New field la_varobj_ops in struct language_defn
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36
37 #if HAVE_PYTHON
38 #include "python/python.h"
39 #include "python/python-internal.h"
40 #else
41 typedef int PyObject;
42 #endif
43
44 /* Non-zero if we want to see trace of varobj level stuff. */
45
46 unsigned int varobjdebug = 0;
47 static void
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50 {
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52 }
53
54 /* String representations of gdb's format codes. */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
57
58 /* String representations of gdb's known languages. */
59 char *varobj_language_string[] = { "C", "C++", "Java" };
60
61 /* True if we want to allow Python-based pretty-printing. */
62 static int pretty_printing = 0;
63
64 void
65 varobj_enable_pretty_printing (void)
66 {
67 pretty_printing = 1;
68 }
69
70 /* Data structures */
71
72 /* Every root variable has one of these structures saved in its
73 varobj. Members which must be free'd are noted. */
74 struct varobj_root
75 {
76
77 /* Alloc'd expression for this parent. */
78 struct expression *exp;
79
80 /* Block for which this expression is valid. */
81 const struct block *valid_block;
82
83 /* The frame for this expression. This field is set iff valid_block is
84 not NULL. */
85 struct frame_id frame;
86
87 /* The thread ID that this varobj_root belong to. This field
88 is only valid if valid_block is not NULL.
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
91 was created. */
92 int thread_id;
93
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
96 always updated in the specific scope/thread/frame. */
97 int floating;
98
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
101 int is_valid;
102
103 /* Language-related operations for this variable and its
104 children. */
105 const struct lang_varobj_ops *lang;
106
107 /* The varobj for this root node. */
108 struct varobj *rootvar;
109
110 /* Next root variable */
111 struct varobj_root *next;
112 };
113
114 /* Dynamic part of varobj. */
115
116 struct varobj_dynamic
117 {
118 /* Whether the children of this varobj were requested. This field is
119 used to decide if dynamic varobj should recompute their children.
120 In the event that the frontend never asked for the children, we
121 can avoid that. */
122 int children_requested;
123
124 /* The pretty-printer constructor. If NULL, then the default
125 pretty-printer will be looked up. If None, then no
126 pretty-printer will be installed. */
127 PyObject *constructor;
128
129 /* The pretty-printer that has been constructed. If NULL, then a
130 new printer object is needed, and one will be constructed. */
131 PyObject *pretty_printer;
132
133 /* The iterator returned by the printer's 'children' method, or NULL
134 if not available. */
135 PyObject *child_iter;
136
137 /* We request one extra item from the iterator, so that we can
138 report to the caller whether there are more items than we have
139 already reported. However, we don't want to install this value
140 when we read it, because that will mess up future updates. So,
141 we stash it here instead. */
142 PyObject *saved_item;
143 };
144
145 struct cpstack
146 {
147 char *name;
148 struct cpstack *next;
149 };
150
151 /* A list of varobjs */
152
153 struct vlist
154 {
155 struct varobj *var;
156 struct vlist *next;
157 };
158
159 /* Private function prototypes */
160
161 /* Helper functions for the above subcommands. */
162
163 static int delete_variable (struct cpstack **, struct varobj *, int);
164
165 static void delete_variable_1 (struct cpstack **, int *,
166 struct varobj *, int, int);
167
168 static int install_variable (struct varobj *);
169
170 static void uninstall_variable (struct varobj *);
171
172 static struct varobj *create_child (struct varobj *, int, char *);
173
174 static struct varobj *
175 create_child_with_value (struct varobj *parent, int index, char *name,
176 struct value *value);
177
178 /* Utility routines */
179
180 static struct varobj *new_variable (void);
181
182 static struct varobj *new_root_variable (void);
183
184 static void free_variable (struct varobj *var);
185
186 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
187
188 static enum varobj_display_formats variable_default_display (struct varobj *);
189
190 static void cppush (struct cpstack **pstack, char *name);
191
192 static char *cppop (struct cpstack **pstack);
193
194 static int update_type_if_necessary (struct varobj *var,
195 struct value *new_value);
196
197 static int install_new_value (struct varobj *var, struct value *value,
198 int initial);
199
200 /* Language-specific routines. */
201
202 static enum varobj_languages variable_language (struct varobj *var);
203
204 static int number_of_children (struct varobj *);
205
206 static char *name_of_variable (struct varobj *);
207
208 static char *name_of_child (struct varobj *, int);
209
210 static struct value *value_of_root (struct varobj **var_handle, int *);
211
212 static struct value *value_of_child (struct varobj *parent, int index);
213
214 static char *my_value_of_variable (struct varobj *var,
215 enum varobj_display_formats format);
216
217 static int is_root_p (struct varobj *var);
218
219 #if HAVE_PYTHON
220
221 static struct varobj *varobj_add_child (struct varobj *var,
222 char *name,
223 struct value *value);
224
225 #endif /* HAVE_PYTHON */
226
227 /* Array of known source language routines. */
228 static const struct lang_varobj_ops *languages[vlang_end] = {
229 &c_varobj_ops,
230 &cplus_varobj_ops,
231 &java_varobj_ops,
232 &ada_varobj_ops,
233 };
234
235 /* Private data */
236
237 /* Mappings of varobj_display_formats enums to gdb's format codes. */
238 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
239
240 /* Header of the list of root variable objects. */
241 static struct varobj_root *rootlist;
242
243 /* Prime number indicating the number of buckets in the hash table. */
244 /* A prime large enough to avoid too many colisions. */
245 #define VAROBJ_TABLE_SIZE 227
246
247 /* Pointer to the varobj hash table (built at run time). */
248 static struct vlist **varobj_table;
249
250 \f
251
252 /* API Implementation */
253 static int
254 is_root_p (struct varobj *var)
255 {
256 return (var->root->rootvar == var);
257 }
258
259 #ifdef HAVE_PYTHON
260 /* Helper function to install a Python environment suitable for
261 use during operations on VAR. */
262 static struct cleanup *
263 varobj_ensure_python_env (struct varobj *var)
264 {
265 return ensure_python_env (var->root->exp->gdbarch,
266 var->root->exp->language_defn);
267 }
268 #endif
269
270 /* Creates a varobj (not its children). */
271
272 /* Return the full FRAME which corresponds to the given CORE_ADDR
273 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
274
275 static struct frame_info *
276 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
277 {
278 struct frame_info *frame = NULL;
279
280 if (frame_addr == (CORE_ADDR) 0)
281 return NULL;
282
283 for (frame = get_current_frame ();
284 frame != NULL;
285 frame = get_prev_frame (frame))
286 {
287 /* The CORE_ADDR we get as argument was parsed from a string GDB
288 output as $fp. This output got truncated to gdbarch_addr_bit.
289 Truncate the frame base address in the same manner before
290 comparing it against our argument. */
291 CORE_ADDR frame_base = get_frame_base_address (frame);
292 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
293
294 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
295 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
296
297 if (frame_base == frame_addr)
298 return frame;
299 }
300
301 return NULL;
302 }
303
304 struct varobj *
305 varobj_create (char *objname,
306 char *expression, CORE_ADDR frame, enum varobj_type type)
307 {
308 struct varobj *var;
309 struct cleanup *old_chain;
310
311 /* Fill out a varobj structure for the (root) variable being constructed. */
312 var = new_root_variable ();
313 old_chain = make_cleanup_free_variable (var);
314
315 if (expression != NULL)
316 {
317 struct frame_info *fi;
318 struct frame_id old_id = null_frame_id;
319 struct block *block;
320 const char *p;
321 struct value *value = NULL;
322 volatile struct gdb_exception except;
323 CORE_ADDR pc;
324
325 /* Parse and evaluate the expression, filling in as much of the
326 variable's data as possible. */
327
328 if (has_stack_frames ())
329 {
330 /* Allow creator to specify context of variable. */
331 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
332 fi = get_selected_frame (NULL);
333 else
334 /* FIXME: cagney/2002-11-23: This code should be doing a
335 lookup using the frame ID and not just the frame's
336 ``address''. This, of course, means an interface
337 change. However, with out that interface change ISAs,
338 such as the ia64 with its two stacks, won't work.
