Replace some xmalloc-family functions with XNEW-family ones
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (const struct varobj *);
197
198 static char *name_of_variable (const struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (const struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (const struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (const struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (const struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 CORE_ADDR pc;
302
303 /* Parse and evaluate the expression, filling in as much of the
304 variable's data as possible. */
305
306 if (has_stack_frames ())
307 {
308 /* Allow creator to specify context of variable. */
309 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
310 fi = get_selected_frame (NULL);
311 else
312 /* FIXME: cagney/2002-11-23: This code should be doing a
313 lookup using the frame ID and not just the frame's
314 ``address''. This, of course, means an interface
315 change. However, with out that interface change ISAs,
316 such as the ia64 with its two stacks, won't work.
317 Similar goes for the case where there is a frameless
318 function. */
319 fi = find_frame_addr_in_frame_chain (frame);
320 }
321 else
322 fi = NULL;
323
324 /* frame = -2 means always use selected frame. */
325 if (type == USE_SELECTED_FRAME)
326 var->root->floating = 1;
327
328 pc = 0;
329 block = NULL;
330 if (fi != NULL)
331 {
332 block = get_frame_block (fi, 0);
333 pc = get_frame_pc (fi);
334 }
335
336 p = expression;
337 innermost_block = NULL;
338 /* Wrap the call to parse expression, so we can
339 return a sensible error. */
340 TRY
341 {
342 var->root->exp = parse_exp_1 (&p, pc, block, 0);
343 }
344
345 CATCH (except, RETURN_MASK_ERROR)
346 {
347 do_cleanups (old_chain);
348 return NULL;
349 }
350 END_CATCH
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395 CATCH (except, RETURN_MASK_ERROR)
396 {
397 /* Error getting the value. Try to at least get the
398 right type. */
399 struct value *type_only_value = evaluate_type (var->root->exp);
400
401 var->type = value_type (type_only_value);
402 }
403 END_CATCH
404
405 if (value != NULL)
406 {
407 int real_type_found = 0;
408
409 var->type = value_actual_type (value, 0, &real_type_found);
410 if (real_type_found)
411 value = value_cast (var->type, value);
412 }
413
414 /* Set language info */
415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
416
417 install_new_value (var, value, 1 /* Initial assignment */);
418
419 /* Set ourselves as our root. */
420 var->root->rootvar = var;
421
422 /* Reset the selected frame. */
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
425 }
426
427 /* If the variable object name is null, that means this
428 is a temporary variable, so don't install it. */
429
430 if ((var != NULL) && (objname != NULL))
431 {
432 var->obj_name = xstrdup (objname);
433
434 /* If a varobj name is duplicated, the install will fail so
435 we must cleanup. */
436 if (!install_variable (var))
437 {
438 do_cleanups (old_chain);
439 return NULL;
440 }
441 }
442
443 discard_cleanups (old_chain);
444 return var;
445 }
446
447 /* Generates an unique name that can be used for a varobj. */
448
449 char *
450 varobj_gen_name (void)
451 {
452 static int id = 0;
453 char *obj_name;
454
455 /* Generate a name for this object. */
456 id++;
457 obj_name = xstrprintf ("var%d", id);
458
459 return obj_name;
460 }
461
462 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
464
465 struct varobj *
466 varobj_get_handle (char *objname)
467 {
468 struct vlist *cv;
469 const char *chp;
470 unsigned int index = 0;
471 unsigned int i = 1;
472
473 for (chp = objname; *chp; chp++)
474 {
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
476 }
477
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
480 cv = cv->next;
481
482 if (cv == NULL)
483 error (_("Variable object not found"));
484
485 return cv->var;
486 }
487
488 /* Given the handle, return the name of the object. */
489
490 char *
491 varobj_get_objname (const struct varobj *var)
492 {
493 return var->obj_name;
494 }
495
496 /* Given the handle, return the expression represented by the object. The
497 result must be freed by the caller. */
498
499 char *
500 varobj_get_expression (const struct varobj *var)
501 {
502 return name_of_variable (var);
503 }
504
505 /* Deletes a varobj and all its children if only_children == 0,
506 otherwise deletes only the children. If DELLIST is non-NULL, it is
507 assigned a malloc'ed list of all the (malloc'ed) names of the variables
508 that have been deleted (NULL terminated). Returns the number of deleted
509 variables. */
510
511 int
512 varobj_delete (struct varobj *var, char ***dellist, int only_children)
513 {
514 int delcount;
515 int mycount;
516 struct cpstack *result = NULL;
517 char **cp;
518
519 /* Initialize a stack for temporary results. */
520 cppush (&result, NULL);
521
522 if (only_children)
523 /* Delete only the variable children. */
524 delcount = delete_variable (&result, var, 1 /* only the children */ );
525 else
526 /* Delete the variable and all its children. */
527 delcount = delete_variable (&result, var, 0 /* parent+children */ );
528
529 /* We may have been asked to return a list of what has been deleted. */
530 if (dellist != NULL)
531 {
532 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
533
534 cp = *dellist;
535 mycount = delcount;
536 *cp = cppop (&result);
537 while ((*cp != NULL) && (mycount > 0))
538 {
539 mycount--;
540 cp++;
541 *cp = cppop (&result);
542 }
543
544 if (mycount || (*cp != NULL))
545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
546 mycount);
547 }
548
549 return delcount;
550 }
551
552 #if HAVE_PYTHON
553
554 /* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
556 static PyObject *
557 instantiate_pretty_printer (PyObject *constructor, struct value *value)
558 {
559 PyObject *val_obj = NULL;
560 PyObject *printer;
561
562 val_obj = value_to_value_object (value);
563 if (! val_obj)
564 return NULL;
565
566 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
567 Py_DECREF (val_obj);
568 return printer;
569 }
570
571 #endif
572
573 /* Set/Get variable object display format. */
574
575 enum varobj_display_formats
576 varobj_set_display_format (struct varobj *var,
577 enum varobj_display_formats format)
578 {
579 switch (format)
580 {
581 case FORMAT_NATURAL:
582 case FORMAT_BINARY:
583 case FORMAT_DECIMAL:
584 case FORMAT_HEXADECIMAL:
585 case FORMAT_OCTAL:
586 var->format = format;
587 break;
588
589 default:
590 var->format = variable_default_display (var);
591 }
592
593 if (varobj_value_is_changeable_p (var)
594 && var->value && !value_lazy (var->value))
595 {
596 xfree (var->print_value);
597 var->print_value = varobj_value_get_print_value (var->value,
598 var->format, var);
599 }
600
601 return var->format;
602 }
603
604 enum varobj_display_formats
605 varobj_get_display_format (const struct varobj *var)
606 {
607 return var->format;
608 }
609
610 char *
611 varobj_get_display_hint (const struct varobj *var)
612 {
613 char *result = NULL;
614
615 #if HAVE_PYTHON
616 struct cleanup *back_to;
617
618 if (!gdb_python_initialized)
619 return NULL;
620
621 back_to = varobj_ensure_python_env (var);
622
623 if (var->dynamic->pretty_printer != NULL)
624 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
625
626 do_cleanups (back_to);
627 #endif
628
629 return result;
630 }
631
632 /* Return true if the varobj has items after TO, false otherwise. */
633
634 int
635 varobj_has_more (const struct varobj *var, int to)
636 {
637 if (VEC_length (varobj_p, var->children) > to)
638 return 1;
639 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
640 && (var->dynamic->saved_item != NULL));
641 }
642
643 /* If the variable object is bound to a specific thread, that
644 is its evaluation can always be done in context of a frame
645 inside that thread, returns GDB id of the thread -- which
646 is always positive. Otherwise, returns -1. */
647 int
648 varobj_get_thread_id (const struct varobj *var)
649 {
650 if (var->root->valid_block && var->root->thread_id > 0)
651 return var->root->thread_id;
652 else
653 return -1;
654 }
655
656 void
657 varobj_set_frozen (struct varobj *var, int frozen)
658 {
659 /* When a variable is unfrozen, we don't fetch its value.
660 The 'not_fetched' flag remains set, so next -var-update
661 won't complain.
