Have parser reset the innermost block tracker
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "common/vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static bool pretty_printing = false;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = true;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. */
69 struct varobj_root
70 {
71 /* The expression for this parent. */
72 expression_up exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block = NULL;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame = null_frame_id;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id = 0;
87
88 /* If true, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 bool floating = false;
92
93 /* Flag that indicates validity: set to false when this varobj_root refers
94 to symbols that do not exist anymore. */
95 bool is_valid = true;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops = NULL;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar = NULL;
103
104 /* Next root variable */
105 struct varobj_root *next = NULL;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 bool children_requested = false;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor = NULL;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer = NULL;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter = NULL;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item = NULL;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, bool);
152
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
154
155 static bool install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168
169 static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
172 static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
174
175 /* Language-specific routines. */
176
177 static int number_of_children (const struct varobj *);
178
179 static std::string name_of_variable (const struct varobj *);
180
181 static std::string name_of_child (struct varobj *, int);
182
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
184
185 static struct value *value_of_child (const struct varobj *parent, int index);
186
187 static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
189
190 static bool is_root_p (const struct varobj *var);
191
192 static struct varobj *varobj_add_child (struct varobj *var,
193 struct varobj_item *item);
194
195 /* Private data */
196
197 /* Mappings of varobj_display_formats enums to gdb's format codes. */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199
200 /* Header of the list of root variable objects. */
201 static struct varobj_root *rootlist;
202
203 /* Prime number indicating the number of buckets in the hash table. */
204 /* A prime large enough to avoid too many collisions. */
205 #define VAROBJ_TABLE_SIZE 227
206
207 /* Pointer to the varobj hash table (built at run time). */
208 static struct vlist **varobj_table;
209
210 \f
211
212 /* API Implementation */
213 static bool
214 is_root_p (const struct varobj *var)
215 {
216 return (var->root->rootvar == var);
217 }
218
219 #ifdef HAVE_PYTHON
220
221 /* See python-internal.h. */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224 {
225 }
226
227 #endif
228
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234 {
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
243 {
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
250
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
255 return frame;
256 }
257
258 return NULL;
259 }
260
261 /* Creates a varobj (not its children). */
262
263 struct varobj *
264 varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
266 {
267 /* Fill out a varobj structure for the (root) variable being constructed. */
268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
269
270 if (expression != NULL)
271 {
272 struct frame_info *fi;
273 struct frame_id old_id = null_frame_id;
274 const struct block *block;
275 const char *p;
276 struct value *value = NULL;
277 CORE_ADDR pc;
278
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
284 /* Allow creator to specify context of variable. */
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
297 else
298 fi = NULL;
299
300 if (type == USE_SELECTED_FRAME)
301 var->root->floating = true;
302
303 pc = 0;
304 block = NULL;
305 if (fi != NULL)
306 {
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
309 }
310
311 p = expression;
312 /* Wrap the call to parse expression, so we can
313 return a sensible error. */
314 TRY
315 {
316 var->root->exp = parse_exp_1 (&p, pc, block, 0,
317 INNERMOST_BLOCK_FOR_SYMBOLS
318 | INNERMOST_BLOCK_FOR_REGISTERS);
319 }
320
321 CATCH (except, RETURN_MASK_ERROR)
322 {
323 return NULL;
324 }
325 END_CATCH
326
327 /* Don't allow variables to be created for types. */
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
331 {
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
334 return NULL;
335 }
336
337 var->format = variable_default_display (var.get ());
338 var->root->valid_block =
339 var->root->floating ? NULL : innermost_block.block ();
340 var->name = expression;
341 /* For a root var, the name and the expr are the same. */
342 var->path_expr = expression;
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
347 Since select_frame is so benign, just call it for all cases. */
348 if (var->root->valid_block)
349 {
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
357 var->root->frame = get_frame_id (fi);
358 var->root->thread_id = inferior_thread ()->global_num;
359 old_id = get_frame_id (get_selected_frame (NULL));
360 select_frame (fi);
361 }
362
363 /* We definitely need to catch errors here.
364 If evaluate_expression succeeds we got the value we wanted.
365 But if it fails, we still go on with a call to evaluate_type(). */
366 TRY
367 {
368 value = evaluate_expression (var->root->exp.get ());
369 }
370 CATCH (except, RETURN_MASK_ERROR)
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
375
376 var->type = value_type (type_only_value);
377 }
378 END_CATCH
379
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
388
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
391
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
393
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
396
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
400 }
401
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
404
405 if ((var != NULL) && (objname != NULL))
406 {
407 var->obj_name = objname;
408
409 /* If a varobj name is duplicated, the install will fail so
410 we must cleanup. */
411 if (!install_variable (var.get ()))
412 return NULL;
413 }
414
415 return var.release ();
416 }
417
418 /* Generates an unique name that can be used for a varobj. */
419
420 std::string
421 varobj_gen_name (void)
422 {
423 static int id = 0;
424
425 /* Generate a name for this object. */
426 id++;
427 return string_printf ("var%d", id);
428 }
429
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
432
433 struct varobj *
434 varobj_get_handle (const char *objname)
435 {
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
448 cv = cv->next;
449
450 if (cv == NULL)
451 error (_("Variable object not found"));
452
453 return cv->var;
454 }
455
456 /* Given the handle, return the name of the object. */
457
458 const char *
459 varobj_get_objname (const struct varobj *var)
460 {
461 return var->obj_name.c_str ();
462 }
463
464 /* Given the handle, return the expression represented by the
465 object. */
466
467 std::string
468 varobj_get_expression (const struct varobj *var)
469 {
470 return name_of_variable (var);
471 }
472
473 /* See varobj.h. */
474
475 int
476 varobj_delete (struct varobj *var, bool only_children)
477 {
478 return delete_variable (var, only_children);
479 }
480
481 #if HAVE_PYTHON
482
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485 static PyObject *
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
487 {
488 PyObject *val_obj = NULL;
489 PyObject *printer;
490
491 val_obj = value_to_value_object (value);
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
498 }
499
500 #endif
501
502 /* Set/Get variable object display format. */
503
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507 {
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
523 if (varobj_value_is_changeable_p (var)
524 && var->value != nullptr && !value_lazy (var->value.get ()))
525 {
526 var->print_value = varobj_value_get_print_value (var->value.get (),
527 var->format, var);
528 }
529
530 return var->format;
531 }
532
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
535 {
536 return var->format;
537 }
538
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
541 {
542 gdb::unique_xmalloc_ptr<char> result;
543
544 #if HAVE_PYTHON
545 if (!gdb_python_initialized)
546 return NULL;
547
548 gdbpy_enter_varobj enter_py (var);
549
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
552 #endif
553
554 return result;
555 }
556
