gdb/testsuite: restore configure script
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "gdbthread.h"
30 #include "inferior.h"
31 #include "varobj-iter.h"
32 #include "parser-defs.h"
33 #include "gdbarch.h"
34 #include <algorithm>
35
36 #if HAVE_PYTHON
37 #include "python/python.h"
38 #include "python/python-internal.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* See varobj.h. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104 };
105
106 /* Dynamic part of varobj. */
107
108 struct varobj_dynamic
109 {
110 /* Whether the children of this varobj were requested. This field is
111 used to decide if dynamic varobj should recompute their children.
112 In the event that the frontend never asked for the children, we
113 can avoid that. */
114 bool children_requested = false;
115
116 /* The pretty-printer constructor. If NULL, then the default
117 pretty-printer will be looked up. If None, then no
118 pretty-printer will be installed. */
119 PyObject *constructor = NULL;
120
121 /* The pretty-printer that has been constructed. If NULL, then a
122 new printer object is needed, and one will be constructed. */
123 PyObject *pretty_printer = NULL;
124
125 /* The iterator returned by the printer's 'children' method, or NULL
126 if not available. */
127 std::unique_ptr<varobj_iter> child_iter;
128
129 /* We request one extra item from the iterator, so that we can
130 report to the caller whether there are more items than we have
131 already reported. However, we don't want to install this value
132 when we read it, because that will mess up future updates. So,
133 we stash it here instead. */
134 std::unique_ptr<varobj_item> saved_item;
135 };
136
137 /* Private function prototypes */
138
139 /* Helper functions for the above subcommands. */
140
141 static int delete_variable (struct varobj *, bool);
142
143 static void delete_variable_1 (int *, struct varobj *, bool, bool);
144
145 static void install_variable (struct varobj *);
146
147 static void uninstall_variable (struct varobj *);
148
149 static struct varobj *create_child (struct varobj *, int, std::string &);
150
151 static struct varobj *
152 create_child_with_value (struct varobj *parent, int index,
153 struct varobj_item *item);
154
155 /* Utility routines */
156
157 static enum varobj_display_formats variable_default_display (struct varobj *);
158
159 static bool update_type_if_necessary (struct varobj *var,
160 struct value *new_value);
161
162 static bool install_new_value (struct varobj *var, struct value *value,
163 bool initial);
164
165 /* Language-specific routines. */
166
167 static int number_of_children (const struct varobj *);
168
169 static std::string name_of_variable (const struct varobj *);
170
171 static std::string name_of_child (struct varobj *, int);
172
173 static struct value *value_of_root (struct varobj **var_handle, bool *);
174
175 static struct value *value_of_child (const struct varobj *parent, int index);
176
177 static std::string my_value_of_variable (struct varobj *var,
178 enum varobj_display_formats format);
179
180 static bool is_root_p (const struct varobj *var);
181
182 static struct varobj *varobj_add_child (struct varobj *var,
183 struct varobj_item *item);
184
185 /* Private data */
186
187 /* Mappings of varobj_display_formats enums to gdb's format codes. */
188 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
189
190 /* List of root variable objects. */
191 static std::list<struct varobj_root *> rootlist;
192
193 /* Pointer to the varobj hash table (built at run time). */
194 static htab_t varobj_table;
195
196 \f
197
198 /* API Implementation */
199 static bool
200 is_root_p (const struct varobj *var)
201 {
202 return (var->root->rootvar == var);
203 }
204
205 #ifdef HAVE_PYTHON
206
207 /* See python-internal.h. */
208 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
209 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
210 {
211 }
212
213 #endif
214
215 /* Return the full FRAME which corresponds to the given CORE_ADDR
216 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
217
218 static struct frame_info *
219 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
220 {
221 struct frame_info *frame = NULL;
222
223 if (frame_addr == (CORE_ADDR) 0)
224 return NULL;
225
226 for (frame = get_current_frame ();
227 frame != NULL;
228 frame = get_prev_frame (frame))
229 {
230 /* The CORE_ADDR we get as argument was parsed from a string GDB
231 output as $fp. This output got truncated to gdbarch_addr_bit.
232 Truncate the frame base address in the same manner before
233 comparing it against our argument. */
234 CORE_ADDR frame_base = get_frame_base_address (frame);
235 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
236
237 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
238 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
239
240 if (frame_base == frame_addr)
241 return frame;
242 }
243
244 return NULL;
245 }
246
247 /* Creates a varobj (not its children). */
248
249 struct varobj *
250 varobj_create (const char *objname,
251 const char *expression, CORE_ADDR frame, enum varobj_type type)
252 {
253 /* Fill out a varobj structure for the (root) variable being constructed. */
254 std::unique_ptr<varobj> var (new varobj (new varobj_root));
255
256 if (expression != NULL)
257 {
258 struct frame_info *fi;
259 struct frame_id old_id = null_frame_id;
260 const struct block *block;
261 const char *p;
262 struct value *value = NULL;
263 CORE_ADDR pc;
264
265 /* Parse and evaluate the expression, filling in as much of the
266 variable's data as possible. */
267
268 if (has_stack_frames ())
269 {
270 /* Allow creator to specify context of variable. */
271 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
272 fi = get_selected_frame (NULL);
273 else
274 /* FIXME: cagney/2002-11-23: This code should be doing a
275 lookup using the frame ID and not just the frame's
276 ``address''. This, of course, means an interface
277 change. However, with out that interface change ISAs,
278 such as the ia64 with its two stacks, won't work.
279 Similar goes for the case where there is a frameless
280 function. */
281 fi = find_frame_addr_in_frame_chain (frame);
282 }
283 else
284 fi = NULL;
285
286 if (type == USE_SELECTED_FRAME)
287 var->root->floating = true;
288
289 pc = 0;
290 block = NULL;
291 if (fi != NULL)
292 {
293 block = get_frame_block (fi, 0);
294 pc = get_frame_pc (fi);
295 }
296
297 p = expression;
298
299 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
300 | INNERMOST_BLOCK_FOR_REGISTERS);
301 /* Wrap the call to parse expression, so we can
302 return a sensible error. */
303 try
304 {
305 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
306 }
307
308 catch (const gdb_exception_error &except)
309 {
310 return NULL;
311 }
312
313 /* Don't allow variables to be created for types. */
314 enum exp_opcode opcode = var->root->exp->first_opcode ();
315 if (opcode == OP_TYPE
316 || opcode == OP_TYPEOF
317 || opcode == OP_DECLTYPE)
318 {
319 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
320 " as an expression.\n");
321 return NULL;
322 }
323
324 var->format = variable_default_display (var.get ());
325 var->root->valid_block =
326 var->root->floating ? NULL : tracker.block ();
327 var->name = expression;
328 /* For a root var, the name and the expr are the same. */
329 var->path_expr = expression;
330
331 /* When the frame is different from the current frame,
332 we must select the appropriate frame before parsing
333 the expression, otherwise the value will not be current.
334 Since select_frame is so benign, just call it for all cases. */
335 if (var->root->valid_block)
336 {
337 /* User could specify explicit FRAME-ADDR which was not found but
338 EXPRESSION is frame specific and we would not be able to evaluate
339 it correctly next time. With VALID_BLOCK set we must also set
340 FRAME and THREAD_ID. */
341 if (fi == NULL)
342 error (_("Failed to find the specified frame"));
343
344 var->root->frame = get_frame_id (fi);
345 var->root->thread_id = inferior_thread ()->global_num;
346 old_id = get_frame_id (get_selected_frame (NULL));
347 select_frame (fi);
348 }
349
350 /* We definitely need to catch errors here.
