack and sign extend the bitfield as if it was wholly
3300 valid. Optimized out/unavailable bits are read as zero, but
3301 that's OK, as they'll end up marked below. If the VAL is
3302 wholly-invalid we may have skipped allocating its contents,
3303 though. See allocate_optimized_out_value. */
3304 if (valaddr != NULL)
3305 {
3306 LONGEST num;
3307
3308 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3309 bitpos, bitsize);
3310 store_signed_integer (value_contents_raw (dest_val),
3311 TYPE_LENGTH (field_type), byte_order, num);
3312 }
3313
3314 /* Now copy the optimized out / unavailability ranges to the right
3315 bits. */
3316 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3317 if (byte_order == BFD_ENDIAN_BIG)
3318 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3319 else
3320 dst_bit_offset = 0;
3321 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3322 val, src_bit_offset, bitsize);
3323 }
3324
3325 /* Return a new value with type TYPE, which is FIELDNO field of the
3326 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3327 of VAL. If the VAL's contents required to extract the bitfield
3328 from are unavailable/optimized out, the new value is
3329 correspondingly marked unavailable/optimized out. */
3330
3331 struct value *
3332 value_field_bitfield (struct type *type, int fieldno,
3333 const gdb_byte *valaddr,
3334 LONGEST embedded_offset, const struct value *val)
3335 {
3336 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3337 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3338 struct value *res_val = allocate_value (type->field (fieldno).type ());
3339
3340 unpack_value_bitfield (res_val, bitpos, bitsize,
3341 valaddr, embedded_offset, val);
3342
3343 return res_val;
3344 }
3345
3346 /* Modify the value of a bitfield. ADDR points to a block of memory in
3347 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3348 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3349 indicate which bits (in target bit order) comprise the bitfield.
3350 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3351 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3352
3353 void
3354 modify_field (struct type *type, gdb_byte *addr,
3355 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3356 {
3357 enum bfd_endian byte_order = type_byte_order (type);
3358 ULONGEST oword;
3359 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3360 LONGEST bytesize;
3361
3362 /* Normalize BITPOS. */
3363 addr += bitpos / 8;
3364 bitpos %= 8;
3365
3366 /* If a negative fieldval fits in the field in question, chop
3367 off the sign extension bits. */
3368 if ((~fieldval & ~(mask >> 1)) == 0)
3369 fieldval &= mask;
3370
3371 /* Warn if value is too big to fit in the field in question. */
3372 if (0 != (fieldval & ~mask))
3373 {
3374 /* FIXME: would like to include fieldval in the message, but
3375 we don't have a sprintf_longest. */
3376 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3377
3378 /* Truncate it, otherwise adjoining fields may be corrupted. */
3379 fieldval &= mask;
3380 }
3381
3382 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3383 false valgrind reports. */
3384
3385 bytesize = (bitpos + bitsize + 7) / 8;
3386 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3387
3388 /* Shifting for bit field depends on endianness of the target machine. */
3389 if (byte_order == BFD_ENDIAN_BIG)
3390 bitpos = bytesize * 8 - bitpos - bitsize;
3391
3392 oword &= ~(mask << bitpos);
3393 oword |= fieldval << bitpos;
3394
3395 store_unsigned_integer (addr, bytesize, byte_order, oword);
3396 }
3397 \f
3398 /* Pack NUM into BUF using a target format of TYPE. */
3399
3400 void
3401 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3402 {
3403 enum bfd_endian byte_order = type_byte_order (type);
3404 LONGEST len;
3405
3406 type = check_typedef (type);
3407 len = TYPE_LENGTH (type);
3408
3409 switch (type->code ())