557 /* Return true if the varobj has items after TO, false otherwise. */
558
559 bool
560 varobj_has_more (const struct varobj *var, int to)
561 {
562 if (var->children.size () > to)
563 return true;
564
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
567 }
568
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
573 int
574 varobj_get_thread_id (const struct varobj *var)
575 {
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580 }
581
582 void
583 varobj_set_frozen (struct varobj *var, bool frozen)
584 {
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593 }
594
595 bool
596 varobj_get_frozen (const struct varobj *var)
597 {
598 return var->frozen;
599 }
600
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
606 void
607 varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
609 {
610 int len = children.size ();
611
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
615 *to = len;
616 }
617 else
618 {
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
623 if (*from > *to)
624 *from = *to;
625 }
626 }
627
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631 static void
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
637 bool *cchanged,
638 int index,
639 struct varobj_item *item)
640 {
641 if (var->children.size () < index + 1)
642 {
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
645
646 if (newobj != NULL)
647 {
648 newobj->push_back (child);
649 *cchanged = true;
650 }
651 }
652 else
653 {
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
656
657 if (type_updated)
658 {
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
661 }
662 if (install_new_value (existing, item->value, 0))
663 {
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
666 }
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
669 }
670 }
671
672 #if HAVE_PYTHON
673
674 static bool
675 dynamic_varobj_has_child_method (const struct varobj *var)
676 {
677 PyObject *printer = var->dynamic->pretty_printer;
678
679 if (!gdb_python_initialized)
680 return false;
681
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
684 }
685 #endif
686
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
692 {
693 #if HAVE_PYTHON
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
696 #endif
697
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
700 }
701
702 /* Release and clear VAR's saved item, if any. */
703
704 static void
705 varobj_clear_saved_item (struct varobj_dynamic *var)
706 {
707 if (var->saved_item != NULL)
708 {
709 value_decref (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
712 }
713 }
714
715 static bool
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
721 bool *cchanged,
722 bool update_children,
723 int from,
724 int to)
725 {
726 int i;
727
728 *cchanged = false;
729
730 if (update_children || var->dynamic->child_iter == NULL)
731 {
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
734
735 varobj_clear_saved_item (var->dynamic);
736
737 i = 0;
738
739 if (var->dynamic->child_iter == NULL)
740 return false;
741 }
742 else
743 i = var->children.size ();
744
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
748 {
749 varobj_item *item;
750
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
753 {
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
756 }
757 else
758 {
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 item->value = release_value (item->value).release ();
764 }
765
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
775 {
776 bool can_mention = from < 0 || i >= from;
777
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
783 item);
784
785 delete item;
786 }
787 else
788 {
789 var->dynamic->saved_item = item;
790
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
795 }
796
797 if (i < var->children.size ())
798 {
799 *cchanged = true;
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
804 }
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
808 if (to >= 0 && var->children.size () < to)
809 *cchanged = true;
810
811 var->num_children = var->children.size ();
812
813 return true;
814 }
815
816 int
817 varobj_get_num_children (struct varobj *var)
818 {
819 if (var->num_children == -1)
820 {
821 if (varobj_is_dynamic_p (var))
822 {
823 bool dummy;
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
828 false, 0, 0);
829 }
830 else
831 var->num_children = number_of_children (var);
832 }
833
834 return var->num_children >= 0 ? var->num_children : 0;
835 }
836
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
839
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
842 {
843 var->dynamic->children_requested = true;
844
845 if (varobj_is_dynamic_p (var))
846 {
847 bool children_changed;
848
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
856 }
857
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
864
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
869
870 for (int i = 0; i < var->num_children; i++)
871 {
872 if (var->children[i] == NULL)
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
879 }
880 }
881
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
884 }
885
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
888 {
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
892
893 return v;
894 }
895
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
898 */
899
900 std::string
901 varobj_get_type (struct varobj *var)
902 {
903 /* For the "fake" variables, do not return a type. (Its type is
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
908
909 return type_to_string (var->type);
910 }
911
912 /* Obtain the type of an object variable. */
913
914 struct type *
915 varobj_get_gdb_type (const struct varobj *var)
916 {
917 return var->type;
918 }
919
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
923 static bool
924 is_path_expr_parent (const struct varobj *var)
925 {
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928 }
929
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
933
934 bool
935 varobj_default_is_path_expr_parent (const struct varobj *var)
936 {
937 return true;
938 }
939
940 /* Return the path expression parent for VAR. */
941
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
944 {
945 const struct varobj *parent = var;
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
954
955 return parent;
956 }
957
958 /* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
960
961 const char *
962 varobj_get_path_expr (const struct varobj *var)
963 {
964 if (var->path_expr.empty ())
965 {
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
968 child varobj. */
969 struct varobj *mutable_var = (struct varobj *) var;
970 gdb_assert (!is_root_p (var));
971
972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
973 }
974
975 return var->path_expr.c_str ();
976 }
977
978 const struct language_defn *
979 varobj_get_language (const struct varobj *var)
980 {
981 return var->root->exp->language_defn;
982 }
983
984 int
985 varobj_get_attributes (const struct varobj *var)
986 {
987 int attributes = 0;
988
989 if (varobj_editable_p (var))
990 /* FIXME: define masks for attributes. */
991 attributes |= 0x00000001; /* Editable */
992
993 return attributes;
994 }
995
996 /* Return true if VAR is a dynamic varobj. */
997
998 bool
999 varobj_is_dynamic_p (const struct varobj *var)
1000 {
1001 return var->dynamic->pretty_printer != NULL;
1002 }
1003
1004 std::string
1005 varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1007 {
1008 return my_value_of_variable (var, format);
1009 }
1010
1011 std::string
1012 varobj_get_value (struct varobj *var)
1013 {
1014 return my_value_of_variable (var, var->format);
1015 }
1016
1017 /* Set the value of an object variable (if it is editable) to the
1018 value of the given expression. */
1019 /* Note: Invokes functions that can call error(). */
1020
1021 bool
1022 varobj_set_value (struct varobj *var, const char *expression)
1023 {
1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
1025 /* The argument "expression" contains the variable's new value.
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
1029 int saved_input_radix = input_radix;
1030 const char *s = expression;
1031
1032 gdb_assert (varobj_editable_p (var));
1033
1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1036 TRY
1037 {
1038 value = evaluate_expression (exp.get ());
1039 }
1040
1041 CATCH (except, RETURN_MASK_ERROR)
1042 {
1043 /* We cannot proceed without a valid expression. */
1044 return false;
1045 }
1046 END_CATCH
1047
1048 /* All types that are editable must also be changeable. */
1049 gdb_assert (varobj_value_is_changeable_p (var));
1050
1051 /* The value of a changeable variable object must not be lazy. */
1052 gdb_assert (!value_lazy (var->value.get ()));
1053
1054 /* Need to coerce the input. We want to check if the
1055 value of the variable object will be different
1056 after assignment, and the first thing value_assign
1057 does is coerce the input.