351 If evaluate_expression succeeds we got the value we wanted.
352 But if it fails, we still go on with a call to evaluate_type(). */
353 try
354 {
355 value = evaluate_expression (var->root->exp.get ());
356 }
357 catch (const gdb_exception_error &except)
358 {
359 /* Error getting the value. Try to at least get the
360 right type. */
361 struct value *type_only_value = evaluate_type (var->root->exp.get ());
362
363 var->type = value_type (type_only_value);
364 }
365
366 if (value != NULL)
367 {
368 int real_type_found = 0;
369
370 var->type = value_actual_type (value, 0, &real_type_found);
371 if (real_type_found)
372 value = value_cast (var->type, value);
373 }
374
375 /* Set language info */
376 var->root->lang_ops = var->root->exp->language_defn->varobj_ops ();
377
378 install_new_value (var.get (), value, 1 /* Initial assignment */);
379
380 /* Set ourselves as our root. */
381 var->root->rootvar = var.get ();
382
383 /* Reset the selected frame. */
384 if (frame_id_p (old_id))
385 select_frame (frame_find_by_id (old_id));
386 }
387
388 /* If the variable object name is null, that means this
389 is a temporary variable, so don't install it. */
390
391 if ((var != NULL) && (objname != NULL))
392 {
393 var->obj_name = objname;
394 install_variable (var.get ());
395 }
396
397 return var.release ();
398 }
399
400 /* Generates an unique name that can be used for a varobj. */
401
402 std::string
403 varobj_gen_name (void)
404 {
405 static int id = 0;
406
407 /* Generate a name for this object. */
408 id++;
409 return string_printf ("var%d", id);
410 }
411
412 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
413 error if OBJNAME cannot be found. */
414
415 struct varobj *
416 varobj_get_handle (const char *objname)
417 {
418 varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname,
419 htab_hash_string (objname));
420
421 if (var == NULL)
422 error (_("Variable object not found"));
423
424 return var;
425 }
426
427 /* Given the handle, return the name of the object. */
428
429 const char *
430 varobj_get_objname (const struct varobj *var)
431 {
432 return var->obj_name.c_str ();
433 }
434
435 /* Given the handle, return the expression represented by the
436 object. */
437
438 std::string
439 varobj_get_expression (const struct varobj *var)
440 {
441 return name_of_variable (var);
442 }
443
444 /* See varobj.h. */
445
446 int
447 varobj_delete (struct varobj *var, bool only_children)
448 {
449 return delete_variable (var, only_children);
450 }
451
452 #if HAVE_PYTHON
453
454 /* Convenience function for varobj_set_visualizer. Instantiate a
455 pretty-printer for a given value. */
456 static PyObject *
457 instantiate_pretty_printer (PyObject *constructor, struct value *value)
458 {
459 gdbpy_ref<> val_obj (value_to_value_object (value));
460 if (val_obj == nullptr)
461 return NULL;
462
463 return PyObject_CallFunctionObjArgs (constructor, val_obj.get (), NULL);
464 }
465
466 #endif
467
468 /* Set/Get variable object display format. */
469
470 enum varobj_display_formats
471 varobj_set_display_format (struct varobj *var,
472 enum varobj_display_formats format)
473 {
474 switch (format)
475 {
476 case FORMAT_NATURAL:
477 case FORMAT_BINARY:
478 case FORMAT_DECIMAL:
479 case FORMAT_HEXADECIMAL:
480 case FORMAT_OCTAL:
481 case FORMAT_ZHEXADECIMAL:
482 var->format = format;
483 break;
484
485 default:
486 var->format = variable_default_display (var);
487 }
488
489 if (varobj_value_is_changeable_p (var)
490 && var->value != nullptr && !value_lazy (var->value.get ()))
491 {
492 var->print_value = varobj_value_get_print_value (var->value.get (),
493 var->format, var);
494 }
495
496 return var->format;
497 }
498
499 enum varobj_display_formats
500 varobj_get_display_format (const struct varobj *var)
501 {
502 return var->format;
503 }
504
505 gdb::unique_xmalloc_ptr<char>
506 varobj_get_display_hint (const struct varobj *var)
507 {
508 gdb::unique_xmalloc_ptr<char> result;
509
510 #if HAVE_PYTHON
511 if (!gdb_python_initialized)
512 return NULL;
513
514 gdbpy_enter_varobj enter_py (var);
515
516 if (var->dynamic->pretty_printer != NULL)
517 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
518 #endif
519
520 return result;
521 }
522
523 /* Return true if the varobj has items after TO, false otherwise. */
524
525 bool
526 varobj_has_more (const struct varobj *var, int to)
527 {
528 if (var->children.size () > to)
529 return true;
530
531 return ((to == -1 || var->children.size () == to)
532 && (var->dynamic->saved_item != NULL));
533 }
534
535 /* If the variable object is bound to a specific thread, that
536 is its evaluation can always be done in context of a frame
537 inside that thread, returns GDB id of the thread -- which
538 is always positive. Otherwise, returns -1. */
539 int
540 varobj_get_thread_id (const struct varobj *var)
541 {
542 if (var->root->valid_block && var->root->thread_id > 0)
543 return var->root->thread_id;
544 else
545 return -1;
546 }
547
548 void
549 varobj_set_frozen (struct varobj *var, bool frozen)
550 {
551 /* When a variable is unfrozen, we don't fetch its value.
552 The 'not_fetched' flag remains set, so next -var-update
553 won't complain.
554
555 We don't fetch the value, because for structures the client
556 should do -var-update anyway. It would be bad to have different
557 client-size logic for structure and other types. */
558 var->frozen = frozen;
559 }
560
561 bool
562 varobj_get_frozen (const struct varobj *var)
563 {
564 return var->frozen;
565 }
566
567 /* A helper function that updates the contents of FROM and TO based on the
568 size of the vector CHILDREN. If the contents of either FROM or TO are
569 negative the entire range is used. */
570
571 void
572 varobj_restrict_range (const std::vector<varobj *> &children,
573 int *from, int *to)
574 {
575 int len = children.size ();
576
577 if (*from < 0 || *to < 0)
578 {
579 *from = 0;
580 *to = len;
581 }
582 else
583 {
584 if (*from > len)
585 *from = len;
586 if (*to > len)
587 *to = len;
588 if (*from > *to)
589 *from = *to;
590 }
591 }
592
593 /* A helper for update_dynamic_varobj_children that installs a new
594 child when needed. */
595
596 static void
597 install_dynamic_child (struct varobj *var,
598 std::vector<varobj *> *changed,
599 std::vector<varobj *> *type_changed,
600 std::vector<varobj *> *newobj,
601 std::vector<varobj *> *unchanged,
602 bool *cchanged,
603 int index,
604 struct varobj_item *item)
605 {
606 if (var->children.size () < index + 1)
607 {
608 /* There's no child yet. */
609 struct varobj *child = varobj_add_child (var, item);
610
611 if (newobj != NULL)
612 {
613 newobj->push_back (child);
614 *cchanged = true;
615 }
616 }
617 else
618 {
619 varobj *existing = var->children[index];
620 bool type_updated = update_type_if_necessary (existing,
621 item->value.get ());
622
623 if (type_updated)
624 {
625 if (type_changed != NULL)
626 type_changed->push_back (existing);
627 }
628 if (install_new_value (existing, item->value.get (), 0))
629 {
630 if (!type_updated && changed != NULL)
631 changed->push_back (existing);
632 }
633 else if (!type_updated && unchanged != NULL)
634 unchanged->push_back (existing);
635 }
636 }
637
638 #if HAVE_PYTHON
639
640 static bool
641 dynamic_varobj_has_child_method (const struct varobj *var)
642 {
643 PyObject *printer = var->dynamic->pretty_printer;
644
645 if (!gdb_python_initialized)
646 return false;
647
648 gdbpy_enter_varobj enter_py (var);
649 return PyObject_HasAttr (printer, gdbpy_children_cst);
650 }
651 #endif
652
653 /* A factory for creating dynamic varobj's iterators. Returns an
654 iterator object suitable for iterating over VAR's children. */
655
656 static std::unique_ptr<varobj_iter>
657 varobj_get_iterator (struct varobj *var)
658 {
659 #if HAVE_PYTHON
660 if (var->dynamic->pretty_printer)
661 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
662 #endif
663
664 gdb_assert_not_reached (_("\
665 requested an iterator from a non-dynamic varobj"));
666 }
667
668 static bool
669 update_dynamic_varobj_children (struct varobj *var,
670 std::vector<varobj *> *changed,
671 std::vector<varobj *> *type_changed,
672 std::vector<varobj *> *newobj,
673 std::vector<varobj *> *unchanged,
674 bool *cchanged,
675 bool update_children,
676 int from,
677 int to)
678 {
679 int i;
680
681 *cchanged = false;
682
683 if (update_children || var->dynamic->child_iter == NULL)
684 {
685 var->dynamic->child_iter = varobj_get_iterator (var);
686 var->dynamic->saved_item.reset (nullptr);
687
688 i = 0;
689
690 if (var->dynamic->child_iter == NULL)
691 return false;
692 }
693 else
694 i = var->children.size ();
695
696 /* We ask for one extra child, so that MI can report whether there
697 are more children. */
698 for (; to < 0 || i < to + 1; ++i)
699 {
700 std::unique_ptr<varobj_item> item;
701
702 /* See if there was a leftover from last time. */
703 if (var->dynamic->saved_item != NULL)
704 item = std::move (var->dynamic->saved_item);
705 else
706 item = var->dynamic->child_iter->next ();
707
708 if (item == NULL)
709 {
710 /* Iteration is done. Remove iterator from VAR. */
711 var->dynamic->child_iter.reset (nullptr);
712 break;
713 }
714 /* We don't want to push the extra child on any report list. */
715 if (to < 0 || i < to)
716 {
717 bool can_mention = from < 0 || i >= from;
718
719 install_dynamic_child (var, can_mention ? changed : NULL,
720 can_mention ? type_changed : NULL,
721 can_mention ? newobj : NULL,
722 can_mention ? unchanged : NULL,
723 can_mention ? cchanged : NULL, i,
724 item.get ());
725 }
726 else
727 {
728 var->dynamic->saved_item = std::move (item);
729
730 /* We want to truncate the child list just before this
731 element. */
732 break;
733 }
734 }
735
736 if (i < var->children.size ())
737 {
738 *cchanged = true;
739 for (int j = i; j < var->children.size (); ++j)
740 varobj_delete (var->children[j], 0);
741
742 var->children.resize (i);
743 }
744
745 /* If there are fewer children than requested, note that the list of
746 children changed. */
747 if (to >= 0 && var->children.size () < to)
748 *cchanged = true;
749
750 var->num_children = var->children.size ();
751
752 return true;
753 }
754
755 int
756 varobj_get_num_children (struct varobj *var)
757 {
758 if (var->num_children == -1)
759 {
760 if (varobj_is_dynamic_p (var))
761 {
762 bool dummy;
763
764 /* If we have a dynamic varobj, don't report -1 children.