339 Similar goes for the case where there is a frameless
340 function. */
341 fi = find_frame_addr_in_frame_chain (frame);
342 }
343 else
344 fi = NULL;
345
346 /* frame = -2 means always use selected frame. */
347 if (type == USE_SELECTED_FRAME)
348 var->root->floating = 1;
349
350 pc = 0;
351 block = NULL;
352 if (fi != NULL)
353 {
354 block = get_frame_block (fi, 0);
355 pc = get_frame_pc (fi);
356 }
357
358 p = expression;
359 innermost_block = NULL;
360 /* Wrap the call to parse expression, so we can
361 return a sensible error. */
362 TRY_CATCH (except, RETURN_MASK_ERROR)
363 {
364 var->root->exp = parse_exp_1 (&p, pc, block, 0);
365 }
366
367 if (except.reason < 0)
368 {
369 do_cleanups (old_chain);
370 return NULL;
371 }
372
373 /* Don't allow variables to be created for types. */
374 if (var->root->exp->elts[0].opcode == OP_TYPE
375 || var->root->exp->elts[0].opcode == OP_TYPEOF
376 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
377 {
378 do_cleanups (old_chain);
379 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
380 " as an expression.\n");
381 return NULL;
382 }
383
384 var->format = variable_default_display (var);
385 var->root->valid_block = innermost_block;
386 var->name = xstrdup (expression);
387 /* For a root var, the name and the expr are the same. */
388 var->path_expr = xstrdup (expression);
389
390 /* When the frame is different from the current frame,
391 we must select the appropriate frame before parsing
392 the expression, otherwise the value will not be current.
393 Since select_frame is so benign, just call it for all cases. */
394 if (innermost_block)
395 {
396 /* User could specify explicit FRAME-ADDR which was not found but
397 EXPRESSION is frame specific and we would not be able to evaluate
398 it correctly next time. With VALID_BLOCK set we must also set
399 FRAME and THREAD_ID. */
400 if (fi == NULL)
401 error (_("Failed to find the specified frame"));
402
403 var->root->frame = get_frame_id (fi);
404 var->root->thread_id = pid_to_thread_id (inferior_ptid);
405 old_id = get_frame_id (get_selected_frame (NULL));
406 select_frame (fi);
407 }
408
409 /* We definitely need to catch errors here.
410 If evaluate_expression succeeds we got the value we wanted.
411 But if it fails, we still go on with a call to evaluate_type(). */
412 TRY_CATCH (except, RETURN_MASK_ERROR)
413 {
414 value = evaluate_expression (var->root->exp);
415 }
416
417 if (except.reason < 0)
418 {
419 /* Error getting the value. Try to at least get the
420 right type. */
421 struct value *type_only_value = evaluate_type (var->root->exp);
422
423 var->type = value_type (type_only_value);
424 }
425 else
426 {
427 int real_type_found = 0;
428
429 var->type = value_actual_type (value, 0, &real_type_found);
430 if (real_type_found)
431 value = value_cast (var->type, value);
432 }
433
434 /* Set language info */
435 var->root->lang = var->root->exp->language_defn->la_varobj_ops;
436
437 install_new_value (var, value, 1 /* Initial assignment */);
438
439 /* Set ourselves as our root. */
440 var->root->rootvar = var;
441
442 /* Reset the selected frame. */
443 if (frame_id_p (old_id))
444 select_frame (frame_find_by_id (old_id));
445 }
446
447 /* If the variable object name is null, that means this
448 is a temporary variable, so don't install it. */
449
450 if ((var != NULL) && (objname != NULL))
451 {
452 var->obj_name = xstrdup (objname);
453
454 /* If a varobj name is duplicated, the install will fail so
455 we must cleanup. */
456 if (!install_variable (var))
457 {
458 do_cleanups (old_chain);
459 return NULL;
460 }
461 }
462
463 discard_cleanups (old_chain);
464 return var;
465 }
466
467 /* Generates an unique name that can be used for a varobj. */
468
469 char *
470 varobj_gen_name (void)
471 {
472 static int id = 0;
473 char *obj_name;
474
475 /* Generate a name for this object. */
476 id++;
477 obj_name = xstrprintf ("var%d", id);
478
479 return obj_name;
480 }
481
482 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
483 error if OBJNAME cannot be found. */
484
485 struct varobj *
486 varobj_get_handle (char *objname)
487 {
488 struct vlist *cv;
489 const char *chp;
490 unsigned int index = 0;
491 unsigned int i = 1;
492
493 for (chp = objname; *chp; chp++)
494 {
495 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
496 }
497
498 cv = *(varobj_table + index);
499 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
500 cv = cv->next;
501
502 if (cv == NULL)
503 error (_("Variable object not found"));
504
505 return cv->var;
506 }
507
508 /* Given the handle, return the name of the object. */
509
510 char *
511 varobj_get_objname (struct varobj *var)
512 {
513 return var->obj_name;
514 }
515
516 /* Given the handle, return the expression represented by the object. */
517
518 char *
519 varobj_get_expression (struct varobj *var)
520 {
521 return name_of_variable (var);
522 }
523
524 /* Deletes a varobj and all its children if only_children == 0,
525 otherwise deletes only the children; returns a malloc'ed list of
526 all the (malloc'ed) names of the variables that have been deleted
527 (NULL terminated). */
528
529 int
530 varobj_delete (struct varobj *var, char ***dellist, int only_children)
531 {
532 int delcount;
533 int mycount;
534 struct cpstack *result = NULL;
535 char **cp;
536
537 /* Initialize a stack for temporary results. */
538 cppush (&result, NULL);
539
540 if (only_children)
541 /* Delete only the variable children. */
542 delcount = delete_variable (&result, var, 1 /* only the children */ );
543 else
544 /* Delete the variable and all its children. */
545 delcount = delete_variable (&result, var, 0 /* parent+children */ );
546
547 /* We may have been asked to return a list of what has been deleted. */
548 if (dellist != NULL)
549 {
550 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
551
552 cp = *dellist;
553 mycount = delcount;
554 *cp = cppop (&result);
555 while ((*cp != NULL) && (mycount > 0))
556 {
557 mycount--;
558 cp++;
559 *cp = cppop (&result);
560 }
561
562 if (mycount || (*cp != NULL))
563 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
564 mycount);
565 }
566
567 return delcount;
568 }
569
570 #if HAVE_PYTHON
571
572 /* Convenience function for varobj_set_visualizer. Instantiate a
573 pretty-printer for a given value. */
574 static PyObject *
575 instantiate_pretty_printer (PyObject *constructor, struct value *value)
576 {
577 PyObject *val_obj = NULL;
578 PyObject *printer;
579
580 val_obj = value_to_value_object (value);
581 if (! val_obj)
582 return NULL;
583
584 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
585 Py_DECREF (val_obj);
586 return printer;
587 }
588
589 #endif
590
591 /* Set/Get variable object display format. */
592
593 enum varobj_display_formats
594 varobj_set_display_format (struct varobj *var,
595 enum varobj_display_formats format)
596 {
597 switch (format)
598 {
599 case FORMAT_NATURAL:
600 case FORMAT_BINARY:
601 case FORMAT_DECIMAL:
602 case FORMAT_HEXADECIMAL:
603 case FORMAT_OCTAL:
604 var->format = format;
605 break;
606
607 default:
608 var->format = variable_default_display (var);
609 }
610
611 if (varobj_value_is_changeable_p (var)
612 && var->value && !value_lazy (var->value))
613 {
614 xfree (var->print_value);
615 var->print_value = varobj_value_get_print_value (var->value,
616 var->format, var);
617 }
618
619 return var->format;
620 }
621
622 enum varobj_display_formats
623 varobj_get_display_format (struct varobj *var)
624 {
625 return var->format;
626 }
627
628 char *
629 varobj_get_display_hint (struct varobj *var)
630 {
631 char *result = NULL;
632
633 #if HAVE_PYTHON
634 struct cleanup *back_to;
635
636 if (!gdb_python_initialized)
637 return NULL;
638
639 back_to = varobj_ensure_python_env (var);
640
641 if (var->dynamic->pretty_printer != NULL)
642 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
643
644 do_cleanups (back_to);
645 #endif
646
647 return result;
648 }
649
650 /* Return true if the varobj has items after TO, false otherwise. */
651
652 int
653 varobj_has_more (struct varobj *var, int to)
654 {
655 if (VEC_length (varobj_p, var->children) > to)
656 return 1;
657 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
658 && (var->dynamic->saved_item != NULL));
659 }
660
661 /* If the variable object is bound to a specific thread, that
662 is its evaluation can always be done in context of a frame
663 inside that thread, returns GDB id of the thread -- which
664 is always positive. Otherwise, returns -1. */
665 int
666 varobj_get_thread_id (struct varobj *var)
667 {
668 if (var->root->valid_block && var->root->thread_id > 0)
669 return var->root->thread_id;
670 else
671 return -1;
672 }
673
674 void
675 varobj_set_frozen (struct varobj *var, int frozen)
676 {
677 /* When a variable is unfrozen, we don't fetch its value.