1058 For example, if we are assigning an array to a pointer variable we
1059 should compare the pointer with the array's address, not with the
1060 array's content. */
1061 value = coerce_array (value);
1062
1063 /* The new value may be lazy. value_assign, or
1064 rather value_contents, will take care of this. */
1065 TRY
1066 {
1067 val = value_assign (var->value.get (), value);
1068 }
1069
1070 CATCH (except, RETURN_MASK_ERROR)
1071 {
1072 return false;
1073 }
1074 END_CATCH
1075
1076 /* If the value has changed, record it, so that next -var-update can
1077 report this change. If a variable had a value of '1', we've set it
1078 to '333' and then set again to '1', when -var-update will report this
1079 variable as changed -- because the first assignment has set the
1080 'updated' flag. There's no need to optimize that, because return value
1081 of -var-update should be considered an approximation. */
1082 var->updated = install_new_value (var, val, false /* Compare values. */);
1083 input_radix = saved_input_radix;
1084 return true;
1085 }
1086
1087 #if HAVE_PYTHON
1088
1089 /* A helper function to install a constructor function and visualizer
1090 in a varobj_dynamic. */
1091
1092 static void
1093 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1094 PyObject *visualizer)
1095 {
1096 Py_XDECREF (var->constructor);
1097 var->constructor = constructor;
1098
1099 Py_XDECREF (var->pretty_printer);
1100 var->pretty_printer = visualizer;
1101
1102 varobj_iter_delete (var->child_iter);
1103 var->child_iter = NULL;
1104 }
1105
1106 /* Install the default visualizer for VAR. */
1107
1108 static void
1109 install_default_visualizer (struct varobj *var)
1110 {
1111 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1112 if (CPLUS_FAKE_CHILD (var))
1113 return;
1114
1115 if (pretty_printing)
1116 {
1117 gdbpy_ref<> pretty_printer;
1118
1119 if (var->value != nullptr)
1120 {
1121 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1122 if (pretty_printer == nullptr)
1123 {
1124 gdbpy_print_stack ();
1125 error (_("Cannot instantiate printer for default visualizer"));
1126 }
1127 }
1128
1129 if (pretty_printer == Py_None)
1130 pretty_printer.reset (nullptr);
1131
1132 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1133 }
1134 }
1135
1136 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1137 make a new object. */
1138
1139 static void
1140 construct_visualizer (struct varobj *var, PyObject *constructor)
1141 {
1142 PyObject *pretty_printer;
1143
1144 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1145 if (CPLUS_FAKE_CHILD (var))
1146 return;
1147
1148 Py_INCREF (constructor);
1149 if (constructor == Py_None)
1150 pretty_printer = NULL;
1151 else
1152 {
1153 pretty_printer = instantiate_pretty_printer (constructor,
1154 var->value.get ());
1155 if (! pretty_printer)
1156 {
1157 gdbpy_print_stack ();
1158 Py_DECREF (constructor);
1159 constructor = Py_None;
1160 Py_INCREF (constructor);
1161 }
1162
1163 if (pretty_printer == Py_None)
1164 {
1165 Py_DECREF (pretty_printer);
1166 pretty_printer = NULL;
1167 }
1168 }
1169
1170 install_visualizer (var->dynamic, constructor, pretty_printer);
1171 }
1172
1173 #endif /* HAVE_PYTHON */
1174
1175 /* A helper function for install_new_value. This creates and installs
1176 a visualizer for VAR, if appropriate. */
1177
1178 static void
1179 install_new_value_visualizer (struct varobj *var)
1180 {
1181 #if HAVE_PYTHON
1182 /* If the constructor is None, then we want the raw value. If VAR
1183 does not have a value, just skip this. */
1184 if (!gdb_python_initialized)
1185 return;
1186
1187 if (var->dynamic->constructor != Py_None && var->value != NULL)
1188 {
1189 gdbpy_enter_varobj enter_py (var);
1190
1191 if (var->dynamic->constructor == NULL)
1192 install_default_visualizer (var);
1193 else
1194 construct_visualizer (var, var->dynamic->constructor);
1195 }
1196 #else
1197 /* Do nothing. */
1198 #endif
1199 }
1200
1201 /* When using RTTI to determine variable type it may be changed in runtime when
1202 the variable value is changed. This function checks whether type of varobj
1203 VAR will change when a new value NEW_VALUE is assigned and if it is so
1204 updates the type of VAR. */
1205
1206 static bool
1207 update_type_if_necessary (struct varobj *var, struct value *new_value)
1208 {
1209 if (new_value)
1210 {
1211 struct value_print_options opts;
1212
1213 get_user_print_options (&opts);
1214 if (opts.objectprint)
1215 {
1216 struct type *new_type = value_actual_type (new_value, 0, 0);
1217 std::string new_type_str = type_to_string (new_type);
1218 std::string curr_type_str = varobj_get_type (var);
1219
1220 /* Did the type name change? */
1221 if (curr_type_str != new_type_str)
1222 {
1223 var->type = new_type;
1224
1225 /* This information may be not valid for a new type. */
1226 varobj_delete (var, 1);
1227 var->children.clear ();
1228 var->num_children = -1;
1229 return true;
1230 }
1231 }
1232 }
1233
1234 return false;
1235 }
1236
1237 /* Assign a new value to a variable object. If INITIAL is true,
1238 this is the first assignment after the variable object was just
1239 created, or changed type. In that case, just assign the value
1240 and return false.
1241 Otherwise, assign the new value, and return true if the value is
1242 different from the current one, false otherwise. The comparison is
1243 done on textual representation of value. Therefore, some types
1244 need not be compared. E.g. for structures the reported value is
1245 always "{...}", so no comparison is necessary here. If the old
1246 value was NULL and new one is not, or vice versa, we always return true.
1247
1248 The VALUE parameter should not be released -- the function will
1249 take care of releasing it when needed. */
1250 static bool
1251 install_new_value (struct varobj *var, struct value *value, bool initial)
1252 {
1253 bool changeable;
1254 bool need_to_fetch;
1255 bool changed = false;
1256 bool intentionally_not_fetched = false;
1257
1258 /* We need to know the varobj's type to decide if the value should
1259 be fetched or not. C++ fake children (public/protected/private)
1260 don't have a type. */
1261 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1262 changeable = varobj_value_is_changeable_p (var);
1263
1264 /* If the type has custom visualizer, we consider it to be always
1265 changeable. FIXME: need to make sure this behaviour will not
1266 mess up read-sensitive values. */
1267 if (var->dynamic->pretty_printer != NULL)
1268 changeable = true;
1269
1270 need_to_fetch = changeable;
1271
1272 /* We are not interested in the address of references, and given
1273 that in C++ a reference is not rebindable, it cannot
1274 meaningfully change. So, get hold of the real value. */
1275 if (value)
1276 value = coerce_ref (value);
1277
1278 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1279 /* For unions, we need to fetch the value implicitly because
1280 of implementation of union member fetch. When gdb
1281 creates a value for a field and the value of the enclosing
1282 structure is not lazy, it immediately copies the necessary
1283 bytes from the enclosing values. If the enclosing value is
1284 lazy, the call to value_fetch_lazy on the field will read
1285 the data from memory. For unions, that means we'll read the
1286 same memory more than once, which is not desirable. So
1287 fetch now. */
1288 need_to_fetch = true;
1289
1290 /* The new value might be lazy. If the type is changeable,
1291 that is we'll be comparing values of this type, fetch the
1292 value now. Otherwise, on the next update the old value
1293 will be lazy, which means we've lost that old value. */
1294 if (need_to_fetch && value && value_lazy (value))
1295 {
1296 const struct varobj *parent = var->parent;
1297 bool frozen = var->frozen;
1298
1299 for (; !frozen && parent; parent = parent->parent)
1300 frozen |= parent->frozen;
1301
1302 if (frozen && initial)
1303 {
1304 /* For variables that are frozen, or are children of frozen
1305 variables, we don't do fetch on initial assignment.
