Convert lvalue reference type check to general reference type check
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43 #include <algorithm>
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66 struct range
67 {
68 /* Lowest offset in the range. */
69 LONGEST offset;
70
71 /* Length of the range. */
72 LONGEST length;
73 };
74
75 typedef struct range range_s;
76
77 DEF_VEC_O(range_s);
78
79 /* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82 static int
83 ranges_overlap (LONGEST offset1, LONGEST len1,
84 LONGEST offset2, LONGEST len2)
85 {
86 ULONGEST h, l;
87
88 l = std::max (offset1, offset2);
89 h = std::min (offset1 + len1, offset2 + len2);
90 return (l < h);
91 }
92
93 /* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98 static int
99 range_lessthan (const range_s *r1, const range_s *r2)
100 {
101 return r1->offset < r2->offset;
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107 static int
108 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
109 {
110 range_s what;
111 LONGEST i;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
204
205 /* If the value has been released. */
206 unsigned int released : 1;
207
208 /* Location of value (if lval). */
209 union
210 {
211 /* If lval == lval_memory, this is the address in the inferior */
212 CORE_ADDR address;
213
214 /*If lval == lval_register, the value is from a register. */
215 struct
216 {
217 /* Register number. */
218 int regnum;
219 /* Frame ID of "next" frame to which a register value is relative.
220 If the register value is found relative to frame F, then the
221 frame id of F->next will be stored in next_frame_id. */
222 struct frame_id next_frame_id;
223 } reg;
224
225 /* Pointer to internal variable. */
226 struct internalvar *internalvar;
227
228 /* Pointer to xmethod worker. */
229 struct xmethod_worker *xm_worker;
230
231 /* If lval == lval_computed, this is a set of function pointers
232 to use to access and describe the value, and a closure pointer
233 for them to use. */
234 struct
235 {
236 /* Functions to call. */
237 const struct lval_funcs *funcs;
238
239 /* Closure for those functions to use. */
240 void *closure;
241 } computed;
242 } location;
243
244 /* Describes offset of a value within lval of a structure in target
245 addressable memory units. Note also the member embedded_offset
246 below. */
247 LONGEST offset;
248
249 /* Only used for bitfields; number of bits contained in them. */
250 LONGEST bitsize;
251
252 /* Only used for bitfields; position of start of field. For
253 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
254 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
255 LONGEST bitpos;
256
257 /* The number of references to this value. When a value is created,
258 the value chain holds a reference, so REFERENCE_COUNT is 1. If
259 release_value is called, this value is removed from the chain but
260 the caller of release_value now has a reference to this value.
261 The caller must arrange for a call to value_free later. */
262 int reference_count;
263
264 /* Only used for bitfields; the containing value. This allows a
265 single read from the target when displaying multiple
266 bitfields. */
267 struct value *parent;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in target addressable memory
296 units. The value_contents() macro takes `embedded_offset' into account,
297 so most GDB code continues to see the `type' portion of the value, just
298 as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in target addressable memory units from the full object
303 to the pointed-to object -- that is, the value `embedded_offset' would
304 have if we followed the pointer and fetched the complete object.
305 (I don't really see the point. Why not just determine the
306 run-time type when you indirect, and avoid the special case? The
307 contents don't matter until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 LONGEST embedded_offset;
314 LONGEST pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
325
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
332 VEC(range_s) *unavailable;
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
342 };
343
344 /* See value.h. */
345
346 struct gdbarch *
347 get_value_arch (const struct value *value)
348 {
349 return get_type_arch (value_type (value));
350 }
351
352 int
353 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
354 {
355 gdb_assert (!value->lazy);
356
357 return !ranges_contain (value->unavailable, offset, length);
358 }
359
360 int
361 value_bytes_available (const struct value *value,
362 LONGEST offset, LONGEST length)
363 {
364 return value_bits_available (value,
365 offset * TARGET_CHAR_BIT,
366 length * TARGET_CHAR_BIT);
367 }
368
369 int
370 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
371 {
372 gdb_assert (!value->lazy);
373
374 return ranges_contain (value->optimized_out, bit_offset, bit_length);
375 }
376
377 int
378 value_entirely_available (struct value *value)
379 {
380 /* We can only tell whether the whole value is available when we try
381 to read it. */
382 if (value->lazy)
383 value_fetch_lazy (value);
384
385 if (VEC_empty (range_s, value->unavailable))
386 return 1;
387 return 0;
388 }
389
390 /* Returns true if VALUE is entirely covered by RANGES. If the value
391 is lazy, it'll be read now. Note that RANGE is a pointer to
392 pointer because reading the value might change *RANGE. */
393
394 static int
395 value_entirely_covered_by_range_vector (struct value *value,
396 VEC(range_s) **ranges)
397 {
398 /* We can only tell whether the whole value is optimized out /
399 unavailable when we try to read it. */
400 if (value->lazy)
401 value_fetch_lazy (value);
402
403 if (VEC_length (range_s, *ranges) == 1)
404 {
405 struct range *t = VEC_index (range_s, *ranges, 0);
406
407 if (t->offset == 0
408 && t->length == (TARGET_CHAR_BIT
409 * TYPE_LENGTH (value_enclosing_type (value))))
410 return 1;
411 }
412
413 return 0;
414 }
415
416 int
417 value_entirely_unavailable (struct value *value)
418 {
419 return value_entirely_covered_by_range_vector (value, &value->unavailable);
420 }
421
422 int
423 value_entirely_optimized_out (struct value *value)
424 {
425 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
426 }
427
428 /* Insert into the vector pointed to by VECTORP the bit range starting of
429 OFFSET bits, and extending for the next LENGTH bits. */
430
431 static void
432 insert_into_bit_range_vector (VEC(range_s) **vectorp,
433 LONGEST offset, LONGEST length)
434 {
435 range_s newr;
436 int i;
437
438 /* Insert the range sorted. If there's overlap or the new range
439 would be contiguous with an existing range, merge. */
440
441 newr.offset = offset;
442 newr.length = length;
443
444 /* Do a binary search for the position the given range would be
445 inserted if we only considered the starting OFFSET of ranges.
446 Call that position I. Since we also have LENGTH to care for
447 (this is a range afterall), we need to check if the _previous_
448 range overlaps the I range. E.g., calling R the new range:
449
450 #1 - overlaps with previous
451
452 R
453 |-...-|
454 |---| |---| |------| ... |--|
455 0 1 2 N
456
457 I=1
458
459 In the case #1 above, the binary search would return `I=1',
460 meaning, this OFFSET should be inserted at position 1, and the
461 current position 1 should be pushed further (and become 2). But,
462 note that `0' overlaps with R, so we want to merge them.
463
464 A similar consideration needs to be taken if the new range would
465 be contiguous with the previous range:
466
467 #2 - contiguous with previous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 If there's no overlap with the previous range, as in:
477
478 #3 - not overlapping and not contiguous
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=1
486
487 or if I is 0:
488
489 #4 - R is the range with lowest offset
490
491 R
492 |-...-|
493 |--| |---| |------| ... |--|
494 0 1 2 N
495
496 I=0
497
498 ... we just push the new range to I.
499
500 All the 4 cases above need to consider that the new range may
501 also overlap several of the ranges that follow, or that R may be
502 contiguous with the following range, and merge. E.g.,
503
504 #5 - overlapping following ranges
505
506 R
507 |------------------------|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 or:
514
515 R
516 |-------|
517 |--| |---| |------| ... |--|
518 0 1 2 N
519
520 I=1
521
522 */
523
524 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
525 if (i > 0)
526 {
527 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
528
529 if (ranges_overlap (bef->offset, bef->length, offset, length))
530 {
531 /* #1 */
532 ULONGEST l = std::min (bef->offset, offset);
533 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
534
535 bef->offset = l;
536 bef->length = h - l;
537 i--;
538 }
539 else if (offset == bef->offset + bef->length)
540 {
541 /* #2 */
542 bef->length += length;
543 i--;
544 }
545 else
546 {
547 /* #3 */
548 VEC_safe_insert (range_s, *vectorp, i, &newr);
549 }
550 }
551 else
552 {
553 /* #4 */
554 VEC_safe_insert (range_s, *vectorp, i, &newr);
555 }
556
557 /* Check whether the ranges following the one we've just added or
558 touched can be folded in (#5 above). */
559 if (i + 1 < VEC_length (range_s, *vectorp))
560 {
561 struct range *t;
562 struct range *r;
563 int removed = 0;
564 int next = i + 1;
565
566 /* Get the range we just touched. */
567 t = VEC_index (range_s, *vectorp, i);
568 removed = 0;
569
570 i = next;
571 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
572 if (r->offset <= t->offset + t->length)
573 {
574 ULONGEST l, h;
575
576 l = std::min (t->offset, r->offset);
577 h = std::max (t->offset + t->length, r->offset + r->length);
578
579 t->offset = l;
580 t->length = h - l;
581
582 removed++;
583 }
584 else
585 {
586 /* If we couldn't merge this one, we won't be able to
587 merge following ones either, since the ranges are
588 always sorted by OFFSET. */
589 break;
590 }
591
592 if (removed != 0)
593 VEC_block_remove (range_s, *vectorp, next, removed);
594 }
595 }
596
597 void
598 mark_value_bits_unavailable (struct value *value,
599 LONGEST offset, LONGEST length)
600 {
601 insert_into_bit_range_vector (&value->unavailable, offset, length);
602 }
603
604 void
605 mark_value_bytes_unavailable (struct value *value,
606 LONGEST offset, LONGEST length)
607 {
608 mark_value_bits_unavailable (value,
609 offset * TARGET_CHAR_BIT,
610 length * TARGET_CHAR_BIT);
611 }
612
613 /* Find the first range in RANGES that overlaps the range defined by
614 OFFSET and LENGTH, starting at element POS in the RANGES vector,
615 Returns the index into RANGES where such overlapping range was
616 found, or -1 if none was found. */
617
618 static int
619 find_first_range_overlap (VEC(range_s) *ranges, int pos,
620 LONGEST offset, LONGEST length)
621 {
622 range_s *r;
623 int i;
624
625 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
626 if (ranges_overlap (r->offset, r->length, offset, length))
627 return i;
628
629 return -1;
630 }
631
632 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
633 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
634 return non-zero.
635
636 It must always be the case that:
637 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
638
639 It is assumed that memory can be accessed from:
640 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
641 to:
642 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
643 / TARGET_CHAR_BIT) */
644 static int
645 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
646 const gdb_byte *ptr2, size_t offset2_bits,
647 size_t length_bits)
648 {
649 gdb_assert (offset1_bits % TARGET_CHAR_BIT
650 == offset2_bits % TARGET_CHAR_BIT);
651
652 if (offset1_bits % TARGET_CHAR_BIT != 0)
653 {
654 size_t bits;
655 gdb_byte mask, b1, b2;
656
657 /* The offset from the base pointers PTR1 and PTR2 is not a complete
658 number of bytes. A number of bits up to either the next exact
659 byte boundary, or LENGTH_BITS (which ever is sooner) will be
660 compared. */
661 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
662 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
663 mask = (1 << bits) - 1;
664
665 if (length_bits < bits)
666 {
667 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
668 bits = length_bits;
669 }
670
671 /* Now load the two bytes and mask off the bits we care about. */
672 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
673 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674
675 if (b1 != b2)
676 return 1;
677
678 /* Now update the length and offsets to take account of the bits
679 we've just compared. */
680 length_bits -= bits;
681 offset1_bits += bits;
682 offset2_bits += bits;
683 }
684
685 if (length_bits % TARGET_CHAR_BIT != 0)
686 {
687 size_t bits;
688 size_t o1, o2;
689 gdb_byte mask, b1, b2;
690
691 /* The length is not an exact number of bytes. After the previous
692 IF.. block then the offsets are byte aligned, or the
693 length is zero (in which case this code is not reached). Compare
694 a number of bits at the end of the region, starting from an exact
695 byte boundary. */
696 bits = length_bits % TARGET_CHAR_BIT;
697 o1 = offset1_bits + length_bits - bits;
698 o2 = offset2_bits + length_bits - bits;
699
700 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
701 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
702
703 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
704 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
705
706 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
707 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
708
709 if (b1 != b2)
710 return 1;
711
712 length_bits -= bits;
713 }
714
715 if (length_bits > 0)
716 {
717 /* We've now taken care of any stray "bits" at the start, or end of
718 the region to compare, the remainder can be covered with a simple
719 memcmp. */
720 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
721 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
722 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
723
724 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
725 ptr2 + offset2_bits / TARGET_CHAR_BIT,
726 length_bits / TARGET_CHAR_BIT);
727 }
728
729 /* Length is zero, regions match. */
730 return 0;
731 }
732
733 /* Helper struct for find_first_range_overlap_and_match and
734 value_contents_bits_eq. Keep track of which slot of a given ranges
735 vector have we last looked at. */
736
737 struct ranges_and_idx
738 {
739 /* The ranges. */
740 VEC(range_s) *ranges;
741
742 /* The range we've last found in RANGES. Given ranges are sorted,
743 we can start the next lookup here. */
744 int idx;
745 };
746
747 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
748 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
749 ranges starting at OFFSET2 bits. Return true if the ranges match
750 and fill in *L and *H with the overlapping window relative to
751 (both) OFFSET1 or OFFSET2. */
752
753 static int
754 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
755 struct ranges_and_idx *rp2,
756 LONGEST offset1, LONGEST offset2,
757 LONGEST length, ULONGEST *l, ULONGEST *h)
758 {
759 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
760 offset1, length);
761 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
762 offset2, length);
763
764 if (rp1->idx == -1 && rp2->idx == -1)
765 {
766 *l = length;
767 *h = length;
768 return 1;
769 }
770 else if (rp1->idx == -1 || rp2->idx == -1)
771 return 0;
772 else
773 {
774 range_s *r1, *r2;
775 ULONGEST l1, h1;
776 ULONGEST l2, h2;
777
778 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
779 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
780
781 /* Get the unavailable windows intersected by the incoming
782 ranges. The first and last ranges that overlap the argument
783 range may be wider than said incoming arguments ranges. */
784 l1 = std::max (offset1, r1->offset);
785 h1 = std::min (offset1 + length, r1->offset + r1->length);
786
787 l2 = std::max (offset2, r2->offset);
788 h2 = std::min (offset2 + length, offset2 + r2->length);
789
790 /* Make them relative to the respective start offsets, so we can
791 compare them for equality. */
792 l1 -= offset1;
793 h1 -= offset1;
794
795 l2 -= offset2;
796 h2 -= offset2;
797
798 /* Different ranges, no match. */
799 if (l1 != l2 || h1 != h2)
800 return 0;
801
802 *h = h1;
803 *l = l1;
804 return 1;
805 }
806 }
807
808 /* Helper function for value_contents_eq. The only difference is that
809 this function is bit rather than byte based.