678 The 'not_fetched' flag remains set, so next -var-update
679 won't complain.
680
681 We don't fetch the value, because for structures the client
682 should do -var-update anyway. It would be bad to have different
683 client-size logic for structure and other types. */
684 var->frozen = frozen;
685 }
686
687 int
688 varobj_get_frozen (struct varobj *var)
689 {
690 return var->frozen;
691 }
692
693 /* A helper function that restricts a range to what is actually
694 available in a VEC. This follows the usual rules for the meaning
695 of FROM and TO -- if either is negative, the entire range is
696 used. */
697
698 void
699 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
700 {
701 if (*from < 0 || *to < 0)
702 {
703 *from = 0;
704 *to = VEC_length (varobj_p, children);
705 }
706 else
707 {
708 if (*from > VEC_length (varobj_p, children))
709 *from = VEC_length (varobj_p, children);
710 if (*to > VEC_length (varobj_p, children))
711 *to = VEC_length (varobj_p, children);
712 if (*from > *to)
713 *from = *to;
714 }
715 }
716
717 #if HAVE_PYTHON
718
719 /* A helper for update_dynamic_varobj_children that installs a new
720 child when needed. */
721
722 static void
723 install_dynamic_child (struct varobj *var,
724 VEC (varobj_p) **changed,
725 VEC (varobj_p) **type_changed,
726 VEC (varobj_p) **new,
727 VEC (varobj_p) **unchanged,
728 int *cchanged,
729 int index,
730 char *name,
731 struct value *value)
732 {
733 if (VEC_length (varobj_p, var->children) < index + 1)
734 {
735 /* There's no child yet. */
736 struct varobj *child = varobj_add_child (var, name, value);
737
738 if (new)
739 {
740 VEC_safe_push (varobj_p, *new, child);
741 *cchanged = 1;
742 }
743 }
744 else
745 {
746 varobj_p existing = VEC_index (varobj_p, var->children, index);
747 int type_updated = update_type_if_necessary (existing, value);
748
749 if (type_updated)
750 {
751 if (type_changed)
752 VEC_safe_push (varobj_p, *type_changed, existing);
753 }
754 if (install_new_value (existing, value, 0))
755 {
756 if (!type_updated && changed)
757 VEC_safe_push (varobj_p, *changed, existing);
758 }
759 else if (!type_updated && unchanged)
760 VEC_safe_push (varobj_p, *unchanged, existing);
761 }
762 }
763
764 static int
765 dynamic_varobj_has_child_method (struct varobj *var)
766 {
767 struct cleanup *back_to;
768 PyObject *printer = var->dynamic->pretty_printer;
769 int result;
770
771 if (!gdb_python_initialized)
772 return 0;
773
774 back_to = varobj_ensure_python_env (var);
775 result = PyObject_HasAttr (printer, gdbpy_children_cst);
776 do_cleanups (back_to);
777 return result;
778 }
779
780 #endif
781
782 static int
783 update_dynamic_varobj_children (struct varobj *var,
784 VEC (varobj_p) **changed,
785 VEC (varobj_p) **type_changed,
786 VEC (varobj_p) **new,
787 VEC (varobj_p) **unchanged,
788 int *cchanged,
789 int update_children,
790 int from,
791 int to)
792 {
793 #if HAVE_PYTHON
794 struct cleanup *back_to;
795 PyObject *children;
796 int i;
797 PyObject *printer = var->dynamic->pretty_printer;
798
799 if (!gdb_python_initialized)
800 return 0;
801
802 back_to = varobj_ensure_python_env (var);
803
804 *cchanged = 0;
805 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
806 {
807 do_cleanups (back_to);
808 return 0;
809 }
810
811 if (update_children || var->dynamic->child_iter == NULL)
812 {
813 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
814 NULL);
815
816 if (!children)
817 {
818 gdbpy_print_stack ();
819 error (_("Null value returned for children"));
820 }
821
822 make_cleanup_py_decref (children);
823
824 Py_XDECREF (var->dynamic->child_iter);
825 var->dynamic->child_iter = PyObject_GetIter (children);
826 if (var->dynamic->child_iter == NULL)
827 {
828 gdbpy_print_stack ();
829 error (_("Could not get children iterator"));
830 }
831
832 Py_XDECREF (var->dynamic->saved_item);
833 var->dynamic->saved_item = NULL;
834
835 i = 0;
836 }
837 else
838 i = VEC_length (varobj_p, var->children);
839
840 /* We ask for one extra child, so that MI can report whether there
841 are more children. */
842 for (; to < 0 || i < to + 1; ++i)
843 {
844 PyObject *item;
845 int force_done = 0;
846
847 /* See if there was a leftover from last time. */
848 if (var->dynamic->saved_item)
849 {
850 item = var->dynamic->saved_item;
851 var->dynamic->saved_item = NULL;
852 }
853 else
854 item = PyIter_Next (var->dynamic->child_iter);
855
856 if (!item)
857 {
858 /* Normal end of iteration. */
859 if (!PyErr_Occurred ())
860 break;
861
862 /* If we got a memory error, just use the text as the
863 item. */
864 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
865 {
866 PyObject *type, *value, *trace;
867 char *name_str, *value_str;
868
869 PyErr_Fetch (&type, &value, &trace);
870 value_str = gdbpy_exception_to_string (type, value);
871 Py_XDECREF (type);
872 Py_XDECREF (value);
873 Py_XDECREF (trace);
874 if (!value_str)
875 {
876 gdbpy_print_stack ();
877 break;
878 }
879
880 name_str = xstrprintf ("<error at %d>", i);
881 item = Py_BuildValue ("(ss)", name_str, value_str);
882 xfree (name_str);
883 xfree (value_str);
884 if (!item)
885 {
886 gdbpy_print_stack ();
887 break;
888 }
889
890 force_done = 1;
891 }
892 else
893 {
894 /* Any other kind of error. */
895 gdbpy_print_stack ();
896 break;
897 }
898 }
899
900 /* We don't want to push the extra child on any report list. */
901 if (to < 0 || i < to)
902 {
903 PyObject *py_v;
904 const char *name;
905 struct value *v;
906 struct cleanup *inner;
907 int can_mention = from < 0 || i >= from;
908
909 inner = make_cleanup_py_decref (item);
910
911 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
912 {
913 gdbpy_print_stack ();
914 error (_("Invalid item from the child list"));
915 }
916
917 v = convert_value_from_python (py_v);
918 if (v == NULL)
919 gdbpy_print_stack ();
920 install_dynamic_child (var, can_mention ? changed : NULL,
921 can_mention ? type_changed : NULL,
922 can_mention ? new : NULL,
923 can_mention ? unchanged : NULL,
924 can_mention ? cchanged : NULL, i,
925 xstrdup (name), v);
926 do_cleanups (inner);
927 }
928 else
929 {
930 Py_XDECREF (var->dynamic->saved_item);
931 var->dynamic->saved_item = item;
932
933 /* We want to truncate the child list just before this
934 element. */
935 break;
936 }
937
938 if (force_done)
939 break;
940 }
941
942 if (i < VEC_length (varobj_p, var->children))
943 {
944 int j;
945
946 *cchanged = 1;
947 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
948 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
949 VEC_truncate (varobj_p, var->children, i);
950 }
951
952 /* If there are fewer children than requested, note that the list of
953 children changed. */
954 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
955 *cchanged = 1;
956
957 var->num_children = VEC_length (varobj_p, var->children);
958
959 do_cleanups (back_to);
960
961 return 1;
962 #else
963 gdb_assert_not_reached ("should never be called if Python is not enabled");
964 #endif
965 }
966
967 int
968 varobj_get_num_children (struct varobj *var)
969 {
970 if (var->num_children == -1)
971 {
972 if (var->dynamic->pretty_printer != NULL)
973 {
974 int dummy;
975
976 /* If we have a dynamic varobj, don't report -1 children.