765 So, try to fetch some children first. */
766 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
767 false, 0, 0);
768 }
769 else
770 var->num_children = number_of_children (var);
771 }
772
773 return var->num_children >= 0 ? var->num_children : 0;
774 }
775
776 /* Creates a list of the immediate children of a variable object;
777 the return code is the number of such children or -1 on error. */
778
779 const std::vector<varobj *> &
780 varobj_list_children (struct varobj *var, int *from, int *to)
781 {
782 var->dynamic->children_requested = true;
783
784 if (varobj_is_dynamic_p (var))
785 {
786 bool children_changed;
787
788 /* This, in theory, can result in the number of children changing without
789 frontend noticing. But well, calling -var-list-children on the same
790 varobj twice is not something a sane frontend would do. */
791 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
792 &children_changed, false, 0, *to);
793 varobj_restrict_range (var->children, from, to);
794 return var->children;
795 }
796
797 if (var->num_children == -1)
798 var->num_children = number_of_children (var);
799
800 /* If that failed, give up. */
801 if (var->num_children == -1)
802 return var->children;
803
804 /* If we're called when the list of children is not yet initialized,
805 allocate enough elements in it. */
806 while (var->children.size () < var->num_children)
807 var->children.push_back (NULL);
808
809 for (int i = 0; i < var->num_children; i++)
810 {
811 if (var->children[i] == NULL)
812 {
813 /* Either it's the first call to varobj_list_children for
814 this variable object, and the child was never created,
815 or it was explicitly deleted by the client. */
816 std::string name = name_of_child (var, i);
817 var->children[i] = create_child (var, i, name);
818 }
819 }
820
821 varobj_restrict_range (var->children, from, to);
822 return var->children;
823 }
824
825 static struct varobj *
826 varobj_add_child (struct varobj *var, struct varobj_item *item)
827 {
828 varobj *v = create_child_with_value (var, var->children.size (), item);
829
830 var->children.push_back (v);
831
832 return v;
833 }
834
835 /* Obtain the type of an object Variable as a string similar to the one gdb
836 prints on the console. The caller is responsible for freeing the string.
837 */
838
839 std::string
840 varobj_get_type (struct varobj *var)
841 {
842 /* For the "fake" variables, do not return a type. (Its type is
843 NULL, too.)
844 Do not return a type for invalid variables as well. */
845 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
846 return std::string ();
847
848 return type_to_string (var->type);
849 }
850
851 /* Obtain the type of an object variable. */
852
853 struct type *
854 varobj_get_gdb_type (const struct varobj *var)
855 {
856 return var->type;
857 }
858
859 /* Is VAR a path expression parent, i.e., can it be used to construct
860 a valid path expression? */
861
862 static bool
863 is_path_expr_parent (const struct varobj *var)
864 {
865 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
866 return var->root->lang_ops->is_path_expr_parent (var);
867 }
868
869 /* Is VAR a path expression parent, i.e., can it be used to construct
870 a valid path expression? By default we assume any VAR can be a path
871 parent. */
872
873 bool
874 varobj_default_is_path_expr_parent (const struct varobj *var)
875 {
876 return true;
877 }
878
879 /* Return the path expression parent for VAR. */
880
881 const struct varobj *
882 varobj_get_path_expr_parent (const struct varobj *var)
883 {
884 const struct varobj *parent = var;
885
886 while (!is_root_p (parent) && !is_path_expr_parent (parent))
887 parent = parent->parent;
888
889 /* Computation of full rooted expression for children of dynamic
890 varobjs is not supported. */
891 if (varobj_is_dynamic_p (parent))
892 error (_("Invalid variable object (child of a dynamic varobj)"));
893
894 return parent;
895 }
896
897 /* Return a pointer to the full rooted expression of varobj VAR.
898 If it has not been computed yet, compute it. */
899
900 const char *
901 varobj_get_path_expr (const struct varobj *var)
902 {
903 if (var->path_expr.empty ())
904 {
905 /* For root varobjs, we initialize path_expr
906 when creating varobj, so here it should be
907 child varobj. */
908 struct varobj *mutable_var = (struct varobj *) var;
909 gdb_assert (!is_root_p (var));
910
911 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
912 }
913
914 return var->path_expr.c_str ();
915 }
916
917 const struct language_defn *
918 varobj_get_language (const struct varobj *var)
919 {
920 return var->root->exp->language_defn;
921 }
922
923 int
924 varobj_get_attributes (const struct varobj *var)
925 {
926 int attributes = 0;
927
928 if (varobj_editable_p (var))
929 /* FIXME: define masks for attributes. */
930 attributes |= 0x00000001; /* Editable */
931
932 return attributes;
933 }
934
935 /* Return true if VAR is a dynamic varobj. */
936
937 bool
938 varobj_is_dynamic_p (const struct varobj *var)
939 {
940 return var->dynamic->pretty_printer != NULL;
941 }
942
943 std::string
944 varobj_get_formatted_value (struct varobj *var,
945 enum varobj_display_formats format)
946 {
947 return my_value_of_variable (var, format);
948 }
949
950 std::string
951 varobj_get_value (struct varobj *var)
952 {
953 return my_value_of_variable (var, var->format);
954 }
955
956 /* Set the value of an object variable (if it is editable) to the
957 value of the given expression. */
958 /* Note: Invokes functions that can call error(). */
959
960 bool
961 varobj_set_value (struct varobj *var, const char *expression)
962 {
963 struct value *val = NULL; /* Initialize to keep gcc happy. */
964 /* The argument "expression" contains the variable's new value.
965 We need to first construct a legal expression for this -- ugh! */
966 /* Does this cover all the bases? */
967 struct value *value = NULL; /* Initialize to keep gcc happy. */
968 int saved_input_radix = input_radix;
969 const char *s = expression;
970
971 gdb_assert (varobj_editable_p (var));
972
973 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
974 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
975 try
976 {
977 value = evaluate_expression (exp.get ());
978 }
979
980 catch (const gdb_exception_error &except)
981 {
982 /* We cannot proceed without a valid expression. */
983 return false;
984 }
985
986 /* All types that are editable must also be changeable. */
987 gdb_assert (varobj_value_is_changeable_p (var));
988
989 /* The value of a changeable variable object must not be lazy. */
990 gdb_assert (!value_lazy (var->value.get ()));
991
992 /* Need to coerce the input. We want to check if the
993 value of the variable object will be different
994 after assignment, and the first thing value_assign
995 does is coerce the input.