810
811 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
812 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
813 Return true if the available bits match. */
814
815 static int
816 value_contents_bits_eq (const struct value *val1, int offset1,
817 const struct value *val2, int offset2,
818 int length)
819 {
820 /* Each array element corresponds to a ranges source (unavailable,
821 optimized out). '1' is for VAL1, '2' for VAL2. */
822 struct ranges_and_idx rp1[2], rp2[2];
823
824 /* See function description in value.h. */
825 gdb_assert (!val1->lazy && !val2->lazy);
826
827 /* We shouldn't be trying to compare past the end of the values. */
828 gdb_assert (offset1 + length
829 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
830 gdb_assert (offset2 + length
831 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
832
833 memset (&rp1, 0, sizeof (rp1));
834 memset (&rp2, 0, sizeof (rp2));
835 rp1[0].ranges = val1->unavailable;
836 rp2[0].ranges = val2->unavailable;
837 rp1[1].ranges = val1->optimized_out;
838 rp2[1].ranges = val2->optimized_out;
839
840 while (length > 0)
841 {
842 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
843 int i;
844
845 for (i = 0; i < 2; i++)
846 {
847 ULONGEST l_tmp, h_tmp;
848
849 /* The contents only match equal if the invalid/unavailable
850 contents ranges match as well. */
851 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
852 offset1, offset2, length,
853 &l_tmp, &h_tmp))
854 return 0;
855
856 /* We're interested in the lowest/first range found. */
857 if (i == 0 || l_tmp < l)
858 {
859 l = l_tmp;
860 h = h_tmp;
861 }
862 }
863
864 /* Compare the available/valid contents. */
865 if (memcmp_with_bit_offsets (val1->contents, offset1,
866 val2->contents, offset2, l) != 0)
867 return 0;
868
869 length -= h;
870 offset1 += h;
871 offset2 += h;
872 }
873
874 return 1;
875 }
876
877 int
878 value_contents_eq (const struct value *val1, LONGEST offset1,
879 const struct value *val2, LONGEST offset2,
880 LONGEST length)
881 {
882 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
883 val2, offset2 * TARGET_CHAR_BIT,
884 length * TARGET_CHAR_BIT);
885 }
886
887 /* Prototypes for local functions. */
888
889 static void show_values (char *, int);
890
891 static void show_convenience (char *, int);
892
893
894 /* The value-history records all the values printed
895 by print commands during this session. Each chunk
896 records 60 consecutive values. The first chunk on
897 the chain records the most recent values.
898 The total number of values is in value_history_count. */
899
900 #define VALUE_HISTORY_CHUNK 60
901
902 struct value_history_chunk
903 {
904 struct value_history_chunk *next;
905 struct value *values[VALUE_HISTORY_CHUNK];
906 };
907
908 /* Chain of chunks now in use. */
909
910 static struct value_history_chunk *value_history_chain;
911
912 static int value_history_count; /* Abs number of last entry stored. */
913
914 \f
915 /* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
919 static struct value *all_values;
920
921 /* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
924
925 struct value *
926 allocate_value_lazy (struct type *type)
927 {
928 struct value *val;
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
937
938 val = XCNEW (struct value);
939 val->contents = NULL;
940 val->next = all_values;
941 all_values = val;
942 val->type = type;
943 val->enclosing_type = type;
944 VALUE_LVAL (val) = not_lval;
945 val->location.address = 0;
946 val->offset = 0;
947 val->bitpos = 0;
948 val->bitsize = 0;
949 val->lazy = 1;
950 val->embedded_offset = 0;
951 val->pointed_to_offset = 0;
952 val->modifiable = 1;
953 val->initialized = 1; /* Default to initialized. */
954
955 /* Values start out on the all_values chain. */
956 val->reference_count = 1;
957
958 return val;
959 }
960
961 /* The maximum size, in bytes, that GDB will try to allocate for a value.
962 The initial value of 64k was not selected for any specific reason, it is
963 just a reasonable starting point. */
964
965 static int max_value_size = 65536; /* 64k bytes */
966
967 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
968 LONGEST, otherwise GDB will not be able to parse integer values from the
969 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
970 be unable to parse "set max-value-size 2".
971
972 As we want a consistent GDB experience across hosts with different sizes
973 of LONGEST, this arbitrary minimum value was selected, so long as this
974 is bigger than LONGEST on all GDB supported hosts we're fine. */
975
976 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
977 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
978
979 /* Implement the "set max-value-size" command. */
980
981 static void
982 set_max_value_size (char *args, int from_tty,
983 struct cmd_list_element *c)
984 {
985 gdb_assert (max_value_size == -1 || max_value_size >= 0);
986
987 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
988 {
989 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
990 error (_("max-value-size set too low, increasing to %d bytes"),
991 max_value_size);
992 }
993 }
994
995 /* Implement the "show max-value-size" command. */
996
997 static void
998 show_max_value_size (struct ui_file *file, int from_tty,
999 struct cmd_list_element *c, const char *value)
1000 {
1001 if (max_value_size == -1)
1002 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1003 else
1004 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1005 max_value_size);
1006 }
1007
1008 /* Called before we attempt to allocate or reallocate a buffer for the
1009 contents of a value. TYPE is the type of the value for which we are
1010 allocating the buffer. If the buffer is too large (based on the user
1011 controllable setting) then throw an error. If this function returns
1012 then we should attempt to allocate the buffer. */
1013
1014 static void
1015 check_type_length_before_alloc (const struct type *type)
1016 {
1017 unsigned int length = TYPE_LENGTH (type);
1018
1019 if (max_value_size > -1 && length > max_value_size)
1020 {
1021 if (TYPE_NAME (type) != NULL)
1022 error (_("value of type `%s' requires %u bytes, which is more "
1023 "than max-value-size"), TYPE_NAME (type), length);
1024 else
1025 error (_("value requires %u bytes, which is more than "
1026 "max-value-size"), length);
1027 }
1028 }
1029
1030 /* Allocate the contents of VAL if it has not been allocated yet. */
1031
1032 static void
1033 allocate_value_contents (struct value *val)
1034 {
1035 if (!val->contents)
1036 {
1037 check_type_length_before_alloc (val->enclosing_type);
1038 val->contents
1039 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1040 }
1041 }
1042
1043 /* Allocate a value and its contents for type TYPE. */
1044
1045 struct value *
1046 allocate_value (struct type *type)
1047 {
1048 struct value *val = allocate_value_lazy (type);
1049
1050 allocate_value_contents (val);
1051 val->lazy = 0;
1052 return val;
1053 }
1054
1055 /* Allocate a value that has the correct length
1056 for COUNT repetitions of type TYPE. */
1057
1058 struct value *
1059 allocate_repeat_value (struct type *type, int count)
1060 {
1061 int low_bound = current_language->string_lower_bound; /* ??? */
1062 /* FIXME-type-allocation: need a way to free this type when we are
1063 done with it. */
1064 struct type *array_type
1065 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1066
1067 return allocate_value (array_type);
1068 }
1069
1070 struct value *
1071 allocate_computed_value (struct type *type,
1072 const struct lval_funcs *funcs,
1073 void *closure)
1074 {
1075 struct value *v = allocate_value_lazy (type);
1076
1077 VALUE_LVAL (v) = lval_computed;
1078 v->location.computed.funcs = funcs;
1079 v->location.computed.closure = closure;
1080
1081 return v;
1082 }
1083
1084 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1085
1086 struct value *
1087 allocate_optimized_out_value (struct type *type)
1088 {
1089 struct value *retval = allocate_value_lazy (type);
1090
1091 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1092 set_value_lazy (retval, 0);
1093 return retval;
1094 }
1095
1096 /* Accessor methods. */
1097
1098 struct value *
1099 value_next (const struct value *value)
1100 {
1101 return value->next;
1102 }
1103
1104 struct type *
1105 value_type (const struct value *value)
1106 {
1107 return value->type;
1108 }
1109 void
1110 deprecated_set_value_type (struct value *value, struct type *type)
1111 {
1112 value->type = type;
1113 }
1114
1115 LONGEST
1116 value_offset (const struct value *value)
1117 {
1118 return value->offset;
1119 }
1120 void
1121 set_value_offset (struct value *value, LONGEST offset)
1122 {
1123 value->offset = offset;
1124 }
1125
1126 LONGEST
1127 value_bitpos (const struct value *value)
1128 {
1129 return value->bitpos;
1130 }
1131 void
1132 set_value_bitpos (struct value *value, LONGEST bit)
1133 {
1134 value->bitpos = bit;
1135 }
1136
1137 LONGEST
1138 value_bitsize (const struct value *value)
1139 {
1140 return value->bitsize;
1141 }
1142 void
1143 set_value_bitsize (struct value *value, LONGEST bit)
1144 {
1145 value->bitsize = bit;
1146 }
1147
1148 struct value *
1149 value_parent (const struct value *value)
1150 {
1151 return value->parent;
1152 }
1153
1154 /* See value.h. */
1155
1156 void
1157 set_value_parent (struct value *value, struct value *parent)
1158 {
1159 struct value *old = value->parent;
1160
1161 value->parent = parent;
1162 if (parent != NULL)
1163 value_incref (parent);
1164 value_free (old);
1165 }
1166
1167 gdb_byte *
1168 value_contents_raw (struct value *value)
1169 {
1170 struct gdbarch *arch = get_value_arch (value);
1171 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1172
1173 allocate_value_contents (value);
1174 return value->contents + value->embedded_offset * unit_size;
1175 }
1176
1177 gdb_byte *
1178 value_contents_all_raw (struct value *value)
1179 {
1180 allocate_value_contents (value);
1181 return value->contents;
1182 }
1183
1184 struct type *
1185 value_enclosing_type (const struct value *value)
1186 {
1187 return value->enclosing_type;
1188 }
1189
1190 /* Look at value.h for description. */
1191
1192 struct type *
1193 value_actual_type (struct value *value, int resolve_simple_types,
1194 int *real_type_found)
1195 {
1196 struct value_print_options opts;
1197 struct type *result;
1198
1199 get_user_print_options (&opts);
1200
1201 if (real_type_found)
1202 *real_type_found = 0;
1203 result = value_type (value);
1204 if (opts.objectprint)
1205 {
1206 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1207 fetch its rtti type. */
1208 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1209 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1210 == TYPE_CODE_STRUCT
1211 && !value_optimized_out (value))
1212 {
1213 struct type *real_type;
1214
1215 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1216 if (real_type)
1217 {
1218 if (real_type_found)
1219 *real_type_found = 1;
1220 result = real_type;
1221 }
1222 }
1223 else if (resolve_simple_types)
1224 {
1225 if (real_type_found)
1226 *real_type_found = 1;
1227 result = value_enclosing_type (value);
1228 }
1229 }
1230
1231 return result;
1232 }
1233
1234 void
1235 error_value_optimized_out (void)
1236 {
1237 error (_("value has been optimized out"));
1238 }
1239
1240 static void
1241 require_not_optimized_out (const struct value *value)
1242 {
1243 if (!VEC_empty (range_s, value->optimized_out))
1244 {
1245 if (value->lval == lval_register)
1246 error (_("register has not been saved in frame"));
1247 else
1248 error_value_optimized_out ();
1249 }
1250 }
1251
1252 static void
1253 require_available (const struct value *value)
1254 {
1255 if (!VEC_empty (range_s, value->unavailable))
1256 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1257 }
1258
1259 const gdb_byte *
1260 value_contents_for_printing (struct value *value)
1261 {
1262 if (value->lazy)
1263 value_fetch_lazy (value);
1264 return value->contents;
1265 }
1266
1267 const gdb_byte *
1268 value_contents_for_printing_const (const struct value *value)
1269 {
1270 gdb_assert (!value->lazy);
1271 return value->contents;
1272 }
1273
1274 const gdb_byte *
1275 value_contents_all (struct value *value)
1276 {
1277 const gdb_byte *result = value_contents_for_printing (value);
1278 require_not_optimized_out (value);
1279 require_available (value);
1280 return result;
1281 }
1282
1283 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1284 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1285
1286 static void
1287 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1288 VEC (range_s) *src_range, int src_bit_offset,
1289 int bit_length)
1290 {
1291 range_s *r;
1292 int i;
1293
1294 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1295 {
1296 ULONGEST h, l;
1297
1298 l = std::max (r->offset, (LONGEST) src_bit_offset);
1299 h = std::min (r->offset + r->length,
1300 (LONGEST) src_bit_offset + bit_length);
1301
1302 if (l < h)
1303 insert_into_bit_range_vector (dst_range,
1304 dst_bit_offset + (l - src_bit_offset),
1305 h - l);
1306 }
1307 }
1308
1309 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1310 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1311
1312 static void
1313 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1314 const struct value *src, int src_bit_offset,
1315 int bit_length)
1316 {
1317 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1318 src->unavailable, src_bit_offset,
1319 bit_length);
1320 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1321 src->optimized_out, src_bit_offset,
1322 bit_length);
1323 }
1324
1325 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1326 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1327 contents, starting at DST_OFFSET. If unavailable contents are
1328 being copied from SRC, the corresponding DST contents are marked
1329 unavailable accordingly. Neither DST nor SRC may be lazy
1330 values.