977 So, try to fetch some children first. */
978 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
979 0, 0, 0);
980 }
981 else
982 var->num_children = number_of_children (var);
983 }
984
985 return var->num_children >= 0 ? var->num_children : 0;
986 }
987
988 /* Creates a list of the immediate children of a variable object;
989 the return code is the number of such children or -1 on error. */
990
991 VEC (varobj_p)*
992 varobj_list_children (struct varobj *var, int *from, int *to)
993 {
994 char *name;
995 int i, children_changed;
996
997 var->dynamic->children_requested = 1;
998
999 if (var->dynamic->pretty_printer != NULL)
1000 {
1001 /* This, in theory, can result in the number of children changing without
1002 frontend noticing. But well, calling -var-list-children on the same
1003 varobj twice is not something a sane frontend would do. */
1004 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1005 &children_changed, 0, 0, *to);
1006 varobj_restrict_range (var->children, from, to);
1007 return var->children;
1008 }
1009
1010 if (var->num_children == -1)
1011 var->num_children = number_of_children (var);
1012
1013 /* If that failed, give up. */
1014 if (var->num_children == -1)
1015 return var->children;
1016
1017 /* If we're called when the list of children is not yet initialized,
1018 allocate enough elements in it. */
1019 while (VEC_length (varobj_p, var->children) < var->num_children)
1020 VEC_safe_push (varobj_p, var->children, NULL);
1021
1022 for (i = 0; i < var->num_children; i++)
1023 {
1024 varobj_p existing = VEC_index (varobj_p, var->children, i);
1025
1026 if (existing == NULL)
1027 {
1028 /* Either it's the first call to varobj_list_children for
1029 this variable object, and the child was never created,
1030 or it was explicitly deleted by the client. */
1031 name = name_of_child (var, i);
1032 existing = create_child (var, i, name);
1033 VEC_replace (varobj_p, var->children, i, existing);
1034 }
1035 }
1036
1037 varobj_restrict_range (var->children, from, to);
1038 return var->children;
1039 }
1040
1041 #if HAVE_PYTHON
1042
1043 static struct varobj *
1044 varobj_add_child (struct varobj *var, char *name, struct value *value)
1045 {
1046 varobj_p v = create_child_with_value (var,
1047 VEC_length (varobj_p, var->children),
1048 name, value);
1049
1050 VEC_safe_push (varobj_p, var->children, v);
1051 return v;
1052 }
1053
1054 #endif /* HAVE_PYTHON */
1055
1056 /* Obtain the type of an object Variable as a string similar to the one gdb
1057 prints on the console. */
1058
1059 char *
1060 varobj_get_type (struct varobj *var)
1061 {
1062 /* For the "fake" variables, do not return a type. (It's type is
1063 NULL, too.)
1064 Do not return a type for invalid variables as well. */
1065 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1066 return NULL;
1067
1068 return type_to_string (var->type);
1069 }
1070
1071 /* Obtain the type of an object variable. */
1072
1073 struct type *
1074 varobj_get_gdb_type (struct varobj *var)
1075 {
1076 return var->type;
1077 }
1078
1079 /* Is VAR a path expression parent, i.e., can it be used to construct
1080 a valid path expression? */
1081
1082 static int
1083 is_path_expr_parent (struct varobj *var)
1084 {
1085 struct type *type;
1086
1087 /* "Fake" children are not path_expr parents. */
1088 if (CPLUS_FAKE_CHILD (var))
1089 return 0;
1090
1091 type = varobj_get_value_type (var);
1092
1093 /* Anonymous unions and structs are also not path_expr parents. */
1094 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1095 || TYPE_CODE (type) == TYPE_CODE_UNION)
1096 && TYPE_NAME (type) == NULL);
1097 }
1098
1099 /* Return the path expression parent for VAR. */
1100
1101 struct varobj *
1102 varobj_get_path_expr_parent (struct varobj *var)
1103 {
1104 struct varobj *parent = var;
1105
1106 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1107 parent = parent->parent;
1108
1109 return parent;
1110 }
1111
1112 /* Return a pointer to the full rooted expression of varobj VAR.
1113 If it has not been computed yet, compute it. */
1114 char *
1115 varobj_get_path_expr (struct varobj *var)
1116 {
1117 if (var->path_expr != NULL)
1118 return var->path_expr;
1119 else
1120 {
1121 /* For root varobjs, we initialize path_expr
1122 when creating varobj, so here it should be
1123 child varobj. */
1124 gdb_assert (!is_root_p (var));
1125 return (*var->root->lang->path_expr_of_child) (var);
1126 }
1127 }
1128
1129 enum varobj_languages
1130 varobj_get_language (struct varobj *var)
1131 {
1132 return variable_language (var);
1133 }
1134
1135 int
1136 varobj_get_attributes (struct varobj *var)
1137 {
1138 int attributes = 0;
1139
1140 if (varobj_editable_p (var))
1141 /* FIXME: define masks for attributes. */
1142 attributes |= 0x00000001; /* Editable */
1143
1144 return attributes;
1145 }
1146
1147 int
1148 varobj_pretty_printed_p (struct varobj *var)
1149 {
1150 return var->dynamic->pretty_printer != NULL;
1151 }
1152
1153 char *
1154 varobj_get_formatted_value (struct varobj *var,
1155 enum varobj_display_formats format)
1156 {
1157 return my_value_of_variable (var, format);
1158 }
1159
1160 char *
1161 varobj_get_value (struct varobj *var)
1162 {
1163 return my_value_of_variable (var, var->format);
1164 }
1165
1166 /* Set the value of an object variable (if it is editable) to the
1167 value of the given expression. */
1168 /* Note: Invokes functions that can call error(). */
1169
1170 int
1171 varobj_set_value (struct varobj *var, char *expression)
1172 {
1173 struct value *val = NULL; /* Initialize to keep gcc happy. */
1174 /* The argument "expression" contains the variable's new value.
1175 We need to first construct a legal expression for this -- ugh! */
1176 /* Does this cover all the bases? */
1177 struct expression *exp;
1178 struct value *value = NULL; /* Initialize to keep gcc happy. */
1179 int saved_input_radix = input_radix;
1180 const char *s = expression;
1181 volatile struct gdb_exception except;
1182
1183 gdb_assert (varobj_editable_p (var));
1184
1185 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1186 exp = parse_exp_1 (&s, 0, 0, 0);
1187 TRY_CATCH (except, RETURN_MASK_ERROR)
1188 {
1189 value = evaluate_expression (exp);
1190 }
1191
1192 if (except.reason < 0)
1193 {
1194 /* We cannot proceed without a valid expression. */
1195 xfree (exp);
1196 return 0;
1197 }
1198
1199 /* All types that are editable must also be changeable. */
1200 gdb_assert (varobj_value_is_changeable_p (var));
1201
1202 /* The value of a changeable variable object must not be lazy. */
1203 gdb_assert (!value_lazy (var->value));
1204
1205 /* Need to coerce the input. We want to check if the
1206 value of the variable object will be different
1207 after assignment, and the first thing value_assign
1208 does is coerce the input.