662
663 We don't fetch the value, because for structures the client
664 should do -var-update anyway. It would be bad to have different
665 client-size logic for structure and other types. */
666 var->frozen = frozen;
667 }
668
669 int
670 varobj_get_frozen (const struct varobj *var)
671 {
672 return var->frozen;
673 }
674
675 /* A helper function that restricts a range to what is actually
676 available in a VEC. This follows the usual rules for the meaning
677 of FROM and TO -- if either is negative, the entire range is
678 used. */
679
680 void
681 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
682 {
683 if (*from < 0 || *to < 0)
684 {
685 *from = 0;
686 *to = VEC_length (varobj_p, children);
687 }
688 else
689 {
690 if (*from > VEC_length (varobj_p, children))
691 *from = VEC_length (varobj_p, children);
692 if (*to > VEC_length (varobj_p, children))
693 *to = VEC_length (varobj_p, children);
694 if (*from > *to)
695 *from = *to;
696 }
697 }
698
699 /* A helper for update_dynamic_varobj_children that installs a new
700 child when needed. */
701
702 static void
703 install_dynamic_child (struct varobj *var,
704 VEC (varobj_p) **changed,
705 VEC (varobj_p) **type_changed,
706 VEC (varobj_p) **newobj,
707 VEC (varobj_p) **unchanged,
708 int *cchanged,
709 int index,
710 struct varobj_item *item)
711 {
712 if (VEC_length (varobj_p, var->children) < index + 1)
713 {
714 /* There's no child yet. */
715 struct varobj *child = varobj_add_child (var, item);
716
717 if (newobj)
718 {
719 VEC_safe_push (varobj_p, *newobj, child);
720 *cchanged = 1;
721 }
722 }
723 else
724 {
725 varobj_p existing = VEC_index (varobj_p, var->children, index);
726 int type_updated = update_type_if_necessary (existing, item->value);
727
728 if (type_updated)
729 {
730 if (type_changed)
731 VEC_safe_push (varobj_p, *type_changed, existing);
732 }
733 if (install_new_value (existing, item->value, 0))
734 {
735 if (!type_updated && changed)
736 VEC_safe_push (varobj_p, *changed, existing);
737 }
738 else if (!type_updated && unchanged)
739 VEC_safe_push (varobj_p, *unchanged, existing);
740 }
741 }
742
743 #if HAVE_PYTHON
744
745 static int
746 dynamic_varobj_has_child_method (const struct varobj *var)
747 {
748 struct cleanup *back_to;
749 PyObject *printer = var->dynamic->pretty_printer;
750 int result;
751
752 if (!gdb_python_initialized)
753 return 0;
754
755 back_to = varobj_ensure_python_env (var);
756 result = PyObject_HasAttr (printer, gdbpy_children_cst);
757 do_cleanups (back_to);
758 return result;
759 }
760 #endif
761
762 /* A factory for creating dynamic varobj's iterators. Returns an
763 iterator object suitable for iterating over VAR's children. */
764
765 static struct varobj_iter *
766 varobj_get_iterator (struct varobj *var)
767 {
768 #if HAVE_PYTHON
769 if (var->dynamic->pretty_printer)
770 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
771 #endif
772
773 gdb_assert_not_reached (_("\
774 requested an iterator from a non-dynamic varobj"));
775 }
776
777 /* Release and clear VAR's saved item, if any. */
778
779 static void
780 varobj_clear_saved_item (struct varobj_dynamic *var)
781 {
782 if (var->saved_item != NULL)
783 {
784 value_free (var->saved_item->value);
785 xfree (var->saved_item);
786 var->saved_item = NULL;
787 }
788 }
789
790 static int
791 update_dynamic_varobj_children (struct varobj *var,
792 VEC (varobj_p) **changed,
793 VEC (varobj_p) **type_changed,
794 VEC (varobj_p) **newobj,
795 VEC (varobj_p) **unchanged,
796 int *cchanged,
797 int update_children,
798 int from,
799 int to)
800 {
801 int i;
802
803 *cchanged = 0;
804
805 if (update_children || var->dynamic->child_iter == NULL)
806 {
807 varobj_iter_delete (var->dynamic->child_iter);
808 var->dynamic->child_iter = varobj_get_iterator (var);
809
810 varobj_clear_saved_item (var->dynamic);
811
812 i = 0;
813
814 if (var->dynamic->child_iter == NULL)
815 return 0;
816 }
817 else
818 i = VEC_length (varobj_p, var->children);
819
820 /* We ask for one extra child, so that MI can report whether there
821 are more children. */
822 for (; to < 0 || i < to + 1; ++i)
823 {
824 varobj_item *item;
825
826 /* See if there was a leftover from last time. */
827 if (var->dynamic->saved_item != NULL)
828 {
829 item = var->dynamic->saved_item;
830 var->dynamic->saved_item = NULL;
831 }
832 else
833 {
834 item = varobj_iter_next (var->dynamic->child_iter);
835 /* Release vitem->value so its lifetime is not bound to the
836 execution of a command. */
837 if (item != NULL && item->value != NULL)
838 release_value_or_incref (item->value);
839 }
840
841 if (item == NULL)
842 {
843 /* Iteration is done. Remove iterator from VAR. */
844 varobj_iter_delete (var->dynamic->child_iter);
845 var->dynamic->child_iter = NULL;
846 break;
847 }
848 /* We don't want to push the extra child on any report list. */
849 if (to < 0 || i < to)
850 {
851 int can_mention = from < 0 || i >= from;
852
853 install_dynamic_child (var, can_mention ? changed : NULL,
854 can_mention ? type_changed : NULL,
855 can_mention ? newobj : NULL,
856 can_mention ? unchanged : NULL,
857 can_mention ? cchanged : NULL, i,
858 item);
859
860 xfree (item);
861 }
862 else
863 {
864 var->dynamic->saved_item = item;
865
866 /* We want to truncate the child list just before this
867 element. */
868 break;
869 }
870 }
871
872 if (i < VEC_length (varobj_p, var->children))
873 {
874 int j;
875
876 *cchanged = 1;
877 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
878 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
879 VEC_truncate (varobj_p, var->children, i);
880 }
881
882 /* If there are fewer children than requested, note that the list of
883 children changed. */
884 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
885 *cchanged = 1;
886
887 var->num_children = VEC_length (varobj_p, var->children);
888
889 return 1;
890 }
891
892 int
893 varobj_get_num_children (struct varobj *var)
894 {
895 if (var->num_children == -1)
896 {
897 if (varobj_is_dynamic_p (var))
898 {
899 int dummy;
900
901 /* If we have a dynamic varobj, don't report -1 children.
902 So, try to fetch some children first. */
903 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
904 0, 0, 0);
905 }
906 else
907 var->num_children = number_of_children (var);
908 }
909
910 return var->num_children >= 0 ? var->num_children : 0;
911 }
912
913 /* Creates a list of the immediate children of a variable object;
914 the return code is the number of such children or -1 on error. */
915
916 VEC (varobj_p)*
917 varobj_list_children (struct varobj *var, int *from, int *to)
918 {
919 char *name;
920 int i, children_changed;
921
922 var->dynamic->children_requested = 1;
923
924 if (varobj_is_dynamic_p (var))
925 {
926 /* This, in theory, can result in the number of children changing without
927 frontend noticing. But well, calling -var-list-children on the same
928 varobj twice is not something a sane frontend would do. */
929 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
930 &children_changed, 0, 0, *to);
931 varobj_restrict_range (var->children, from, to);
932 return var->children;
933 }
934
935 if (var->num_children == -1)
936 var->num_children = number_of_children (var);
937
938 /* If that failed, give up. */
939 if (var->num_children == -1)
940 return var->children;
941
942 /* If we're called when the list of children is not yet initialized,
943 allocate enough elements in it. */
944 while (VEC_length (varobj_p, var->children) < var->num_children)
945 VEC_safe_push (varobj_p, var->children, NULL);
946
947 for (i = 0; i < var->num_children; i++)
948 {
949 varobj_p existing = VEC_index (varobj_p, var->children, i);
950
951 if (existing == NULL)
952 {
953 /* Either it's the first call to varobj_list_children for
954 this variable object, and the child was never created,
955 or it was explicitly deleted by the client. */
956 name = name_of_child (var, i);
957 existing = create_child (var, i, name);
958 VEC_replace (varobj_p, var->children, i, existing);
959 }
960 }
961
962 varobj_restrict_range (var->children, from, to);
963 return var->children;
964 }
965
966 static struct varobj *
967 varobj_add_child (struct varobj *var, struct varobj_item *item)
968 {
969 varobj_p v = create_child_with_value (var,
970 VEC_length (varobj_p, var->children),
971 item);
972
973 VEC_safe_push (varobj_p, var->children, v);
974 return v;
975 }
976
977 /* Obtain the type of an object Variable as a string similar to the one gdb
978 prints on the console. The caller is responsible for freeing the string.