1331
1332 It is assumed the contents of DST in the [DST_OFFSET,
1333 DST_OFFSET+LENGTH) range are wholly available. */
1334
1335 void
1336 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1337 struct value *src, LONGEST src_offset, LONGEST length)
1338 {
1339 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1340 struct gdbarch *arch = get_value_arch (src);
1341 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1342
1343 /* A lazy DST would make that this copy operation useless, since as
1344 soon as DST's contents were un-lazied (by a later value_contents
1345 call, say), the contents would be overwritten. A lazy SRC would
1346 mean we'd be copying garbage. */
1347 gdb_assert (!dst->lazy && !src->lazy);
1348
1349 /* The overwritten DST range gets unavailability ORed in, not
1350 replaced. Make sure to remember to implement replacing if it
1351 turns out actually necessary. */
1352 gdb_assert (value_bytes_available (dst, dst_offset, length));
1353 gdb_assert (!value_bits_any_optimized_out (dst,
1354 TARGET_CHAR_BIT * dst_offset,
1355 TARGET_CHAR_BIT * length));
1356
1357 /* Copy the data. */
1358 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1359 value_contents_all_raw (src) + src_offset * unit_size,
1360 length * unit_size);
1361
1362 /* Copy the meta-data, adjusted. */
1363 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1364 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1365 bit_length = length * unit_size * HOST_CHAR_BIT;
1366
1367 value_ranges_copy_adjusted (dst, dst_bit_offset,
1368 src, src_bit_offset,
1369 bit_length);
1370 }
1371
1372 /* Copy LENGTH bytes of SRC value's (all) contents
1373 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1374 (all) contents, starting at DST_OFFSET. If unavailable contents
1375 are being copied from SRC, the corresponding DST contents are
1376 marked unavailable accordingly. DST must not be lazy. If SRC is
1377 lazy, it will be fetched now.
1378
1379 It is assumed the contents of DST in the [DST_OFFSET,
1380 DST_OFFSET+LENGTH) range are wholly available. */
1381
1382 void
1383 value_contents_copy (struct value *dst, LONGEST dst_offset,
1384 struct value *src, LONGEST src_offset, LONGEST length)
1385 {
1386 if (src->lazy)
1387 value_fetch_lazy (src);
1388
1389 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1390 }
1391
1392 int
1393 value_lazy (const struct value *value)
1394 {
1395 return value->lazy;
1396 }
1397
1398 void
1399 set_value_lazy (struct value *value, int val)
1400 {
1401 value->lazy = val;
1402 }
1403
1404 int
1405 value_stack (const struct value *value)
1406 {
1407 return value->stack;
1408 }
1409
1410 void
1411 set_value_stack (struct value *value, int val)
1412 {
1413 value->stack = val;
1414 }
1415
1416 const gdb_byte *
1417 value_contents (struct value *value)
1418 {
1419 const gdb_byte *result = value_contents_writeable (value);
1420 require_not_optimized_out (value);
1421 require_available (value);
1422 return result;
1423 }
1424
1425 gdb_byte *
1426 value_contents_writeable (struct value *value)
1427 {
1428 if (value->lazy)
1429 value_fetch_lazy (value);
1430 return value_contents_raw (value);
1431 }
1432
1433 int
1434 value_optimized_out (struct value *value)
1435 {
1436 /* We can only know if a value is optimized out once we have tried to
1437 fetch it. */
1438 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1439 {
1440 TRY
1441 {
1442 value_fetch_lazy (value);
1443 }
1444 CATCH (ex, RETURN_MASK_ERROR)
1445 {
1446 /* Fall back to checking value->optimized_out. */
1447 }
1448 END_CATCH
1449 }
1450
1451 return !VEC_empty (range_s, value->optimized_out);
1452 }
1453
1454 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1455 the following LENGTH bytes. */
1456
1457 void
1458 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1459 {
1460 mark_value_bits_optimized_out (value,
1461 offset * TARGET_CHAR_BIT,
1462 length * TARGET_CHAR_BIT);
1463 }
1464
1465 /* See value.h. */
1466
1467 void
1468 mark_value_bits_optimized_out (struct value *value,
1469 LONGEST offset, LONGEST length)
1470 {
1471 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1472 }
1473
1474 int
1475 value_bits_synthetic_pointer (const struct value *value,
1476 LONGEST offset, LONGEST length)
1477 {
1478 if (value->lval != lval_computed
1479 || !value->location.computed.funcs->check_synthetic_pointer)
1480 return 0;
1481 return value->location.computed.funcs->check_synthetic_pointer (value,
1482 offset,
1483 length);
1484 }
1485
1486 LONGEST
1487 value_embedded_offset (const struct value *value)
1488 {
1489 return value->embedded_offset;
1490 }
1491
1492 void
1493 set_value_embedded_offset (struct value *value, LONGEST val)
1494 {
1495 value->embedded_offset = val;
1496 }
1497
1498 LONGEST
1499 value_pointed_to_offset (const struct value *value)
1500 {
1501 return value->pointed_to_offset;
1502 }
1503
1504 void
1505 set_value_pointed_to_offset (struct value *value, LONGEST val)
1506 {
1507 value->pointed_to_offset = val;
1508 }
1509
1510 const struct lval_funcs *
1511 value_computed_funcs (const struct value *v)
1512 {
1513 gdb_assert (value_lval_const (v) == lval_computed);
1514
1515 return v->location.computed.funcs;
1516 }
1517
1518 void *
1519 value_computed_closure (const struct value *v)
1520 {
1521 gdb_assert (v->lval == lval_computed);
1522
1523 return v->location.computed.closure;
1524 }
1525
1526 enum lval_type *
1527 deprecated_value_lval_hack (struct value *value)
1528 {
1529 return &value->lval;
1530 }
1531
1532 enum lval_type
1533 value_lval_const (const struct value *value)
1534 {
1535 return value->lval;
1536 }
1537
1538 CORE_ADDR
1539 value_address (const struct value *value)
1540 {
1541 if (value->lval != lval_memory)
1542 return 0;
1543 if (value->parent != NULL)
1544 return value_address (value->parent) + value->offset;
1545 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1546 {
1547 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1548 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1549 }
1550
1551 return value->location.address + value->offset;
1552 }
1553
1554 CORE_ADDR
1555 value_raw_address (const struct value *value)
1556 {
1557 if (value->lval != lval_memory)
1558 return 0;
1559 return value->location.address;
1560 }
1561
1562 void
1563 set_value_address (struct value *value, CORE_ADDR addr)
1564 {
1565 gdb_assert (value->lval == lval_memory);
1566 value->location.address = addr;
1567 }
1568
1569 struct internalvar **
1570 deprecated_value_internalvar_hack (struct value *value)
1571 {
1572 return &value->location.internalvar;
1573 }
1574
1575 struct frame_id *
1576 deprecated_value_next_frame_id_hack (struct value *value)
1577 {
1578 gdb_assert (value->lval == lval_register);
1579 return &value->location.reg.next_frame_id;
1580 }
1581
1582 int *
1583 deprecated_value_regnum_hack (struct value *value)
1584 {
1585 gdb_assert (value->lval == lval_register);
1586 return &value->location.reg.regnum;
1587 }
1588
1589 int
1590 deprecated_value_modifiable (const struct value *value)
1591 {
1592 return value->modifiable;
1593 }
1594 \f
1595 /* Return a mark in the value chain. All values allocated after the
1596 mark is obtained (except for those released) are subject to being freed
1597 if a subsequent value_free_to_mark is passed the mark. */
1598 struct value *
1599 value_mark (void)
1600 {
1601 return all_values;
1602 }
1603
1604 /* Take a reference to VAL. VAL will not be deallocated until all
1605 references are released. */
1606
1607 void
1608 value_incref (struct value *val)
1609 {
1610 val->reference_count++;
1611 }
1612
1613 /* Release a reference to VAL, which was acquired with value_incref.
1614 This function is also called to deallocate values from the value
1615 chain. */
1616
1617 void
1618 value_free (struct value *val)
1619 {
1620 if (val)
1621 {
1622 gdb_assert (val->reference_count > 0);
1623 val->reference_count--;
1624 if (val->reference_count > 0)
1625 return;
1626
1627 /* If there's an associated parent value, drop our reference to
1628 it. */
1629 if (val->parent != NULL)
1630 value_free (val->parent);
1631
1632 if (VALUE_LVAL (val) == lval_computed)
1633 {
1634 const struct lval_funcs *funcs = val->location.computed.funcs;
1635
1636 if (funcs->free_closure)
1637 funcs->free_closure (val);
1638 }
1639 else if (VALUE_LVAL (val) == lval_xcallable)
1640 free_xmethod_worker (val->location.xm_worker);
1641
1642 xfree (val->contents);
1643 VEC_free (range_s, val->unavailable);
1644 }
1645 xfree (val);
1646 }
1647
1648 /* Free all values allocated since MARK was obtained by value_mark
1649 (except for those released). */
1650 void
1651 value_free_to_mark (const struct value *mark)
1652 {
1653 struct value *val;
1654 struct value *next;
1655
1656 for (val = all_values; val && val != mark; val = next)
1657 {
1658 next = val->next;
1659 val->released = 1;
1660 value_free (val);
1661 }
1662 all_values = val;
1663 }
1664
1665 /* Free all the values that have been allocated (except for those released).
1666 Call after each command, successful or not.
1667 In practice this is called before each command, which is sufficient. */
1668
1669 void
1670 free_all_values (void)
1671 {
1672 struct value *val;
1673 struct value *next;
1674
1675 for (val = all_values; val; val = next)
1676 {
1677 next = val->next;
1678 val->released = 1;
1679 value_free (val);
1680 }
1681
1682 all_values = 0;
1683 }
1684
1685 /* Frees all the elements in a chain of values. */
1686
1687 void
1688 free_value_chain (struct value *v)
1689 {
1690 struct value *next;
1691
1692 for (; v; v = next)
1693 {
1694 next = value_next (v);
1695 value_free (v);
1696 }
1697 }
1698
1699 /* Remove VAL from the chain all_values
1700 so it will not be freed automatically. */
1701
1702 void
1703 release_value (struct value *val)
1704 {
1705 struct value *v;
1706
1707 if (all_values == val)
1708 {
1709 all_values = val->next;
1710 val->next = NULL;
1711 val->released = 1;
1712 return;
1713 }
1714
1715 for (v = all_values; v; v = v->next)
1716 {
1717 if (v->next == val)
1718 {
1719 v->next = val->next;
1720 val->next = NULL;
1721 val->released = 1;
1722 break;
1723 }
1724 }
1725 }
1726
1727 /* If the value is not already released, release it.
1728 If the value is already released, increment its reference count.
1729 That is, this function ensures that the value is released from the
1730 value chain and that the caller owns a reference to it. */
1731
1732 void
1733 release_value_or_incref (struct value *val)
1734 {
1735 if (val->released)
1736 value_incref (val);
1737 else
1738 release_value (val);
1739 }
1740
1741 /* Release all values up to mark */
1742 struct value *
1743 value_release_to_mark (const struct value *mark)
1744 {
1745 struct value *val;
1746 struct value *next;
1747
1748 for (val = next = all_values; next; next = next->next)
1749 {
1750 if (next->next == mark)
1751 {
1752 all_values = next->next;
1753 next->next = NULL;
1754 return val;
1755 }
1756 next->released = 1;
1757 }
1758 all_values = 0;
1759 return val;
1760 }
1761
1762 /* Return a copy of the value ARG.
1763 It contains the same contents, for same memory address,
1764 but it's a different block of storage. */
1765
1766 struct value *
1767 value_copy (struct value *arg)
1768 {
1769 struct type *encl_type = value_enclosing_type (arg);
1770 struct value *val;
1771
1772 if (value_lazy (arg))
1773 val = allocate_value_lazy (encl_type);
1774 else
1775 val = allocate_value (encl_type);
1776 val->type = arg->type;
1777 VALUE_LVAL (val) = VALUE_LVAL (arg);
1778 val->location = arg->location;
1779 val->offset = arg->offset;
1780 val->bitpos = arg->bitpos;
1781 val->bitsize = arg->bitsize;
1782 val->lazy = arg->lazy;
1783 val->embedded_offset = value_embedded_offset (arg);
1784 val->pointed_to_offset = arg->pointed_to_offset;
1785 val->modifiable = arg->modifiable;
1786 if (!value_lazy (val))
1787 {
1788 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1789 TYPE_LENGTH (value_enclosing_type (arg)));
1790
1791 }
1792 val->unavailable = VEC_copy (range_s, arg->unavailable);
1793 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1794 set_value_parent (val, arg->parent);
1795 if (VALUE_LVAL (val) == lval_computed)
1796 {
1797 const struct lval_funcs *funcs = val->location.computed.funcs;
1798
1799 if (funcs->copy_closure)
1800 val->location.computed.closure = funcs->copy_closure (val);
1801 }
1802 return val;
1803 }
1804
1805 /* Return a "const" and/or "volatile" qualified version of the value V.
1806 If CNST is true, then the returned value will be qualified with
1807 "const".
1808 if VOLTL is true, then the returned value will be qualified with
1809 "volatile". */
1810
1811 struct value *
1812 make_cv_value (int cnst, int voltl, struct value *v)
1813 {
1814 struct type *val_type = value_type (v);
1815 struct type *enclosing_type = value_enclosing_type (v);
1816 struct value *cv_val = value_copy (v);
1817
1818 deprecated_set_value_type (cv_val,
1819 make_cv_type (cnst, voltl, val_type, NULL));
1820 set_value_enclosing_type (cv_val,
1821 make_cv_type (cnst, voltl, enclosing_type, NULL));
1822
1823 return cv_val;
1824 }
1825
1826 /* Return a version of ARG that is non-lvalue. */
1827
1828 struct value *
1829 value_non_lval (struct value *arg)
1830 {
1831 if (VALUE_LVAL (arg) != not_lval)
1832 {
1833 struct type *enc_type = value_enclosing_type (arg);
1834 struct value *val = allocate_value (enc_type);
1835
1836 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1837 TYPE_LENGTH (enc_type));
1838 val->type = arg->type;
1839 set_value_embedded_offset (val, value_embedded_offset (arg));
1840 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1841 return val;
1842 }
1843 return arg;
1844 }
1845
1846 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1847
1848 void
1849 value_force_lval (struct value *v, CORE_ADDR addr)
1850 {
1851 gdb_assert (VALUE_LVAL (v) == not_lval);
1852
1853 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1854 v->lval = lval_memory;
1855 v->location.address = addr;
1856 }
1857
1858 void
1859 set_value_component_location (struct value *component,
1860 const struct value *whole)
1861 {
1862 struct type *type;
1863
1864 gdb_assert (whole->lval != lval_xcallable);
1865
1866 if (whole->lval == lval_internalvar)
1867 VALUE_LVAL (component) = lval_internalvar_component;
1868 else
1869 VALUE_LVAL (component) = whole->lval;
1870
1871 component->location = whole->location;
1872 if (whole->lval == lval_computed)
1873 {
1874 const struct lval_funcs *funcs = whole->location.computed.funcs;
1875
1876 if (funcs->copy_closure)
1877 component->location.computed.closure = funcs->copy_closure (whole);
1878 }
1879
1880 /* If type has a dynamic resolved location property
1881 update it's value address. */
1882 type = value_type (whole);
1883 if (NULL != TYPE_DATA_LOCATION (type)
1884 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1885 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1886 }
1887
1888 /* Access to the value history. */
1889
1890 /* Record a new value in the value history.