1209 For example, if we are assigning an array to a pointer variable we
1210 should compare the pointer with the array's address, not with the
1211 array's content. */
1212 value = coerce_array (value);
1213
1214 /* The new value may be lazy. value_assign, or
1215 rather value_contents, will take care of this. */
1216 TRY_CATCH (except, RETURN_MASK_ERROR)
1217 {
1218 val = value_assign (var->value, value);
1219 }
1220
1221 if (except.reason < 0)
1222 return 0;
1223
1224 /* If the value has changed, record it, so that next -var-update can
1225 report this change. If a variable had a value of '1', we've set it
1226 to '333' and then set again to '1', when -var-update will report this
1227 variable as changed -- because the first assignment has set the
1228 'updated' flag. There's no need to optimize that, because return value
1229 of -var-update should be considered an approximation. */
1230 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1231 input_radix = saved_input_radix;
1232 return 1;
1233 }
1234
1235 #if HAVE_PYTHON
1236
1237 /* A helper function to install a constructor function and visualizer
1238 in a varobj_dynamic. */
1239
1240 static void
1241 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1242 PyObject *visualizer)
1243 {
1244 Py_XDECREF (var->constructor);
1245 var->constructor = constructor;
1246
1247 Py_XDECREF (var->pretty_printer);
1248 var->pretty_printer = visualizer;
1249
1250 Py_XDECREF (var->child_iter);
1251 var->child_iter = NULL;
1252 }
1253
1254 /* Install the default visualizer for VAR. */
1255
1256 static void
1257 install_default_visualizer (struct varobj *var)
1258 {
1259 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1260 if (CPLUS_FAKE_CHILD (var))
1261 return;
1262
1263 if (pretty_printing)
1264 {
1265 PyObject *pretty_printer = NULL;
1266
1267 if (var->value)
1268 {
1269 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1270 if (! pretty_printer)
1271 {
1272 gdbpy_print_stack ();
1273 error (_("Cannot instantiate printer for default visualizer"));
1274 }
1275 }
1276
1277 if (pretty_printer == Py_None)
1278 {
1279 Py_DECREF (pretty_printer);
1280 pretty_printer = NULL;
1281 }
1282
1283 install_visualizer (var->dynamic, NULL, pretty_printer);
1284 }
1285 }
1286
1287 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1288 make a new object. */
1289
1290 static void
1291 construct_visualizer (struct varobj *var, PyObject *constructor)
1292 {
1293 PyObject *pretty_printer;
1294
1295 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1296 if (CPLUS_FAKE_CHILD (var))
1297 return;
1298
1299 Py_INCREF (constructor);
1300 if (constructor == Py_None)
1301 pretty_printer = NULL;
1302 else
1303 {
1304 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1305 if (! pretty_printer)
1306 {
1307 gdbpy_print_stack ();
1308 Py_DECREF (constructor);
1309 constructor = Py_None;
1310 Py_INCREF (constructor);
1311 }
1312
1313 if (pretty_printer == Py_None)
1314 {
1315 Py_DECREF (pretty_printer);
1316 pretty_printer = NULL;
1317 }
1318 }
1319
1320 install_visualizer (var->dynamic, constructor, pretty_printer);
1321 }
1322
1323 #endif /* HAVE_PYTHON */
1324
1325 /* A helper function for install_new_value. This creates and installs
1326 a visualizer for VAR, if appropriate. */
1327
1328 static void
1329 install_new_value_visualizer (struct varobj *var)
1330 {
1331 #if HAVE_PYTHON
1332 /* If the constructor is None, then we want the raw value. If VAR
1333 does not have a value, just skip this. */
1334 if (!gdb_python_initialized)
1335 return;
1336
1337 if (var->dynamic->constructor != Py_None && var->value != NULL)
1338 {
1339 struct cleanup *cleanup;
1340
1341 cleanup = varobj_ensure_python_env (var);
1342
1343 if (var->dynamic->constructor == NULL)
1344 install_default_visualizer (var);
1345 else
1346 construct_visualizer (var, var->dynamic->constructor);
1347
1348 do_cleanups (cleanup);
1349 }
1350 #else
1351 /* Do nothing. */
1352 #endif
1353 }
1354
1355 /* When using RTTI to determine variable type it may be changed in runtime when
1356 the variable value is changed. This function checks whether type of varobj
1357 VAR will change when a new value NEW_VALUE is assigned and if it is so
1358 updates the type of VAR. */
1359
1360 static int
1361 update_type_if_necessary (struct varobj *var, struct value *new_value)
1362 {
1363 if (new_value)
1364 {
1365 struct value_print_options opts;
1366
1367 get_user_print_options (&opts);
1368 if (opts.objectprint)
1369 {
1370 struct type *new_type;
1371 char *curr_type_str, *new_type_str;
1372
1373 new_type = value_actual_type (new_value, 0, 0);
1374 new_type_str = type_to_string (new_type);
1375 curr_type_str = varobj_get_type (var);
1376 if (strcmp (curr_type_str, new_type_str) != 0)
1377 {
1378 var->type = new_type;
1379
1380 /* This information may be not valid for a new type. */
1381 varobj_delete (var, NULL, 1);
1382 VEC_free (varobj_p, var->children);
1383 var->num_children = -1;
1384 return 1;
1385 }
1386 }
1387 }
1388
1389 return 0;
1390 }
1391
1392 /* Assign a new value to a variable object. If INITIAL is non-zero,
1393 this is the first assignement after the variable object was just
1394 created, or changed type. In that case, just assign the value
1395 and return 0.
1396 Otherwise, assign the new value, and return 1 if the value is
1397 different from the current one, 0 otherwise. The comparison is
1398 done on textual representation of value. Therefore, some types
1399 need not be compared. E.g. for structures the reported value is
1400 always "{...}", so no comparison is necessary here. If the old
1401 value was NULL and new one is not, or vice versa, we always return 1.
1402
1403 The VALUE parameter should not be released -- the function will
1404 take care of releasing it when needed. */
1405 static int
1406 install_new_value (struct varobj *var, struct value *value, int initial)
1407 {
1408 int changeable;
1409 int need_to_fetch;
1410 int changed = 0;
1411 int intentionally_not_fetched = 0;
1412 char *print_value = NULL;
1413
1414 /* We need to know the varobj's type to decide if the value should
1415 be fetched or not. C++ fake children (public/protected/private)
1416 don't have a type. */
1417 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1418 changeable = varobj_value_is_changeable_p (var);
1419
1420 /* If the type has custom visualizer, we consider it to be always
1421 changeable. FIXME: need to make sure this behaviour will not
1422 mess up read-sensitive values. */
1423 if (var->dynamic->pretty_printer != NULL)
1424 changeable = 1;
1425
1426 need_to_fetch = changeable;
1427
1428 /* We are not interested in the address of references, and given
1429 that in C++ a reference is not rebindable, it cannot
1430 meaningfully change. So, get hold of the real value. */
1431 if (value)
1432 value = coerce_ref (value);
1433
1434 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1435 /* For unions, we need to fetch the value implicitly because
1436 of implementation of union member fetch. When gdb
1437 creates a value for a field and the value of the enclosing
1438 structure is not lazy, it immediately copies the necessary
1439 bytes from the enclosing values. If the enclosing value is
1440 lazy, the call to value_fetch_lazy on the field will read
1441 the data from memory. For unions, that means we'll read the
1442 same memory more than once, which is not desirable. So
1443 fetch now. */
1444 need_to_fetch = 1;
1445
1446 /* The new value might be lazy. If the type is changeable,
1447 that is we'll be comparing values of this type, fetch the
1448 value now. Otherwise, on the next update the old value
1449 will be lazy, which means we've lost that old value. */
1450 if (need_to_fetch && value && value_lazy (value))
1451 {
1452 struct varobj *parent = var->parent;
1453 int frozen = var->frozen;
1454
1455 for (; !frozen && parent; parent = parent->parent)
1456 frozen |= parent->frozen;
1457
1458 if (frozen && initial)
1459 {
1460 /* For variables that are frozen, or are children of frozen
1461 variables, we don't do fetch on initial assignment.