996 For example, if we are assigning an array to a pointer variable we
997 should compare the pointer with the array's address, not with the
998 array's content. */
999 value = coerce_array (value);
1000
1001 /* The new value may be lazy. value_assign, or
1002 rather value_contents, will take care of this. */
1003 try
1004 {
1005 val = value_assign (var->value.get (), value);
1006 }
1007
1008 catch (const gdb_exception_error &except)
1009 {
1010 return false;
1011 }
1012
1013 /* If the value has changed, record it, so that next -var-update can
1014 report this change. If a variable had a value of '1', we've set it
1015 to '333' and then set again to '1', when -var-update will report this
1016 variable as changed -- because the first assignment has set the
1017 'updated' flag. There's no need to optimize that, because return value
1018 of -var-update should be considered an approximation. */
1019 var->updated = install_new_value (var, val, false /* Compare values. */);
1020 input_radix = saved_input_radix;
1021 return true;
1022 }
1023
1024 #if HAVE_PYTHON
1025
1026 /* A helper function to install a constructor function and visualizer
1027 in a varobj_dynamic. */
1028
1029 static void
1030 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1031 PyObject *visualizer)
1032 {
1033 Py_XDECREF (var->constructor);
1034 var->constructor = constructor;
1035
1036 Py_XDECREF (var->pretty_printer);
1037 var->pretty_printer = visualizer;
1038
1039 var->child_iter.reset (nullptr);
1040 }
1041
1042 /* Install the default visualizer for VAR. */
1043
1044 static void
1045 install_default_visualizer (struct varobj *var)
1046 {
1047 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1048 if (CPLUS_FAKE_CHILD (var))
1049 return;
1050
1051 if (pretty_printing)
1052 {
1053 gdbpy_ref<> pretty_printer;
1054
1055 if (var->value != nullptr)
1056 {
1057 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1058 if (pretty_printer == nullptr)
1059 {
1060 gdbpy_print_stack ();
1061 error (_("Cannot instantiate printer for default visualizer"));
1062 }
1063 }
1064
1065 if (pretty_printer == Py_None)
1066 pretty_printer.reset (nullptr);
1067
1068 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1069 }
1070 }
1071
1072 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1073 make a new object. */
1074
1075 static void
1076 construct_visualizer (struct varobj *var, PyObject *constructor)
1077 {
1078 PyObject *pretty_printer;
1079
1080 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1081 if (CPLUS_FAKE_CHILD (var))
1082 return;
1083
1084 Py_INCREF (constructor);
1085 if (constructor == Py_None)
1086 pretty_printer = NULL;
1087 else
1088 {
1089 pretty_printer = instantiate_pretty_printer (constructor,
1090 var->value.get ());
1091 if (! pretty_printer)
1092 {
1093 gdbpy_print_stack ();
1094 Py_DECREF (constructor);
1095 constructor = Py_None;
1096 Py_INCREF (constructor);
1097 }
1098
1099 if (pretty_printer == Py_None)
1100 {
1101 Py_DECREF (pretty_printer);
1102 pretty_printer = NULL;
1103 }
1104 }
1105
1106 install_visualizer (var->dynamic, constructor, pretty_printer);
1107 }
1108
1109 #endif /* HAVE_PYTHON */
1110
1111 /* A helper function for install_new_value. This creates and installs
1112 a visualizer for VAR, if appropriate. */
1113
1114 static void
1115 install_new_value_visualizer (struct varobj *var)
1116 {
1117 #if HAVE_PYTHON
1118 /* If the constructor is None, then we want the raw value. If VAR
1119 does not have a value, just skip this. */
1120 if (!gdb_python_initialized)
1121 return;
1122
1123 if (var->dynamic->constructor != Py_None && var->value != NULL)
1124 {
1125 gdbpy_enter_varobj enter_py (var);
1126
1127 if (var->dynamic->constructor == NULL)
1128 install_default_visualizer (var);
1129 else
1130 construct_visualizer (var, var->dynamic->constructor);
1131 }
1132 #else
1133 /* Do nothing. */
1134 #endif
1135 }
1136
1137 /* When using RTTI to determine variable type it may be changed in runtime when
1138 the variable value is changed. This function checks whether type of varobj
1139 VAR will change when a new value NEW_VALUE is assigned and if it is so
1140 updates the type of VAR. */
1141
1142 static bool
1143 update_type_if_necessary (struct varobj *var, struct value *new_value)
1144 {
1145 if (new_value)
1146 {
1147 struct value_print_options opts;
1148
1149 get_user_print_options (&opts);
1150 if (opts.objectprint)
1151 {
1152 struct type *new_type = value_actual_type (new_value, 0, 0);
1153 std::string new_type_str = type_to_string (new_type);
1154 std::string curr_type_str = varobj_get_type (var);
1155
1156 /* Did the type name change? */
1157 if (curr_type_str != new_type_str)
1158 {
1159 var->type = new_type;
1160
1161 /* This information may be not valid for a new type. */
1162 varobj_delete (var, 1);
1163 var->children.clear ();
1164 var->num_children = -1;
1165 return true;
1166 }
1167 }
1168 }
1169
1170 return false;
1171 }
1172
1173 /* Assign a new value to a variable object. If INITIAL is true,
1174 this is the first assignment after the variable object was just
1175 created, or changed type. In that case, just assign the value
1176 and return false.
1177 Otherwise, assign the new value, and return true if the value is
1178 different from the current one, false otherwise. The comparison is
1179 done on textual representation of value. Therefore, some types
1180 need not be compared. E.g. for structures the reported value is
1181 always "{...}", so no comparison is necessary here. If the old
1182 value was NULL and new one is not, or vice versa, we always return true.
1183
1184 The VALUE parameter should not be released -- the function will
1185 take care of releasing it when needed. */
1186 static bool
1187 install_new_value (struct varobj *var, struct value *value, bool initial)
1188 {
1189 bool changeable;
1190 bool need_to_fetch;
1191 bool changed = false;
1192 bool intentionally_not_fetched = false;
1193
1194 /* We need to know the varobj's type to decide if the value should
1195 be fetched or not. C++ fake children (public/protected/private)
1196 don't have a type. */
1197 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1198 changeable = varobj_value_is_changeable_p (var);
1199
1200 /* If the type has custom visualizer, we consider it to be always
1201 changeable. FIXME: need to make sure this behaviour will not
1202 mess up read-sensitive values. */
1203 if (var->dynamic->pretty_printer != NULL)
1204 changeable = true;
1205
1206 need_to_fetch = changeable;
1207
1208 /* We are not interested in the address of references, and given
1209 that in C++ a reference is not rebindable, it cannot
1210 meaningfully change. So, get hold of the real value. */
1211 if (value)
1212 value = coerce_ref (value);
1213
1214 if (var->type && var->type->code () == TYPE_CODE_UNION)
1215 /* For unions, we need to fetch the value implicitly because
1216 of implementation of union member fetch. When gdb
1217 creates a value for a field and the value of the enclosing
1218 structure is not lazy, it immediately copies the necessary
1219 bytes from the enclosing values. If the enclosing value is
1220 lazy, the call to value_fetch_lazy on the field will read
1221 the data from memory. For unions, that means we'll read the
1222 same memory more than once, which is not desirable. So
1223 fetch now. */
1224 need_to_fetch = true;
1225
1226 /* The new value might be lazy. If the type is changeable,
1227 that is we'll be comparing values of this type, fetch the
1228 value now. Otherwise, on the next update the old value
1229 will be lazy, which means we've lost that old value. */
1230 if (need_to_fetch && value && value_lazy (value))
1231 {
1232 const struct varobj *parent = var->parent;
1233 bool frozen = var->frozen;
1234
1235 for (; !frozen && parent; parent = parent->parent)
1236 frozen |= parent->frozen;
1237
1238 if (frozen && initial)
1239 {
1240 /* For variables that are frozen, or are children of frozen
1241 variables, we don't do fetch on initial assignment.
1242 For non-initial assignment we do the fetch, since it means we're
1243 explicitly asked to compare the new value with the old one. */
1244 intentionally_not_fetched = true;
1245 }
1246 else
1247 {
1248
1249 try
1250 {
1251 value_fetch_lazy (value);
1252 }
1253
1254 catch (const gdb_exception_error &except)
1255 {
1256 /* Set the value to NULL, so that for the next -var-update,
1257 we don't try to compare the new value with this value,
1258 that we couldn't even read. */
1259 value = NULL;
1260 }
1261 }
1262 }
1263
1264 /* Get a reference now, before possibly passing it to any Python
1265 code that might release it. */
1266 value_ref_ptr value_holder;
1267 if (value != NULL)
1268 value_holder = value_ref_ptr::new_reference (value);
1269
1270 /* Below, we'll be comparing string rendering of old and new
1271 values. Don't get string rendering if the value is
1272 lazy -- if it is, the code above has decided that the value
1273 should not be fetched. */
1274 std::string print_value;
1275 if (value != NULL && !value_lazy (value)
1276 && var->dynamic->pretty_printer == NULL)
1277 print_value = varobj_value_get_print_value (value, var->format, var);
1278
1279 /* If the type is changeable, compare the old and the new values.