1891 Returns the absolute history index of the entry. */
1892
1893 int
1894 record_latest_value (struct value *val)
1895 {
1896 int i;
1897
1898 /* We don't want this value to have anything to do with the inferior anymore.
1899 In particular, "set $1 = 50" should not affect the variable from which
1900 the value was taken, and fast watchpoints should be able to assume that
1901 a value on the value history never changes. */
1902 if (value_lazy (val))
1903 value_fetch_lazy (val);
1904 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1905 from. This is a bit dubious, because then *&$1 does not just return $1
1906 but the current contents of that location. c'est la vie... */
1907 val->modifiable = 0;
1908
1909 /* The value may have already been released, in which case we're adding a
1910 new reference for its entry in the history. That is why we call
1911 release_value_or_incref here instead of release_value. */
1912 release_value_or_incref (val);
1913
1914 /* Here we treat value_history_count as origin-zero
1915 and applying to the value being stored now. */
1916
1917 i = value_history_count % VALUE_HISTORY_CHUNK;
1918 if (i == 0)
1919 {
1920 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1921
1922 newobj->next = value_history_chain;
1923 value_history_chain = newobj;
1924 }
1925
1926 value_history_chain->values[i] = val;
1927
1928 /* Now we regard value_history_count as origin-one
1929 and applying to the value just stored. */
1930
1931 return ++value_history_count;
1932 }
1933
1934 /* Return a copy of the value in the history with sequence number NUM. */
1935
1936 struct value *
1937 access_value_history (int num)
1938 {
1939 struct value_history_chunk *chunk;
1940 int i;
1941 int absnum = num;
1942
1943 if (absnum <= 0)
1944 absnum += value_history_count;
1945
1946 if (absnum <= 0)
1947 {
1948 if (num == 0)
1949 error (_("The history is empty."));
1950 else if (num == 1)
1951 error (_("There is only one value in the history."));
1952 else
1953 error (_("History does not go back to $$%d."), -num);
1954 }
1955 if (absnum > value_history_count)
1956 error (_("History has not yet reached $%d."), absnum);
1957
1958 absnum--;
1959
1960 /* Now absnum is always absolute and origin zero. */
1961
1962 chunk = value_history_chain;
1963 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1964 - absnum / VALUE_HISTORY_CHUNK;
1965 i > 0; i--)
1966 chunk = chunk->next;
1967
1968 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1969 }
1970
1971 static void
1972 show_values (char *num_exp, int from_tty)
1973 {
1974 int i;
1975 struct value *val;
1976 static int num = 1;
1977
1978 if (num_exp)
1979 {
1980 /* "show values +" should print from the stored position.
1981 "show values <exp>" should print around value number <exp>. */
1982 if (num_exp[0] != '+' || num_exp[1] != '\0')
1983 num = parse_and_eval_long (num_exp) - 5;
1984 }
1985 else
1986 {
1987 /* "show values" means print the last 10 values. */
1988 num = value_history_count - 9;
1989 }
1990
1991 if (num <= 0)
1992 num = 1;
1993
1994 for (i = num; i < num + 10 && i <= value_history_count; i++)
1995 {
1996 struct value_print_options opts;
1997
1998 val = access_value_history (i);
1999 printf_filtered (("$%d = "), i);
2000 get_user_print_options (&opts);
2001 value_print (val, gdb_stdout, &opts);
2002 printf_filtered (("\n"));
2003 }
2004
2005 /* The next "show values +" should start after what we just printed. */
2006 num += 10;
2007
2008 /* Hitting just return after this command should do the same thing as
2009 "show values +". If num_exp is null, this is unnecessary, since
2010 "show values +" is not useful after "show values". */
2011 if (from_tty && num_exp)
2012 {
2013 num_exp[0] = '+';
2014 num_exp[1] = '\0';
2015 }
2016 }
2017 \f
2018 enum internalvar_kind
2019 {
2020 /* The internal variable is empty. */
2021 INTERNALVAR_VOID,
2022
2023 /* The value of the internal variable is provided directly as
2024 a GDB value object. */
2025 INTERNALVAR_VALUE,
2026
2027 /* A fresh value is computed via a call-back routine on every
2028 access to the internal variable. */
2029 INTERNALVAR_MAKE_VALUE,
2030
2031 /* The internal variable holds a GDB internal convenience function. */
2032 INTERNALVAR_FUNCTION,
2033
2034 /* The variable holds an integer value. */
2035 INTERNALVAR_INTEGER,
2036
2037 /* The variable holds a GDB-provided string. */
2038 INTERNALVAR_STRING,
2039 };
2040
2041 union internalvar_data
2042 {
2043 /* A value object used with INTERNALVAR_VALUE. */
2044 struct value *value;
2045
2046 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2047 struct
2048 {
2049 /* The functions to call. */
2050 const struct internalvar_funcs *functions;
2051
2052 /* The function's user-data. */
2053 void *data;
2054 } make_value;
2055
2056 /* The internal function used with INTERNALVAR_FUNCTION. */
2057 struct
2058 {
2059 struct internal_function *function;
2060 /* True if this is the canonical name for the function. */
2061 int canonical;
2062 } fn;
2063
2064 /* An integer value used with INTERNALVAR_INTEGER. */
2065 struct
2066 {
2067 /* If type is non-NULL, it will be used as the type to generate
2068 a value for this internal variable. If type is NULL, a default
2069 integer type for the architecture is used. */
2070 struct type *type;
2071 LONGEST val;
2072 } integer;
2073
2074 /* A string value used with INTERNALVAR_STRING. */
2075 char *string;
2076 };
2077
2078 /* Internal variables. These are variables within the debugger
2079 that hold values assigned by debugger commands.
2080 The user refers to them with a '$' prefix
2081 that does not appear in the variable names stored internally. */
2082
2083 struct internalvar
2084 {
2085 struct internalvar *next;
2086 char *name;
2087
2088 /* We support various different kinds of content of an internal variable.
2089 enum internalvar_kind specifies the kind, and union internalvar_data
2090 provides the data associated with this particular kind. */
2091
2092 enum internalvar_kind kind;
2093
2094 union internalvar_data u;
2095 };
2096
2097 static struct internalvar *internalvars;
2098
2099 /* If the variable does not already exist create it and give it the
2100 value given. If no value is given then the default is zero. */
2101 static void
2102 init_if_undefined_command (char* args, int from_tty)
2103 {
2104 struct internalvar* intvar;
2105
2106 /* Parse the expression - this is taken from set_command(). */
2107 expression_up expr = parse_expression (args);
2108
2109 /* Validate the expression.
2110 Was the expression an assignment?
2111 Or even an expression at all? */
2112 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2113 error (_("Init-if-undefined requires an assignment expression."));
2114
2115 /* Extract the variable from the parsed expression.
2116 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2117 if (expr->elts[1].opcode != OP_INTERNALVAR)
2118 error (_("The first parameter to init-if-undefined "
2119 "should be a GDB variable."));
2120 intvar = expr->elts[2].internalvar;
2121
2122 /* Only evaluate the expression if the lvalue is void.
2123 This may still fail if the expresssion is invalid. */
2124 if (intvar->kind == INTERNALVAR_VOID)
2125 evaluate_expression (expr.get ());
2126 }
2127
2128
2129 /* Look up an internal variable with name NAME. NAME should not
2130 normally include a dollar sign.
2131
2132 If the specified internal variable does not exist,
2133 the return value is NULL. */
2134
2135 struct internalvar *
2136 lookup_only_internalvar (const char *name)
2137 {
2138 struct internalvar *var;
2139
2140 for (var = internalvars; var; var = var->next)
2141 if (strcmp (var->name, name) == 0)
2142 return var;
2143
2144 return NULL;
2145 }
2146
2147 /* Complete NAME by comparing it to the names of internal variables.
2148 Returns a vector of newly allocated strings, or NULL if no matches
2149 were found. */
2150
2151 VEC (char_ptr) *
2152 complete_internalvar (const char *name)
2153 {
2154 VEC (char_ptr) *result = NULL;
2155 struct internalvar *var;
2156 int len;
2157
2158 len = strlen (name);
2159
2160 for (var = internalvars; var; var = var->next)
2161 if (strncmp (var->name, name, len) == 0)
2162 {
2163 char *r = xstrdup (var->name);
2164
2165 VEC_safe_push (char_ptr, result, r);
2166 }
2167
2168 return result;
2169 }
2170
2171 /* Create an internal variable with name NAME and with a void value.
2172 NAME should not normally include a dollar sign. */
2173
2174 struct internalvar *
2175 create_internalvar (const char *name)
2176 {
2177 struct internalvar *var = XNEW (struct internalvar);
2178
2179 var->name = concat (name, (char *)NULL);
2180 var->kind = INTERNALVAR_VOID;
2181 var->next = internalvars;
2182 internalvars = var;
2183 return var;
2184 }
2185
2186 /* Create an internal variable with name NAME and register FUN as the
2187 function that value_of_internalvar uses to create a value whenever
2188 this variable is referenced. NAME should not normally include a
2189 dollar sign. DATA is passed uninterpreted to FUN when it is
2190 called. CLEANUP, if not NULL, is called when the internal variable
2191 is destroyed. It is passed DATA as its only argument. */
2192
2193 struct internalvar *
2194 create_internalvar_type_lazy (const char *name,
2195 const struct internalvar_funcs *funcs,
2196 void *data)
2197 {
2198 struct internalvar *var = create_internalvar (name);
2199
2200 var->kind = INTERNALVAR_MAKE_VALUE;
2201 var->u.make_value.functions = funcs;
2202 var->u.make_value.data = data;
2203 return var;
2204 }
2205
2206 /* See documentation in value.h. */
2207
2208 int
2209 compile_internalvar_to_ax (struct internalvar *var,
2210 struct agent_expr *expr,
2211 struct axs_value *value)
2212 {
2213 if (var->kind != INTERNALVAR_MAKE_VALUE
2214 || var->u.make_value.functions->compile_to_ax == NULL)
2215 return 0;
2216
2217 var->u.make_value.functions->compile_to_ax (var, expr, value,
2218 var->u.make_value.data);
2219 return 1;
2220 }
2221
2222 /* Look up an internal variable with name NAME. NAME should not
2223 normally include a dollar sign.
2224
2225 If the specified internal variable does not exist,
2226 one is created, with a void value. */
2227
2228 struct internalvar *
2229 lookup_internalvar (const char *name)
2230 {
2231 struct internalvar *var;
2232
2233 var = lookup_only_internalvar (name);
2234 if (var)
2235 return var;
2236
2237 return create_internalvar (name);
2238 }
2239
2240 /* Return current value of internal variable VAR. For variables that
2241 are not inherently typed, use a value type appropriate for GDBARCH. */
2242
2243 struct value *
2244 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2245 {
2246 struct value *val;
2247 struct trace_state_variable *tsv;
2248
2249 /* If there is a trace state variable of the same name, assume that
2250 is what we really want to see. */
2251 tsv = find_trace_state_variable (var->name);
2252 if (tsv)
2253 {
2254 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2255 &(tsv->value));
2256 if (tsv->value_known)
2257 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2258 tsv->value);
2259 else
2260 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2261 return val;
2262 }
2263
2264 switch (var->kind)
2265 {
2266 case INTERNALVAR_VOID:
2267 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2268 break;
2269
2270 case INTERNALVAR_FUNCTION:
2271 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2272 break;
2273
2274 case INTERNALVAR_INTEGER:
2275 if (!var->u.integer.type)
2276 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2277 var->u.integer.val);
2278 else
2279 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2280 break;
2281
2282 case INTERNALVAR_STRING:
2283 val = value_cstring (var->u.string, strlen (var->u.string),
2284 builtin_type (gdbarch)->builtin_char);
2285 break;
2286
2287 case INTERNALVAR_VALUE:
2288 val = value_copy (var->u.value);
2289 if (value_lazy (val))
2290 value_fetch_lazy (val);
2291 break;
2292
2293 case INTERNALVAR_MAKE_VALUE:
2294 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2295 var->u.make_value.data);
2296 break;
2297
2298 default:
2299 internal_error (__FILE__, __LINE__, _("bad kind"));
2300 }
2301
2302 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2303 on this value go back to affect the original internal variable.
2304
2305 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2306 no underlying modifyable state in the internal variable.
2307
2308 Likewise, if the variable's value is a computed lvalue, we want
2309 references to it to produce another computed lvalue, where
2310 references and assignments actually operate through the
2311 computed value's functions.