979 */
980
981 char *
982 varobj_get_type (struct varobj *var)
983 {
984 /* For the "fake" variables, do not return a type. (Its type is
985 NULL, too.)
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
988 return NULL;
989
990 return type_to_string (var->type);
991 }
992
993 /* Obtain the type of an object variable. */
994
995 struct type *
996 varobj_get_gdb_type (const struct varobj *var)
997 {
998 return var->type;
999 }
1000
1001 /* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1003
1004 static int
1005 is_path_expr_parent (const struct varobj *var)
1006 {
1007 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1008 return var->root->lang_ops->is_path_expr_parent (var);
1009 }
1010
1011 /* Is VAR a path expression parent, i.e., can it be used to construct
1012 a valid path expression? By default we assume any VAR can be a path
1013 parent. */
1014
1015 int
1016 varobj_default_is_path_expr_parent (const struct varobj *var)
1017 {
1018 return 1;
1019 }
1020
1021 /* Return the path expression parent for VAR. */
1022
1023 const struct varobj *
1024 varobj_get_path_expr_parent (const struct varobj *var)
1025 {
1026 const struct varobj *parent = var;
1027
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1030
1031 return parent;
1032 }
1033
1034 /* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1036 char *
1037 varobj_get_path_expr (const struct varobj *var)
1038 {
1039 if (var->path_expr == NULL)
1040 {
1041 /* For root varobjs, we initialize path_expr
1042 when creating varobj, so here it should be
1043 child varobj. */
1044 struct varobj *mutable_var = (struct varobj *) var;
1045 gdb_assert (!is_root_p (var));
1046
1047 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1048 }
1049
1050 return var->path_expr;
1051 }
1052
1053 const struct language_defn *
1054 varobj_get_language (const struct varobj *var)
1055 {
1056 return var->root->exp->language_defn;
1057 }
1058
1059 int
1060 varobj_get_attributes (const struct varobj *var)
1061 {
1062 int attributes = 0;
1063
1064 if (varobj_editable_p (var))
1065 /* FIXME: define masks for attributes. */
1066 attributes |= 0x00000001; /* Editable */
1067
1068 return attributes;
1069 }
1070
1071 /* Return true if VAR is a dynamic varobj. */
1072
1073 int
1074 varobj_is_dynamic_p (const struct varobj *var)
1075 {
1076 return var->dynamic->pretty_printer != NULL;
1077 }
1078
1079 char *
1080 varobj_get_formatted_value (struct varobj *var,
1081 enum varobj_display_formats format)
1082 {
1083 return my_value_of_variable (var, format);
1084 }
1085
1086 char *
1087 varobj_get_value (struct varobj *var)
1088 {
1089 return my_value_of_variable (var, var->format);
1090 }
1091
1092 /* Set the value of an object variable (if it is editable) to the
1093 value of the given expression. */
1094 /* Note: Invokes functions that can call error(). */
1095
1096 int
1097 varobj_set_value (struct varobj *var, char *expression)
1098 {
1099 struct value *val = NULL; /* Initialize to keep gcc happy. */
1100 /* The argument "expression" contains the variable's new value.
1101 We need to first construct a legal expression for this -- ugh! */
1102 /* Does this cover all the bases? */
1103 struct expression *exp;
1104 struct value *value = NULL; /* Initialize to keep gcc happy. */
1105 int saved_input_radix = input_radix;
1106 const char *s = expression;
1107
1108 gdb_assert (varobj_editable_p (var));
1109
1110 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1111 exp = parse_exp_1 (&s, 0, 0, 0);
1112 TRY
1113 {
1114 value = evaluate_expression (exp);
1115 }
1116
1117 CATCH (except, RETURN_MASK_ERROR)
1118 {
1119 /* We cannot proceed without a valid expression. */
1120 xfree (exp);
1121 return 0;
1122 }
1123 END_CATCH
1124
1125 /* All types that are editable must also be changeable. */
1126 gdb_assert (varobj_value_is_changeable_p (var));
1127
1128 /* The value of a changeable variable object must not be lazy. */
1129 gdb_assert (!value_lazy (var->value));
1130
1131 /* Need to coerce the input. We want to check if the
1132 value of the variable object will be different
1133 after assignment, and the first thing value_assign
1134 does is coerce the input.
1135 For example, if we are assigning an array to a pointer variable we
1136 should compare the pointer with the array's address, not with the
1137 array's content. */
1138 value = coerce_array (value);
1139
1140 /* The new value may be lazy. value_assign, or
1141 rather value_contents, will take care of this. */
1142 TRY
1143 {
1144 val = value_assign (var->value, value);
1145 }
1146
1147 CATCH (except, RETURN_MASK_ERROR)
1148 {
1149 return 0;
1150 }
1151 END_CATCH
1152
1153 /* If the value has changed, record it, so that next -var-update can
1154 report this change. If a variable had a value of '1', we've set it
1155 to '333' and then set again to '1', when -var-update will report this
1156 variable as changed -- because the first assignment has set the
1157 'updated' flag. There's no need to optimize that, because return value
1158 of -var-update should be considered an approximation. */
1159 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1160 input_radix = saved_input_radix;
1161 return 1;
1162 }
1163
1164 #if HAVE_PYTHON
1165
1166 /* A helper function to install a constructor function and visualizer
1167 in a varobj_dynamic. */
1168
1169 static void
1170 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1171 PyObject *visualizer)
1172 {
1173 Py_XDECREF (var->constructor);
1174 var->constructor = constructor;
1175
1176 Py_XDECREF (var->pretty_printer);
1177 var->pretty_printer = visualizer;
1178
1179 varobj_iter_delete (var->child_iter);
1180 var->child_iter = NULL;
1181 }
1182
1183 /* Install the default visualizer for VAR. */
1184
1185 static void
1186 install_default_visualizer (struct varobj *var)
1187 {
1188 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1189 if (CPLUS_FAKE_CHILD (var))
1190 return;
1191
1192 if (pretty_printing)
1193 {
1194 PyObject *pretty_printer = NULL;
1195
1196 if (var->value)
1197 {
1198 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1199 if (! pretty_printer)
1200 {
1201 gdbpy_print_stack ();
1202 error (_("Cannot instantiate printer for default visualizer"));
1203 }
1204 }
1205
1206 if (pretty_printer == Py_None)
1207 {
1208 Py_DECREF (pretty_printer);
1209 pretty_printer = NULL;
1210 }
1211
1212 install_visualizer (var->dynamic, NULL, pretty_printer);
1213 }
1214 }
1215
1216 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1217 make a new object. */
1218
1219 static void
1220 construct_visualizer (struct varobj *var, PyObject *constructor)
1221 {
1222 PyObject *pretty_printer;
1223
1224 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1225 if (CPLUS_FAKE_CHILD (var))
1226 return;
1227
1228 Py_INCREF (constructor);
1229 if (constructor == Py_None)
1230 pretty_printer = NULL;
1231 else
1232 {
1233 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1234 if (! pretty_printer)
1235 {
1236 gdbpy_print_stack ();
1237 Py_DECREF (constructor);
1238 constructor = Py_None;
1239 Py_INCREF (constructor);
1240 }
1241
1242 if (pretty_printer == Py_None)
1243 {
1244 Py_DECREF (pretty_printer);
1245 pretty_printer = NULL;
1246 }
1247 }
1248
1249 install_visualizer (var->dynamic, constructor, pretty_printer);
1250 }
1251
1252 #endif /* HAVE_PYTHON */
1253
1254 /* A helper function for install_new_value. This creates and installs
1255 a visualizer for VAR, if appropriate. */
1256
1257 static void
1258 install_new_value_visualizer (struct varobj *var)
1259 {
1260 #if HAVE_PYTHON
1261 /* If the constructor is None, then we want the raw value. If VAR
1262 does not have a value, just skip this. */
1263 if (!gdb_python_initialized)
1264 return;
1265
1266 if (var->dynamic->constructor != Py_None && var->value != NULL)
1267 {
1268 struct cleanup *cleanup;
1269
1270 cleanup = varobj_ensure_python_env (var);
1271
1272 if (var->dynamic->constructor == NULL)
1273 install_default_visualizer (var);
1274 else
1275 construct_visualizer (var, var->dynamic->constructor);
1276
1277 do_cleanups (cleanup);
1278 }
1279 #else
1280 /* Do nothing. */
1281 #endif
1282 }
1283
1284 /* When using RTTI to determine variable type it may be changed in runtime when
1285 the variable value is changed. This function checks whether type of varobj
1286 VAR will change when a new value NEW_VALUE is assigned and if it is so
1287 updates the type of VAR. */
1288
1289 static int
1290 update_type_if_necessary (struct varobj *var, struct value *new_value)
1291 {
1292 if (new_value)
1293 {
1294 struct value_print_options opts;
1295
1296 get_user_print_options (&opts);
1297 if (opts.objectprint)
1298 {
1299 struct type *new_type;
1300 char *curr_type_str, *new_type_str;
1301 int type_name_changed;
1302
1303 new_type = value_actual_type (new_value, 0, 0);
1304 new_type_str = type_to_string (new_type);
1305 curr_type_str = varobj_get_type (var);
1306 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1307 xfree (curr_type_str);
1308 xfree (new_type_str);
1309
1310 if (type_name_changed)
1311 {
1312 var->type = new_type;
1313
1314 /* This information may be not valid for a new type. */
1315 varobj_delete (var, NULL, 1);
1316 VEC_free (varobj_p, var->children);
1317 var->num_children = -1;
1318 return 1;
1319 }
1320 }
1321 }
1322
1323 return 0;
1324 }
1325
1326 /* Assign a new value to a variable object. If INITIAL is non-zero,
1327 this is the first assignement after the variable object was just
1328 created, or changed type. In that case, just assign the value
1329 and return 0.