3410 {
3411 case TYPE_CODE_RANGE:
3412 num -= type->bounds ()->bias;
3413 /* Fall through. */
3414 case TYPE_CODE_INT:
3415 case TYPE_CODE_CHAR:
3416 case TYPE_CODE_ENUM:
3417 case TYPE_CODE_FLAGS:
3418 case TYPE_CODE_BOOL:
3419 case TYPE_CODE_MEMBERPTR:
3420 if (type->bit_size_differs_p ())
3421 {
3422 unsigned bit_off = type->bit_offset ();
3423 unsigned bit_size = type->bit_size ();
3424 num &= ((ULONGEST) 1 << bit_size) - 1;
3425 num <<= bit_off;
3426 }
3427 store_signed_integer (buf, len, byte_order, num);
3428 break;
3429
3430 case TYPE_CODE_REF:
3431 case TYPE_CODE_RVALUE_REF:
3432 case TYPE_CODE_PTR:
3433 store_typed_address (buf, type, (CORE_ADDR) num);
3434 break;
3435
3436 case TYPE_CODE_FLT:
3437 case TYPE_CODE_DECFLOAT:
3438 target_float_from_longest (buf, type, num);
3439 break;
3440
3441 default:
3442 error (_("Unexpected type (%d) encountered for integer constant."),
3443 type->code ());
3444 }
3445 }
3446
3447
3448 /* Pack NUM into BUF using a target format of TYPE. */
3449
3450 static void
3451 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3452 {
3453 LONGEST len;
3454 enum bfd_endian byte_order;
3455
3456 type = check_typedef (type);
3457 len = TYPE_LENGTH (type);
3458 byte_order = type_byte_order (type);
3459
3460 switch (type->code ())
3461 {
3462 case TYPE_CODE_INT:
3463 case TYPE_CODE_CHAR:
3464 case TYPE_CODE_ENUM:
3465 case TYPE_CODE_FLAGS:
3466 case TYPE_CODE_BOOL:
3467 case TYPE_CODE_RANGE:
3468 case TYPE_CODE_MEMBERPTR:
3469 if (type->bit_size_differs_p ())
3470 {
3471 unsigned bit_off = type->bit_offset ();
3472 unsigned bit_size = type->bit_size ();
3473 num &= ((ULONGEST) 1 << bit_size) - 1;
3474 num <<= bit_off;
3475 }
3476 store_unsigned_integer (buf, len, byte_order, num);
3477 break;
3478
3479 case TYPE_CODE_REF:
3480 case TYPE_CODE_RVALUE_REF:
3481 case TYPE_CODE_PTR:
3482 store_typed_address (buf, type, (CORE_ADDR) num);
3483 break;
3484
3485 case TYPE_CODE_FLT:
3486 case TYPE_CODE_DECFLOAT:
3487 target_float_from_ulongest (buf, type, num);
3488 break;
3489
3490 default:
3491 error (_("Unexpected type (%d) encountered "
3492 "for unsigned integer constant."),
3493 type->code ());
3494 }
3495 }
3496
3497
3498 /* Convert C numbers into newly allocated values. */
3499
3500 struct value *
3501 value_from_longest (struct type *type, LONGEST num)
3502 {
3503 struct value *val = allocate_value (type);
3504
3505 pack_long (value_contents_raw (val), type, num);
3506 return val;
3507 }
3508
3509
3510 /* Convert C unsigned numbers into newly allocated values. */
3511
3512 struct value *
3513 value_from_ulongest (struct type *type, ULONGEST num)
3514 {
3515 struct value *val = allocate_value (type);
3516
3517 pack_unsigned_long (value_contents_raw (val), type, num);
3518
3519 return val;
3520 }
3521
3522
3523 /* Create a value representing a pointer of type TYPE to the address
3524 ADDR. */
3525
3526 struct value *
3527 value_from_pointer (struct type *type, CORE_ADDR addr)
3528 {
3529 struct value *val = allocate_value (type);
3530
3531 store_typed_address (value_contents_raw (val),
3532 check_typedef (type), addr);
3533 return val;
3534 }
3535
3536 /* Create and return a value object of TYPE containing the value D. The
3537 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3538 it is converted to target format. */
3539
3540 struct value *
3541 value_from_host_double (struct type *type, double d)
3542 {
3543 struct value *value = allocate_value (type);
3544 gdb_assert (type->code () == TYPE_CODE_FLT);
3545 target_float_from_host_double (value_contents_raw (value),
3546 value_type (value), d);
3547 return value;
3548 }
3549
3550 /* Create a value of type TYPE whose contents come from VALADDR, if it
3551 is non-null, and whose memory address (in the inferior) is
3552 ADDRESS. The type of the created value may differ from the passed
3553 type TYPE. Make sure to retrieve values new type after this call.