2312
2313 This means that internal variables with computed values
2314 behave a little differently from other internal variables:
2315 assignments to them don't just replace the previous value
2316 altogether. At the moment, this seems like the behavior we
2317 want. */
2318
2319 if (var->kind != INTERNALVAR_MAKE_VALUE
2320 && val->lval != lval_computed)
2321 {
2322 VALUE_LVAL (val) = lval_internalvar;
2323 VALUE_INTERNALVAR (val) = var;
2324 }
2325
2326 return val;
2327 }
2328
2329 int
2330 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2331 {
2332 if (var->kind == INTERNALVAR_INTEGER)
2333 {
2334 *result = var->u.integer.val;
2335 return 1;
2336 }
2337
2338 if (var->kind == INTERNALVAR_VALUE)
2339 {
2340 struct type *type = check_typedef (value_type (var->u.value));
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_INT)
2343 {
2344 *result = value_as_long (var->u.value);
2345 return 1;
2346 }
2347 }
2348
2349 return 0;
2350 }
2351
2352 static int
2353 get_internalvar_function (struct internalvar *var,
2354 struct internal_function **result)
2355 {
2356 switch (var->kind)
2357 {
2358 case INTERNALVAR_FUNCTION:
2359 *result = var->u.fn.function;
2360 return 1;
2361
2362 default:
2363 return 0;
2364 }
2365 }
2366
2367 void
2368 set_internalvar_component (struct internalvar *var,
2369 LONGEST offset, LONGEST bitpos,
2370 LONGEST bitsize, struct value *newval)
2371 {
2372 gdb_byte *addr;
2373 struct gdbarch *arch;
2374 int unit_size;
2375
2376 switch (var->kind)
2377 {
2378 case INTERNALVAR_VALUE:
2379 addr = value_contents_writeable (var->u.value);
2380 arch = get_value_arch (var->u.value);
2381 unit_size = gdbarch_addressable_memory_unit_size (arch);
2382
2383 if (bitsize)
2384 modify_field (value_type (var->u.value), addr + offset,
2385 value_as_long (newval), bitpos, bitsize);
2386 else
2387 memcpy (addr + offset * unit_size, value_contents (newval),
2388 TYPE_LENGTH (value_type (newval)));
2389 break;
2390
2391 default:
2392 /* We can never get a component of any other kind. */
2393 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2394 }
2395 }
2396
2397 void
2398 set_internalvar (struct internalvar *var, struct value *val)
2399 {
2400 enum internalvar_kind new_kind;
2401 union internalvar_data new_data = { 0 };
2402
2403 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2404 error (_("Cannot overwrite convenience function %s"), var->name);
2405
2406 /* Prepare new contents. */
2407 switch (TYPE_CODE (check_typedef (value_type (val))))
2408 {
2409 case TYPE_CODE_VOID:
2410 new_kind = INTERNALVAR_VOID;
2411 break;
2412
2413 case TYPE_CODE_INTERNAL_FUNCTION:
2414 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2415 new_kind = INTERNALVAR_FUNCTION;
2416 get_internalvar_function (VALUE_INTERNALVAR (val),
2417 &new_data.fn.function);
2418 /* Copies created here are never canonical. */
2419 break;
2420
2421 default:
2422 new_kind = INTERNALVAR_VALUE;
2423 new_data.value = value_copy (val);
2424 new_data.value->modifiable = 1;
2425
2426 /* Force the value to be fetched from the target now, to avoid problems
2427 later when this internalvar is referenced and the target is gone or
2428 has changed. */
2429 if (value_lazy (new_data.value))
2430 value_fetch_lazy (new_data.value);
2431
2432 /* Release the value from the value chain to prevent it from being
2433 deleted by free_all_values. From here on this function should not
2434 call error () until new_data is installed into the var->u to avoid
2435 leaking memory. */
2436 release_value (new_data.value);
2437
2438 /* Internal variables which are created from values with a dynamic
2439 location don't need the location property of the origin anymore.
2440 The resolved dynamic location is used prior then any other address
2441 when accessing the value.
2442 If we keep it, we would still refer to the origin value.
2443 Remove the location property in case it exist. */
2444 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2445
2446 break;
2447 }
2448
2449 /* Clean up old contents. */
2450 clear_internalvar (var);
2451
2452 /* Switch over. */
2453 var->kind = new_kind;
2454 var->u = new_data;
2455 /* End code which must not call error(). */
2456 }
2457
2458 void
2459 set_internalvar_integer (struct internalvar *var, LONGEST l)
2460 {
2461 /* Clean up old contents. */
2462 clear_internalvar (var);
2463
2464 var->kind = INTERNALVAR_INTEGER;
2465 var->u.integer.type = NULL;
2466 var->u.integer.val = l;
2467 }
2468
2469 void
2470 set_internalvar_string (struct internalvar *var, const char *string)
2471 {
2472 /* Clean up old contents. */
2473 clear_internalvar (var);
2474
2475 var->kind = INTERNALVAR_STRING;
2476 var->u.string = xstrdup (string);
2477 }
2478
2479 static void
2480 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2481 {
2482 /* Clean up old contents. */
2483 clear_internalvar (var);
2484
2485 var->kind = INTERNALVAR_FUNCTION;
2486 var->u.fn.function = f;
2487 var->u.fn.canonical = 1;
2488 /* Variables installed here are always the canonical version. */
2489 }
2490
2491 void
2492 clear_internalvar (struct internalvar *var)
2493 {
2494 /* Clean up old contents. */
2495 switch (var->kind)
2496 {
2497 case INTERNALVAR_VALUE:
2498 value_free (var->u.value);
2499 break;
2500
2501 case INTERNALVAR_STRING:
2502 xfree (var->u.string);
2503 break;
2504
2505 case INTERNALVAR_MAKE_VALUE:
2506 if (var->u.make_value.functions->destroy != NULL)
2507 var->u.make_value.functions->destroy (var->u.make_value.data);
2508 break;
2509
2510 default:
2511 break;
2512 }
2513
2514 /* Reset to void kind. */
2515 var->kind = INTERNALVAR_VOID;
2516 }
2517
2518 char *
2519 internalvar_name (const struct internalvar *var)
2520 {
2521 return var->name;
2522 }
2523
2524 static struct internal_function *
2525 create_internal_function (const char *name,
2526 internal_function_fn handler, void *cookie)
2527 {
2528 struct internal_function *ifn = XNEW (struct internal_function);
2529
2530 ifn->name = xstrdup (name);
2531 ifn->handler = handler;
2532 ifn->cookie = cookie;
2533 return ifn;
2534 }
2535
2536 char *
2537 value_internal_function_name (struct value *val)
2538 {
2539 struct internal_function *ifn;
2540 int result;
2541
2542 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2543 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2544 gdb_assert (result);
2545
2546 return ifn->name;
2547 }
2548
2549 struct value *
2550 call_internal_function (struct gdbarch *gdbarch,
2551 const struct language_defn *language,
2552 struct value *func, int argc, struct value **argv)
2553 {
2554 struct internal_function *ifn;
2555 int result;
2556
2557 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2558 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2559 gdb_assert (result);
2560
2561 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2562 }
2563
2564 /* The 'function' command. This does nothing -- it is just a
2565 placeholder to let "help function NAME" work. This is also used as
2566 the implementation of the sub-command that is created when
2567 registering an internal function. */
2568 static void
2569 function_command (char *command, int from_tty)
2570 {
2571 /* Do nothing. */
2572 }
2573
2574 /* Clean up if an internal function's command is destroyed. */
2575 static void
2576 function_destroyer (struct cmd_list_element *self, void *ignore)
2577 {
2578 xfree ((char *) self->name);
2579 xfree ((char *) self->doc);
2580 }
2581
2582 /* Add a new internal function. NAME is the name of the function; DOC
2583 is a documentation string describing the function. HANDLER is
2584 called when the function is invoked. COOKIE is an arbitrary
2585 pointer which is passed to HANDLER and is intended for "user
2586 data". */
2587 void
2588 add_internal_function (const char *name, const char *doc,
2589 internal_function_fn handler, void *cookie)
2590 {
2591 struct cmd_list_element *cmd;
2592 struct internal_function *ifn;
2593 struct internalvar *var = lookup_internalvar (name);
2594
2595 ifn = create_internal_function (name, handler, cookie);
2596 set_internalvar_function (var, ifn);
2597
2598 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2599 &functionlist);
2600 cmd->destroyer = function_destroyer;
2601 }
2602
2603 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2604 prevent cycles / duplicates. */
2605
2606 void
2607 preserve_one_value (struct value *value, struct objfile *objfile,
2608 htab_t copied_types)
2609 {
2610 if (TYPE_OBJFILE (value->type) == objfile)
2611 value->type = copy_type_recursive (objfile, value->type, copied_types);
2612
2613 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2614 value->enclosing_type = copy_type_recursive (objfile,
2615 value->enclosing_type,
2616 copied_types);
2617 }
2618
2619 /* Likewise for internal variable VAR. */
2620
2621 static void
2622 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2623 htab_t copied_types)
2624 {
2625 switch (var->kind)
2626 {
2627 case INTERNALVAR_INTEGER:
2628 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2629 var->u.integer.type
2630 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2631 break;
2632
2633 case INTERNALVAR_VALUE:
2634 preserve_one_value (var->u.value, objfile, copied_types);
2635 break;
2636 }
2637 }
2638
2639 /* Update the internal variables and value history when OBJFILE is
2640 discarded; we must copy the types out of the objfile. New global types
2641 will be created for every convenience variable which currently points to
2642 this objfile's types, and the convenience variables will be adjusted to
2643 use the new global types. */
2644
2645 void
2646 preserve_values (struct objfile *objfile)
2647 {
2648 htab_t copied_types;
2649 struct value_history_chunk *cur;
2650 struct internalvar *var;
2651 int i;
2652
2653 /* Create the hash table. We allocate on the objfile's obstack, since
2654 it is soon to be deleted. */
2655 copied_types = create_copied_types_hash (objfile);
2656
2657 for (cur = value_history_chain; cur; cur = cur->next)
2658 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2659 if (cur->values[i])
2660 preserve_one_value (cur->values[i], objfile, copied_types);
2661
2662 for (var = internalvars; var; var = var->next)
2663 preserve_one_internalvar (var, objfile, copied_types);
2664
2665 preserve_ext_lang_values (objfile, copied_types);
2666
2667 htab_delete (copied_types);
2668 }
2669
2670 static void
2671 show_convenience (char *ignore, int from_tty)
2672 {
2673 struct gdbarch *gdbarch = get_current_arch ();
2674 struct internalvar *var;
2675 int varseen = 0;
2676 struct value_print_options opts;
2677
2678 get_user_print_options (&opts);
2679 for (var = internalvars; var; var = var->next)
2680 {
2681
2682 if (!varseen)
2683 {
2684 varseen = 1;
2685 }
2686 printf_filtered (("$%s = "), var->name);
2687
2688 TRY
2689 {
2690 struct value *val;
2691
2692 val = value_of_internalvar (gdbarch, var);
2693 value_print (val, gdb_stdout, &opts);
2694 }
2695 CATCH (ex, RETURN_MASK_ERROR)
2696 {
2697 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2698 }
2699 END_CATCH
2700
2701 printf_filtered (("\n"));
2702 }
2703 if (!varseen)
2704 {
2705 /* This text does not mention convenience functions on purpose.
2706 The user can't create them except via Python, and if Python support
2707 is installed this message will never be printed ($_streq will
2708 exist). */
2709 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2710 "Convenience variables have "
2711 "names starting with \"$\";\n"
2712 "use \"set\" as in \"set "
2713 "$foo = 5\" to define them.\n"));
2714 }
2715 }
2716 \f
2717 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2718
2719 struct value *
2720 value_of_xmethod (struct xmethod_worker *worker)
2721 {
2722 if (worker->value == NULL)
2723 {
2724 struct value *v;
2725
2726 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2727 v->lval = lval_xcallable;
2728 v->location.xm_worker = worker;
2729 v->modifiable = 0;
2730 worker->value = v;
2731 }
2732
2733 return worker->value;
2734 }
2735
2736 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2737
2738 struct type *
2739 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2740 {
2741 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2742 && method->lval == lval_xcallable && argc > 0);
2743
2744 return get_xmethod_result_type (method->location.xm_worker,
2745 argv[0], argv + 1, argc - 1);
2746 }
2747
2748 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2749
2750 struct value *
2751 call_xmethod (struct value *method, int argc, struct value **argv)
2752 {
2753 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2754 && method->lval == lval_xcallable && argc > 0);
2755
2756 return invoke_xmethod (method->location.xm_worker,
2757 argv[0], argv + 1, argc - 1);
2758 }
2759 \f
2760 /* Extract a value as a C number (either long or double).
2761 Knows how to convert fixed values to double, or
2762 floating values to long.
2763 Does not deallocate the value. */
2764
2765 LONGEST
2766 value_as_long (struct value *val)
2767 {
2768 /* This coerces arrays and functions, which is necessary (e.g.
2769 in disassemble_command). It also dereferences references, which
2770 I suspect is the most logical thing to do. */
2771 val = coerce_array (val);
2772 return unpack_long (value_type (val), value_contents (val));
2773 }
2774
2775 DOUBLEST
2776 value_as_double (struct value *val)
2777 {
2778 DOUBLEST foo;
2779 int inv;
2780
2781 foo = unpack_double (value_type (val), value_contents (val), &inv);
2782 if (inv)
2783 error (_("Invalid floating value found in program."));
2784 return foo;
2785 }
2786
2787 /* Extract a value as a C pointer. Does not deallocate the value.
2788 Note that val's type may not actually be a pointer; value_as_long
2789 handles all the cases. */
2790 CORE_ADDR
2791 value_as_address (struct value *val)
2792 {
2793 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2794
2795 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2796 whether we want this to be true eventually. */
2797 #if 0
2798 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2799 non-address (e.g. argument to "signal", "info break", etc.), or
2800 for pointers to char, in which the low bits *are* significant. */
2801 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2802 #else
2803
2804 /* There are several targets (IA-64, PowerPC, and others) which
2805 don't represent pointers to functions as simply the address of
2806 the function's entry point. For example, on the IA-64, a
2807 function pointer points to a two-word descriptor, generated by
2808 the linker, which contains the function's entry point, and the
2809 value the IA-64 "global pointer" register should have --- to
2810 support position-independent code. The linker generates
2811 descriptors only for those functions whose addresses are taken.
2812
2813 On such targets, it's difficult for GDB to convert an arbitrary
2814 function address into a function pointer; it has to either find
2815 an existing descriptor for that function, or call malloc and
2816 build its own. On some targets, it is impossible for GDB to
2817 build a descriptor at all: the descriptor must contain a jump
2818 instruction; data memory cannot be executed; and code memory
2819 cannot be modified.
2820
2821 Upon entry to this function, if VAL is a value of type `function'
2822 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2823 value_address (val) is the address of the function. This is what
2824 you'll get if you evaluate an expression like `main'. The call
2825 to COERCE_ARRAY below actually does all the usual unary
2826 conversions, which includes converting values of type `function'
2827 to `pointer to function'. This is the challenging conversion
2828 discussed above. Then, `unpack_long' will convert that pointer
2829 back into an address.