1280 If this is the initial assignment, we don't have any old value
1281 to compare with. */
1282 if (!initial && changeable)
1283 {
1284 /* If the value of the varobj was changed by -var-set-value,
1285 then the value in the varobj and in the target is the same.
1286 However, that value is different from the value that the
1287 varobj had after the previous -var-update. So need to the
1288 varobj as changed. */
1289 if (var->updated)
1290 changed = true;
1291 else if (var->dynamic->pretty_printer == NULL)
1292 {
1293 /* Try to compare the values. That requires that both
1294 values are non-lazy. */
1295 if (var->not_fetched && value_lazy (var->value.get ()))
1296 {
1297 /* This is a frozen varobj and the value was never read.
1298 Presumably, UI shows some "never read" indicator.
1299 Now that we've fetched the real value, we need to report
1300 this varobj as changed so that UI can show the real
1301 value. */
1302 changed = true;
1303 }
1304 else if (var->value == NULL && value == NULL)
1305 /* Equal. */
1306 ;
1307 else if (var->value == NULL || value == NULL)
1308 {
1309 changed = true;
1310 }
1311 else
1312 {
1313 gdb_assert (!value_lazy (var->value.get ()));
1314 gdb_assert (!value_lazy (value));
1315
1316 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1317 if (var->print_value != print_value)
1318 changed = true;
1319 }
1320 }
1321 }
1322
1323 if (!initial && !changeable)
1324 {
1325 /* For values that are not changeable, we don't compare the values.
1326 However, we want to notice if a value was not NULL and now is NULL,
1327 or vise versa, so that we report when top-level varobjs come in scope
1328 and leave the scope. */
1329 changed = (var->value != NULL) != (value != NULL);
1330 }
1331
1332 /* We must always keep the new value, since children depend on it. */
1333 var->value = value_holder;
1334 if (value && value_lazy (value) && intentionally_not_fetched)
1335 var->not_fetched = true;
1336 else
1337 var->not_fetched = false;
1338 var->updated = false;
1339
1340 install_new_value_visualizer (var);
1341
1342 /* If we installed a pretty-printer, re-compare the printed version
1343 to see if the variable changed. */
1344 if (var->dynamic->pretty_printer != NULL)
1345 {
1346 print_value = varobj_value_get_print_value (var->value.get (),
1347 var->format, var);
1348 if ((var->print_value.empty () && !print_value.empty ())
1349 || (!var->print_value.empty () && print_value.empty ())
1350 || (!var->print_value.empty () && !print_value.empty ()
1351 && var->print_value != print_value))
1352 changed = true;
1353 }
1354 var->print_value = print_value;
1355
1356 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1357
1358 return changed;
1359 }
1360
1361 /* Return the requested range for a varobj. VAR is the varobj. FROM
1362 and TO are out parameters; *FROM and *TO will be set to the
1363 selected sub-range of VAR. If no range was selected using
1364 -var-set-update-range, then both will be -1. */
1365 void
1366 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1367 {
1368 *from = var->from;
1369 *to = var->to;
1370 }
1371
1372 /* Set the selected sub-range of children of VAR to start at index
1373 FROM and end at index TO. If either FROM or TO is less than zero,
1374 this is interpreted as a request for all children. */
1375 void
1376 varobj_set_child_range (struct varobj *var, int from, int to)
1377 {
1378 var->from = from;
1379 var->to = to;
1380 }
1381
1382 void
1383 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1384 {
1385 #if HAVE_PYTHON
1386 PyObject *mainmod;
1387
1388 if (!gdb_python_initialized)
1389 return;
1390
1391 gdbpy_enter_varobj enter_py (var);
1392
1393 mainmod = PyImport_AddModule ("__main__");
1394 gdbpy_ref<> globals
1395 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1396 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1397 globals.get (), globals.get ()));
1398
1399 if (constructor == NULL)
1400 {
1401 gdbpy_print_stack ();
1402 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1403 }
1404
1405 construct_visualizer (var, constructor.get ());
1406
1407 /* If there are any children now, wipe them. */
1408 varobj_delete (var, 1 /* children only */);
1409 var->num_children = -1;
1410 #else
1411 error (_("Python support required"));
1412 #endif
1413 }
1414
1415 /* If NEW_VALUE is the new value of the given varobj (var), return
1416 true if var has mutated. In other words, if the type of
1417 the new value is different from the type of the varobj's old
1418 value.
1419
1420 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1421
1422 static bool
1423 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1424 struct type *new_type)
1425 {
1426 /* If we haven't previously computed the number of children in var,
1427 it does not matter from the front-end's perspective whether
1428 the type has mutated or not. For all intents and purposes,
1429 it has not mutated. */
1430 if (var->num_children < 0)
1431 return false;
1432
1433 if (var->root->lang_ops->value_has_mutated != NULL)
1434 {
1435 /* The varobj module, when installing new values, explicitly strips
1436 references, saying that we're not interested in those addresses.
1437 But detection of mutation happens before installing the new
1438 value, so our value may be a reference that we need to strip
1439 in order to remain consistent. */
1440 if (new_value != NULL)
1441 new_value = coerce_ref (new_value);
1442 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1443 }
1444 else
1445 return false;
1446 }
1447
1448 /* Update the values for a variable and its children. This is a
1449 two-pronged attack. First, re-parse the value for the root's
1450 expression to see if it's changed. Then go all the way
1451 through its children, reconstructing them and noting if they've
1452 changed.
1453
1454 The IS_EXPLICIT parameter specifies if this call is result
1455 of MI request to update this specific variable, or
1456 result of implicit -var-update *. For implicit request, we don't
1457 update frozen variables.
1458
1459 NOTE: This function may delete the caller's varobj. If it
1460 returns TYPE_CHANGED, then it has done this and VARP will be modified
1461 to point to the new varobj. */
1462
1463 std::vector<varobj_update_result>
1464 varobj_update (struct varobj **varp, bool is_explicit)
1465 {
1466 bool type_changed = false;
1467 struct value *newobj;
1468 std::vector<varobj_update_result> stack;
1469 std::vector<varobj_update_result> result;
1470
1471 /* Frozen means frozen -- we don't check for any change in
1472 this varobj, including its going out of scope, or
1473 changing type. One use case for frozen varobjs is
1474 retaining previously evaluated expressions, and we don't
1475 want them to be reevaluated at all. */
1476 if (!is_explicit && (*varp)->frozen)
1477 return result;
1478
1479 if (!(*varp)->root->is_valid)
1480 {
1481 result.emplace_back (*varp, VAROBJ_INVALID);
1482 return result;
1483 }
1484
1485 if ((*varp)->root->rootvar == *varp)
1486 {
1487 varobj_update_result r (*varp);
1488
1489 /* Update the root variable. value_of_root can return NULL
1490 if the variable is no longer around, i.e. we stepped out of
1491 the frame in which a local existed. We are letting the
1492 value_of_root variable dispose of the varobj if the type
1493 has changed. */
1494 newobj = value_of_root (varp, &type_changed);
1495 if (update_type_if_necessary (*varp, newobj))
1496 type_changed = true;
1497 r.varobj = *varp;
1498 r.type_changed = type_changed;
1499 if (install_new_value ((*varp), newobj, type_changed))
1500 r.changed = true;
1501
1502 if (newobj == NULL)
1503 r.status = VAROBJ_NOT_IN_SCOPE;
1504 r.value_installed = true;
1505
1506 if (r.status == VAROBJ_NOT_IN_SCOPE)
1507 {
1508 if (r.type_changed || r.changed)
1509 result.push_back (std::move (r));
1510
1511 return result;
1512 }
1513
1514 stack.push_back (std::move (r));
1515 }
1516 else
1517 stack.emplace_back (*varp);
1518
1519 /* Walk through the children, reconstructing them all. */
1520 while (!stack.empty ())
1521 {
1522 varobj_update_result r = std::move (stack.back ());
1523 stack.pop_back ();
1524 struct varobj *v = r.varobj;
1525
1526 /* Update this variable, unless it's a root, which is already
1527 updated. */
1528 if (!r.value_installed)
1529 {
1530 struct type *new_type;
1531
1532 newobj = value_of_child (v->parent, v->index);
1533 if (update_type_if_necessary (v, newobj))
1534 r.type_changed = true;
1535 if (newobj)
1536 new_type = value_type (newobj);
1537 else
1538 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1539
1540 if (varobj_value_has_mutated (v, newobj, new_type))
1541 {
1542 /* The children are no longer valid; delete them now.