3554 Note that TYPE is not passed through resolve_dynamic_type; this is
3555 a special API intended for use only by Ada. */
3556
3557 struct value *
3558 value_from_contents_and_address_unresolved (struct type *type,
3559 const gdb_byte *valaddr,
3560 CORE_ADDR address)
3561 {
3562 struct value *v;
3563
3564 if (valaddr == NULL)
3565 v = allocate_value_lazy (type);
3566 else
3567 v = value_from_contents (type, valaddr);
3568 VALUE_LVAL (v) = lval_memory;
3569 set_value_address (v, address);
3570 return v;
3571 }
3572
3573 /* Create a value of type TYPE whose contents come from VALADDR, if it
3574 is non-null, and whose memory address (in the inferior) is
3575 ADDRESS. The type of the created value may differ from the passed
3576 type TYPE. Make sure to retrieve values new type after this call. */
3577
3578 struct value *
3579 value_from_contents_and_address (struct type *type,
3580 const gdb_byte *valaddr,
3581 CORE_ADDR address)
3582 {
3583 gdb::array_view<const gdb_byte> view;
3584 if (valaddr != nullptr)
3585 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3586 struct type *resolved_type = resolve_dynamic_type (type, view, address);
3587 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3588 struct value *v;
3589
3590 if (valaddr == NULL)
3591 v = allocate_value_lazy (resolved_type);
3592 else
3593 v = value_from_contents (resolved_type, valaddr);
3594 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3595 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3596 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3597 VALUE_LVAL (v) = lval_memory;
3598 set_value_address (v, address);
3599 return v;
3600 }
3601
3602 /* Create a value of type TYPE holding the contents CONTENTS.
3603 The new value is `not_lval'. */
3604
3605 struct value *
3606 value_from_contents (struct type *type, const gdb_byte *contents)
3607 {
3608 struct value *result;
3609
3610 result = allocate_value (type);
3611 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3612 return result;
3613 }
3614
3615 /* Extract a value from the history file. Input will be of the form
3616 $digits or $$digits. See block comment above 'write_dollar_variable'
3617 for details. */
3618
3619 struct value *
3620 value_from_history_ref (const char *h, const char **endp)
3621 {
3622 int index, len;
3623
3624 if (h[0] == '$')
3625 len = 1;
3626 else
3627 return NULL;
3628
3629 if (h[1] == '$')
3630 len = 2;
3631
3632 /* Find length of numeral string. */
3633 for (; isdigit (h[len]); len++)
3634 ;
3635
3636 /* Make sure numeral string is not part of an identifier. */
3637 if (h[len] == '_' || isalpha (h[len]))
3638 return NULL;
3639
3640 /* Now collect the index value. */
3641 if (h[1] == '$')
3642 {
3643 if (len == 2)
3644 {
3645 /* For some bizarre reason, "$$" is equivalent to "$$1",
3646 rather than to "$$0" as it ought to be! */
3647 index = -1;
3648 *endp += len;
3649 }
3650 else
3651 {
3652 char *local_end;
3653
3654 index = -strtol (&h[2], &local_end, 10);
3655 *endp = local_end;
3656 }
3657 }
3658 else
3659 {
3660 if (len == 1)
3661 {
3662 /* "$" is equivalent to "$0". */
3663 index = 0;
3664 *endp += len;
3665 }
3666 else
3667 {
3668 char *local_end;
3669
3670 index = strtol (&h[1], &local_end, 10);
3671 *endp = local_end;
3672 }
3673 }
3674
3675 return access_value_history (index);
3676 }
3677
3678 /* Get the component value (offset by OFFSET bytes) of a struct or
3679 union WHOLE. Component's type is TYPE. */
3680
3681 struct value *
3682 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3683 {
3684 struct value *v;
3685
3686 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3687 v = allocate_value_lazy (type);
3688 else
3689 {
3690 v = allocate_value (type);
3691 value_contents_copy (v, value_embedded_offset (v),
3692 whole, value_embedded_offset (whole) + offset,
3693 type_length_units (type));
3694 }
3695 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3696 set_value_component_location (v, whole);