2830
2831 So, suppose the user types `disassemble foo' on an architecture
2832 with a strange function pointer representation, on which GDB
2833 cannot build its own descriptors, and suppose further that `foo'
2834 has no linker-built descriptor. The address->pointer conversion
2835 will signal an error and prevent the command from running, even
2836 though the next step would have been to convert the pointer
2837 directly back into the same address.
2838
2839 The following shortcut avoids this whole mess. If VAL is a
2840 function, just return its address directly. */
2841 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2842 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2843 return value_address (val);
2844
2845 val = coerce_array (val);
2846
2847 /* Some architectures (e.g. Harvard), map instruction and data
2848 addresses onto a single large unified address space. For
2849 instance: An architecture may consider a large integer in the
2850 range 0x10000000 .. 0x1000ffff to already represent a data
2851 addresses (hence not need a pointer to address conversion) while
2852 a small integer would still need to be converted integer to
2853 pointer to address. Just assume such architectures handle all
2854 integer conversions in a single function. */
2855
2856 /* JimB writes:
2857
2858 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2859 must admonish GDB hackers to make sure its behavior matches the
2860 compiler's, whenever possible.
2861
2862 In general, I think GDB should evaluate expressions the same way
2863 the compiler does. When the user copies an expression out of
2864 their source code and hands it to a `print' command, they should
2865 get the same value the compiler would have computed. Any
2866 deviation from this rule can cause major confusion and annoyance,
2867 and needs to be justified carefully. In other words, GDB doesn't
2868 really have the freedom to do these conversions in clever and
2869 useful ways.
2870
2871 AndrewC pointed out that users aren't complaining about how GDB
2872 casts integers to pointers; they are complaining that they can't
2873 take an address from a disassembly listing and give it to `x/i'.
2874 This is certainly important.
2875
2876 Adding an architecture method like integer_to_address() certainly
2877 makes it possible for GDB to "get it right" in all circumstances
2878 --- the target has complete control over how things get done, so
2879 people can Do The Right Thing for their target without breaking
2880 anyone else. The standard doesn't specify how integers get
2881 converted to pointers; usually, the ABI doesn't either, but
2882 ABI-specific code is a more reasonable place to handle it. */
2883
2884 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2885 && !TYPE_IS_REFERENCE (value_type (val))
2886 && gdbarch_integer_to_address_p (gdbarch))
2887 return gdbarch_integer_to_address (gdbarch, value_type (val),
2888 value_contents (val));
2889
2890 return unpack_long (value_type (val), value_contents (val));
2891 #endif
2892 }
2893 \f
2894 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2895 as a long, or as a double, assuming the raw data is described
2896 by type TYPE. Knows how to convert different sizes of values
2897 and can convert between fixed and floating point. We don't assume
2898 any alignment for the raw data. Return value is in host byte order.
2899
2900 If you want functions and arrays to be coerced to pointers, and
2901 references to be dereferenced, call value_as_long() instead.
2902
2903 C++: It is assumed that the front-end has taken care of
2904 all matters concerning pointers to members. A pointer
2905 to member which reaches here is considered to be equivalent
2906 to an INT (or some size). After all, it is only an offset. */
2907
2908 LONGEST
2909 unpack_long (struct type *type, const gdb_byte *valaddr)
2910 {
2911 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2912 enum type_code code = TYPE_CODE (type);
2913 int len = TYPE_LENGTH (type);
2914 int nosign = TYPE_UNSIGNED (type);
2915
2916 switch (code)
2917 {
2918 case TYPE_CODE_TYPEDEF:
2919 return unpack_long (check_typedef (type), valaddr);
2920 case TYPE_CODE_ENUM:
2921 case TYPE_CODE_FLAGS:
2922 case TYPE_CODE_BOOL:
2923 case TYPE_CODE_INT:
2924 case TYPE_CODE_CHAR:
2925 case TYPE_CODE_RANGE:
2926 case TYPE_CODE_MEMBERPTR:
2927 if (nosign)
2928 return extract_unsigned_integer (valaddr, len, byte_order);
2929 else
2930 return extract_signed_integer (valaddr, len, byte_order);
2931
2932 case TYPE_CODE_FLT:
2933 return (LONGEST) extract_typed_floating (valaddr, type);
2934
2935 case TYPE_CODE_DECFLOAT:
2936 /* libdecnumber has a function to convert from decimal to integer, but
2937 it doesn't work when the decimal number has a fractional part. */
2938 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
2939
2940 case TYPE_CODE_PTR:
2941 case TYPE_CODE_REF:
2942 case TYPE_CODE_RVALUE_REF:
2943 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2944 whether we want this to be true eventually. */
2945 return extract_typed_address (valaddr, type);
2946
2947 default:
2948 error (_("Value can't be converted to integer."));
2949 }
2950 return 0; /* Placate lint. */
2951 }
2952
2953 /* Return a double value from the specified type and address.
2954 INVP points to an int which is set to 0 for valid value,
2955 1 for invalid value (bad float format). In either case,
2956 the returned double is OK to use. Argument is in target
2957 format, result is in host format. */
2958
2959 DOUBLEST
2960 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2961 {
2962 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2963 enum type_code code;
2964 int len;
2965 int nosign;
2966
2967 *invp = 0; /* Assume valid. */
2968 type = check_typedef (type);
2969 code = TYPE_CODE (type);
2970 len = TYPE_LENGTH (type);
2971 nosign = TYPE_UNSIGNED (type);
2972 if (code == TYPE_CODE_FLT)
2973 {
2974 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2975 floating-point value was valid (using the macro
2976 INVALID_FLOAT). That test/macro have been removed.
2977
2978 It turns out that only the VAX defined this macro and then
2979 only in a non-portable way. Fixing the portability problem
2980 wouldn't help since the VAX floating-point code is also badly
2981 bit-rotten. The target needs to add definitions for the
2982 methods gdbarch_float_format and gdbarch_double_format - these
2983 exactly describe the target floating-point format. The
2984 problem here is that the corresponding floatformat_vax_f and
2985 floatformat_vax_d values these methods should be set to are
2986 also not defined either. Oops!
2987
2988 Hopefully someone will add both the missing floatformat
2989 definitions and the new cases for floatformat_is_valid (). */
2990
2991 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2992 {
2993 *invp = 1;
2994 return 0.0;
2995 }
2996
2997 return extract_typed_floating (valaddr, type);
2998 }
2999 else if (code == TYPE_CODE_DECFLOAT)
3000 return decimal_to_doublest (valaddr, len, byte_order);
3001 else if (nosign)
3002 {
3003 /* Unsigned -- be sure we compensate for signed LONGEST. */
3004 return (ULONGEST) unpack_long (type, valaddr);
3005 }
3006 else
3007 {
3008 /* Signed -- we are OK with unpack_long. */
3009 return unpack_long (type, valaddr);
3010 }
3011 }
3012
3013 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
3014 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3015 We don't assume any alignment for the raw data. Return value is in
3016 host byte order.
3017
3018 If you want functions and arrays to be coerced to pointers, and
3019 references to be dereferenced, call value_as_address() instead.
3020
3021 C++: It is assumed that the front-end has taken care of
3022 all matters concerning pointers to members. A pointer
3023 to member which reaches here is considered to be equivalent
3024 to an INT (or some size). After all, it is only an offset. */
3025
3026 CORE_ADDR
3027 unpack_pointer (struct type *type, const gdb_byte *valaddr)
3028 {
3029 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3030 whether we want this to be true eventually. */
3031 return unpack_long (type, valaddr);
3032 }
3033
3034 \f
3035 /* Get the value of the FIELDNO'th field (which must be static) of
3036 TYPE. */
3037
3038 struct value *
3039 value_static_field (struct type *type, int fieldno)
3040 {
3041 struct value *retval;
3042
3043 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
3044 {
3045 case FIELD_LOC_KIND_PHYSADDR:
3046 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3047 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
3048 break;
3049 case FIELD_LOC_KIND_PHYSNAME:
3050 {
3051 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
3052 /* TYPE_FIELD_NAME (type, fieldno); */
3053 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
3054
3055 if (sym.symbol == NULL)
3056 {
3057 /* With some compilers, e.g. HP aCC, static data members are
3058 reported as non-debuggable symbols. */
3059 struct bound_minimal_symbol msym
3060 = lookup_minimal_symbol (phys_name, NULL, NULL);
3061
3062 if (!msym.minsym)
3063 return allocate_optimized_out_value (type);
3064 else
3065 {
3066 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3067 BMSYMBOL_VALUE_ADDRESS (msym));
3068 }
3069 }
3070 else
3071 retval = value_of_variable (sym.symbol, sym.block);
3072 break;
3073 }
3074 default:
3075 gdb_assert_not_reached ("unexpected field location kind");
3076 }
3077
3078 return retval;
3079 }
3080
3081 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3082 You have to be careful here, since the size of the data area for the value
3083 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3084 than the old enclosing type, you have to allocate more space for the
3085 data. */
3086
3087 void
3088 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3089 {
3090 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3091 {
3092 check_type_length_before_alloc (new_encl_type);
3093 val->contents
3094 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3095 }
3096
3097 val->enclosing_type = new_encl_type;
3098 }
3099
3100 /* Given a value ARG1 (offset by OFFSET bytes)
3101 of a struct or union type ARG_TYPE,
3102 extract and return the value of one of its (non-static) fields.
3103 FIELDNO says which field. */
3104
3105 struct value *
3106 value_primitive_field (struct value *arg1, LONGEST offset,
3107 int fieldno, struct type *arg_type)
3108 {
3109 struct value *v;
3110 struct type *type;
3111 struct gdbarch *arch = get_value_arch (arg1);
3112 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3113
3114 arg_type = check_typedef (arg_type);
3115 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3116
3117 /* Call check_typedef on our type to make sure that, if TYPE
3118 is a TYPE_CODE_TYPEDEF, its length is set to the length
3119 of the target type instead of zero. However, we do not
3120 replace the typedef type by the target type, because we want
3121 to keep the typedef in order to be able to print the type
3122 description correctly. */
3123 check_typedef (type);
3124
3125 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3126 {
3127 /* Handle packed fields.
3128
3129 Create a new value for the bitfield, with bitpos and bitsize
3130 set. If possible, arrange offset and bitpos so that we can
3131 do a single aligned read of the size of the containing type.
3132 Otherwise, adjust offset to the byte containing the first
3133 bit. Assume that the address, offset, and embedded offset
3134 are sufficiently aligned. */
3135
3136 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3137 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3138
3139 v = allocate_value_lazy (type);
3140 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3141 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3142 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3143 v->bitpos = bitpos % container_bitsize;
3144 else
3145 v->bitpos = bitpos % 8;
3146 v->offset = (value_embedded_offset (arg1)
3147 + offset
3148 + (bitpos - v->bitpos) / 8);
3149 set_value_parent (v, arg1);
3150 if (!value_lazy (arg1))
3151 value_fetch_lazy (v);
3152 }
3153 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3154 {
3155 /* This field is actually a base subobject, so preserve the
3156 entire object's contents for later references to virtual
3157 bases, etc. */
3158 LONGEST boffset;
3159
3160 /* Lazy register values with offsets are not supported. */
3161 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3162 value_fetch_lazy (arg1);
3163
3164 /* We special case virtual inheritance here because this
3165 requires access to the contents, which we would rather avoid
3166 for references to ordinary fields of unavailable values. */
3167 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3168 boffset = baseclass_offset (arg_type, fieldno,
3169 value_contents (arg1),
3170 value_embedded_offset (arg1),
3171 value_address (arg1),
3172 arg1);
3173 else
3174 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3175
3176 if (value_lazy (arg1))
3177 v = allocate_value_lazy (value_enclosing_type (arg1));
3178 else
3179 {
3180 v = allocate_value (value_enclosing_type (arg1));
3181 value_contents_copy_raw (v, 0, arg1, 0,
3182 TYPE_LENGTH (value_enclosing_type (arg1)));
3183 }
3184 v->type = type;
3185 v->offset = value_offset (arg1);
3186 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3187 }
3188 else if (NULL != TYPE_DATA_LOCATION (type))
3189 {
3190 /* Field is a dynamic data member. */
3191
3192 gdb_assert (0 == offset);
3193 /* We expect an already resolved data location. */
3194 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3195 /* For dynamic data types defer memory allocation
3196 until we actual access the value. */
3197 v = allocate_value_lazy (type);
3198 }
3199 else
3200 {
3201 /* Plain old data member */
3202 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3203 / (HOST_CHAR_BIT * unit_size));
3204
3205 /* Lazy register values with offsets are not supported. */
3206 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3207 value_fetch_lazy (arg1);
3208
3209 if (value_lazy (arg1))
3210 v = allocate_value_lazy (type);
3211 else
3212 {
3213 v = allocate_value (type);
3214 value_contents_copy_raw (v, value_embedded_offset (v),
3215 arg1, value_embedded_offset (arg1) + offset,
3216 type_length_units (type));
3217 }
3218 v->offset = (value_offset (arg1) + offset
3219 + value_embedded_offset (arg1));
3220 }
3221 set_value_component_location (v, arg1);
3222 return v;
3223 }
3224
3225 /* Given a value ARG1 of a struct or union type,
3226 extract and return the value of one of its (non-static) fields.
3227 FIELDNO says which field. */
3228
3229 struct value *
3230 value_field (struct value *arg1, int fieldno)
3231 {
3232 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3233 }
3234
3235 /* Return a non-virtual function as a value.