1543 Report the fact that its type changed as well. */
1544 varobj_delete (v, 1 /* only_children */);
1545 v->num_children = -1;
1546 v->to = -1;
1547 v->from = -1;
1548 v->type = new_type;
1549 r.type_changed = true;
1550 }
1551
1552 if (install_new_value (v, newobj, r.type_changed))
1553 {
1554 r.changed = true;
1555 v->updated = false;
1556 }
1557 }
1558
1559 /* We probably should not get children of a dynamic varobj, but
1560 for which -var-list-children was never invoked. */
1561 if (varobj_is_dynamic_p (v))
1562 {
1563 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1564 bool children_changed = false;
1565
1566 if (v->frozen)
1567 continue;
1568
1569 if (!v->dynamic->children_requested)
1570 {
1571 bool dummy;
1572
1573 /* If we initially did not have potential children, but
1574 now we do, consider the varobj as changed.
1575 Otherwise, if children were never requested, consider
1576 it as unchanged -- presumably, such varobj is not yet
1577 expanded in the UI, so we need not bother getting
1578 it. */
1579 if (!varobj_has_more (v, 0))
1580 {
1581 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1582 &dummy, false, 0, 0);
1583 if (varobj_has_more (v, 0))
1584 r.changed = true;
1585 }
1586
1587 if (r.changed)
1588 result.push_back (std::move (r));
1589
1590 continue;
1591 }
1592
1593 /* If update_dynamic_varobj_children returns false, then we have
1594 a non-conforming pretty-printer, so we skip it. */
1595 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1596 &newobj_vec,
1597 &unchanged, &children_changed,
1598 true, v->from, v->to))
1599 {
1600 if (children_changed || !newobj_vec.empty ())
1601 {
1602 r.children_changed = true;
1603 r.newobj = std::move (newobj_vec);
1604 }
1605 /* Push in reverse order so that the first child is
1606 popped from the work stack first, and so will be
1607 added to result first. This does not affect
1608 correctness, just "nicer". */
1609 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1610 {
1611 varobj_update_result item (type_changed_vec[i]);
1612
1613 /* Type may change only if value was changed. */
1614 item.changed = true;
1615 item.type_changed = true;
1616 item.value_installed = true;
1617
1618 stack.push_back (std::move (item));
1619 }
1620 for (int i = changed.size () - 1; i >= 0; --i)
1621 {
1622 varobj_update_result item (changed[i]);
1623
1624 item.changed = true;
1625 item.value_installed = true;
1626
1627 stack.push_back (std::move (item));
1628 }
1629 for (int i = unchanged.size () - 1; i >= 0; --i)
1630 {
1631 if (!unchanged[i]->frozen)
1632 {
1633 varobj_update_result item (unchanged[i]);
1634
1635 item.value_installed = true;
1636
1637 stack.push_back (std::move (item));
1638 }
1639 }
1640 if (r.changed || r.children_changed)
1641 result.push_back (std::move (r));
1642
1643 continue;
1644 }
1645 }
1646
1647 /* Push any children. Use reverse order so that the first
1648 child is popped from the work stack first, and so
1649 will be added to result first. This does not
1650 affect correctness, just "nicer". */
1651 for (int i = v->children.size () - 1; i >= 0; --i)
1652 {
1653 varobj *c = v->children[i];
1654
1655 /* Child may be NULL if explicitly deleted by -var-delete. */
1656 if (c != NULL && !c->frozen)
1657 stack.emplace_back (c);
1658 }
1659
1660 if (r.changed || r.type_changed)
1661 result.push_back (std::move (r));
1662 }
1663
1664 return result;
1665 }
1666
1667 /* Helper functions */
1668
1669 /*
1670 * Variable object construction/destruction
1671 */
1672
1673 static int
1674 delete_variable (struct varobj *var, bool only_children_p)
1675 {
1676 int delcount = 0;
1677
1678 delete_variable_1 (&delcount, var, only_children_p,
1679 true /* remove_from_parent_p */ );
1680
1681 return delcount;
1682 }
1683
1684 /* Delete the variable object VAR and its children. */
1685 /* IMPORTANT NOTE: If we delete a variable which is a child
1686 and the parent is not removed we dump core. It must be always
1687 initially called with remove_from_parent_p set. */
1688 static void
1689 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1690 bool remove_from_parent_p)
1691 {
1692 /* Delete any children of this variable, too. */
1693 for (varobj *child : var->children)
1694 {
1695 if (!child)
1696 continue;
1697
1698 if (!remove_from_parent_p)
1699 child->parent = NULL;
1700
1701 delete_variable_1 (delcountp, child, false, only_children_p);
1702 }
1703 var->children.clear ();
1704
1705 /* if we were called to delete only the children we are done here. */
1706 if (only_children_p)
1707 return;
1708
1709 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1710 /* If the name is empty, this is a temporary variable, that has not
1711 yet been installed, don't report it, it belongs to the caller... */
1712 if (!var->obj_name.empty ())
1713 {
1714 *delcountp = *delcountp + 1;
1715 }
1716
1717 /* If this variable has a parent, remove it from its parent's list. */
1718 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1719 (as indicated by remove_from_parent_p) we don't bother doing an
1720 expensive list search to find the element to remove when we are
1721 discarding the list afterwards. */
1722 if ((remove_from_parent_p) && (var->parent != NULL))
1723 var->parent->children[var->index] = NULL;
1724
1725 if (!var->obj_name.empty ())
1726 uninstall_variable (var);
1727
1728 /* Free memory associated with this variable. */
1729 delete var;
1730 }
1731
1732 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1733 static void
1734 install_variable (struct varobj *var)
1735 {
1736 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1737 void **slot = htab_find_slot_with_hash (varobj_table,
1738 var->obj_name.c_str (),
1739 hash, INSERT);
1740 if (*slot != nullptr)
1741 error (_("Duplicate variable object name"));
1742
1743 /* Add varobj to hash table. */
1744 *slot = var;
1745
1746 /* If root, add varobj to root list. */
1747 if (is_root_p (var))
1748 rootlist.push_front (var->root);
1749 }
1750
1751 /* Uninstall the object VAR. */
1752 static void
1753 uninstall_variable (struct varobj *var)
1754 {
1755 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1756 htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash);
1757
1758 if (varobjdebug)
1759 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1760
1761 /* If root, remove varobj from root list. */
1762 if (is_root_p (var))
1763 {
1764 auto iter = std::find (rootlist.begin (), rootlist.end (), var->root);
1765 rootlist.erase (iter);
1766 }
1767 }
1768
1769 /* Create and install a child of the parent of the given name.
1770
1771 The created VAROBJ takes ownership of the allocated NAME. */
1772
1773 static struct varobj *
1774 create_child (struct varobj *parent, int index, std::string &name)
1775 {
1776 struct varobj_item item;
1777
1778 std::swap (item.name, name);
1779 item.value = release_value (value_of_child (parent, index));
1780
1781 return create_child_with_value (parent, index, &item);
1782 }
1783
1784 static struct varobj *
1785 create_child_with_value (struct varobj *parent, int index,
1786 struct varobj_item *item)
1787 {
1788 varobj *child = new varobj (parent->root);
1789
1790 /* NAME is allocated by caller. */
1791 std::swap (child->name, item->name);
1792 child->index = index;
1793 child->parent = parent;
1794
1795 if (varobj_is_anonymous_child (child))
1796 child->obj_name = string_printf ("%s.%d_anonymous",
1797 parent->obj_name.c_str (), index);
1798 else
1799 child->obj_name = string_printf ("%s.%s",
1800 parent->obj_name.c_str (),
1801 child->name.c_str ());
1802
1803 install_variable (child);
1804
1805 /* Compute the type of the child. Must do this before
1806 calling install_new_value. */
1807 if (item->value != NULL)
1808 /* If the child had no evaluation errors, var->value
1809 will be non-NULL and contain a valid type. */
1810 child->type = value_actual_type (item->value.get (), 0, NULL);
1811 else
1812 /* Otherwise, we must compute the type. */
1813 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1814 child->index);
1815 install_new_value (child, item->value.get (), 1);
1816
1817 return child;
1818 }
1819 \f
1820
1821 /*
1822 * Miscellaneous utility functions.