1306 For non-initial assignemnt we do the fetch, since it means we're
1307 explicitly asked to compare the new value with the old one. */
1308 intentionally_not_fetched = true;
1309 }
1310 else
1311 {
1312
1313 TRY
1314 {
1315 value_fetch_lazy (value);
1316 }
1317
1318 CATCH (except, RETURN_MASK_ERROR)
1319 {
1320 /* Set the value to NULL, so that for the next -var-update,
1321 we don't try to compare the new value with this value,
1322 that we couldn't even read. */
1323 value = NULL;
1324 }
1325 END_CATCH
1326 }
1327 }
1328
1329 /* Get a reference now, before possibly passing it to any Python
1330 code that might release it. */
1331 value_ref_ptr value_holder;
1332 if (value != NULL)
1333 value_holder = value_ref_ptr::new_reference (value);
1334
1335 /* Below, we'll be comparing string rendering of old and new
1336 values. Don't get string rendering if the value is
1337 lazy -- if it is, the code above has decided that the value
1338 should not be fetched. */
1339 std::string print_value;
1340 if (value != NULL && !value_lazy (value)
1341 && var->dynamic->pretty_printer == NULL)
1342 print_value = varobj_value_get_print_value (value, var->format, var);
1343
1344 /* If the type is changeable, compare the old and the new values.
1345 If this is the initial assignment, we don't have any old value
1346 to compare with. */
1347 if (!initial && changeable)
1348 {
1349 /* If the value of the varobj was changed by -var-set-value,
1350 then the value in the varobj and in the target is the same.
1351 However, that value is different from the value that the
1352 varobj had after the previous -var-update. So need to the
1353 varobj as changed. */
1354 if (var->updated)
1355 changed = true;
1356 else if (var->dynamic->pretty_printer == NULL)
1357 {
1358 /* Try to compare the values. That requires that both
1359 values are non-lazy. */
1360 if (var->not_fetched && value_lazy (var->value.get ()))
1361 {
1362 /* This is a frozen varobj and the value was never read.
1363 Presumably, UI shows some "never read" indicator.
1364 Now that we've fetched the real value, we need to report
1365 this varobj as changed so that UI can show the real
1366 value. */
1367 changed = true;
1368 }
1369 else if (var->value == NULL && value == NULL)
1370 /* Equal. */
1371 ;
1372 else if (var->value == NULL || value == NULL)
1373 {
1374 changed = true;
1375 }
1376 else
1377 {
1378 gdb_assert (!value_lazy (var->value.get ()));
1379 gdb_assert (!value_lazy (value));
1380
1381 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1382 if (var->print_value != print_value)
1383 changed = true;
1384 }
1385 }
1386 }
1387
1388 if (!initial && !changeable)
1389 {
1390 /* For values that are not changeable, we don't compare the values.
1391 However, we want to notice if a value was not NULL and now is NULL,
1392 or vise versa, so that we report when top-level varobjs come in scope
1393 and leave the scope. */
1394 changed = (var->value != NULL) != (value != NULL);
1395 }
1396
1397 /* We must always keep the new value, since children depend on it. */
1398 var->value = value_holder;
1399 if (value && value_lazy (value) && intentionally_not_fetched)
1400 var->not_fetched = true;
1401 else
1402 var->not_fetched = false;
1403 var->updated = false;
1404
1405 install_new_value_visualizer (var);
1406
1407 /* If we installed a pretty-printer, re-compare the printed version
1408 to see if the variable changed. */
1409 if (var->dynamic->pretty_printer != NULL)
1410 {
1411 print_value = varobj_value_get_print_value (var->value.get (),
1412 var->format, var);
1413 if ((var->print_value.empty () && !print_value.empty ())
1414 || (!var->print_value.empty () && print_value.empty ())
1415 || (!var->print_value.empty () && !print_value.empty ()
1416 && var->print_value != print_value))
1417 changed = true;
1418 }
1419 var->print_value = print_value;
1420
1421 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1422
1423 return changed;
1424 }
1425
1426 /* Return the requested range for a varobj. VAR is the varobj. FROM
1427 and TO are out parameters; *FROM and *TO will be set to the
1428 selected sub-range of VAR. If no range was selected using
1429 -var-set-update-range, then both will be -1. */
1430 void
1431 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1432 {
1433 *from = var->from;
1434 *to = var->to;
1435 }
1436
1437 /* Set the selected sub-range of children of VAR to start at index
1438 FROM and end at index TO. If either FROM or TO is less than zero,
1439 this is interpreted as a request for all children. */
1440 void
1441 varobj_set_child_range (struct varobj *var, int from, int to)
1442 {
1443 var->from = from;
1444 var->to = to;
1445 }
1446
1447 void
1448 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1449 {
1450 #if HAVE_PYTHON
1451 PyObject *mainmod;
1452
1453 if (!gdb_python_initialized)
1454 return;
1455
1456 gdbpy_enter_varobj enter_py (var);
1457
1458 mainmod = PyImport_AddModule ("__main__");
1459 gdbpy_ref<> globals
1460 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
1463
1464 if (constructor == NULL)
1465 {
1466 gdbpy_print_stack ();
1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1468 }
1469
1470 construct_visualizer (var, constructor.get ());
1471
1472 /* If there are any children now, wipe them. */
1473 varobj_delete (var, 1 /* children only */);
1474 var->num_children = -1;
1475 #else
1476 error (_("Python support required"));
1477 #endif
1478 }
1479
1480 /* If NEW_VALUE is the new value of the given varobj (var), return
1481 true if var has mutated. In other words, if the type of
1482 the new value is different from the type of the varobj's old
1483 value.
1484
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1486
1487 static bool
1488 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1489 struct type *new_type)
1490 {
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
1496 return false;
1497
1498 if (var->root->lang_ops->value_has_mutated != NULL)
1499 {
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1508 }
1509 else
1510 return false;
1511 }
1512
1513 /* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1517 changed.
1518
1519 The IS_EXPLICIT parameter specifies if this call is result
1520 of MI request to update this specific variable, or
1521 result of implicit -var-update *. For implicit request, we don't
1522 update frozen variables.