1330 Otherwise, assign the new value, and return 1 if the value is
1331 different from the current one, 0 otherwise. The comparison is
1332 done on textual representation of value. Therefore, some types
1333 need not be compared. E.g. for structures the reported value is
1334 always "{...}", so no comparison is necessary here. If the old
1335 value was NULL and new one is not, or vice versa, we always return 1.
1336
1337 The VALUE parameter should not be released -- the function will
1338 take care of releasing it when needed. */
1339 static int
1340 install_new_value (struct varobj *var, struct value *value, int initial)
1341 {
1342 int changeable;
1343 int need_to_fetch;
1344 int changed = 0;
1345 int intentionally_not_fetched = 0;
1346 char *print_value = NULL;
1347
1348 /* We need to know the varobj's type to decide if the value should
1349 be fetched or not. C++ fake children (public/protected/private)
1350 don't have a type. */
1351 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1352 changeable = varobj_value_is_changeable_p (var);
1353
1354 /* If the type has custom visualizer, we consider it to be always
1355 changeable. FIXME: need to make sure this behaviour will not
1356 mess up read-sensitive values. */
1357 if (var->dynamic->pretty_printer != NULL)
1358 changeable = 1;
1359
1360 need_to_fetch = changeable;
1361
1362 /* We are not interested in the address of references, and given
1363 that in C++ a reference is not rebindable, it cannot
1364 meaningfully change. So, get hold of the real value. */
1365 if (value)
1366 value = coerce_ref (value);
1367
1368 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1369 /* For unions, we need to fetch the value implicitly because
1370 of implementation of union member fetch. When gdb
1371 creates a value for a field and the value of the enclosing
1372 structure is not lazy, it immediately copies the necessary
1373 bytes from the enclosing values. If the enclosing value is
1374 lazy, the call to value_fetch_lazy on the field will read
1375 the data from memory. For unions, that means we'll read the
1376 same memory more than once, which is not desirable. So
1377 fetch now. */
1378 need_to_fetch = 1;
1379
1380 /* The new value might be lazy. If the type is changeable,
1381 that is we'll be comparing values of this type, fetch the
1382 value now. Otherwise, on the next update the old value
1383 will be lazy, which means we've lost that old value. */
1384 if (need_to_fetch && value && value_lazy (value))
1385 {
1386 const struct varobj *parent = var->parent;
1387 int frozen = var->frozen;
1388
1389 for (; !frozen && parent; parent = parent->parent)
1390 frozen |= parent->frozen;
1391
1392 if (frozen && initial)
1393 {
1394 /* For variables that are frozen, or are children of frozen
1395 variables, we don't do fetch on initial assignment.
1396 For non-initial assignemnt we do the fetch, since it means we're
1397 explicitly asked to compare the new value with the old one. */
1398 intentionally_not_fetched = 1;
1399 }
1400 else
1401 {
1402
1403 TRY
1404 {
1405 value_fetch_lazy (value);
1406 }
1407
1408 CATCH (except, RETURN_MASK_ERROR)
1409 {
1410 /* Set the value to NULL, so that for the next -var-update,
1411 we don't try to compare the new value with this value,
1412 that we couldn't even read. */
1413 value = NULL;
1414 }
1415 END_CATCH
1416 }
1417 }
1418
1419 /* Get a reference now, before possibly passing it to any Python
1420 code that might release it. */
1421 if (value != NULL)
1422 value_incref (value);
1423
1424 /* Below, we'll be comparing string rendering of old and new
1425 values. Don't get string rendering if the value is
1426 lazy -- if it is, the code above has decided that the value
1427 should not be fetched. */
1428 if (value != NULL && !value_lazy (value)
1429 && var->dynamic->pretty_printer == NULL)
1430 print_value = varobj_value_get_print_value (value, var->format, var);
1431
1432 /* If the type is changeable, compare the old and the new values.
1433 If this is the initial assignment, we don't have any old value
1434 to compare with. */
1435 if (!initial && changeable)
1436 {
1437 /* If the value of the varobj was changed by -var-set-value,
1438 then the value in the varobj and in the target is the same.
1439 However, that value is different from the value that the
1440 varobj had after the previous -var-update. So need to the
1441 varobj as changed. */
1442 if (var->updated)
1443 {
1444 changed = 1;
1445 }
1446 else if (var->dynamic->pretty_printer == NULL)
1447 {
1448 /* Try to compare the values. That requires that both
1449 values are non-lazy. */
1450 if (var->not_fetched && value_lazy (var->value))
1451 {
1452 /* This is a frozen varobj and the value was never read.
1453 Presumably, UI shows some "never read" indicator.
1454 Now that we've fetched the real value, we need to report
1455 this varobj as changed so that UI can show the real
1456 value. */
1457 changed = 1;
1458 }
1459 else if (var->value == NULL && value == NULL)
1460 /* Equal. */
1461 ;
1462 else if (var->value == NULL || value == NULL)
1463 {
1464 changed = 1;
1465 }
1466 else
1467 {
1468 gdb_assert (!value_lazy (var->value));
1469 gdb_assert (!value_lazy (value));
1470
1471 gdb_assert (var->print_value != NULL && print_value != NULL);
1472 if (strcmp (var->print_value, print_value) != 0)
1473 changed = 1;
1474 }
1475 }
1476 }
1477
1478 if (!initial && !changeable)
1479 {
1480 /* For values that are not changeable, we don't compare the values.
1481 However, we want to notice if a value was not NULL and now is NULL,
1482 or vise versa, so that we report when top-level varobjs come in scope
1483 and leave the scope. */
1484 changed = (var->value != NULL) != (value != NULL);
1485 }
1486
1487 /* We must always keep the new value, since children depend on it. */
1488 if (var->value != NULL && var->value != value)
1489 value_free (var->value);
1490 var->value = value;
1491 if (value && value_lazy (value) && intentionally_not_fetched)
1492 var->not_fetched = 1;
1493 else
1494 var->not_fetched = 0;
1495 var->updated = 0;
1496
1497 install_new_value_visualizer (var);
1498
1499 /* If we installed a pretty-printer, re-compare the printed version
1500 to see if the variable changed. */
1501 if (var->dynamic->pretty_printer != NULL)
1502 {
1503 xfree (print_value);
1504 print_value = varobj_value_get_print_value (var->value, var->format,
1505 var);
1506 if ((var->print_value == NULL && print_value != NULL)
1507 || (var->print_value != NULL && print_value == NULL)
1508 || (var->print_value != NULL && print_value != NULL
1509 && strcmp (var->print_value, print_value) != 0))
1510 changed = 1;
1511 }
1512 if (var->print_value)
1513 xfree (var->print_value);
1514 var->print_value = print_value;
1515
1516 gdb_assert (!var->value || value_type (var->value));
1517
1518 return changed;
1519 }
1520
1521 /* Return the requested range for a varobj. VAR is the varobj. FROM
1522 and TO are out parameters; *FROM and *TO will be set to the
1523 selected sub-range of VAR. If no range was selected using
1524 -var-set-update-range, then both will be -1. */
1525 void
1526 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1527 {
1528 *from = var->from;
1529 *to = var->to;
1530 }
1531
1532 /* Set the selected sub-range of children of VAR to start at index
1533 FROM and end at index TO. If either FROM or TO is less than zero,
1534 this is interpreted as a request for all children. */
1535 void
1536 varobj_set_child_range (struct varobj *var, int from, int to)
1537 {
1538 var->from = from;
1539 var->to = to;
1540 }
1541
1542 void
1543 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1544 {
1545 #if HAVE_PYTHON
1546 PyObject *mainmod, *globals, *constructor;
1547 struct cleanup *back_to;
1548
1549 if (!gdb_python_initialized)
1550 return;
1551
1552 back_to = varobj_ensure_python_env (var);
1553
1554 mainmod = PyImport_AddModule ("__main__");
1555 globals = PyModule_GetDict (mainmod);
1556 Py_INCREF (globals);
1557 make_cleanup_py_decref (globals);
1558
1559 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1560
1561 if (! constructor)
1562 {
1563 gdbpy_print_stack ();
1564 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1565 }
1566
1567 construct_visualizer (var, constructor);
1568 Py_XDECREF (constructor);
1569
1570 /* If there are any children now, wipe them. */
1571 varobj_delete (var, NULL, 1 /* children only */);
1572 var->num_children = -1;
1573
1574 do_cleanups (back_to);
1575 #else
1576 error (_("Python support required"));
1577 #endif
1578 }
1579
1580 /* If NEW_VALUE is the new value of the given varobj (var), return
1581 non-zero if var has mutated. In other words, if the type of
1582 the new value is different from the type of the varobj's old
1583 value.