1823 */
1824
1825 /* Allocate memory and initialize a new variable. */
1826 varobj::varobj (varobj_root *root_)
1827 : root (root_), dynamic (new varobj_dynamic)
1828 {
1829 }
1830
1831 /* Free any allocated memory associated with VAR. */
1832
1833 varobj::~varobj ()
1834 {
1835 varobj *var = this;
1836
1837 #if HAVE_PYTHON
1838 if (var->dynamic->pretty_printer != NULL)
1839 {
1840 gdbpy_enter_varobj enter_py (var);
1841
1842 Py_XDECREF (var->dynamic->constructor);
1843 Py_XDECREF (var->dynamic->pretty_printer);
1844 }
1845 #endif
1846
1847 if (is_root_p (var))
1848 delete var->root;
1849
1850 delete var->dynamic;
1851 }
1852
1853 /* Return the type of the value that's stored in VAR,
1854 or that would have being stored there if the
1855 value were accessible.
1856
1857 This differs from VAR->type in that VAR->type is always
1858 the true type of the expression in the source language.
1859 The return value of this function is the type we're
1860 actually storing in varobj, and using for displaying
1861 the values and for comparing previous and new values.
1862
1863 For example, top-level references are always stripped. */
1864 struct type *
1865 varobj_get_value_type (const struct varobj *var)
1866 {
1867 struct type *type;
1868
1869 if (var->value != nullptr)
1870 type = value_type (var->value.get ());
1871 else
1872 type = var->type;
1873
1874 type = check_typedef (type);
1875
1876 if (TYPE_IS_REFERENCE (type))
1877 type = get_target_type (type);
1878
1879 type = check_typedef (type);
1880
1881 return type;
1882 }
1883
1884 /* What is the default display for this variable? We assume that
1885 everything is "natural". Any exceptions? */
1886 static enum varobj_display_formats
1887 variable_default_display (struct varobj *var)
1888 {
1889 return FORMAT_NATURAL;
1890 }
1891
1892 /*
1893 * Language-dependencies
1894 */
1895
1896 /* Common entry points */
1897
1898 /* Return the number of children for a given variable.
1899 The result of this function is defined by the language
1900 implementation. The number of children returned by this function
1901 is the number of children that the user will see in the variable
1902 display. */
1903 static int
1904 number_of_children (const struct varobj *var)
1905 {
1906 return (*var->root->lang_ops->number_of_children) (var);
1907 }
1908
1909 /* What is the expression for the root varobj VAR? */
1910
1911 static std::string
1912 name_of_variable (const struct varobj *var)
1913 {
1914 return (*var->root->lang_ops->name_of_variable) (var);
1915 }
1916
1917 /* What is the name of the INDEX'th child of VAR? */
1918
1919 static std::string
1920 name_of_child (struct varobj *var, int index)
1921 {
1922 return (*var->root->lang_ops->name_of_child) (var, index);
1923 }
1924
1925 /* If frame associated with VAR can be found, switch
1926 to it and return true. Otherwise, return false. */
1927
1928 static bool
1929 check_scope (const struct varobj *var)
1930 {
1931 struct frame_info *fi;
1932 bool scope;
1933
1934 fi = frame_find_by_id (var->root->frame);
1935 scope = fi != NULL;
1936
1937 if (fi)
1938 {
1939 CORE_ADDR pc = get_frame_pc (fi);
1940
1941 if (pc < BLOCK_START (var->root->valid_block) ||
1942 pc >= BLOCK_END (var->root->valid_block))
1943 scope = false;
1944 else
1945 select_frame (fi);
1946 }
1947 return scope;
1948 }
1949
1950 /* Helper function to value_of_root. */
1951
1952 static struct value *
1953 value_of_root_1 (struct varobj **var_handle)
1954 {
1955 struct value *new_val = NULL;
1956 struct varobj *var = *var_handle;
1957 bool within_scope = false;
1958
1959 /* Only root variables can be updated... */
1960 if (!is_root_p (var))
1961 /* Not a root var. */
1962 return NULL;
1963
1964 scoped_restore_current_thread restore_thread;
1965
1966 /* Determine whether the variable is still around. */
1967 if (var->root->valid_block == NULL || var->root->floating)
1968 within_scope = true;
1969 else if (var->root->thread_id == 0)
1970 {
1971 /* The program was single-threaded when the variable object was
1972 created. Technically, it's possible that the program became
1973 multi-threaded since then, but we don't support such
1974 scenario yet. */
1975 within_scope = check_scope (var);
1976 }
1977 else
1978 {
1979 thread_info *thread = find_thread_global_id (var->root->thread_id);
1980
1981 if (thread != NULL)
1982 {
1983 switch_to_thread (thread);
1984 within_scope = check_scope (var);
1985 }
1986 }
1987
1988 if (within_scope)
1989 {
1990
1991 /* We need to catch errors here, because if evaluate
1992 expression fails we want to just return NULL. */
1993 try
1994 {
1995 new_val = evaluate_expression (var->root->exp.get ());
1996 }
1997 catch (const gdb_exception_error &except)
1998 {
1999 }
2000 }
2001
2002 return new_val;
2003 }
2004
2005 /* What is the ``struct value *'' of the root variable VAR?
2006 For floating variable object, evaluation can get us a value
2007 of different type from what is stored in varobj already. In
2008 that case:
2009 - *type_changed will be set to 1
2010 - old varobj will be freed, and new one will be
2011 created, with the same name.
2012 - *var_handle will be set to the new varobj
2013 Otherwise, *type_changed will be set to 0. */
2014 static struct value *
2015 value_of_root (struct varobj **var_handle, bool *type_changed)
2016 {
2017 struct varobj *var;
2018
2019 if (var_handle == NULL)
2020 return NULL;
2021
2022 var = *var_handle;
2023
2024 /* This should really be an exception, since this should
2025 only get called with a root variable. */
2026
2027 if (!is_root_p (var))
2028 return NULL;
2029
2030 if (var->root->floating)
2031 {
2032 struct varobj *tmp_var;
2033
2034 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2035 USE_SELECTED_FRAME);
2036 if (tmp_var == NULL)
2037 {
2038 return NULL;
2039 }
2040 std::string old_type = varobj_get_type (var);
2041 std::string new_type = varobj_get_type (tmp_var);
2042 if (old_type == new_type)
2043 {
2044 /* The expression presently stored inside var->root->exp
2045 remembers the locations of local variables relatively to
2046 the frame where the expression was created (in DWARF location
2047 button, for example). Naturally, those locations are not
2048 correct in other frames, so update the expression. */
2049
2050 std::swap (var->root->exp, tmp_var->root->exp);
2051
2052 varobj_delete (tmp_var, 0);
2053 *type_changed = 0;
2054 }
2055 else
2056 {
2057 tmp_var->obj_name = var->obj_name;
2058 tmp_var->from = var->from;
2059 tmp_var->to = var->to;
2060 varobj_delete (var, 0);
2061
2062 install_variable (tmp_var);
2063 *var_handle = tmp_var;
2064 var = *var_handle;
2065 *type_changed = true;
2066 }
2067 }
2068 else
2069 {
2070 *type_changed = 0;
2071 }
2072
2073 {
2074 struct value *value;
2075
2076 value = value_of_root_1 (var_handle);
2077 if (var->value == NULL || value == NULL)
2078 {
2079 /* For root varobj-s, a NULL value indicates a scoping issue.
2080 So, nothing to do in terms of checking for mutations. */
2081 }
2082 else if (varobj_value_has_mutated (var, value, value_type (value)))
2083 {
2084 /* The type has mutated, so the children are no longer valid.