1523
1524 NOTE: This function may delete the caller's varobj. If it
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
1527
1528 std::vector<varobj_update_result>
1529 varobj_update (struct varobj **varp, bool is_explicit)
1530 {
1531 bool type_changed = false;
1532 struct value *newobj;
1533 std::vector<varobj_update_result> stack;
1534 std::vector<varobj_update_result> result;
1535
1536 /* Frozen means frozen -- we don't check for any change in
1537 this varobj, including its going out of scope, or
1538 changing type. One use case for frozen varobjs is
1539 retaining previously evaluated expressions, and we don't
1540 want them to be reevaluated at all. */
1541 if (!is_explicit && (*varp)->frozen)
1542 return result;
1543
1544 if (!(*varp)->root->is_valid)
1545 {
1546 result.emplace_back (*varp, VAROBJ_INVALID);
1547 return result;
1548 }
1549
1550 if ((*varp)->root->rootvar == *varp)
1551 {
1552 varobj_update_result r (*varp);
1553
1554 /* Update the root variable. value_of_root can return NULL
1555 if the variable is no longer around, i.e. we stepped out of
1556 the frame in which a local existed. We are letting the
1557 value_of_root variable dispose of the varobj if the type
1558 has changed. */
1559 newobj = value_of_root (varp, &type_changed);
1560 if (update_type_if_necessary (*varp, newobj))
1561 type_changed = true;
1562 r.varobj = *varp;
1563 r.type_changed = type_changed;
1564 if (install_new_value ((*varp), newobj, type_changed))
1565 r.changed = true;
1566
1567 if (newobj == NULL)
1568 r.status = VAROBJ_NOT_IN_SCOPE;
1569 r.value_installed = true;
1570
1571 if (r.status == VAROBJ_NOT_IN_SCOPE)
1572 {
1573 if (r.type_changed || r.changed)
1574 result.push_back (std::move (r));
1575
1576 return result;
1577 }
1578
1579 stack.push_back (std::move (r));
1580 }
1581 else
1582 stack.emplace_back (*varp);
1583
1584 /* Walk through the children, reconstructing them all. */
1585 while (!stack.empty ())
1586 {
1587 varobj_update_result r = std::move (stack.back ());
1588 stack.pop_back ();
1589 struct varobj *v = r.varobj;
1590
1591 /* Update this variable, unless it's a root, which is already
1592 updated. */
1593 if (!r.value_installed)
1594 {
1595 struct type *new_type;
1596
1597 newobj = value_of_child (v->parent, v->index);
1598 if (update_type_if_necessary (v, newobj))
1599 r.type_changed = true;
1600 if (newobj)
1601 new_type = value_type (newobj);
1602 else
1603 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1604
1605 if (varobj_value_has_mutated (v, newobj, new_type))
1606 {
1607 /* The children are no longer valid; delete them now.
1608 Report the fact that its type changed as well. */
1609 varobj_delete (v, 1 /* only_children */);
1610 v->num_children = -1;
1611 v->to = -1;
1612 v->from = -1;
1613 v->type = new_type;
1614 r.type_changed = true;
1615 }
1616
1617 if (install_new_value (v, newobj, r.type_changed))
1618 {
1619 r.changed = true;
1620 v->updated = false;
1621 }
1622 }
1623
1624 /* We probably should not get children of a dynamic varobj, but
1625 for which -var-list-children was never invoked. */
1626 if (varobj_is_dynamic_p (v))
1627 {
1628 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1629 bool children_changed = false;
1630
1631 if (v->frozen)
1632 continue;
1633
1634 if (!v->dynamic->children_requested)
1635 {
1636 bool dummy;
1637
1638 /* If we initially did not have potential children, but
1639 now we do, consider the varobj as changed.
1640 Otherwise, if children were never requested, consider
1641 it as unchanged -- presumably, such varobj is not yet
1642 expanded in the UI, so we need not bother getting
1643 it. */
1644 if (!varobj_has_more (v, 0))
1645 {
1646 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1647 &dummy, false, 0, 0);
1648 if (varobj_has_more (v, 0))
1649 r.changed = true;
1650 }
1651
1652 if (r.changed)
1653 result.push_back (std::move (r));
1654
1655 continue;
1656 }
1657
1658 /* If update_dynamic_varobj_children returns false, then we have
1659 a non-conforming pretty-printer, so we skip it. */
1660 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1661 &newobj_vec,
1662 &unchanged, &children_changed,
1663 true, v->from, v->to))
1664 {
1665 if (children_changed || !newobj_vec.empty ())
1666 {
1667 r.children_changed = true;
1668 r.newobj = std::move (newobj_vec);
1669 }
1670 /* Push in reverse order so that the first child is
1671 popped from the work stack first, and so will be
1672 added to result first. This does not affect
1673 correctness, just "nicer". */
1674 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1675 {
1676 varobj_update_result item (type_changed_vec[i]);
1677
1678 /* Type may change only if value was changed. */
1679 item.changed = true;
1680 item.type_changed = true;
1681 item.value_installed = true;
1682
1683 stack.push_back (std::move (item));
1684 }
1685 for (int i = changed.size () - 1; i >= 0; --i)
1686 {
1687 varobj_update_result item (changed[i]);
1688
1689 item.changed = true;
1690 item.value_installed = true;
1691
1692 stack.push_back (std::move (item));
1693 }
1694 for (int i = unchanged.size () - 1; i >= 0; --i)
1695 {
1696 if (!unchanged[i]->frozen)
1697 {
1698 varobj_update_result item (unchanged[i]);
1699
1700 item.value_installed = true;
1701
1702 stack.push_back (std::move (item));
1703 }
1704 }
1705 if (r.changed || r.children_changed)
1706 result.push_back (std::move (r));
1707
1708 continue;
1709 }
1710 }
1711
1712 /* Push any children. Use reverse order so that the first
1713 child is popped from the work stack first, and so
1714 will be added to result first. This does not
1715 affect correctness, just "nicer". */
1716 for (int i = v->children.size () - 1; i >= 0; --i)
1717 {
1718 varobj *c = v->children[i];
1719
1720 /* Child may be NULL if explicitly deleted by -var-delete. */
1721 if (c != NULL && !c->frozen)
1722 stack.emplace_back (c);
1723 }
1724
1725 if (r.changed || r.type_changed)
1726 result.push_back (std::move (r));
1727 }
1728
1729 return result;
1730 }
1731
1732 /* Helper functions */
1733
1734 /*
1735 * Variable object construction/destruction
1736 */
1737
1738 static int
1739 delete_variable (struct varobj *var, bool only_children_p)
1740 {
1741 int delcount = 0;
1742
1743 delete_variable_1 (&delcount, var, only_children_p,
1744 true /* remove_from_parent_p */ );
1745
1746 return delcount;
1747 }
1748
1749 /* Delete the variable object VAR and its children. */
1750 /* IMPORTANT NOTE: If we delete a variable which is a child
1751 and the parent is not removed we dump core. It must be always
1752 initially called with remove_from_parent_p set. */
1753 static void
1754 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1755 bool remove_from_parent_p)
1756 {
1757 /* Delete any children of this variable, too. */
1758 for (varobj *child : var->children)
1759 {
1760 if (!child)
1761 continue;
1762
1763 if (!remove_from_parent_p)
1764 child->parent = NULL;
1765
1766 delete_variable_1 (delcountp, child, false, only_children_p);
1767 }
1768 var->children.clear ();
1769
1770 /* if we were called to delete only the children we are done here. */
1771 if (only_children_p)
1772 return;
1773