3697
3698 return v;
3699 }
3700
3701 struct value *
3702 coerce_ref_if_computed (const struct value *arg)
3703 {
3704 const struct lval_funcs *funcs;
3705
3706 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3707 return NULL;
3708
3709 if (value_lval_const (arg) != lval_computed)
3710 return NULL;
3711
3712 funcs = value_computed_funcs (arg);
3713 if (funcs->coerce_ref == NULL)
3714 return NULL;
3715
3716 return funcs->coerce_ref (arg);
3717 }
3718
3719 /* Look at value.h for description. */
3720
3721 struct value *
3722 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3723 const struct type *original_type,
3724 struct value *original_value,
3725 CORE_ADDR original_value_address)
3726 {
3727 gdb_assert (original_type->code () == TYPE_CODE_PTR
3728 || TYPE_IS_REFERENCE (original_type));
3729
3730 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3731 gdb::array_view<const gdb_byte> view;
3732 struct type *resolved_original_target_type
3733 = resolve_dynamic_type (original_target_type, view,
3734 original_value_address);
3735
3736 /* Re-adjust type. */
3737 deprecated_set_value_type (value, resolved_original_target_type);
3738
3739 /* Add embedding info. */
3740 set_value_enclosing_type (value, enc_type);
3741 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3742
3743 /* We may be pointing to an object of some derived type. */
3744 return value_full_object (value, NULL, 0, 0, 0);
3745 }
3746
3747 struct value *
3748 coerce_ref (struct value *arg)
3749 {
3750 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3751 struct value *retval;
3752 struct type *enc_type;
3753
3754 retval = coerce_ref_if_computed (arg);
3755 if (retval)
3756 return retval;
3757
3758 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3759 return arg;
3760
3761 enc_type = check_typedef (value_enclosing_type (arg));
3762 enc_type = TYPE_TARGET_TYPE (enc_type);
3763
3764 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3765 retval = value_at_lazy (enc_type, addr);
3766 enc_type = value_type (retval);
3767 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3768 arg, addr);
3769 }
3770
3771 struct value *
3772 coerce_array (struct value *arg)
3773 {
3774 struct type *type;
3775
3776 arg = coerce_ref (arg);
3777 type = check_typedef (value_type (arg));
3778
3779 switch (type->code ())
3780 {
3781 case TYPE_CODE_ARRAY:
3782 if (!type->is_vector () && current_language->c_style_arrays_p ())
3783 arg = value_coerce_array (arg);
3784 break;
3785 case TYPE_CODE_FUNC:
3786 arg = value_coerce_function (arg);
3787 break;
3788 }
3789 return arg;
3790 }
3791 \f
3792
3793 /* Return the return value convention that will be used for the
3794 specified type. */
3795
3796 enum return_value_convention
3797 struct_return_convention (struct gdbarch *gdbarch,
3798 struct value *function, struct type *value_type)
3799 {
3800 enum type_code code = value_type->code ();
3801
3802 if (code == TYPE_CODE_ERROR)
3803 error (_("Function return type unknown."));
3804
3805 /* Probe the architecture for the return-value convention. */
3806 return gdbarch_return_value (gdbarch, function, value_type,
3807 NULL, NULL, NULL);
3808 }
3809
3810 /* Return true if the function returning the specified type is using
3811 the convention of returning structures in memory (passing in the
3812 address as a hidden first parameter). */
3813
3814 int
3815 using_struct_return (struct gdbarch *gdbarch,
3816 struct value *function, struct type *value_type)
3817 {
3818 if (value_type->code () == TYPE_CODE_VOID)
3819 /* A void return value is never in memory. See also corresponding
3820 code in "print_return_value". */
3821 return 0;
3822
3823 return (struct_return_convention (gdbarch, function, value_type)
3824 != RETURN_VALUE_REGISTER_CONVENTION);
3825 }
3826
3827 /* Set the initialized field in a value struct. */
3828
3829 void