1462 For non-initial assignemnt we do the fetch, since it means we're
1463 explicitly asked to compare the new value with the old one. */
1464 intentionally_not_fetched = 1;
1465 }
1466 else
1467 {
1468 volatile struct gdb_exception except;
1469
1470 TRY_CATCH (except, RETURN_MASK_ERROR)
1471 {
1472 value_fetch_lazy (value);
1473 }
1474
1475 if (except.reason < 0)
1476 {
1477 /* Set the value to NULL, so that for the next -var-update,
1478 we don't try to compare the new value with this value,
1479 that we couldn't even read. */
1480 value = NULL;
1481 }
1482 }
1483 }
1484
1485 /* Get a reference now, before possibly passing it to any Python
1486 code that might release it. */
1487 if (value != NULL)
1488 value_incref (value);
1489
1490 /* Below, we'll be comparing string rendering of old and new
1491 values. Don't get string rendering if the value is
1492 lazy -- if it is, the code above has decided that the value
1493 should not be fetched. */
1494 if (value != NULL && !value_lazy (value)
1495 && var->dynamic->pretty_printer == NULL)
1496 print_value = varobj_value_get_print_value (value, var->format, var);
1497
1498 /* If the type is changeable, compare the old and the new values.
1499 If this is the initial assignment, we don't have any old value
1500 to compare with. */
1501 if (!initial && changeable)
1502 {
1503 /* If the value of the varobj was changed by -var-set-value,
1504 then the value in the varobj and in the target is the same.
1505 However, that value is different from the value that the
1506 varobj had after the previous -var-update. So need to the
1507 varobj as changed. */
1508 if (var->updated)
1509 {
1510 changed = 1;
1511 }
1512 else if (var->dynamic->pretty_printer == NULL)
1513 {
1514 /* Try to compare the values. That requires that both
1515 values are non-lazy. */
1516 if (var->not_fetched && value_lazy (var->value))
1517 {
1518 /* This is a frozen varobj and the value was never read.
1519 Presumably, UI shows some "never read" indicator.
1520 Now that we've fetched the real value, we need to report
1521 this varobj as changed so that UI can show the real
1522 value. */
1523 changed = 1;
1524 }
1525 else if (var->value == NULL && value == NULL)
1526 /* Equal. */
1527 ;
1528 else if (var->value == NULL || value == NULL)
1529 {
1530 changed = 1;
1531 }
1532 else
1533 {
1534 gdb_assert (!value_lazy (var->value));
1535 gdb_assert (!value_lazy (value));
1536
1537 gdb_assert (var->print_value != NULL && print_value != NULL);
1538 if (strcmp (var->print_value, print_value) != 0)
1539 changed = 1;
1540 }
1541 }
1542 }
1543
1544 if (!initial && !changeable)
1545 {
1546 /* For values that are not changeable, we don't compare the values.
1547 However, we want to notice if a value was not NULL and now is NULL,
1548 or vise versa, so that we report when top-level varobjs come in scope
1549 and leave the scope. */
1550 changed = (var->value != NULL) != (value != NULL);
1551 }
1552
1553 /* We must always keep the new value, since children depend on it. */
1554 if (var->value != NULL && var->value != value)
1555 value_free (var->value);
1556 var->value = value;
1557 if (value && value_lazy (value) && intentionally_not_fetched)
1558 var->not_fetched = 1;
1559 else
1560 var->not_fetched = 0;
1561 var->updated = 0;
1562
1563 install_new_value_visualizer (var);
1564
1565 /* If we installed a pretty-printer, re-compare the printed version
1566 to see if the variable changed. */
1567 if (var->dynamic->pretty_printer != NULL)
1568 {
1569 xfree (print_value);
1570 print_value = varobj_value_get_print_value (var->value, var->format,
1571 var);
1572 if ((var->print_value == NULL && print_value != NULL)
1573 || (var->print_value != NULL && print_value == NULL)
1574 || (var->print_value != NULL && print_value != NULL
1575 && strcmp (var->print_value, print_value) != 0))
1576 changed = 1;
1577 }
1578 if (var->print_value)
1579 xfree (var->print_value);
1580 var->print_value = print_value;
1581
1582 gdb_assert (!var->value || value_type (var->value));
1583
1584 return changed;
1585 }
1586
1587 /* Return the requested range for a varobj. VAR is the varobj. FROM
1588 and TO are out parameters; *FROM and *TO will be set to the
1589 selected sub-range of VAR. If no range was selected using
1590 -var-set-update-range, then both will be -1. */
1591 void
1592 varobj_get_child_range (struct varobj *var, int *from, int *to)
1593 {
1594 *from = var->from;
1595 *to = var->to;
1596 }
1597
1598 /* Set the selected sub-range of children of VAR to start at index
1599 FROM and end at index TO. If either FROM or TO is less than zero,
1600 this is interpreted as a request for all children. */
1601 void
1602 varobj_set_child_range (struct varobj *var, int from, int to)
1603 {
1604 var->from = from;
1605 var->to = to;
1606 }
1607
1608 void
1609 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1610 {
1611 #if HAVE_PYTHON
1612 PyObject *mainmod, *globals, *constructor;
1613 struct cleanup *back_to;
1614
1615 if (!gdb_python_initialized)
1616 return;
1617
1618 back_to = varobj_ensure_python_env (var);
1619
1620 mainmod = PyImport_AddModule ("__main__");
1621 globals = PyModule_GetDict (mainmod);
1622 Py_INCREF (globals);
1623 make_cleanup_py_decref (globals);
1624
1625 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1626
1627 if (! constructor)
1628 {
1629 gdbpy_print_stack ();
1630 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1631 }
1632
1633 construct_visualizer (var, constructor);
1634 Py_XDECREF (constructor);
1635
1636 /* If there are any children now, wipe them. */
1637 varobj_delete (var, NULL, 1 /* children only */);
1638 var->num_children = -1;
1639
1640 do_cleanups (back_to);
1641 #else
1642 error (_("Python support required"));
1643 #endif
1644 }
1645
1646 /* If NEW_VALUE is the new value of the given varobj (var), return
1647 non-zero if var has mutated. In other words, if the type of
1648 the new value is different from the type of the varobj's old
1649 value.
1650
1651 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1652
1653 static int
1654 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1655 struct type *new_type)
1656 {
1657 /* If we haven't previously computed the number of children in var,
1658 it does not matter from the front-end's perspective whether
1659 the type has mutated or not. For all intents and purposes,
1660 it has not mutated. */
1661 if (var->num_children < 0)
1662 return 0;
1663
1664 if (var->root->lang->value_has_mutated)
1665 return var->root->lang->value_has_mutated (var, new_value, new_type);
1666 else
1667 return 0;
1668 }
1669
1670 /* Update the values for a variable and its children. This is a
1671 two-pronged attack. First, re-parse the value for the root's
1672 expression to see if it's changed. Then go all the way
1673 through its children, reconstructing them and noting if they've
1674 changed.
1675
1676 The EXPLICIT parameter specifies if this call is result
1677 of MI request to update this specific variable, or
1678 result of implicit -var-update *. For implicit request, we don't
1679 update frozen variables.