2085 Just delete them, and tell our caller that the type has
2086 changed. */
2087 varobj_delete (var, 1 /* only_children */);
2088 var->num_children = -1;
2089 var->to = -1;
2090 var->from = -1;
2091 *type_changed = true;
2092 }
2093 return value;
2094 }
2095 }
2096
2097 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2098 static struct value *
2099 value_of_child (const struct varobj *parent, int index)
2100 {
2101 struct value *value;
2102
2103 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2104
2105 return value;
2106 }
2107
2108 /* GDB already has a command called "value_of_variable". Sigh. */
2109 static std::string
2110 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2111 {
2112 if (var->root->is_valid)
2113 {
2114 if (var->dynamic->pretty_printer != NULL)
2115 return varobj_value_get_print_value (var->value.get (), var->format,
2116 var);
2117 return (*var->root->lang_ops->value_of_variable) (var, format);
2118 }
2119 else
2120 return std::string ();
2121 }
2122
2123 void
2124 varobj_formatted_print_options (struct value_print_options *opts,
2125 enum varobj_display_formats format)
2126 {
2127 get_formatted_print_options (opts, format_code[(int) format]);
2128 opts->deref_ref = 0;
2129 opts->raw = !pretty_printing;
2130 }
2131
2132 std::string
2133 varobj_value_get_print_value (struct value *value,
2134 enum varobj_display_formats format,
2135 const struct varobj *var)
2136 {
2137 struct value_print_options opts;
2138 struct type *type = NULL;
2139 long len = 0;
2140 gdb::unique_xmalloc_ptr<char> encoding;
2141 /* Initialize it just to avoid a GCC false warning. */
2142 CORE_ADDR str_addr = 0;
2143 bool string_print = false;
2144
2145 if (value == NULL)
2146 return std::string ();
2147
2148 string_file stb;
2149 std::string thevalue;
2150
2151 #if HAVE_PYTHON
2152 if (gdb_python_initialized)
2153 {
2154 PyObject *value_formatter = var->dynamic->pretty_printer;
2155
2156 gdbpy_enter_varobj enter_py (var);
2157
2158 if (value_formatter)
2159 {
2160 /* First check to see if we have any children at all. If so,
2161 we simply return {...}. */
2162 if (dynamic_varobj_has_child_method (var))
2163 return "{...}";
2164
2165 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2166 {
2167 struct value *replacement;
2168
2169 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2170 &replacement,
2171 &stb);
2172
2173 /* If we have string like output ... */
2174 if (output != NULL)
2175 {
2176 /* If this is a lazy string, extract it. For lazy
2177 strings we always print as a string, so set
2178 string_print. */
2179 if (gdbpy_is_lazy_string (output.get ()))
2180 {
2181 gdbpy_extract_lazy_string (output.get (), &str_addr,
2182 &type, &len, &encoding);
2183 string_print = true;
2184 }
2185 else
2186 {
2187 /* If it is a regular (non-lazy) string, extract
2188 it and copy the contents into THEVALUE. If the
2189 hint says to print it as a string, set
2190 string_print. Otherwise just return the extracted
2191 string as a value. */
2192
2193 gdb::unique_xmalloc_ptr<char> s
2194 = python_string_to_target_string (output.get ());
2195
2196 if (s)
2197 {
2198 struct gdbarch *gdbarch;
2199
2200 gdb::unique_xmalloc_ptr<char> hint
2201 = gdbpy_get_display_hint (value_formatter);
2202 if (hint)
2203 {
2204 if (!strcmp (hint.get (), "string"))
2205 string_print = true;
2206 }
2207
2208 thevalue = std::string (s.get ());
2209 len = thevalue.size ();
2210 gdbarch = value_type (value)->arch ();
2211 type = builtin_type (gdbarch)->builtin_char;
2212
2213 if (!string_print)
2214 return thevalue;
2215 }
2216 else
2217 gdbpy_print_stack ();
2218 }
2219 }
2220 /* If the printer returned a replacement value, set VALUE
2221 to REPLACEMENT. If there is not a replacement value,
2222 just use the value passed to this function. */
2223 if (replacement)
2224 value = replacement;
2225 }
2226 }
2227 }
2228 #endif
2229
2230 varobj_formatted_print_options (&opts, format);
2231
2232 /* If the THEVALUE has contents, it is a regular string. */
2233 if (!thevalue.empty ())
2234 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2235 len, encoding.get (), 0, &opts);
2236 else if (string_print)
2237 /* Otherwise, if string_print is set, and it is not a regular
2238 string, it is a lazy string. */
2239 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2240 else
2241 /* All other cases. */
2242 common_val_print (value, &stb, 0, &opts, current_language);
2243
2244 return std::move (stb.string ());
2245 }
2246
2247 bool
2248 varobj_editable_p (const struct varobj *var)
2249 {
2250 struct type *type;
2251
2252 if (!(var->root->is_valid && var->value != nullptr
2253 && VALUE_LVAL (var->value.get ())))
2254 return false;
2255
2256 type = varobj_get_value_type (var);
2257
2258 switch (type->code ())
2259 {
2260 case TYPE_CODE_STRUCT:
2261 case TYPE_CODE_UNION:
2262 case TYPE_CODE_ARRAY:
2263 case TYPE_CODE_FUNC:
2264 case TYPE_CODE_METHOD:
2265 return false;
2266 break;
2267
2268 default:
2269 return true;
2270 break;
2271 }
2272 }
2273
2274 /* Call VAR's value_is_changeable_p language-specific callback. */
2275
2276 bool
2277 varobj_value_is_changeable_p (const struct varobj *var)
2278 {
2279 return var->root->lang_ops->value_is_changeable_p (var);
2280 }
2281
2282 /* Return true if that varobj is floating, that is is always evaluated in the
2283 selected frame, and not bound to thread/frame. Such variable objects
2284 are created using '@' as frame specifier to -var-create. */
2285 bool
2286 varobj_floating_p (const struct varobj *var)
2287 {
2288 return var->root->floating;
2289 }
2290
2291 /* Implement the "value_is_changeable_p" varobj callback for most
2292 languages. */
2293
2294 bool
2295 varobj_default_value_is_changeable_p (const struct varobj *var)
2296 {
2297 bool r;
2298 struct type *type;
2299
2300 if (CPLUS_FAKE_CHILD (var))
2301 return false;
2302
2303 type = varobj_get_value_type (var);
2304
2305 switch (type->code ())
2306 {
2307 case TYPE_CODE_STRUCT:
2308 case TYPE_CODE_UNION:
2309 case TYPE_CODE_ARRAY:
2310 r = false;
2311 break;
2312
2313 default:
2314 r = true;
2315 }
2316
2317 return r;
2318 }
2319
2320 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback
2321 for each one. */
2322
2323 void
2324 all_root_varobjs (gdb::function_view<void (struct varobj *var)> func)
2325 {
2326 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2327 auto iter = rootlist.begin ();
2328 auto end = rootlist.end ();
2329 while (iter != end)
2330 {
2331 auto self = iter++;
2332 func ((*self)->rootvar);
2333 }
2334 }
2335
2336 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2337 defined on globals. It is a helper for varobj_invalidate.
2338
2339 This function is called after changing the symbol file, in this case the
2340 pointers to "struct type" stored by the varobj are no longer valid. All
2341 varobj must be either re-evaluated, or marked as invalid here. */
2342
2343 static void
2344 varobj_invalidate_iter (struct varobj *var)
2345 {
2346 /* global and floating var must be re-evaluated. */
2347 if (var->root->floating || var->root->valid_block == NULL)
2348 {
2349 struct varobj *tmp_var;
2350
2351 /* Try to create a varobj with same expression. If we succeed
2352 replace the old varobj, otherwise invalidate it. */
2353 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2354 USE_CURRENT_FRAME);
2355 if (tmp_var != NULL)
2356 {
2357 tmp_var->obj_name = var->obj_name;
2358 varobj_delete (var, 0);
2359 install_variable (tmp_var);
2360 }
2361 else
2362 var->root->is_valid = false;
2363 }
2364 else /* locals must be invalidated. */
2365 var->root->is_valid = false;
2366 }
2367
2368 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2369 are defined on globals.
2370 Invalidated varobjs will be always printed in_scope="invalid". */
2371
2372 void
2373 varobj_invalidate (void)
2374 {
2375 all_root_varobjs (varobj_invalidate_iter);
2376 }
2377
2378 /* A hash function for a varobj. */
2379
2380 static hashval_t
2381 hash_varobj (const void *a)
2382 {
2383 const varobj *obj = (const varobj *) a;
2384 return htab_hash_string (obj->obj_name.c_str ());
2385 }
2386
2387 /* A hash table equality function for varobjs. */
2388
2389 static int
2390 eq_varobj_and_string (const void *a, const void *b)
2391 {
2392 const varobj *obj = (const varobj *) a;
2393 const char *name = (const char *) b;
2394
2395 return obj->obj_name == name;
2396 }
2397
2398 void _initialize_varobj ();
2399 void
2400 _initialize_varobj ()
2401 {
2402 varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string,
2403 nullptr, xcalloc, xfree);
2404
2405 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2406 &varobjdebug,
2407 _("Set varobj debugging."),
2408 _("Show varobj debugging."),
2409 _("When non-zero, varobj debugging is enabled."),
2410 NULL, show_varobjdebug,
2411 &setdebuglist, &showdebuglist);
2412 }
This page took 0.079703 seconds and 4 git commands to generate.