3830 set_value_initialized (struct value *val, int status)
3831 {
3832 val->initialized = status;
3833 }
3834
3835 /* Return the initialized field in a value struct. */
3836
3837 int
3838 value_initialized (const struct value *val)
3839 {
3840 return val->initialized;
3841 }
3842
3843 /* Helper for value_fetch_lazy when the value is a bitfield. */
3844
3845 static void
3846 value_fetch_lazy_bitfield (struct value *val)
3847 {
3848 gdb_assert (value_bitsize (val) != 0);
3849
3850 /* To read a lazy bitfield, read the entire enclosing value. This
3851 prevents reading the same block of (possibly volatile) memory once
3852 per bitfield. It would be even better to read only the containing
3853 word, but we have no way to record that just specific bits of a
3854 value have been fetched. */
3855 struct value *parent = value_parent (val);
3856
3857 if (value_lazy (parent))
3858 value_fetch_lazy (parent);
3859
3860 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3861 value_contents_for_printing (parent),
3862 value_offset (val), parent);
3863 }
3864
3865 /* Helper for value_fetch_lazy when the value is in memory. */
3866
3867 static void
3868 value_fetch_lazy_memory (struct value *val)
3869 {
3870 gdb_assert (VALUE_LVAL (val) == lval_memory);
3871
3872 CORE_ADDR addr = value_address (val);
3873 struct type *type = check_typedef (value_enclosing_type (val));
3874
3875 if (TYPE_LENGTH (type))
3876 read_value_memory (val, 0, value_stack (val),
3877 addr, value_contents_all_raw (val),
3878 type_length_units (type));
3879 }
3880
3881 /* Helper for value_fetch_lazy when the value is in a register. */
3882
3883 static void
3884 value_fetch_lazy_register (struct value *val)
3885 {
3886 struct frame_info *next_frame;
3887 int regnum;
3888 struct type *type = check_typedef (value_type (val));
3889 struct value *new_val = val, *mark = value_mark ();
3890
3891 /* Offsets are not supported here; lazy register values must
3892 refer to the entire register. */
3893 gdb_assert (value_offset (val) == 0);
3894
3895 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3896 {
3897 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3898
3899 next_frame = frame_find_by_id (next_frame_id);
3900 regnum = VALUE_REGNUM (new_val);
3901
3902 gdb_assert (next_frame != NULL);
3903
3904 /* Convertible register routines are used for multi-register
3905 values and for interpretation in different types
3906 (e.g. float or int from a double register). Lazy
3907 register values should have the register's natural type,
3908 so they do not apply. */
3909 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3910 regnum, type));
3911
3912 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3913 Since a "->next" operation was performed when setting
3914 this field, we do not need to perform a "next" operation
3915 again when unwinding the register. That's why
3916 frame_unwind_register_value() is called here instead of
3917 get_frame_register_value(). */
3918 new_val = frame_unwind_register_value (next_frame, regnum);
3919
3920 /* If we get another lazy lval_register value, it means the
3921 register is found by reading it from NEXT_FRAME's next frame.
3922 frame_unwind_register_value should never return a value with
3923 the frame id pointing to NEXT_FRAME. If it does, it means we
3924 either have two consecutive frames with the same frame id
3925 in the frame chain, or some code is trying to unwind
3926 behind get_prev_frame's back (e.g., a frame unwind
3927 sniffer trying to unwind), bypassing its validations. In
3928 any case, it should always be an internal error to end up
3929 in this situation. */
3930 if (VALUE_LVAL (new_val) == lval_register
3931 && value_lazy (new_val)
3932 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3933 internal_error (__FILE__, __LINE__,
3934 _("infinite loop while fetching a register"));
3935 }
3936
3937 /* If it's still lazy (for instance, a saved register on the