1774 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1775 /* If the name is empty, this is a temporary variable, that has not
1776 yet been installed, don't report it, it belongs to the caller... */
1777 if (!var->obj_name.empty ())
1778 {
1779 *delcountp = *delcountp + 1;
1780 }
1781
1782 /* If this variable has a parent, remove it from its parent's list. */
1783 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1784 (as indicated by remove_from_parent_p) we don't bother doing an
1785 expensive list search to find the element to remove when we are
1786 discarding the list afterwards. */
1787 if ((remove_from_parent_p) && (var->parent != NULL))
1788 var->parent->children[var->index] = NULL;
1789
1790 if (!var->obj_name.empty ())
1791 uninstall_variable (var);
1792
1793 /* Free memory associated with this variable. */
1794 delete var;
1795 }
1796
1797 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1798 static bool
1799 install_variable (struct varobj *var)
1800 {
1801 struct vlist *cv;
1802 struct vlist *newvl;
1803 const char *chp;
1804 unsigned int index = 0;
1805 unsigned int i = 1;
1806
1807 for (chp = var->obj_name.c_str (); *chp; chp++)
1808 {
1809 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1810 }
1811
1812 cv = *(varobj_table + index);
1813 while (cv != NULL && cv->var->obj_name != var->obj_name)
1814 cv = cv->next;
1815
1816 if (cv != NULL)
1817 error (_("Duplicate variable object name"));
1818
1819 /* Add varobj to hash table. */
1820 newvl = XNEW (struct vlist);
1821 newvl->next = *(varobj_table + index);
1822 newvl->var = var;
1823 *(varobj_table + index) = newvl;
1824
1825 /* If root, add varobj to root list. */
1826 if (is_root_p (var))
1827 {
1828 /* Add to list of root variables. */
1829 if (rootlist == NULL)
1830 var->root->next = NULL;
1831 else
1832 var->root->next = rootlist;
1833 rootlist = var->root;
1834 }
1835
1836 return true; /* OK */
1837 }
1838
1839 /* Unistall the object VAR. */
1840 static void
1841 uninstall_variable (struct varobj *var)
1842 {
1843 struct vlist *cv;
1844 struct vlist *prev;
1845 struct varobj_root *cr;
1846 struct varobj_root *prer;
1847 const char *chp;
1848 unsigned int index = 0;
1849 unsigned int i = 1;
1850
1851 /* Remove varobj from hash table. */
1852 for (chp = var->obj_name.c_str (); *chp; chp++)
1853 {
1854 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1855 }
1856
1857 cv = *(varobj_table + index);
1858 prev = NULL;
1859 while (cv != NULL && cv->var->obj_name != var->obj_name)
1860 {
1861 prev = cv;
1862 cv = cv->next;
1863 }
1864
1865 if (varobjdebug)
1866 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1867
1868 if (cv == NULL)
1869 {
1870 warning
1871 ("Assertion failed: Could not find variable object \"%s\" to delete",
1872 var->obj_name.c_str ());
1873 return;
1874 }
1875
1876 if (prev == NULL)
1877 *(varobj_table + index) = cv->next;
1878 else
1879 prev->next = cv->next;
1880
1881 xfree (cv);
1882
1883 /* If root, remove varobj from root list. */
1884 if (is_root_p (var))
1885 {
1886 /* Remove from list of root variables. */
1887 if (rootlist == var->root)
1888 rootlist = var->root->next;
1889 else
1890 {
1891 prer = NULL;
1892 cr = rootlist;
1893 while ((cr != NULL) && (cr->rootvar != var))
1894 {
1895 prer = cr;
1896 cr = cr->next;
1897 }
1898 if (cr == NULL)
1899 {
1900 warning (_("Assertion failed: Could not find "
1901 "varobj \"%s\" in root list"),
1902 var->obj_name.c_str ());
1903 return;
1904 }
1905 if (prer == NULL)
1906 rootlist = NULL;
1907 else
1908 prer->next = cr->next;
1909 }
1910 }
1911
1912 }
1913
1914 /* Create and install a child of the parent of the given name.
1915
1916 The created VAROBJ takes ownership of the allocated NAME. */
1917
1918 static struct varobj *
1919 create_child (struct varobj *parent, int index, std::string &name)
1920 {
1921 struct varobj_item item;
1922
1923 std::swap (item.name, name);
1924 item.value = value_of_child (parent, index);
1925
1926 return create_child_with_value (parent, index, &item);
1927 }
1928
1929 static struct varobj *
1930 create_child_with_value (struct varobj *parent, int index,
1931 struct varobj_item *item)
1932 {
1933 varobj *child = new varobj (parent->root);
1934
1935 /* NAME is allocated by caller. */
1936 std::swap (child->name, item->name);
1937 child->index = index;
1938 child->parent = parent;
1939
1940 if (varobj_is_anonymous_child (child))
1941 child->obj_name = string_printf ("%s.%d_anonymous",
1942 parent->obj_name.c_str (), index);
1943 else
1944 child->obj_name = string_printf ("%s.%s",
1945 parent->obj_name.c_str (),
1946 child->name.c_str ());
1947
1948 install_variable (child);
1949
1950 /* Compute the type of the child. Must do this before
1951 calling install_new_value. */
1952 if (item->value != NULL)
1953 /* If the child had no evaluation errors, var->value
1954 will be non-NULL and contain a valid type. */
1955 child->type = value_actual_type (item->value, 0, NULL);
1956 else
1957 /* Otherwise, we must compute the type. */
1958 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1959 child->index);
1960 install_new_value (child, item->value, 1);
1961
1962 return child;
1963 }
1964 \f
1965
1966 /*
1967 * Miscellaneous utility functions.
1968 */
1969
1970 /* Allocate memory and initialize a new variable. */
1971 varobj::varobj (varobj_root *root_)
1972 : root (root_), dynamic (new varobj_dynamic)
1973 {
1974 }
1975
1976 /* Free any allocated memory associated with VAR. */
1977
1978 varobj::~varobj ()
1979 {
1980 varobj *var = this;
1981
1982 #if HAVE_PYTHON
1983 if (var->dynamic->pretty_printer != NULL)
1984 {
1985 gdbpy_enter_varobj enter_py (var);
1986
1987 Py_XDECREF (var->dynamic->constructor);
1988 Py_XDECREF (var->dynamic->pretty_printer);
1989 }
1990 #endif
1991
1992 varobj_iter_delete (var->dynamic->child_iter);
1993 varobj_clear_saved_item (var->dynamic);
1994
1995 if (is_root_p (var))
1996 delete var->root;
1997
1998 delete var->dynamic;
1999 }
2000
2001 /* Return the type of the value that's stored in VAR,
2002 or that would have being stored there if the
2003 value were accessible.
2004
2005 This differs from VAR->type in that VAR->type is always
2006 the true type of the expession in the source language.
2007 The return value of this function is the type we're
2008 actually storing in varobj, and using for displaying
2009 the values and for comparing previous and new values.
2010
2011 For example, top-level references are always stripped. */
2012 struct type *
2013 varobj_get_value_type (const struct varobj *var)
2014 {
2015 struct type *type;
2016
2017 if (var->value != nullptr)
2018 type = value_type (var->value.get ());
2019 else
2020 type = var->type;
2021
2022 type = check_typedef (type);
2023
2024 if (TYPE_IS_REFERENCE (type))
2025 type = get_target_type (type);
2026
2027 type = check_typedef (type);
2028
2029 return type;
2030 }
2031
2032 /* What is the default display for this variable? We assume that
2033 everything is "natural". Any exceptions? */
2034 static enum varobj_display_formats
2035 variable_default_display (struct varobj *var)
2036 {
2037 return FORMAT_NATURAL;
2038 }
2039
2040 /*
2041 * Language-dependencies
2042 */
2043
2044 /* Common entry points */
2045
2046 /* Return the number of children for a given variable.