3236 F is the list of member functions which contains the desired method.
3237 J is an index into F which provides the desired method.
3238
3239 We only use the symbol for its address, so be happy with either a
3240 full symbol or a minimal symbol. */
3241
3242 struct value *
3243 value_fn_field (struct value **arg1p, struct fn_field *f,
3244 int j, struct type *type,
3245 LONGEST offset)
3246 {
3247 struct value *v;
3248 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3249 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3250 struct symbol *sym;
3251 struct bound_minimal_symbol msym;
3252
3253 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3254 if (sym != NULL)
3255 {
3256 memset (&msym, 0, sizeof (msym));
3257 }
3258 else
3259 {
3260 gdb_assert (sym == NULL);
3261 msym = lookup_bound_minimal_symbol (physname);
3262 if (msym.minsym == NULL)
3263 return NULL;
3264 }
3265
3266 v = allocate_value (ftype);
3267 VALUE_LVAL (v) = lval_memory;
3268 if (sym)
3269 {
3270 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3271 }
3272 else
3273 {
3274 /* The minimal symbol might point to a function descriptor;
3275 resolve it to the actual code address instead. */
3276 struct objfile *objfile = msym.objfile;
3277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3278
3279 set_value_address (v,
3280 gdbarch_convert_from_func_ptr_addr
3281 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3282 }
3283
3284 if (arg1p)
3285 {
3286 if (type != value_type (*arg1p))
3287 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3288 value_addr (*arg1p)));
3289
3290 /* Move the `this' pointer according to the offset.
3291 VALUE_OFFSET (*arg1p) += offset; */
3292 }
3293
3294 return v;
3295 }
3296
3297 \f
3298
3299 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3300 VALADDR, and store the result in *RESULT.
3301 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3302
3303 Extracting bits depends on endianness of the machine. Compute the
3304 number of least significant bits to discard. For big endian machines,
3305 we compute the total number of bits in the anonymous object, subtract
3306 off the bit count from the MSB of the object to the MSB of the
3307 bitfield, then the size of the bitfield, which leaves the LSB discard
3308 count. For little endian machines, the discard count is simply the
3309 number of bits from the LSB of the anonymous object to the LSB of the
3310 bitfield.
3311
3312 If the field is signed, we also do sign extension. */
3313
3314 static LONGEST
3315 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3316 LONGEST bitpos, LONGEST bitsize)
3317 {
3318 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3319 ULONGEST val;
3320 ULONGEST valmask;
3321 int lsbcount;
3322 LONGEST bytes_read;
3323 LONGEST read_offset;
3324
3325 /* Read the minimum number of bytes required; there may not be
3326 enough bytes to read an entire ULONGEST. */
3327 field_type = check_typedef (field_type);
3328 if (bitsize)
3329 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3330 else
3331 bytes_read = TYPE_LENGTH (field_type);
3332
3333 read_offset = bitpos / 8;
3334
3335 val = extract_unsigned_integer (valaddr + read_offset,
3336 bytes_read, byte_order);
3337
3338 /* Extract bits. See comment above. */
3339
3340 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3341 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3342 else
3343 lsbcount = (bitpos % 8);
3344 val >>= lsbcount;
3345
3346 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3347 If the field is signed, and is negative, then sign extend. */
3348
3349 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3350 {
3351 valmask = (((ULONGEST) 1) << bitsize) - 1;
3352 val &= valmask;
3353 if (!TYPE_UNSIGNED (field_type))
3354 {
3355 if (val & (valmask ^ (valmask >> 1)))
3356 {
3357 val |= ~valmask;
3358 }
3359 }
3360 }
3361
3362 return val;
3363 }
3364
3365 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3366 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3367 ORIGINAL_VALUE, which must not be NULL. See
3368 unpack_value_bits_as_long for more details. */
3369
3370 int
3371 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3372 LONGEST embedded_offset, int fieldno,
3373 const struct value *val, LONGEST *result)
3374 {
3375 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3376 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3377 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3378 int bit_offset;
3379
3380 gdb_assert (val != NULL);
3381
3382 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3383 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3384 || !value_bits_available (val, bit_offset, bitsize))
3385 return 0;
3386
3387 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3388 bitpos, bitsize);
3389 return 1;
3390 }
3391
3392 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3393 object at VALADDR. See unpack_bits_as_long for more details. */
3394
3395 LONGEST
3396 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3397 {
3398 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3399 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3400 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3401
3402 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3403 }
3404
3405 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3406 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3407 the contents in DEST_VAL, zero or sign extending if the type of
3408 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3409 VAL. If the VAL's contents required to extract the bitfield from
3410 are unavailable/optimized out, DEST_VAL is correspondingly
3411 marked unavailable/optimized out. */
3412
3413 void
3414 unpack_value_bitfield (struct value *dest_val,
3415 LONGEST bitpos, LONGEST bitsize,
3416 const gdb_byte *valaddr, LONGEST embedded_offset,
3417 const struct value *val)
3418 {
3419 enum bfd_endian byte_order;
3420 int src_bit_offset;
3421 int dst_bit_offset;
3422 struct type *field_type = value_type (dest_val);
3423
3424 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3425
3426 /* First, unpack and sign extend the bitfield as if it was wholly
3427 valid. Optimized out/unavailable bits are read as zero, but
3428 that's OK, as they'll end up marked below. If the VAL is
3429 wholly-invalid we may have skipped allocating its contents,
3430 though. See allocate_optimized_out_value. */
3431 if (valaddr != NULL)
3432 {
3433 LONGEST num;
3434
3435 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3436 bitpos, bitsize);
3437 store_signed_integer (value_contents_raw (dest_val),
3438 TYPE_LENGTH (field_type), byte_order, num);
3439 }
3440
3441 /* Now copy the optimized out / unavailability ranges to the right
3442 bits. */
3443 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3444 if (byte_order == BFD_ENDIAN_BIG)
3445 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3446 else
3447 dst_bit_offset = 0;
3448 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3449 val, src_bit_offset, bitsize);
3450 }
3451
3452 /* Return a new value with type TYPE, which is FIELDNO field of the
3453 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3454 of VAL. If the VAL's contents required to extract the bitfield
3455 from are unavailable/optimized out, the new value is
3456 correspondingly marked unavailable/optimized out. */
3457
3458 struct value *
3459 value_field_bitfield (struct type *type, int fieldno,
3460 const gdb_byte *valaddr,
3461 LONGEST embedded_offset, const struct value *val)
3462 {
3463 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3464 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3465 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3466
3467 unpack_value_bitfield (res_val, bitpos, bitsize,
3468 valaddr, embedded_offset, val);
3469
3470 return res_val;
3471 }
3472
3473 /* Modify the value of a bitfield. ADDR points to a block of memory in
3474 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3475 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3476 indicate which bits (in target bit order) comprise the bitfield.
3477 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3478 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3479
3480 void
3481 modify_field (struct type *type, gdb_byte *addr,
3482 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3483 {
3484 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3485 ULONGEST oword;
3486 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3487 LONGEST bytesize;
3488
3489 /* Normalize BITPOS. */
3490 addr += bitpos / 8;
3491 bitpos %= 8;
3492
3493 /* If a negative fieldval fits in the field in question, chop
3494 off the sign extension bits. */
3495 if ((~fieldval & ~(mask >> 1)) == 0)
3496 fieldval &= mask;
3497
3498 /* Warn if value is too big to fit in the field in question. */
3499 if (0 != (fieldval & ~mask))
3500 {
3501 /* FIXME: would like to include fieldval in the message, but
3502 we don't have a sprintf_longest. */
3503 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3504
3505 /* Truncate it, otherwise adjoining fields may be corrupted. */
3506 fieldval &= mask;
3507 }
3508
3509 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3510 false valgrind reports. */
3511
3512 bytesize = (bitpos + bitsize + 7) / 8;
3513 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3514
3515 /* Shifting for bit field depends on endianness of the target machine. */
3516 if (gdbarch_bits_big_endian (get_type_arch (type)))
3517 bitpos = bytesize * 8 - bitpos - bitsize;
3518
3519 oword &= ~(mask << bitpos);
3520 oword |= fieldval << bitpos;
3521
3522 store_unsigned_integer (addr, bytesize, byte_order, oword);
3523 }
3524 \f
3525 /* Pack NUM into BUF using a target format of TYPE. */
3526
3527 void
3528 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3529 {
3530 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3531 LONGEST len;
3532
3533 type = check_typedef (type);
3534 len = TYPE_LENGTH (type);
3535
3536 switch (TYPE_CODE (type))
3537 {
3538 case TYPE_CODE_INT:
3539 case TYPE_CODE_CHAR:
3540 case TYPE_CODE_ENUM:
3541 case TYPE_CODE_FLAGS:
3542 case TYPE_CODE_BOOL:
3543 case TYPE_CODE_RANGE:
3544 case TYPE_CODE_MEMBERPTR:
3545 store_signed_integer (buf, len, byte_order, num);
3546 break;
3547
3548 case TYPE_CODE_REF:
3549 case TYPE_CODE_RVALUE_REF:
3550 case TYPE_CODE_PTR:
3551 store_typed_address (buf, type, (CORE_ADDR) num);
3552 break;
3553
3554 default:
3555 error (_("Unexpected type (%d) encountered for integer constant."),
3556 TYPE_CODE (type));
3557 }
3558 }
3559
3560
3561 /* Pack NUM into BUF using a target format of TYPE. */
3562
3563 static void
3564 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3565 {
3566 LONGEST len;
3567 enum bfd_endian byte_order;
3568
3569 type = check_typedef (type);
3570 len = TYPE_LENGTH (type);
3571 byte_order = gdbarch_byte_order (get_type_arch (type));
3572
3573 switch (TYPE_CODE (type))
3574 {
3575 case TYPE_CODE_INT:
3576 case TYPE_CODE_CHAR:
3577 case TYPE_CODE_ENUM:
3578 case TYPE_CODE_FLAGS:
3579 case TYPE_CODE_BOOL:
3580 case TYPE_CODE_RANGE:
3581 case TYPE_CODE_MEMBERPTR:
3582 store_unsigned_integer (buf, len, byte_order, num);
3583 break;
3584
3585 case TYPE_CODE_REF:
3586 case TYPE_CODE_RVALUE_REF:
3587 case TYPE_CODE_PTR:
3588 store_typed_address (buf, type, (CORE_ADDR) num);
3589 break;
3590
3591 default:
3592 error (_("Unexpected type (%d) encountered "
3593 "for unsigned integer constant."),
3594 TYPE_CODE (type));
3595 }
3596 }
3597
3598
3599 /* Convert C numbers into newly allocated values. */
3600
3601 struct value *
3602 value_from_longest (struct type *type, LONGEST num)
3603 {
3604 struct value *val = allocate_value (type);
3605
3606 pack_long (value_contents_raw (val), type, num);
3607 return val;
3608 }
3609
3610
3611 /* Convert C unsigned numbers into newly allocated values. */
3612
3613 struct value *
3614 value_from_ulongest (struct type *type, ULONGEST num)
3615 {
3616 struct value *val = allocate_value (type);
3617
3618 pack_unsigned_long (value_contents_raw (val), type, num);
3619
3620 return val;
3621 }
3622
3623
3624 /* Create a value representing a pointer of type TYPE to the address
3625 ADDR. */
3626
3627 struct value *
3628 value_from_pointer (struct type *type, CORE_ADDR addr)
3629 {
3630 struct value *val = allocate_value (type);
3631
3632 store_typed_address (value_contents_raw (val),
3633 check_typedef (type), addr);
3634 return val;
3635 }
3636
3637
3638 /* Create a value of type TYPE whose contents come from VALADDR, if it
3639 is non-null, and whose memory address (in the inferior) is
3640 ADDRESS. The type of the created value may differ from the passed
3641 type TYPE. Make sure to retrieve values new type after this call.
3642 Note that TYPE is not passed through resolve_dynamic_type; this is
3643 a special API intended for use only by Ada. */
3644
3645 struct value *
3646 value_from_contents_and_address_unresolved (struct type *type,
3647 const gdb_byte *valaddr,
3648 CORE_ADDR address)
3649 {
3650 struct value *v;
3651
3652 if (valaddr == NULL)
3653 v = allocate_value_lazy (type);
3654 else
3655 v = value_from_contents (type, valaddr);
3656 VALUE_LVAL (v) = lval_memory;
3657 set_value_address (v, address);
3658 return v;
3659 }
3660
3661 /* Create a value of type TYPE whose contents come from VALADDR, if it
3662 is non-null, and whose memory address (in the inferior) is
3663 ADDRESS. The type of the created value may differ from the passed
3664 type TYPE. Make sure to retrieve values new type after this call. */
3665
3666 struct value *
3667 value_from_contents_and_address (struct type *type,
3668 const gdb_byte *valaddr,
3669 CORE_ADDR address)
3670 {
3671 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3672 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3673 struct value *v;
3674
3675 if (valaddr == NULL)
3676 v = allocate_value_lazy (resolved_type);
3677 else
3678 v = value_from_contents (resolved_type, valaddr);
3679 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3680 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3681 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3682 VALUE_LVAL (v) = lval_memory;
3683 set_value_address (v, address);
3684 return v;
3685 }
3686
3687 /* Create a value of type TYPE holding the contents CONTENTS.