3938 stack), fetch it. */
3939 if (value_lazy (new_val))
3940 value_fetch_lazy (new_val);
3941
3942 /* Copy the contents and the unavailability/optimized-out
3943 meta-data from NEW_VAL to VAL. */
3944 set_value_lazy (val, 0);
3945 value_contents_copy (val, value_embedded_offset (val),
3946 new_val, value_embedded_offset (new_val),
3947 type_length_units (type));
3948
3949 if (frame_debug)
3950 {
3951 struct gdbarch *gdbarch;
3952 struct frame_info *frame;
3953 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3954 so that the frame level will be shown correctly. */
3955 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3956 regnum = VALUE_REGNUM (val);
3957 gdbarch = get_frame_arch (frame);
3958
3959 fprintf_unfiltered (gdb_stdlog,
3960 "{ value_fetch_lazy "
3961 "(frame=%d,regnum=%d(%s),...) ",
3962 frame_relative_level (frame), regnum,
3963 user_reg_map_regnum_to_name (gdbarch, regnum));
3964
3965 fprintf_unfiltered (gdb_stdlog, "->");
3966 if (value_optimized_out (new_val))
3967 {
3968 fprintf_unfiltered (gdb_stdlog, " ");
3969 val_print_optimized_out (new_val, gdb_stdlog);
3970 }
3971 else
3972 {
3973 int i;
3974 const gdb_byte *buf = value_contents (new_val);
3975
3976 if (VALUE_LVAL (new_val) == lval_register)
3977 fprintf_unfiltered (gdb_stdlog, " register=%d",
3978 VALUE_REGNUM (new_val));
3979 else if (VALUE_LVAL (new_val) == lval_memory)
3980 fprintf_unfiltered (gdb_stdlog, " address=%s",
3981 paddress (gdbarch,
3982 value_address (new_val)));
3983 else
3984 fprintf_unfiltered (gdb_stdlog, " computed");
3985
3986 fprintf_unfiltered (gdb_stdlog, " bytes=");
3987 fprintf_unfiltered (gdb_stdlog, "[");
3988 for (i = 0; i < register_size (gdbarch, regnum); i++)
3989 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3990 fprintf_unfiltered (gdb_stdlog, "]");
3991 }
3992
3993 fprintf_unfiltered (gdb_stdlog, " }\n");
3994 }
3995
3996 /* Dispose of the intermediate values. This prevents
3997 watchpoints from trying to watch the saved frame pointer. */
3998 value_free_to_mark (mark);
3999 }
4000
4001 /* Load the actual content of a lazy value. Fetch the data from the
4002 user's process and clear the lazy flag to indicate that the data in
4003 the buffer is valid.
4004
4005 If the value is zero-length, we avoid calling read_memory, which
4006 would abort. We mark the value as fetched anyway -- all 0 bytes of
4007 it. */
4008
4009 void
4010 value_fetch_lazy (struct value *val)
4011 {
4012 gdb_assert (value_lazy (val));
4013 allocate_value_contents (val);
4014 /* A value is either lazy, or fully fetched. The
4015 availability/validity is only established as we try to fetch a
4016 value. */
4017 gdb_assert (val->optimized_out.empty ());
4018 gdb_assert (val->unavailable.empty ());
4019 if (value_bitsize (val))
4020 value_fetch_lazy_bitfield (val);
4021 else if (VALUE_LVAL (val) == lval_memory)
4022 value_fetch_lazy_memory (val);
4023 else if (VALUE_LVAL (val) == lval_register)
4024 value_fetch_lazy_register (val);
4025 else if (VALUE_LVAL (val) == lval_computed
4026 && value_computed_funcs (val)->read != NULL)
4027 value_computed_funcs (val)->read (val);
4028 else
4029 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4030
4031 set_value_lazy (val, 0);
4032 }
4033
4034 /* Implementation of the convenience function $_isvoid. */
4035
4036 static struct value *
4037 isvoid_internal_fn (struct gdbarch *gdbarch,
4038 const struct language_defn *language,
4039 void *cookie, int argc, struct value **argv)
4040 {
4041 int ret;
4042
4043 if (argc != 1)
4044 error (_("You must provide one argument for $_isvoid."));
4045
4046 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
4047
4048 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4049 }
4050
4051 /* Implementation of the convenience function $_creal. Extracts the
4052 real part from a complex number. */
4053
4054 static struct value *
4055 creal_internal_fn (struct gdbarch *gdbarch,