1584
1585 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1586
1587 static int
1588 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1589 struct type *new_type)
1590 {
1591 /* If we haven't previously computed the number of children in var,
1592 it does not matter from the front-end's perspective whether
1593 the type has mutated or not. For all intents and purposes,
1594 it has not mutated. */
1595 if (var->num_children < 0)
1596 return 0;
1597
1598 if (var->root->lang_ops->value_has_mutated)
1599 {
1600 /* The varobj module, when installing new values, explicitly strips
1601 references, saying that we're not interested in those addresses.
1602 But detection of mutation happens before installing the new
1603 value, so our value may be a reference that we need to strip
1604 in order to remain consistent. */
1605 if (new_value != NULL)
1606 new_value = coerce_ref (new_value);
1607 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1608 }
1609 else
1610 return 0;
1611 }
1612
1613 /* Update the values for a variable and its children. This is a
1614 two-pronged attack. First, re-parse the value for the root's
1615 expression to see if it's changed. Then go all the way
1616 through its children, reconstructing them and noting if they've
1617 changed.
1618
1619 The EXPLICIT parameter specifies if this call is result
1620 of MI request to update this specific variable, or
1621 result of implicit -var-update *. For implicit request, we don't
1622 update frozen variables.
1623
1624 NOTE: This function may delete the caller's varobj. If it
1625 returns TYPE_CHANGED, then it has done this and VARP will be modified
1626 to point to the new varobj. */
1627
1628 VEC(varobj_update_result) *
1629 varobj_update (struct varobj **varp, int is_explicit)
1630 {
1631 int type_changed = 0;
1632 int i;
1633 struct value *newobj;
1634 VEC (varobj_update_result) *stack = NULL;
1635 VEC (varobj_update_result) *result = NULL;
1636
1637 /* Frozen means frozen -- we don't check for any change in
1638 this varobj, including its going out of scope, or
1639 changing type. One use case for frozen varobjs is
1640 retaining previously evaluated expressions, and we don't
1641 want them to be reevaluated at all. */
1642 if (!is_explicit && (*varp)->frozen)
1643 return result;
1644
1645 if (!(*varp)->root->is_valid)
1646 {
1647 varobj_update_result r = {0};
1648
1649 r.varobj = *varp;
1650 r.status = VAROBJ_INVALID;
1651 VEC_safe_push (varobj_update_result, result, &r);
1652 return result;
1653 }
1654
1655 if ((*varp)->root->rootvar == *varp)
1656 {
1657 varobj_update_result r = {0};
1658
1659 r.varobj = *varp;
1660 r.status = VAROBJ_IN_SCOPE;
1661
1662 /* Update the root variable. value_of_root can return NULL
1663 if the variable is no longer around, i.e. we stepped out of
1664 the frame in which a local existed. We are letting the
1665 value_of_root variable dispose of the varobj if the type
1666 has changed. */
1667 newobj = value_of_root (varp, &type_changed);
1668 if (update_type_if_necessary(*varp, newobj))
1669 type_changed = 1;
1670 r.varobj = *varp;
1671 r.type_changed = type_changed;
1672 if (install_new_value ((*varp), newobj, type_changed))
1673 r.changed = 1;
1674
1675 if (newobj == NULL)
1676 r.status = VAROBJ_NOT_IN_SCOPE;
1677 r.value_installed = 1;
1678
1679 if (r.status == VAROBJ_NOT_IN_SCOPE)
1680 {
1681 if (r.type_changed || r.changed)
1682 VEC_safe_push (varobj_update_result, result, &r);
1683 return result;
1684 }
1685
1686 VEC_safe_push (varobj_update_result, stack, &r);
1687 }
1688 else
1689 {
1690 varobj_update_result r = {0};
1691
1692 r.varobj = *varp;
1693 VEC_safe_push (varobj_update_result, stack, &r);
1694 }
1695
1696 /* Walk through the children, reconstructing them all. */
1697 while (!VEC_empty (varobj_update_result, stack))
1698 {
1699 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1700 struct varobj *v = r.varobj;
1701
1702 VEC_pop (varobj_update_result, stack);
1703
1704 /* Update this variable, unless it's a root, which is already
1705 updated. */
1706 if (!r.value_installed)
1707 {
1708 struct type *new_type;
1709
1710 newobj = value_of_child (v->parent, v->index);
1711 if (update_type_if_necessary(v, newobj))
1712 r.type_changed = 1;
1713 if (newobj)
1714 new_type = value_type (newobj);
1715 else
1716 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1717
1718 if (varobj_value_has_mutated (v, newobj, new_type))
1719 {
1720 /* The children are no longer valid; delete them now.
1721 Report the fact that its type changed as well. */
1722 varobj_delete (v, NULL, 1 /* only_children */);
1723 v->num_children = -1;
1724 v->to = -1;
1725 v->from = -1;
1726 v->type = new_type;
1727 r.type_changed = 1;
1728 }
1729
1730 if (install_new_value (v, newobj, r.type_changed))
1731 {
1732 r.changed = 1;
1733 v->updated = 0;
1734 }
1735 }
1736
1737 /* We probably should not get children of a dynamic varobj, but
1738 for which -var-list-children was never invoked. */
1739 if (varobj_is_dynamic_p (v))
1740 {
1741 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1742 VEC (varobj_p) *newobj = 0;
1743 int i, children_changed = 0;
1744
1745 if (v->frozen)
1746 continue;
1747
1748 if (!v->dynamic->children_requested)
1749 {
1750 int dummy;
1751
1752 /* If we initially did not have potential children, but
1753 now we do, consider the varobj as changed.
1754 Otherwise, if children were never requested, consider
1755 it as unchanged -- presumably, such varobj is not yet
1756 expanded in the UI, so we need not bother getting
1757 it. */
1758 if (!varobj_has_more (v, 0))
1759 {
1760 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1761 &dummy, 0, 0, 0);
1762 if (varobj_has_more (v, 0))
1763 r.changed = 1;
1764 }
1765
1766 if (r.changed)
1767 VEC_safe_push (varobj_update_result, result, &r);
1768
1769 continue;
1770 }
1771
1772 /* If update_dynamic_varobj_children returns 0, then we have
1773 a non-conforming pretty-printer, so we skip it. */
1774 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1775 &unchanged, &children_changed, 1,
1776 v->from, v->to))
1777 {
1778 if (children_changed || newobj)
1779 {
1780 r.children_changed = 1;
1781 r.newobj = newobj;
1782 }
1783 /* Push in reverse order so that the first child is
1784 popped from the work stack first, and so will be
1785 added to result first. This does not affect
1786 correctness, just "nicer". */
1787 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1788 {
1789 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1790 varobj_update_result r = {0};
1791
1792 /* Type may change only if value was changed. */
1793 r.varobj = tmp;
1794 r.changed = 1;
1795 r.type_changed = 1;
1796 r.value_installed = 1;
1797 VEC_safe_push (varobj_update_result, stack, &r);
1798 }
1799 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1800 {
1801 varobj_p tmp = VEC_index (varobj_p, changed, i);
1802 varobj_update_result r = {0};
1803
1804 r.varobj = tmp;
1805 r.changed = 1;
1806 r.value_installed = 1;
1807 VEC_safe_push (varobj_update_result, stack, &r);
1808 }
1809 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1810 {
1811 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1812
1813 if (!tmp->frozen)
1814 {
1815 varobj_update_result r = {0};
1816
1817 r.varobj = tmp;
1818 r.value_installed = 1;
1819 VEC_safe_push (varobj_update_result, stack, &r);
1820 }
1821 }
1822 if (r.changed || r.children_changed)
1823 VEC_safe_push (varobj_update_result, result, &r);
1824
1825 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1826 because NEW has been put into the result vector. */
1827 VEC_free (varobj_p, changed);
1828 VEC_free (varobj_p, type_changed);
1829 VEC_free (varobj_p, unchanged);
1830
1831 continue;
1832 }
1833 }
1834
1835 /* Push any children. Use reverse order so that the first
1836 child is popped from the work stack first, and so
1837 will be added to result first. This does not
1838 affect correctness, just "nicer". */
1839 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1840 {
1841 varobj_p c = VEC_index (varobj_p, v->children, i);
1842
1843 /* Child may be NULL if explicitly deleted by -var-delete. */
1844 if (c != NULL && !c->frozen)
1845 {
1846 varobj_update_result r = {0};
1847
1848 r.varobj = c;
1849 VEC_safe_push (varobj_update_result, stack, &r);
1850 }
1851 }
1852
1853 if (r.changed || r.type_changed)
1854 VEC_safe_push (varobj_update_result, result, &r);
1855 }
1856
1857 VEC_free (varobj_update_result, stack);
1858
1859 return result;
1860 }
1861 \f
1862
1863 /* Helper functions */
1864
1865 /*
1866 * Variable object construction/destruction
1867 */
1868
1869 static int
1870 delete_variable (struct cpstack **resultp, struct varobj *var,
1871 int only_children_p)
1872 {
1873 int delcount = 0;
1874
1875 delete_variable_1 (resultp, &delcount, var,
1876 only_children_p, 1 /* remove_from_parent_p */ );
1877