2047 The result of this function is defined by the language
2048 implementation. The number of children returned by this function
2049 is the number of children that the user will see in the variable
2050 display. */
2051 static int
2052 number_of_children (const struct varobj *var)
2053 {
2054 return (*var->root->lang_ops->number_of_children) (var);
2055 }
2056
2057 /* What is the expression for the root varobj VAR? */
2058
2059 static std::string
2060 name_of_variable (const struct varobj *var)
2061 {
2062 return (*var->root->lang_ops->name_of_variable) (var);
2063 }
2064
2065 /* What is the name of the INDEX'th child of VAR? */
2066
2067 static std::string
2068 name_of_child (struct varobj *var, int index)
2069 {
2070 return (*var->root->lang_ops->name_of_child) (var, index);
2071 }
2072
2073 /* If frame associated with VAR can be found, switch
2074 to it and return true. Otherwise, return false. */
2075
2076 static bool
2077 check_scope (const struct varobj *var)
2078 {
2079 struct frame_info *fi;
2080 bool scope;
2081
2082 fi = frame_find_by_id (var->root->frame);
2083 scope = fi != NULL;
2084
2085 if (fi)
2086 {
2087 CORE_ADDR pc = get_frame_pc (fi);
2088
2089 if (pc < BLOCK_START (var->root->valid_block) ||
2090 pc >= BLOCK_END (var->root->valid_block))
2091 scope = false;
2092 else
2093 select_frame (fi);
2094 }
2095 return scope;
2096 }
2097
2098 /* Helper function to value_of_root. */
2099
2100 static struct value *
2101 value_of_root_1 (struct varobj **var_handle)
2102 {
2103 struct value *new_val = NULL;
2104 struct varobj *var = *var_handle;
2105 bool within_scope = false;
2106
2107 /* Only root variables can be updated... */
2108 if (!is_root_p (var))
2109 /* Not a root var. */
2110 return NULL;
2111
2112 scoped_restore_current_thread restore_thread;
2113
2114 /* Determine whether the variable is still around. */
2115 if (var->root->valid_block == NULL || var->root->floating)
2116 within_scope = true;
2117 else if (var->root->thread_id == 0)
2118 {
2119 /* The program was single-threaded when the variable object was
2120 created. Technically, it's possible that the program became
2121 multi-threaded since then, but we don't support such
2122 scenario yet. */
2123 within_scope = check_scope (var);
2124 }
2125 else
2126 {
2127 thread_info *thread = find_thread_global_id (var->root->thread_id);
2128
2129 if (thread != NULL)
2130 {
2131 switch_to_thread (thread);
2132 within_scope = check_scope (var);
2133 }
2134 }
2135
2136 if (within_scope)
2137 {
2138
2139 /* We need to catch errors here, because if evaluate
2140 expression fails we want to just return NULL. */
2141 TRY
2142 {
2143 new_val = evaluate_expression (var->root->exp.get ());
2144 }
2145 CATCH (except, RETURN_MASK_ERROR)
2146 {
2147 }
2148 END_CATCH
2149 }
2150
2151 return new_val;
2152 }
2153
2154 /* What is the ``struct value *'' of the root variable VAR?
2155 For floating variable object, evaluation can get us a value
2156 of different type from what is stored in varobj already. In
2157 that case:
2158 - *type_changed will be set to 1
2159 - old varobj will be freed, and new one will be
2160 created, with the same name.
2161 - *var_handle will be set to the new varobj
2162 Otherwise, *type_changed will be set to 0. */
2163 static struct value *
2164 value_of_root (struct varobj **var_handle, bool *type_changed)
2165 {
2166 struct varobj *var;
2167
2168 if (var_handle == NULL)
2169 return NULL;
2170
2171 var = *var_handle;
2172
2173 /* This should really be an exception, since this should
2174 only get called with a root variable. */
2175
2176 if (!is_root_p (var))
2177 return NULL;
2178
2179 if (var->root->floating)
2180 {
2181 struct varobj *tmp_var;
2182
2183 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2184 USE_SELECTED_FRAME);
2185 if (tmp_var == NULL)
2186 {
2187 return NULL;
2188 }
2189 std::string old_type = varobj_get_type (var);
2190 std::string new_type = varobj_get_type (tmp_var);
2191 if (old_type == new_type)
2192 {
2193 /* The expression presently stored inside var->root->exp
2194 remembers the locations of local variables relatively to
2195 the frame where the expression was created (in DWARF location
2196 button, for example). Naturally, those locations are not
2197 correct in other frames, so update the expression. */
2198
2199 std::swap (var->root->exp, tmp_var->root->exp);
2200
2201 varobj_delete (tmp_var, 0);
2202 *type_changed = 0;
2203 }
2204 else
2205 {
2206 tmp_var->obj_name = var->obj_name;
2207 tmp_var->from = var->from;
2208 tmp_var->to = var->to;
2209 varobj_delete (var, 0);
2210
2211 install_variable (tmp_var);
2212 *var_handle = tmp_var;
2213 var = *var_handle;
2214 *type_changed = true;
2215 }
2216 }
2217 else
2218 {
2219 *type_changed = 0;
2220 }
2221
2222 {
2223 struct value *value;
2224
2225 value = value_of_root_1 (var_handle);
2226 if (var->value == NULL || value == NULL)
2227 {
2228 /* For root varobj-s, a NULL value indicates a scoping issue.
2229 So, nothing to do in terms of checking for mutations. */
2230 }
2231 else if (varobj_value_has_mutated (var, value, value_type (value)))
2232 {
2233 /* The type has mutated, so the children are no longer valid.