4056 const struct language_defn *language,
4057 void *cookie, int argc, struct value **argv)
4058 {
4059 if (argc != 1)
4060 error (_("You must provide one argument for $_creal."));
4061
4062 value *cval = argv[0];
4063 type *ctype = check_typedef (value_type (cval));
4064 if (ctype->code () != TYPE_CODE_COMPLEX)
4065 error (_("expected a complex number"));
4066 return value_real_part (cval);
4067 }
4068
4069 /* Implementation of the convenience function $_cimag. Extracts the
4070 imaginary part from a complex number. */
4071
4072 static struct value *
4073 cimag_internal_fn (struct gdbarch *gdbarch,
4074 const struct language_defn *language,
4075 void *cookie, int argc,
4076 struct value **argv)
4077 {
4078 if (argc != 1)
4079 error (_("You must provide one argument for $_cimag."));
4080
4081 value *cval = argv[0];
4082 type *ctype = check_typedef (value_type (cval));
4083 if (ctype->code () != TYPE_CODE_COMPLEX)
4084 error (_("expected a complex number"));
4085 return value_imaginary_part (cval);
4086 }
4087
4088 #if GDB_SELF_TEST
4089 namespace selftests
4090 {
4091
4092 /* Test the ranges_contain function. */
4093
4094 static void
4095 test_ranges_contain ()
4096 {
4097 std::vector<range> ranges;
4098 range r;
4099
4100 /* [10, 14] */
4101 r.offset = 10;
4102 r.length = 5;
4103 ranges.push_back (r);
4104
4105 /* [20, 24] */
4106 r.offset = 20;
4107 r.length = 5;
4108 ranges.push_back (r);
4109
4110 /* [2, 6] */
4111 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4112 /* [9, 13] */
4113 SELF_CHECK (ranges_contain (ranges, 9, 5));
4114 /* [10, 11] */
4115 SELF_CHECK (ranges_contain (ranges, 10, 2));
4116 /* [10, 14] */
4117 SELF_CHECK (ranges_contain (ranges, 10, 5));
4118 /* [13, 18] */
4119 SELF_CHECK (ranges_contain (ranges, 13, 6));
4120 /* [14, 18] */
4121 SELF_CHECK (ranges_contain (ranges, 14, 5));
4122 /* [15, 18] */
4123 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4124 /* [16, 19] */
4125 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4126 /* [16, 21] */
4127 SELF_CHECK (ranges_contain (ranges, 16, 6));
4128 /* [21, 21] */
4129 SELF_CHECK (ranges_contain (ranges, 21, 1));
4130 /* [21, 25] */
4131 SELF_CHECK (ranges_contain (ranges, 21, 5));
4132 /* [26, 28] */
4133 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4134 }
4135
4136 /* Check that RANGES contains the same ranges as EXPECTED. */
4137
4138 static bool
4139 check_ranges_vector (gdb::array_view<const range> ranges,
4140 gdb::array_view<const range> expected)
4141 {
4142 return ranges == expected;
4143 }
4144
4145 /* Test the insert_into_bit_range_vector function. */
4146
4147 static void
4148 test_insert_into_bit_range_vector ()
4149 {
4150 std::vector<range> ranges;
4151
4152 /* [10, 14] */
4153 {
4154 insert_into_bit_range_vector (&ranges, 10, 5);
4155 static const range expected[] = {
4156 {10, 5}
4157 };
4158 SELF_CHECK (check_ranges_vector (ranges, expected));
4159 }
4160
4161 /* [10, 14] */
4162 {
4163 insert_into_bit_range_vector (&ranges, 11, 4);
4164 static const range expected = {10, 5};
4165 SELF_CHECK (check_ranges_vector (ranges, expected));
4166 }
4167
4168 /* [10, 14] [20, 24] */
4169 {
4170 insert_into_bit_range_vector (&ranges, 20, 5);
4171 static const range expected[] = {
4172 {10, 5},
4173 {20, 5},
4174 };
4175 SELF_CHECK (check_ranges_vector (ranges, expected));
4176 }
4177
4178 /* [10, 14] [17, 24] */
4179 {
4180 insert_into_bit_range_vector (&ranges, 17, 5);
4181 static const range expected[] = {
4182 {10, 5},
4183 {17, 8},
4184 };
4185 SELF_CHECK (check_ranges_vector (ranges, expected));
4186 }
4187
4188 /* [2, 8] [10, 14] [17, 24] */
4189 {
4190 insert_into_bit_range_vector (&ranges, 2, 7);
4191 static const range expected[] = {
4192 {2, 7},
4193 {10, 5},
4194 {17, 8},
4195 };
4196 SELF_CHECK (check_ranges_vector (ranges, expected));
4197 }
4198
4199 /* [2, 14] [17, 24] */
4200 {
4201 insert_into_bit_range_vector (&ranges, 9, 1);