1878 return delcount;
1879 }
1880
1881 /* Delete the variable object VAR and its children. */
1882 /* IMPORTANT NOTE: If we delete a variable which is a child
1883 and the parent is not removed we dump core. It must be always
1884 initially called with remove_from_parent_p set. */
1885 static void
1886 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1887 struct varobj *var, int only_children_p,
1888 int remove_from_parent_p)
1889 {
1890 int i;
1891
1892 /* Delete any children of this variable, too. */
1893 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1894 {
1895 varobj_p child = VEC_index (varobj_p, var->children, i);
1896
1897 if (!child)
1898 continue;
1899 if (!remove_from_parent_p)
1900 child->parent = NULL;
1901 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1902 }
1903 VEC_free (varobj_p, var->children);
1904
1905 /* if we were called to delete only the children we are done here. */
1906 if (only_children_p)
1907 return;
1908
1909 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1910 /* If the name is null, this is a temporary variable, that has not
1911 yet been installed, don't report it, it belongs to the caller... */
1912 if (var->obj_name != NULL)
1913 {
1914 cppush (resultp, xstrdup (var->obj_name));
1915 *delcountp = *delcountp + 1;
1916 }
1917
1918 /* If this variable has a parent, remove it from its parent's list. */
1919 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1920 (as indicated by remove_from_parent_p) we don't bother doing an
1921 expensive list search to find the element to remove when we are
1922 discarding the list afterwards. */
1923 if ((remove_from_parent_p) && (var->parent != NULL))
1924 {
1925 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1926 }
1927
1928 if (var->obj_name != NULL)
1929 uninstall_variable (var);
1930
1931 /* Free memory associated with this variable. */
1932 free_variable (var);
1933 }
1934
1935 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1936 static int
1937 install_variable (struct varobj *var)
1938 {
1939 struct vlist *cv;
1940 struct vlist *newvl;
1941 const char *chp;
1942 unsigned int index = 0;
1943 unsigned int i = 1;
1944
1945 for (chp = var->obj_name; *chp; chp++)
1946 {
1947 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1948 }
1949
1950 cv = *(varobj_table + index);
1951 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1952 cv = cv->next;
1953
1954 if (cv != NULL)
1955 error (_("Duplicate variable object name"));
1956
1957 /* Add varobj to hash table. */
1958 newvl = XNEW (struct vlist);
1959 newvl->next = *(varobj_table + index);
1960 newvl->var = var;
1961 *(varobj_table + index) = newvl;
1962
1963 /* If root, add varobj to root list. */
1964 if (is_root_p (var))
1965 {
1966 /* Add to list of root variables. */
1967 if (rootlist == NULL)
1968 var->root->next = NULL;
1969 else
1970 var->root->next = rootlist;
1971 rootlist = var->root;
1972 }
1973
1974 return 1; /* OK */
1975 }
1976
1977 /* Unistall the object VAR. */
1978 static void
1979 uninstall_variable (struct varobj *var)
1980 {
1981 struct vlist *cv;
1982 struct vlist *prev;
1983 struct varobj_root *cr;
1984 struct varobj_root *prer;
1985 const char *chp;
1986 unsigned int index = 0;
1987 unsigned int i = 1;
1988
1989 /* Remove varobj from hash table. */
1990 for (chp = var->obj_name; *chp; chp++)
1991 {
1992 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1993 }
1994
1995 cv = *(varobj_table + index);
1996 prev = NULL;
1997 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1998 {
1999 prev = cv;
2000 cv = cv->next;
2001 }
2002
2003 if (varobjdebug)
2004 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2005
2006 if (cv == NULL)
2007 {
2008 warning
2009 ("Assertion failed: Could not find variable object \"%s\" to delete",
2010 var->obj_name);
2011 return;
2012 }
2013
2014 if (prev == NULL)
2015 *(varobj_table + index) = cv->next;
2016 else
2017 prev->next = cv->next;
2018
2019 xfree (cv);
2020
2021 /* If root, remove varobj from root list. */
2022 if (is_root_p (var))
2023 {
2024 /* Remove from list of root variables. */
2025 if (rootlist == var->root)
2026 rootlist = var->root->next;
2027 else
2028 {
2029 prer = NULL;
2030 cr = rootlist;
2031 while ((cr != NULL) && (cr->rootvar != var))
2032 {
2033 prer = cr;
2034 cr = cr->next;
2035 }
2036 if (cr == NULL)
2037 {
2038 warning (_("Assertion failed: Could not find "
2039 "varobj \"%s\" in root list"),
2040 var->obj_name);
2041 return;
2042 }
2043 if (prer == NULL)
2044 rootlist = NULL;
2045 else
2046 prer->next = cr->next;
2047 }
2048 }
2049
2050 }
2051
2052 /* Create and install a child of the parent of the given name.
2053
2054 The created VAROBJ takes ownership of the allocated NAME. */
2055
2056 static struct varobj *
2057 create_child (struct varobj *parent, int index, char *name)
2058 {
2059 struct varobj_item item;
2060
2061 item.name = name;
2062 item.value = value_of_child (parent, index);
2063
2064 return create_child_with_value (parent, index, &item);
2065 }
2066
2067 static struct varobj *
2068 create_child_with_value (struct varobj *parent, int index,
2069 struct varobj_item *item)
2070 {
2071 struct varobj *child;
2072 char *childs_name;
2073
2074 child = new_variable ();
2075
2076 /* NAME is allocated by caller. */
2077 child->name = item->name;
2078 child->index = index;
2079 child->parent = parent;
2080 child->root = parent->root;
2081
2082 if (varobj_is_anonymous_child (child))
2083 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2084 else
2085 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2086 child->obj_name = childs_name;
2087
2088 install_variable (child);
2089
2090 /* Compute the type of the child. Must do this before
2091 calling install_new_value. */
2092 if (item->value != NULL)
2093 /* If the child had no evaluation errors, var->value
2094 will be non-NULL and contain a valid type. */
2095 child->type = value_actual_type (item->value, 0, NULL);
2096 else
2097 /* Otherwise, we must compute the type. */
2098 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2099 child->index);
2100 install_new_value (child, item->value, 1);
2101
2102 return child;
2103 }
2104 \f
2105
2106 /*
2107 * Miscellaneous utility functions.
2108 */
2109
2110 /* Allocate memory and initialize a new variable. */
2111 static struct varobj *
2112 new_variable (void)
2113 {
2114 struct varobj *var;
2115
2116 var = XNEW (struct varobj);
2117 var->name = NULL;
2118 var->path_expr = NULL;
2119 var->obj_name = NULL;
2120 var->index = -1;
2121 var->type = NULL;
2122 var->value = NULL;
2123 var->num_children = -1;
2124 var->parent = NULL;
2125 var->children = NULL;
2126 var->format = FORMAT_NATURAL;
2127 var->root = NULL;
2128 var->updated = 0;
2129 var->print_value = NULL;
2130 var->frozen = 0;
2131 var->not_fetched = 0;
2132 var->dynamic = XNEW (struct varobj_dynamic);
2133 var->dynamic->children_requested = 0;
2134 var->from = -1;
2135 var->to = -1;
2136 var->dynamic->constructor = 0;
2137 var->dynamic->pretty_printer = 0;
2138 var->dynamic->child_iter = 0;
2139 var->dynamic->saved_item = 0;
2140
2141 return var;
2142 }
2143
2144 /* Allocate memory and initialize a new root variable. */
2145 static struct varobj *
2146 new_root_variable (void)
2147 {
2148 struct varobj *var = new_variable ();
2149
2150 var->root = XNEW (struct varobj_root);
2151 var->root->lang_ops = NULL;
2152 var->root->exp = NULL;
2153 var->root->valid_block = NULL;
2154 var->root->frame = null_frame_id;
2155 var->root->floating = 0;
2156 var->root->rootvar = NULL;
2157 var->root->is_valid = 1;
2158
2159 return var;
2160 }
2161
2162 /* Free any allocated memory associated with VAR. */
2163 static void
2164 free_variable (struct varobj *var)
2165 {
2166 #if HAVE_PYTHON
2167 if (var->dynamic->pretty_printer != NULL)
2168 {
2169 struct cleanup *cleanup = varobj_ensure_python_env (var);
2170
2171 Py_XDECREF (var->dynamic->constructor);
2172 Py_XDECREF (var->dynamic->pretty_printer);
2173 do_cleanups (cleanup);
2174 }
2175 #endif
2176
2177 varobj_iter_delete (var->dynamic->child_iter);
2178 varobj_clear_saved_item (var->dynamic);
2179 value_free (var->value);
2180
2181 /* Free the expression if this is a root variable. */
2182 if (is_root_p (var))
2183 {
2184 xfree (var->root->exp);
2185 xfree (var->root);
2186 }
2187
2188 xfree (var->name);
2189 xfree (var->obj_name);
2190 xfree (var->print_value);
2191 xfree (var->path_expr);
2192 xfree (var->dynamic);
2193 xfree (var);
2194 }
2195
2196 static void
2197 do_free_variable_cleanup (void *var)
2198 {
2199 free_variable (var);
2200 }
2201
2202 static struct cleanup *
2203 make_cleanup_free_variable (struct varobj *var)
2204 {
2205 return make_cleanup (do_free_variable_cleanup, var);
2206 }
2207
2208 /* Return the type of the value that's stored in VAR,
2209 or that would have being stored there if the
2210 value were accessible.