3688 The new value is `not_lval'. */
3689
3690 struct value *
3691 value_from_contents (struct type *type, const gdb_byte *contents)
3692 {
3693 struct value *result;
3694
3695 result = allocate_value (type);
3696 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3697 return result;
3698 }
3699
3700 struct value *
3701 value_from_double (struct type *type, DOUBLEST num)
3702 {
3703 struct value *val = allocate_value (type);
3704 struct type *base_type = check_typedef (type);
3705 enum type_code code = TYPE_CODE (base_type);
3706
3707 if (code == TYPE_CODE_FLT)
3708 {
3709 store_typed_floating (value_contents_raw (val), base_type, num);
3710 }
3711 else
3712 error (_("Unexpected type encountered for floating constant."));
3713
3714 return val;
3715 }
3716
3717 struct value *
3718 value_from_decfloat (struct type *type, const gdb_byte *dec)
3719 {
3720 struct value *val = allocate_value (type);
3721
3722 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3723 return val;
3724 }
3725
3726 /* Extract a value from the history file. Input will be of the form
3727 $digits or $$digits. See block comment above 'write_dollar_variable'
3728 for details. */
3729
3730 struct value *
3731 value_from_history_ref (const char *h, const char **endp)
3732 {
3733 int index, len;
3734
3735 if (h[0] == '$')
3736 len = 1;
3737 else
3738 return NULL;
3739
3740 if (h[1] == '$')
3741 len = 2;
3742
3743 /* Find length of numeral string. */
3744 for (; isdigit (h[len]); len++)
3745 ;
3746
3747 /* Make sure numeral string is not part of an identifier. */
3748 if (h[len] == '_' || isalpha (h[len]))
3749 return NULL;
3750
3751 /* Now collect the index value. */
3752 if (h[1] == '$')
3753 {
3754 if (len == 2)
3755 {
3756 /* For some bizarre reason, "$$" is equivalent to "$$1",
3757 rather than to "$$0" as it ought to be! */
3758 index = -1;
3759 *endp += len;
3760 }
3761 else
3762 {
3763 char *local_end;
3764
3765 index = -strtol (&h[2], &local_end, 10);
3766 *endp = local_end;
3767 }
3768 }
3769 else
3770 {
3771 if (len == 1)
3772 {
3773 /* "$" is equivalent to "$0". */
3774 index = 0;
3775 *endp += len;
3776 }
3777 else
3778 {
3779 char *local_end;
3780
3781 index = strtol (&h[1], &local_end, 10);
3782 *endp = local_end;
3783 }
3784 }
3785
3786 return access_value_history (index);
3787 }
3788
3789 /* Get the component value (offset by OFFSET bytes) of a struct or
3790 union WHOLE. Component's type is TYPE. */
3791
3792 struct value *
3793 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3794 {
3795 struct value *v;
3796
3797 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3798 v = allocate_value_lazy (type);
3799 else
3800 {
3801 v = allocate_value (type);
3802 value_contents_copy (v, value_embedded_offset (v),
3803 whole, value_embedded_offset (whole) + offset,
3804 type_length_units (type));
3805 }
3806 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3807 set_value_component_location (v, whole);
3808
3809 return v;
3810 }
3811
3812 struct value *
3813 coerce_ref_if_computed (const struct value *arg)
3814 {
3815 const struct lval_funcs *funcs;
3816
3817 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3818 return NULL;
3819
3820 if (value_lval_const (arg) != lval_computed)
3821 return NULL;
3822
3823 funcs = value_computed_funcs (arg);
3824 if (funcs->coerce_ref == NULL)
3825 return NULL;
3826
3827 return funcs->coerce_ref (arg);
3828 }
3829
3830 /* Look at value.h for description. */
3831
3832 struct value *
3833 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3834 const struct type *original_type,
3835 const struct value *original_value)
3836 {
3837 /* Re-adjust type. */
3838 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3839
3840 /* Add embedding info. */
3841 set_value_enclosing_type (value, enc_type);
3842 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3843
3844 /* We may be pointing to an object of some derived type. */
3845 return value_full_object (value, NULL, 0, 0, 0);
3846 }
3847
3848 struct value *
3849 coerce_ref (struct value *arg)
3850 {
3851 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3852 struct value *retval;
3853 struct type *enc_type;
3854
3855 retval = coerce_ref_if_computed (arg);
3856 if (retval)
3857 return retval;
3858
3859 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3860 return arg;
3861
3862 enc_type = check_typedef (value_enclosing_type (arg));
3863 enc_type = TYPE_TARGET_TYPE (enc_type);
3864
3865 retval = value_at_lazy (enc_type,
3866 unpack_pointer (value_type (arg),
3867 value_contents (arg)));
3868 enc_type = value_type (retval);
3869 return readjust_indirect_value_type (retval, enc_type,
3870 value_type_arg_tmp, arg);
3871 }
3872
3873 struct value *
3874 coerce_array (struct value *arg)
3875 {
3876 struct type *type;
3877
3878 arg = coerce_ref (arg);
3879 type = check_typedef (value_type (arg));
3880
3881 switch (TYPE_CODE (type))
3882 {
3883 case TYPE_CODE_ARRAY:
3884 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3885 arg = value_coerce_array (arg);
3886 break;
3887 case TYPE_CODE_FUNC:
3888 arg = value_coerce_function (arg);
3889 break;
3890 }
3891 return arg;
3892 }
3893 \f
3894
3895 /* Return the return value convention that will be used for the
3896 specified type. */
3897
3898 enum return_value_convention
3899 struct_return_convention (struct gdbarch *gdbarch,
3900 struct value *function, struct type *value_type)
3901 {
3902 enum type_code code = TYPE_CODE (value_type);
3903
3904 if (code == TYPE_CODE_ERROR)
3905 error (_("Function return type unknown."));
3906
3907 /* Probe the architecture for the return-value convention. */
3908 return gdbarch_return_value (gdbarch, function, value_type,
3909 NULL, NULL, NULL);
3910 }
3911
3912 /* Return true if the function returning the specified type is using
3913 the convention of returning structures in memory (passing in the
3914 address as a hidden first parameter). */
3915
3916 int
3917 using_struct_return (struct gdbarch *gdbarch,
3918 struct value *function, struct type *value_type)
3919 {
3920 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3921 /* A void return value is never in memory. See also corresponding
3922 code in "print_return_value". */
3923 return 0;
3924
3925 return (struct_return_convention (gdbarch, function, value_type)
3926 != RETURN_VALUE_REGISTER_CONVENTION);
3927 }
3928
3929 /* Set the initialized field in a value struct. */
3930
3931 void
3932 set_value_initialized (struct value *val, int status)
3933 {
3934 val->initialized = status;
3935 }
3936
3937 /* Return the initialized field in a value struct. */
3938
3939 int
3940 value_initialized (const struct value *val)
3941 {
3942 return val->initialized;
3943 }
3944
3945 /* Load the actual content of a lazy value. Fetch the data from the
3946 user's process and clear the lazy flag to indicate that the data in
3947 the buffer is valid.
3948
3949 If the value is zero-length, we avoid calling read_memory, which
3950 would abort. We mark the value as fetched anyway -- all 0 bytes of
3951 it. */
3952
3953 void
3954 value_fetch_lazy (struct value *val)
3955 {
3956 gdb_assert (value_lazy (val));
3957 allocate_value_contents (val);
3958 /* A value is either lazy, or fully fetched. The
3959 availability/validity is only established as we try to fetch a
3960 value. */
3961 gdb_assert (VEC_empty (range_s, val->optimized_out));
3962 gdb_assert (VEC_empty (range_s, val->unavailable));
3963 if (value_bitsize (val))
3964 {
3965 /* To read a lazy bitfield, read the entire enclosing value. This
3966 prevents reading the same block of (possibly volatile) memory once
3967 per bitfield. It would be even better to read only the containing
3968 word, but we have no way to record that just specific bits of a
3969 value have been fetched. */
3970 struct type *type = check_typedef (value_type (val));
3971 struct value *parent = value_parent (val);
3972
3973 if (value_lazy (parent))
3974 value_fetch_lazy (parent);
3975
3976 unpack_value_bitfield (val,
3977 value_bitpos (val), value_bitsize (val),
3978 value_contents_for_printing (parent),
3979 value_offset (val), parent);
3980 }
3981 else if (VALUE_LVAL (val) == lval_memory)
3982 {
3983 CORE_ADDR addr = value_address (val);
3984 struct type *type = check_typedef (value_enclosing_type (val));
3985
3986 if (TYPE_LENGTH (type))
3987 read_value_memory (val, 0, value_stack (val),
3988 addr, value_contents_all_raw (val),
3989 type_length_units (type));
3990 }
3991 else if (VALUE_LVAL (val) == lval_register)
3992 {
3993 struct frame_info *next_frame;
3994 int regnum;
3995 struct type *type = check_typedef (value_type (val));
3996 struct value *new_val = val, *mark = value_mark ();
3997
3998 /* Offsets are not supported here; lazy register values must
3999 refer to the entire register. */
4000 gdb_assert (value_offset (val) == 0);
4001
4002 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
4003 {
4004 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
4005
4006 next_frame = frame_find_by_id (next_frame_id);
4007 regnum = VALUE_REGNUM (new_val);
4008
4009 gdb_assert (next_frame != NULL);
4010
4011 /* Convertible register routines are used for multi-register
4012 values and for interpretation in different types
4013 (e.g. float or int from a double register). Lazy
4014 register values should have the register's natural type,
4015 so they do not apply. */
4016 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
4017 regnum, type));
4018
4019 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4020 Since a "->next" operation was performed when setting
4021 this field, we do not need to perform a "next" operation
4022 again when unwinding the register. That's why
4023 frame_unwind_register_value() is called here instead of
4024 get_frame_register_value(). */
4025 new_val = frame_unwind_register_value (next_frame, regnum);
4026
4027 /* If we get another lazy lval_register value, it means the
4028 register is found by reading it from NEXT_FRAME's next frame.
4029 frame_unwind_register_value should never return a value with
4030 the frame id pointing to NEXT_FRAME. If it does, it means we
4031 either have two consecutive frames with the same frame id
4032 in the frame chain, or some code is trying to unwind
4033 behind get_prev_frame's back (e.g., a frame unwind
4034 sniffer trying to unwind), bypassing its validations. In
4035 any case, it should always be an internal error to end up
4036 in this situation. */
4037 if (VALUE_LVAL (new_val) == lval_register
4038 && value_lazy (new_val)
4039 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
4040 internal_error (__FILE__, __LINE__,
4041 _("infinite loop while fetching a register"));
4042 }
4043
4044 /* If it's still lazy (for instance, a saved register on the
4045 stack), fetch it. */
4046 if (value_lazy (new_val))
4047 value_fetch_lazy (new_val);
4048
4049 /* Copy the contents and the unavailability/optimized-out
4050 meta-data from NEW_VAL to VAL. */
4051 set_value_lazy (val, 0);
4052 value_contents_copy (val, value_embedded_offset (val),
4053 new_val, value_embedded_offset (new_val),
4054 type_length_units (type));
4055
4056 if (frame_debug)
4057 {
4058 struct gdbarch *gdbarch;
4059 struct frame_info *frame;
4060 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4061 so that the frame level will be shown correctly. */
4062 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4063 regnum = VALUE_REGNUM (val);
4064 gdbarch = get_frame_arch (frame);
4065
4066 fprintf_unfiltered (gdb_stdlog,
4067 "{ value_fetch_lazy "
4068 "(frame=%d,regnum=%d(%s),...) ",
4069 frame_relative_level (frame), regnum,
4070 user_reg_map_regnum_to_name (gdbarch, regnum));
4071
4072 fprintf_unfiltered (gdb_stdlog, "->");
4073 if (value_optimized_out (new_val))
4074 {
4075 fprintf_unfiltered (gdb_stdlog, " ");
4076 val_print_optimized_out (new_val, gdb_stdlog);
4077 }
4078 else
4079 {
4080 int i;
4081 const gdb_byte *buf = value_contents (new_val);
4082
4083 if (VALUE_LVAL (new_val) == lval_register)
4084 fprintf_unfiltered (gdb_stdlog, " register=%d",
4085 VALUE_REGNUM (new_val));
4086 else if (VALUE_LVAL (new_val) == lval_memory)
4087 fprintf_unfiltered (gdb_stdlog, " address=%s",
4088 paddress (gdbarch,
4089 value_address (new_val)));
4090 else
4091 fprintf_unfiltered (gdb_stdlog, " computed");
4092
4093 fprintf_unfiltered (gdb_stdlog, " bytes=");
4094 fprintf_unfiltered (gdb_stdlog, "[");
4095 for (i = 0; i < register_size (gdbarch, regnum); i++)
4096 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4097 fprintf_unfiltered (gdb_stdlog, "]");
4098 }
4099
4100 fprintf_unfiltered (gdb_stdlog, " }\n");
4101 }
4102
4103 /* Dispose of the intermediate values. This prevents
4104 watchpoints from trying to watch the saved frame pointer. */
4105 value_free_to_mark (mark);
4106 }
4107 else if (VALUE_LVAL (val) == lval_computed
4108 && value_computed_funcs (val)->read != NULL)
4109 value_computed_funcs (val)->read (val);
4110 else
4111 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4112
4113 set_value_lazy (val, 0);
4114 }
4115
4116 /* Implementation of the convenience function $_isvoid. */
4117
4118 static struct value *
4119 isvoid_internal_fn (struct gdbarch *gdbarch,
4120 const struct language_defn *language,
4121 void *cookie, int argc, struct value **argv)
4122 {
4123 int ret;
4124
4125 if (argc != 1)
4126 error (_("You must provide one argument for $_isvoid."));
4127
4128 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4129
4130 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4131 }
4132
4133 void
4134 _initialize_values (void)
4135 {
4136 add_cmd ("convenience", no_class, show_convenience, _("\
4137 Debugger convenience (\"$foo\") variables and functions.\n\
4138 Convenience variables are created when you assign them values;\n\
4139 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4140 \n\
4141 A few convenience variables are given values automatically:\n\
4142 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4143 \"$__\" holds the contents of the last address examined with \"x\"."
4144 #ifdef HAVE_PYTHON
4145 "\n\n\
4146 Convenience functions are defined via the Python API."
4147 #endif
4148 ), &showlist);
4149 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4150
4151 add_cmd ("values", no_set_class, show_values, _("\
4152 Elements of value history around item number IDX (or last ten)."),
4153 &showlist);
4154
4155 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4156 Initialize a convenience variable if necessary.\n\
4157 init-if-undefined VARIABLE = EXPRESSION\n\
4158 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4159 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4160 VARIABLE is already initialized."));
4161
4162 add_prefix_cmd ("function", no_class, function_command, _("\
4163 Placeholder command for showing help on convenience functions."),
4164 &functionlist, "function ", 0, &cmdlist);
4165
4166 add_internal_function ("_isvoid", _("\
4167 Check whether an expression is void.\n\
4168 Usage: $_isvoid (expression)\n\
4169 Return 1 if the expression is void, zero otherwise."),
4170 isvoid_internal_fn, NULL);
4171
4172 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4173 class_support, &max_value_size, _("\
4174 Set maximum sized value gdb will load from the inferior."), _("\
4175 Show maximum sized value gdb will load from the inferior."), _("\
4176 Use this to control the maximum size, in bytes, of a value that gdb\n\
4177 will load from the inferior. Setting this value to 'unlimited'\n\
4178 disables checking.\n\
4179 Setting this does not invalidate already allocated values, it only\n\
4180 prevents future values, larger than this size, from being allocated."),
4181 set_max_value_size,
4182 show_max_value_size,
4183 &setlist, &showlist);
4184 }
This page took 0.13285 seconds and 5 git commands to generate.