4202 static const range expected[] = {
4203 {2, 13},
4204 {17, 8},
4205 };
4206 SELF_CHECK (check_ranges_vector (ranges, expected));
4207 }
4208
4209 /* [2, 14] [17, 24] */
4210 {
4211 insert_into_bit_range_vector (&ranges, 9, 1);
4212 static const range expected[] = {
4213 {2, 13},
4214 {17, 8},
4215 };
4216 SELF_CHECK (check_ranges_vector (ranges, expected));
4217 }
4218
4219 /* [2, 33] */
4220 {
4221 insert_into_bit_range_vector (&ranges, 4, 30);
4222 static const range expected = {2, 32};
4223 SELF_CHECK (check_ranges_vector (ranges, expected));
4224 }
4225 }
4226
4227 } /* namespace selftests */
4228 #endif /* GDB_SELF_TEST */
4229
4230 void _initialize_values ();
4231 void
4232 _initialize_values ()
4233 {
4234 cmd_list_element *show_convenience_cmd
4235 = add_cmd ("convenience", no_class, show_convenience, _("\
4236 Debugger convenience (\"$foo\") variables and functions.\n\
4237 Convenience variables are created when you assign them values;\n\
4238 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4239 \n\
4240 A few convenience variables are given values automatically:\n\
4241 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4242 \"$__\" holds the contents of the last address examined with \"x\"."
4243 #ifdef HAVE_PYTHON
4244 "\n\n\
4245 Convenience functions are defined via the Python API."
4246 #endif
4247 ), &showlist);
4248 add_alias_cmd ("conv", show_convenience_cmd, no_class, 1, &showlist);
4249
4250 add_cmd ("values", no_set_class, show_values, _("\
4251 Elements of value history around item number IDX (or last ten)."),
4252 &showlist);
4253
4254 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4255 Initialize a convenience variable if necessary.\n\
4256 init-if-undefined VARIABLE = EXPRESSION\n\
4257 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4258 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4259 VARIABLE is already initialized."));
4260
4261 add_prefix_cmd ("function", no_class, function_command, _("\
4262 Placeholder command for showing help on convenience functions."),
4263 &functionlist, 0, &cmdlist);
4264
4265 add_internal_function ("_isvoid", _("\
4266 Check whether an expression is void.\n\
4267 Usage: $_isvoid (expression)\n\
4268 Return 1 if the expression is void, zero otherwise."),
4269 isvoid_internal_fn, NULL);
4270
4271 add_internal_function ("_creal", _("\
4272 Extract the real part of a complex number.\n\
4273 Usage: $_creal (expression)\n\
4274 Return the real part of a complex number, the type depends on the\n\
4275 type of a complex number."),
4276 creal_internal_fn, NULL);
4277
4278 add_internal_function ("_cimag", _("\
4279 Extract the imaginary part of a complex number.\n\
4280 Usage: $_cimag (expression)\n\
4281 Return the imaginary part of a complex number, the type depends on the\n\
4282 type of a complex number."),
4283 cimag_internal_fn, NULL);
4284
4285 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4286 class_support, &max_value_size, _("\
4287 Set maximum sized value gdb will load from the inferior."), _("\
4288 Show maximum sized value gdb will load from the inferior."), _("\
4289 Use this to control the maximum size, in bytes, of a value that gdb\n\
4290 will load from the inferior. Setting this value to 'unlimited'\n\
4291 disables checking.\n\
4292 Setting this does not invalidate already allocated values, it only\n\
4293 prevents future values, larger than this size, from being allocated."),
4294 set_max_value_size,
4295 show_max_value_size,
4296 &setlist, &showlist);
4297 #if GDB_SELF_TEST
4298 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4299 selftests::register_test ("insert_into_bit_range_vector",
4300 selftests::test_insert_into_bit_range_vector);
4301 #endif
4302 }
4303
4304 /* See value.h. */
4305
4306 void
4307 finalize_values ()
4308 {
4309 all_values.clear ();
4310 }
This page took 0.134718 seconds and 4 git commands to generate.