2211
2212 This differs from VAR->type in that VAR->type is always
2213 the true type of the expession in the source language.
2214 The return value of this function is the type we're
2215 actually storing in varobj, and using for displaying
2216 the values and for comparing previous and new values.
2217
2218 For example, top-level references are always stripped. */
2219 struct type *
2220 varobj_get_value_type (const struct varobj *var)
2221 {
2222 struct type *type;
2223
2224 if (var->value)
2225 type = value_type (var->value);
2226 else
2227 type = var->type;
2228
2229 type = check_typedef (type);
2230
2231 if (TYPE_CODE (type) == TYPE_CODE_REF)
2232 type = get_target_type (type);
2233
2234 type = check_typedef (type);
2235
2236 return type;
2237 }
2238
2239 /* What is the default display for this variable? We assume that
2240 everything is "natural". Any exceptions? */
2241 static enum varobj_display_formats
2242 variable_default_display (struct varobj *var)
2243 {
2244 return FORMAT_NATURAL;
2245 }
2246
2247 /* FIXME: The following should be generic for any pointer. */
2248 static void
2249 cppush (struct cpstack **pstack, char *name)
2250 {
2251 struct cpstack *s;
2252
2253 s = XNEW (struct cpstack);
2254 s->name = name;
2255 s->next = *pstack;
2256 *pstack = s;
2257 }
2258
2259 /* FIXME: The following should be generic for any pointer. */
2260 static char *
2261 cppop (struct cpstack **pstack)
2262 {
2263 struct cpstack *s;
2264 char *v;
2265
2266 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2267 return NULL;
2268
2269 s = *pstack;
2270 v = s->name;
2271 *pstack = (*pstack)->next;
2272 xfree (s);
2273
2274 return v;
2275 }
2276 \f
2277 /*
2278 * Language-dependencies
2279 */
2280
2281 /* Common entry points */
2282
2283 /* Return the number of children for a given variable.
2284 The result of this function is defined by the language
2285 implementation. The number of children returned by this function
2286 is the number of children that the user will see in the variable
2287 display. */
2288 static int
2289 number_of_children (const struct varobj *var)
2290 {
2291 return (*var->root->lang_ops->number_of_children) (var);
2292 }
2293
2294 /* What is the expression for the root varobj VAR? Returns a malloc'd
2295 string. */
2296 static char *
2297 name_of_variable (const struct varobj *var)
2298 {
2299 return (*var->root->lang_ops->name_of_variable) (var);
2300 }
2301
2302 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2303 string. */
2304 static char *
2305 name_of_child (struct varobj *var, int index)
2306 {
2307 return (*var->root->lang_ops->name_of_child) (var, index);
2308 }
2309
2310 /* If frame associated with VAR can be found, switch
2311 to it and return 1. Otherwise, return 0. */
2312
2313 static int
2314 check_scope (const struct varobj *var)
2315 {
2316 struct frame_info *fi;
2317 int scope;
2318
2319 fi = frame_find_by_id (var->root->frame);
2320 scope = fi != NULL;
2321
2322 if (fi)
2323 {
2324 CORE_ADDR pc = get_frame_pc (fi);
2325
2326 if (pc < BLOCK_START (var->root->valid_block) ||
2327 pc >= BLOCK_END (var->root->valid_block))
2328 scope = 0;
2329 else
2330 select_frame (fi);
2331 }
2332 return scope;
2333 }
2334
2335 /* Helper function to value_of_root. */
2336
2337 static struct value *
2338 value_of_root_1 (struct varobj **var_handle)
2339 {
2340 struct value *new_val = NULL;
2341 struct varobj *var = *var_handle;
2342 int within_scope = 0;
2343 struct cleanup *back_to;
2344
2345 /* Only root variables can be updated... */
2346 if (!is_root_p (var))
2347 /* Not a root var. */
2348 return NULL;
2349
2350 back_to = make_cleanup_restore_current_thread ();
2351
2352 /* Determine whether the variable is still around. */
2353 if (var->root->valid_block == NULL || var->root->floating)
2354 within_scope = 1;
2355 else if (var->root->thread_id == 0)
2356 {
2357 /* The program was single-threaded when the variable object was
2358 created. Technically, it's possible that the program became
2359 multi-threaded since then, but we don't support such
2360 scenario yet. */
2361 within_scope = check_scope (var);
2362 }
2363 else
2364 {
2365 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2366 if (in_thread_list (ptid))
2367 {
2368 switch_to_thread (ptid);
2369 within_scope = check_scope (var);
2370 }
2371 }
2372
2373 if (within_scope)
2374 {
2375
2376 /* We need to catch errors here, because if evaluate
2377 expression fails we want to just return NULL. */
2378 TRY
2379 {
2380 new_val = evaluate_expression (var->root->exp);
2381 }
2382 CATCH (except, RETURN_MASK_ERROR)
2383 {
2384 }
2385 END_CATCH
2386 }
2387
2388 do_cleanups (back_to);
2389
2390 return new_val;
2391 }
2392
2393 /* What is the ``struct value *'' of the root variable VAR?
2394 For floating variable object, evaluation can get us a value
2395 of different type from what is stored in varobj already. In
2396 that case:
2397 - *type_changed will be set to 1
2398 - old varobj will be freed, and new one will be
2399 created, with the same name.
2400 - *var_handle will be set to the new varobj
2401 Otherwise, *type_changed will be set to 0. */
2402 static struct value *
2403 value_of_root (struct varobj **var_handle, int *type_changed)
2404 {
2405 struct varobj *var;
2406
2407 if (var_handle == NULL)
2408 return NULL;
2409
2410 var = *var_handle;
2411
2412 /* This should really be an exception, since this should
2413 only get called with a root variable. */
2414
2415 if (!is_root_p (var))
2416 return NULL;
2417
2418 if (var->root->floating)
2419 {
2420 struct varobj *tmp_var;
2421 char *old_type, *new_type;
2422
2423 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2424 USE_SELECTED_FRAME);
2425 if (tmp_var == NULL)
2426 {
2427 return NULL;
2428 }
2429 old_type = varobj_get_type (var);
2430 new_type = varobj_get_type (tmp_var);
2431 if (strcmp (old_type, new_type) == 0)
2432 {
2433 /* The expression presently stored inside var->root->exp
2434 remembers the locations of local variables relatively to
2435 the frame where the expression was created (in DWARF location
2436 button, for example). Naturally, those locations are not
2437 correct in other frames, so update the expression. */
2438
2439 struct expression *tmp_exp = var->root->exp;
2440
2441 var->root->exp = tmp_var->root->exp;
2442 tmp_var->root->exp = tmp_exp;
2443
2444 varobj_delete (tmp_var, NULL, 0);
2445 *type_changed = 0;
2446 }
2447 else
2448 {
2449 tmp_var->obj_name = xstrdup (var->obj_name);
2450 tmp_var->from = var->from;
2451 tmp_var->to = var->to;
2452 varobj_delete (var, NULL, 0);
2453
2454 install_variable (tmp_var);
2455 *var_handle = tmp_var;
2456 var = *var_handle;
2457 *type_changed = 1;
2458 }
2459 xfree (old_type);
2460 xfree (new_type);
2461 }
2462 else
2463 {
2464 *type_changed = 0;
2465 }
2466
2467 {
2468 struct value *value;
2469
2470 value = value_of_root_1 (var_handle);
2471 if (var->value == NULL || value == NULL)
2472 {
2473 /* For root varobj-s, a NULL value indicates a scoping issue.
2474 So, nothing to do in terms of checking for mutations. */
2475 }
2476 else if (varobj_value_has_mutated (var, value, value_type (value)))
2477 {
2478 /* The type has mutated, so the children are no longer valid.