1680
1681 NOTE: This function may delete the caller's varobj. If it
1682 returns TYPE_CHANGED, then it has done this and VARP will be modified
1683 to point to the new varobj. */
1684
1685 VEC(varobj_update_result) *
1686 varobj_update (struct varobj **varp, int explicit)
1687 {
1688 int type_changed = 0;
1689 int i;
1690 struct value *new;
1691 VEC (varobj_update_result) *stack = NULL;
1692 VEC (varobj_update_result) *result = NULL;
1693
1694 /* Frozen means frozen -- we don't check for any change in
1695 this varobj, including its going out of scope, or
1696 changing type. One use case for frozen varobjs is
1697 retaining previously evaluated expressions, and we don't
1698 want them to be reevaluated at all. */
1699 if (!explicit && (*varp)->frozen)
1700 return result;
1701
1702 if (!(*varp)->root->is_valid)
1703 {
1704 varobj_update_result r = {0};
1705
1706 r.varobj = *varp;
1707 r.status = VAROBJ_INVALID;
1708 VEC_safe_push (varobj_update_result, result, &r);
1709 return result;
1710 }
1711
1712 if ((*varp)->root->rootvar == *varp)
1713 {
1714 varobj_update_result r = {0};
1715
1716 r.varobj = *varp;
1717 r.status = VAROBJ_IN_SCOPE;
1718
1719 /* Update the root variable. value_of_root can return NULL
1720 if the variable is no longer around, i.e. we stepped out of
1721 the frame in which a local existed. We are letting the
1722 value_of_root variable dispose of the varobj if the type
1723 has changed. */
1724 new = value_of_root (varp, &type_changed);
1725 if (update_type_if_necessary(*varp, new))
1726 type_changed = 1;
1727 r.varobj = *varp;
1728 r.type_changed = type_changed;
1729 if (install_new_value ((*varp), new, type_changed))
1730 r.changed = 1;
1731
1732 if (new == NULL)
1733 r.status = VAROBJ_NOT_IN_SCOPE;
1734 r.value_installed = 1;
1735
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
1737 {
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
1740 return result;
1741 }
1742
1743 VEC_safe_push (varobj_update_result, stack, &r);
1744 }
1745 else
1746 {
1747 varobj_update_result r = {0};
1748
1749 r.varobj = *varp;
1750 VEC_safe_push (varobj_update_result, stack, &r);
1751 }
1752
1753 /* Walk through the children, reconstructing them all. */
1754 while (!VEC_empty (varobj_update_result, stack))
1755 {
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1758
1759 VEC_pop (varobj_update_result, stack);
1760
1761 /* Update this variable, unless it's a root, which is already
1762 updated. */
1763 if (!r.value_installed)
1764 {
1765 struct type *new_type;
1766
1767 new = value_of_child (v->parent, v->index);
1768 if (update_type_if_necessary(v, new))
1769 r.type_changed = 1;
1770 if (new)
1771 new_type = value_type (new);
1772 else
1773 new_type = v->root->lang->type_of_child (v->parent, v->index);
1774
1775 if (varobj_value_has_mutated (v, new, new_type))
1776 {
1777 /* The children are no longer valid; delete them now.
1778 Report the fact that its type changed as well. */
1779 varobj_delete (v, NULL, 1 /* only_children */);
1780 v->num_children = -1;
1781 v->to = -1;
1782 v->from = -1;
1783 v->type = new_type;
1784 r.type_changed = 1;
1785 }
1786
1787 if (install_new_value (v, new, r.type_changed))
1788 {
1789 r.changed = 1;
1790 v->updated = 0;
1791 }
1792 }
1793
1794 /* We probably should not get children of a varobj that has a
1795 pretty-printer, but for which -var-list-children was never
1796 invoked. */
1797 if (v->dynamic->pretty_printer != NULL)
1798 {
1799 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1800 VEC (varobj_p) *new = 0;
1801 int i, children_changed = 0;
1802
1803 if (v->frozen)
1804 continue;
1805
1806 if (!v->dynamic->children_requested)
1807 {
1808 int dummy;
1809
1810 /* If we initially did not have potential children, but
1811 now we do, consider the varobj as changed.
1812 Otherwise, if children were never requested, consider
1813 it as unchanged -- presumably, such varobj is not yet
1814 expanded in the UI, so we need not bother getting
1815 it. */
1816 if (!varobj_has_more (v, 0))
1817 {
1818 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1819 &dummy, 0, 0, 0);
1820 if (varobj_has_more (v, 0))
1821 r.changed = 1;
1822 }
1823
1824 if (r.changed)
1825 VEC_safe_push (varobj_update_result, result, &r);
1826
1827 continue;
1828 }
1829
1830 /* If update_dynamic_varobj_children returns 0, then we have
1831 a non-conforming pretty-printer, so we skip it. */
1832 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1833 &unchanged, &children_changed, 1,
1834 v->from, v->to))
1835 {
1836 if (children_changed || new)
1837 {
1838 r.children_changed = 1;
1839 r.new = new;
1840 }
1841 /* Push in reverse order so that the first child is
1842 popped from the work stack first, and so will be
1843 added to result first. This does not affect
1844 correctness, just "nicer". */
1845 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1846 {
1847 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1848 varobj_update_result r = {0};
1849
1850 /* Type may change only if value was changed. */
1851 r.varobj = tmp;
1852 r.changed = 1;
1853 r.type_changed = 1;
1854 r.value_installed = 1;
1855 VEC_safe_push (varobj_update_result, stack, &r);
1856 }
1857 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1858 {
1859 varobj_p tmp = VEC_index (varobj_p, changed, i);
1860 varobj_update_result r = {0};
1861
1862 r.varobj = tmp;
1863 r.changed = 1;
1864 r.value_installed = 1;
1865 VEC_safe_push (varobj_update_result, stack, &r);
1866 }
1867 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1868 {
1869 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1870
1871 if (!tmp->frozen)
1872 {
1873 varobj_update_result r = {0};
1874
1875 r.varobj = tmp;
1876 r.value_installed = 1;
1877 VEC_safe_push (varobj_update_result, stack, &r);
1878 }
1879 }
1880 if (r.changed || r.children_changed)
1881 VEC_safe_push (varobj_update_result, result, &r);
1882
1883 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1884 because NEW has been put into the result vector. */
1885 VEC_free (varobj_p, changed);
1886 VEC_free (varobj_p, type_changed);
1887 VEC_free (varobj_p, unchanged);
1888
1889 continue;
1890 }
1891 }
1892
1893 /* Push any children. Use reverse order so that the first
1894 child is popped from the work stack first, and so
1895 will be added to result first. This does not
1896 affect correctness, just "nicer". */
1897 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1898 {
1899 varobj_p c = VEC_index (varobj_p, v->children, i);
1900
1901 /* Child may be NULL if explicitly deleted by -var-delete. */
1902 if (c != NULL && !c->frozen)
1903 {
1904 varobj_update_result r = {0};
1905
1906 r.varobj = c;
1907 VEC_safe_push (varobj_update_result, stack, &r);
1908 }
1909 }
1910
1911 if (r.changed || r.type_changed)
1912 VEC_safe_push (varobj_update_result, result, &r);
1913 }
1914
1915 VEC_free (varobj_update_result, stack);
1916
1917 return result;
1918 }
1919 \f
1920
1921 /* Helper functions */
1922
1923 /*
1924 * Variable object construction/destruction
1925 */
1926
1927 static int
1928 delete_variable (struct cpstack **resultp, struct varobj *var,
1929 int only_children_p)
1930 {
1931 int delcount = 0;
1932
1933 delete_variable_1 (resultp, &delcount, var,
1934 only_children_p, 1 /* remove_from_parent_p */ );
1935
1936 return delcount;
1937 }
1938
1939 /* Delete the variable object VAR and its children. */
1940 /* IMPORTANT NOTE: If we delete a variable which is a child
1941 and the parent is not removed we dump core. It must be always
1942 initially called with remove_from_parent_p set. */
1943 static void
1944 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1945 struct varobj *var, int only_children_p,
1946 int remove_from_parent_p)
1947 {
1948 int i;
1949
1950 /* Delete any children of this variable, too. */
1951 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1952 {
1953 varobj_p child = VEC_index (varobj_p, var->children, i);
1954
1955 if (!child)
1956 continue;
1957 if (!remove_from_parent_p)
1958 child->parent = NULL;
1959 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1960 }
1961 VEC_free (varobj_p, var->children);
1962
1963 /* if we were called to delete only the children we are done here. */
1964 if (only_children_p)
1965 return;
1966
1967 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1968 /* If the name is null, this is a temporary variable, that has not
1969 yet been installed, don't report it, it belongs to the caller... */