2234 Just delete them, and tell our caller that the type has
2235 changed. */
2236 varobj_delete (var, 1 /* only_children */);
2237 var->num_children = -1;
2238 var->to = -1;
2239 var->from = -1;
2240 *type_changed = true;
2241 }
2242 return value;
2243 }
2244 }
2245
2246 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2247 static struct value *
2248 value_of_child (const struct varobj *parent, int index)
2249 {
2250 struct value *value;
2251
2252 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2253
2254 return value;
2255 }
2256
2257 /* GDB already has a command called "value_of_variable". Sigh. */
2258 static std::string
2259 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2260 {
2261 if (var->root->is_valid)
2262 {
2263 if (var->dynamic->pretty_printer != NULL)
2264 return varobj_value_get_print_value (var->value.get (), var->format,
2265 var);
2266 return (*var->root->lang_ops->value_of_variable) (var, format);
2267 }
2268 else
2269 return std::string ();
2270 }
2271
2272 void
2273 varobj_formatted_print_options (struct value_print_options *opts,
2274 enum varobj_display_formats format)
2275 {
2276 get_formatted_print_options (opts, format_code[(int) format]);
2277 opts->deref_ref = 0;
2278 opts->raw = !pretty_printing;
2279 }
2280
2281 std::string
2282 varobj_value_get_print_value (struct value *value,
2283 enum varobj_display_formats format,
2284 const struct varobj *var)
2285 {
2286 struct value_print_options opts;
2287 struct type *type = NULL;
2288 long len = 0;
2289 gdb::unique_xmalloc_ptr<char> encoding;
2290 /* Initialize it just to avoid a GCC false warning. */
2291 CORE_ADDR str_addr = 0;
2292 bool string_print = false;
2293
2294 if (value == NULL)
2295 return std::string ();
2296
2297 string_file stb;
2298 std::string thevalue;
2299
2300 #if HAVE_PYTHON
2301 if (gdb_python_initialized)
2302 {
2303 PyObject *value_formatter = var->dynamic->pretty_printer;
2304
2305 gdbpy_enter_varobj enter_py (var);
2306
2307 if (value_formatter)
2308 {
2309 /* First check to see if we have any children at all. If so,
2310 we simply return {...}. */
2311 if (dynamic_varobj_has_child_method (var))
2312 return "{...}";
2313
2314 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2315 {
2316 struct value *replacement;
2317
2318 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2319 &replacement,
2320 &stb);
2321
2322 /* If we have string like output ... */
2323 if (output != NULL)
2324 {
2325 /* If this is a lazy string, extract it. For lazy
2326 strings we always print as a string, so set
2327 string_print. */
2328 if (gdbpy_is_lazy_string (output.get ()))
2329 {
2330 gdbpy_extract_lazy_string (output.get (), &str_addr,
2331 &type, &len, &encoding);
2332 string_print = true;
2333 }
2334 else
2335 {
2336 /* If it is a regular (non-lazy) string, extract
2337 it and copy the contents into THEVALUE. If the
2338 hint says to print it as a string, set
2339 string_print. Otherwise just return the extracted
2340 string as a value. */
2341
2342 gdb::unique_xmalloc_ptr<char> s
2343 = python_string_to_target_string (output.get ());
2344
2345 if (s)
2346 {
2347 struct gdbarch *gdbarch;
2348
2349 gdb::unique_xmalloc_ptr<char> hint
2350 = gdbpy_get_display_hint (value_formatter);
2351 if (hint)
2352 {
2353 if (!strcmp (hint.get (), "string"))
2354 string_print = true;
2355 }
2356
2357 thevalue = std::string (s.get ());
2358 len = thevalue.size ();
2359 gdbarch = get_type_arch (value_type (value));
2360 type = builtin_type (gdbarch)->builtin_char;
2361
2362 if (!string_print)
2363 return thevalue;
2364 }
2365 else
2366 gdbpy_print_stack ();
2367 }
2368 }
2369 /* If the printer returned a replacement value, set VALUE
2370 to REPLACEMENT. If there is not a replacement value,
2371 just use the value passed to this function. */
2372 if (replacement)
2373 value = replacement;
2374 }
2375 }
2376 }
2377 #endif
2378
2379 varobj_formatted_print_options (&opts, format);
2380
2381 /* If the THEVALUE has contents, it is a regular string. */
2382 if (!thevalue.empty ())
2383 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2384 len, encoding.get (), 0, &opts);
2385 else if (string_print)
2386 /* Otherwise, if string_print is set, and it is not a regular
2387 string, it is a lazy string. */
2388 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2389 else
2390 /* All other cases. */
2391 common_val_print (value, &stb, 0, &opts, current_language);
2392
2393 return std::move (stb.string ());
2394 }
2395
2396 bool
2397 varobj_editable_p (const struct varobj *var)
2398 {
2399 struct type *type;
2400
2401 if (!(var->root->is_valid && var->value != nullptr
2402 && VALUE_LVAL (var->value.get ())))
2403 return false;
2404
2405 type = varobj_get_value_type (var);
2406
2407 switch (TYPE_CODE (type))
2408 {
2409 case TYPE_CODE_STRUCT:
2410 case TYPE_CODE_UNION:
2411 case TYPE_CODE_ARRAY:
2412 case TYPE_CODE_FUNC:
2413 case TYPE_CODE_METHOD:
2414 return false;
2415 break;
2416
2417 default:
2418 return true;
2419 break;
2420 }
2421 }
2422
2423 /* Call VAR's value_is_changeable_p language-specific callback. */
2424
2425 bool
2426 varobj_value_is_changeable_p (const struct varobj *var)
2427 {
2428 return var->root->lang_ops->value_is_changeable_p (var);
2429 }
2430
2431 /* Return true if that varobj is floating, that is is always evaluated in the
2432 selected frame, and not bound to thread/frame. Such variable objects
2433 are created using '@' as frame specifier to -var-create. */
2434 bool
2435 varobj_floating_p (const struct varobj *var)
2436 {
2437 return var->root->floating;
2438 }
2439
2440 /* Implement the "value_is_changeable_p" varobj callback for most
2441 languages. */
2442
2443 bool
2444 varobj_default_value_is_changeable_p (const struct varobj *var)
2445 {
2446 bool r;
2447 struct type *type;
2448
2449 if (CPLUS_FAKE_CHILD (var))
2450 return false;
2451
2452 type = varobj_get_value_type (var);
2453
2454 switch (TYPE_CODE (type))
2455 {
2456 case TYPE_CODE_STRUCT:
2457 case TYPE_CODE_UNION:
2458 case TYPE_CODE_ARRAY:
2459 r = false;
2460 break;
2461
2462 default:
2463 r = true;
2464 }
2465
2466 return r;
2467 }
2468
2469 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2470 with an arbitrary caller supplied DATA pointer. */
2471
2472 void
2473 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2474 {
2475 struct varobj_root *var_root, *var_root_next;
2476
2477 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2478
2479 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2480 {
2481 var_root_next = var_root->next;
2482
2483 (*func) (var_root->rootvar, data);
2484 }
2485 }
2486
2487 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2488 defined on globals. It is a helper for varobj_invalidate.
2489
2490 This function is called after changing the symbol file, in this case the
2491 pointers to "struct type" stored by the varobj are no longer valid. All
2492 varobj must be either re-evaluated, or marked as invalid here. */
2493
2494 static void
2495 varobj_invalidate_iter (struct varobj *var, void *unused)
2496 {
2497 /* global and floating var must be re-evaluated. */
2498 if (var->root->floating || var->root->valid_block == NULL)
2499 {
2500 struct varobj *tmp_var;
2501
2502 /* Try to create a varobj with same expression. If we succeed
2503 replace the old varobj, otherwise invalidate it. */
2504 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2505 USE_CURRENT_FRAME);
2506 if (tmp_var != NULL)
2507 {
2508 tmp_var->obj_name = var->obj_name;
2509 varobj_delete (var, 0);
2510 install_variable (tmp_var);
2511 }
2512 else
2513 var->root->is_valid = false;
2514 }
2515 else /* locals must be invalidated. */
2516 var->root->is_valid = false;
2517 }
2518
2519 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2520 are defined on globals.
2521 Invalidated varobjs will be always printed in_scope="invalid". */
2522
2523 void
2524 varobj_invalidate (void)
2525 {
2526 all_root_varobjs (varobj_invalidate_iter, NULL);
2527 }
2528
2529 void
2530 _initialize_varobj (void)
2531 {
2532 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2533
2534 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2535 &varobjdebug,
2536 _("Set varobj debugging."),
2537 _("Show varobj debugging."),
2538 _("When non-zero, varobj debugging is enabled."),
2539 NULL, show_varobjdebug,
2540 &setdebuglist, &showdebuglist);
2541 }
This page took 0.143867 seconds and 5 git commands to generate.