2479 Just delete them, and tell our caller that the type has
2480 changed. */
2481 varobj_delete (var, NULL, 1 /* only_children */);
2482 var->num_children = -1;
2483 var->to = -1;
2484 var->from = -1;
2485 *type_changed = 1;
2486 }
2487 return value;
2488 }
2489 }
2490
2491 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2492 static struct value *
2493 value_of_child (const struct varobj *parent, int index)
2494 {
2495 struct value *value;
2496
2497 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2498
2499 return value;
2500 }
2501
2502 /* GDB already has a command called "value_of_variable". Sigh. */
2503 static char *
2504 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2505 {
2506 if (var->root->is_valid)
2507 {
2508 if (var->dynamic->pretty_printer != NULL)
2509 return varobj_value_get_print_value (var->value, var->format, var);
2510 return (*var->root->lang_ops->value_of_variable) (var, format);
2511 }
2512 else
2513 return NULL;
2514 }
2515
2516 void
2517 varobj_formatted_print_options (struct value_print_options *opts,
2518 enum varobj_display_formats format)
2519 {
2520 get_formatted_print_options (opts, format_code[(int) format]);
2521 opts->deref_ref = 0;
2522 opts->raw = 1;
2523 }
2524
2525 char *
2526 varobj_value_get_print_value (struct value *value,
2527 enum varobj_display_formats format,
2528 const struct varobj *var)
2529 {
2530 struct ui_file *stb;
2531 struct cleanup *old_chain;
2532 char *thevalue = NULL;
2533 struct value_print_options opts;
2534 struct type *type = NULL;
2535 long len = 0;
2536 char *encoding = NULL;
2537 struct gdbarch *gdbarch = NULL;
2538 /* Initialize it just to avoid a GCC false warning. */
2539 CORE_ADDR str_addr = 0;
2540 int string_print = 0;
2541
2542 if (value == NULL)
2543 return NULL;
2544
2545 stb = mem_fileopen ();
2546 old_chain = make_cleanup_ui_file_delete (stb);
2547
2548 gdbarch = get_type_arch (value_type (value));
2549 #if HAVE_PYTHON
2550 if (gdb_python_initialized)
2551 {
2552 PyObject *value_formatter = var->dynamic->pretty_printer;
2553
2554 varobj_ensure_python_env (var);
2555
2556 if (value_formatter)
2557 {
2558 /* First check to see if we have any children at all. If so,
2559 we simply return {...}. */
2560 if (dynamic_varobj_has_child_method (var))
2561 {
2562 do_cleanups (old_chain);
2563 return xstrdup ("{...}");
2564 }
2565
2566 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2567 {
2568 struct value *replacement;
2569 PyObject *output = NULL;
2570
2571 output = apply_varobj_pretty_printer (value_formatter,
2572 &replacement,
2573 stb);
2574
2575 /* If we have string like output ... */
2576 if (output)
2577 {
2578 make_cleanup_py_decref (output);
2579
2580 /* If this is a lazy string, extract it. For lazy
2581 strings we always print as a string, so set
2582 string_print. */
2583 if (gdbpy_is_lazy_string (output))
2584 {
2585 gdbpy_extract_lazy_string (output, &str_addr, &type,
2586 &len, &encoding);
2587 make_cleanup (free_current_contents, &encoding);
2588 string_print = 1;
2589 }
2590 else
2591 {
2592 /* If it is a regular (non-lazy) string, extract
2593 it and copy the contents into THEVALUE. If the
2594 hint says to print it as a string, set
2595 string_print. Otherwise just return the extracted
2596 string as a value. */
2597
2598 char *s = python_string_to_target_string (output);
2599
2600 if (s)
2601 {
2602 char *hint;
2603
2604 hint = gdbpy_get_display_hint (value_formatter);
2605 if (hint)
2606 {
2607 if (!strcmp (hint, "string"))
2608 string_print = 1;
2609 xfree (hint);
2610 }
2611
2612 len = strlen (s);
2613 thevalue = xmemdup (s, len + 1, len + 1);
2614 type = builtin_type (gdbarch)->builtin_char;
2615 xfree (s);
2616
2617 if (!string_print)
2618 {
2619 do_cleanups (old_chain);
2620 return thevalue;
2621 }
2622
2623 make_cleanup (xfree, thevalue);
2624 }
2625 else
2626 gdbpy_print_stack ();
2627 }
2628 }
2629 /* If the printer returned a replacement value, set VALUE
2630 to REPLACEMENT. If there is not a replacement value,
2631 just use the value passed to this function. */
2632 if (replacement)
2633 value = replacement;
2634 }
2635 }
2636 }
2637 #endif
2638
2639 varobj_formatted_print_options (&opts, format);
2640
2641 /* If the THEVALUE has contents, it is a regular string. */
2642 if (thevalue)
2643 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2644 else if (string_print)
2645 /* Otherwise, if string_print is set, and it is not a regular
2646 string, it is a lazy string. */
2647 val_print_string (type, encoding, str_addr, len, stb, &opts);
2648 else
2649 /* All other cases. */
2650 common_val_print (value, stb, 0, &opts, current_language);
2651
2652 thevalue = ui_file_xstrdup (stb, NULL);
2653
2654 do_cleanups (old_chain);
2655 return thevalue;
2656 }
2657
2658 int
2659 varobj_editable_p (const struct varobj *var)
2660 {
2661 struct type *type;
2662
2663 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2664 return 0;
2665
2666 type = varobj_get_value_type (var);
2667
2668 switch (TYPE_CODE (type))
2669 {
2670 case TYPE_CODE_STRUCT:
2671 case TYPE_CODE_UNION:
2672 case TYPE_CODE_ARRAY:
2673 case TYPE_CODE_FUNC:
2674 case TYPE_CODE_METHOD:
2675 return 0;
2676 break;
2677
2678 default:
2679 return 1;
2680 break;
2681 }
2682 }
2683
2684 /* Call VAR's value_is_changeable_p language-specific callback. */
2685
2686 int
2687 varobj_value_is_changeable_p (const struct varobj *var)
2688 {
2689 return var->root->lang_ops->value_is_changeable_p (var);
2690 }
2691
2692 /* Return 1 if that varobj is floating, that is is always evaluated in the
2693 selected frame, and not bound to thread/frame. Such variable objects
2694 are created using '@' as frame specifier to -var-create. */
2695 int
2696 varobj_floating_p (const struct varobj *var)
2697 {
2698 return var->root->floating;
2699 }
2700
2701 /* Implement the "value_is_changeable_p" varobj callback for most
2702 languages. */
2703
2704 int
2705 varobj_default_value_is_changeable_p (const struct varobj *var)
2706 {
2707 int r;
2708 struct type *type;
2709
2710 if (CPLUS_FAKE_CHILD (var))
2711 return 0;
2712
2713 type = varobj_get_value_type (var);
2714
2715 switch (TYPE_CODE (type))
2716 {
2717 case TYPE_CODE_STRUCT:
2718 case TYPE_CODE_UNION:
2719 case TYPE_CODE_ARRAY:
2720 r = 0;
2721 break;
2722
2723 default:
2724 r = 1;
2725 }
2726
2727 return r;
2728 }
2729
2730 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2731 with an arbitrary caller supplied DATA pointer. */
2732
2733 void
2734 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2735 {
2736 struct varobj_root *var_root, *var_root_next;
2737
2738 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2739
2740 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2741 {
2742 var_root_next = var_root->next;
2743
2744 (*func) (var_root->rootvar, data);
2745 }
2746 }
2747
2748 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2749 defined on globals. It is a helper for varobj_invalidate.
2750
2751 This function is called after changing the symbol file, in this case the
2752 pointers to "struct type" stored by the varobj are no longer valid. All
2753 varobj must be either re-evaluated, or marked as invalid here. */
2754
2755 static void
2756 varobj_invalidate_iter (struct varobj *var, void *unused)
2757 {
2758 /* global and floating var must be re-evaluated. */
2759 if (var->root->floating || var->root->valid_block == NULL)
2760 {
2761 struct varobj *tmp_var;
2762
2763 /* Try to create a varobj with same expression. If we succeed
2764 replace the old varobj, otherwise invalidate it. */
2765 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2766 USE_CURRENT_FRAME);
2767 if (tmp_var != NULL)
2768 {
2769 tmp_var->obj_name = xstrdup (var->obj_name);
2770 varobj_delete (var, NULL, 0);
2771 install_variable (tmp_var);
2772 }
2773 else
2774 var->root->is_valid = 0;
2775 }
2776 else /* locals must be invalidated. */
2777 var->root->is_valid = 0;
2778 }
2779
2780 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2781 are defined on globals.
2782 Invalidated varobjs will be always printed in_scope="invalid". */
2783
2784 void
2785 varobj_invalidate (void)
2786 {
2787 all_root_varobjs (varobj_invalidate_iter, NULL);
2788 }
2789 \f
2790 extern void _initialize_varobj (void);
2791 void
2792 _initialize_varobj (void)
2793 {
2794 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2795
2796 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2797 &varobjdebug,
2798 _("Set varobj debugging."),
2799 _("Show varobj debugging."),
2800 _("When non-zero, varobj debugging is enabled."),
2801 NULL, show_varobjdebug,
2802 &setdebuglist, &showdebuglist);
2803 }
This page took 0.085125 seconds and 5 git commands to generate.