1970 if (var->obj_name != NULL)
1971 {
1972 cppush (resultp, xstrdup (var->obj_name));
1973 *delcountp = *delcountp + 1;
1974 }
1975
1976 /* If this variable has a parent, remove it from its parent's list. */
1977 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1978 (as indicated by remove_from_parent_p) we don't bother doing an
1979 expensive list search to find the element to remove when we are
1980 discarding the list afterwards. */
1981 if ((remove_from_parent_p) && (var->parent != NULL))
1982 {
1983 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1984 }
1985
1986 if (var->obj_name != NULL)
1987 uninstall_variable (var);
1988
1989 /* Free memory associated with this variable. */
1990 free_variable (var);
1991 }
1992
1993 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1994 static int
1995 install_variable (struct varobj *var)
1996 {
1997 struct vlist *cv;
1998 struct vlist *newvl;
1999 const char *chp;
2000 unsigned int index = 0;
2001 unsigned int i = 1;
2002
2003 for (chp = var->obj_name; *chp; chp++)
2004 {
2005 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2006 }
2007
2008 cv = *(varobj_table + index);
2009 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2010 cv = cv->next;
2011
2012 if (cv != NULL)
2013 error (_("Duplicate variable object name"));
2014
2015 /* Add varobj to hash table. */
2016 newvl = xmalloc (sizeof (struct vlist));
2017 newvl->next = *(varobj_table + index);
2018 newvl->var = var;
2019 *(varobj_table + index) = newvl;
2020
2021 /* If root, add varobj to root list. */
2022 if (is_root_p (var))
2023 {
2024 /* Add to list of root variables. */
2025 if (rootlist == NULL)
2026 var->root->next = NULL;
2027 else
2028 var->root->next = rootlist;
2029 rootlist = var->root;
2030 }
2031
2032 return 1; /* OK */
2033 }
2034
2035 /* Unistall the object VAR. */
2036 static void
2037 uninstall_variable (struct varobj *var)
2038 {
2039 struct vlist *cv;
2040 struct vlist *prev;
2041 struct varobj_root *cr;
2042 struct varobj_root *prer;
2043 const char *chp;
2044 unsigned int index = 0;
2045 unsigned int i = 1;
2046
2047 /* Remove varobj from hash table. */
2048 for (chp = var->obj_name; *chp; chp++)
2049 {
2050 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2051 }
2052
2053 cv = *(varobj_table + index);
2054 prev = NULL;
2055 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2056 {
2057 prev = cv;
2058 cv = cv->next;
2059 }
2060
2061 if (varobjdebug)
2062 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2063
2064 if (cv == NULL)
2065 {
2066 warning
2067 ("Assertion failed: Could not find variable object \"%s\" to delete",
2068 var->obj_name);
2069 return;
2070 }
2071
2072 if (prev == NULL)
2073 *(varobj_table + index) = cv->next;
2074 else
2075 prev->next = cv->next;
2076
2077 xfree (cv);
2078
2079 /* If root, remove varobj from root list. */
2080 if (is_root_p (var))
2081 {
2082 /* Remove from list of root variables. */
2083 if (rootlist == var->root)
2084 rootlist = var->root->next;
2085 else
2086 {
2087 prer = NULL;
2088 cr = rootlist;
2089 while ((cr != NULL) && (cr->rootvar != var))
2090 {
2091 prer = cr;
2092 cr = cr->next;
2093 }
2094 if (cr == NULL)
2095 {
2096 warning (_("Assertion failed: Could not find "
2097 "varobj \"%s\" in root list"),
2098 var->obj_name);
2099 return;
2100 }
2101 if (prer == NULL)
2102 rootlist = NULL;
2103 else
2104 prer->next = cr->next;
2105 }
2106 }
2107
2108 }
2109
2110 /* Create and install a child of the parent of the given name. */
2111 static struct varobj *
2112 create_child (struct varobj *parent, int index, char *name)
2113 {
2114 return create_child_with_value (parent, index, name,
2115 value_of_child (parent, index));
2116 }
2117
2118 static struct varobj *
2119 create_child_with_value (struct varobj *parent, int index, char *name,
2120 struct value *value)
2121 {
2122 struct varobj *child;
2123 char *childs_name;
2124
2125 child = new_variable ();
2126
2127 /* NAME is allocated by caller. */
2128 child->name = name;
2129 child->index = index;
2130 child->parent = parent;
2131 child->root = parent->root;
2132
2133 if (varobj_is_anonymous_child (child))
2134 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2135 else
2136 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2137 child->obj_name = childs_name;
2138
2139 install_variable (child);
2140
2141 /* Compute the type of the child. Must do this before
2142 calling install_new_value. */
2143 if (value != NULL)
2144 /* If the child had no evaluation errors, var->value
2145 will be non-NULL and contain a valid type. */
2146 child->type = value_actual_type (value, 0, NULL);
2147 else
2148 /* Otherwise, we must compute the type. */
2149 child->type = (*child->root->lang->type_of_child) (child->parent,
2150 child->index);
2151 install_new_value (child, value, 1);
2152
2153 return child;
2154 }
2155 \f
2156
2157 /*
2158 * Miscellaneous utility functions.
2159 */
2160
2161 /* Allocate memory and initialize a new variable. */
2162 static struct varobj *
2163 new_variable (void)
2164 {
2165 struct varobj *var;
2166
2167 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2168 var->name = NULL;
2169 var->path_expr = NULL;
2170 var->obj_name = NULL;
2171 var->index = -1;
2172 var->type = NULL;
2173 var->value = NULL;
2174 var->num_children = -1;
2175 var->parent = NULL;
2176 var->children = NULL;
2177 var->format = 0;
2178 var->root = NULL;
2179 var->updated = 0;
2180 var->print_value = NULL;
2181 var->frozen = 0;
2182 var->not_fetched = 0;
2183 var->dynamic
2184 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2185 var->dynamic->children_requested = 0;
2186 var->from = -1;
2187 var->to = -1;
2188 var->dynamic->constructor = 0;
2189 var->dynamic->pretty_printer = 0;
2190 var->dynamic->child_iter = 0;
2191 var->dynamic->saved_item = 0;
2192
2193 return var;
2194 }
2195
2196 /* Allocate memory and initialize a new root variable. */
2197 static struct varobj *
2198 new_root_variable (void)
2199 {
2200 struct varobj *var = new_variable ();
2201
2202 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2203 var->root->lang = NULL;
2204 var->root->exp = NULL;
2205 var->root->valid_block = NULL;
2206 var->root->frame = null_frame_id;
2207 var->root->floating = 0;
2208 var->root->rootvar = NULL;
2209 var->root->is_valid = 1;
2210
2211 return var;
2212 }
2213
2214 /* Free any allocated memory associated with VAR. */
2215 static void
2216 free_variable (struct varobj *var)
2217 {
2218 #if HAVE_PYTHON
2219 if (var->dynamic->pretty_printer != NULL)
2220 {
2221 struct cleanup *cleanup = varobj_ensure_python_env (var);
2222
2223 Py_XDECREF (var->dynamic->constructor);
2224 Py_XDECREF (var->dynamic->pretty_printer);
2225 Py_XDECREF (var->dynamic->child_iter);
2226 Py_XDECREF (var->dynamic->saved_item);
2227 do_cleanups (cleanup);
2228 }
2229 #endif
2230
2231 value_free (var->value);
2232
2233 /* Free the expression if this is a root variable. */
2234 if (is_root_p (var))
2235 {
2236 xfree (var->root->exp);
2237 xfree (var->root);
2238 }
2239
2240 xfree (var->name);
2241 xfree (var->obj_name);
2242 xfree (var->print_value);
2243 xfree (var->path_expr);
2244 xfree (var->dynamic);
2245 xfree (var);
2246 }
2247
2248 static void
2249 do_free_variable_cleanup (void *var)
2250 {
2251 free_variable (var);
2252 }
2253
2254 static struct cleanup *
2255 make_cleanup_free_variable (struct varobj *var)
2256 {
2257 return make_cleanup (do_free_variable_cleanup, var);
2258 }
2259
2260 /* Return the type of the value that's stored in VAR,
2261 or that would have being stored there if the
2262 value were accessible.
2263
2264 This differs from VAR->type in that VAR->type is always
2265 the true type of the expession in the source language.
2266 The return value of this function is the type we're
2267 actually storing in varobj, and using for displaying
2268 the values and for comparing previous and new values.
2269
2270 For example, top-level references are always stripped. */
2271 struct type *
2272 varobj_get_value_type (struct varobj *var)
2273 {
2274 struct type *type;
2275
2276 if (var->value)
2277 type = value_type (var->value);
2278 else
2279 type = var->type;
2280
2281 type = check_typedef (type);
2282
2283 if (TYPE_CODE (type) == TYPE_CODE_REF)
2284 type = get_target_type (type);
2285
2286 type = check_typedef (type);
2287
2288 return type;
2289 }
2290
2291 /* What is the default display for this variable? We assume that
2292 everything is "natural". Any exceptions? */
2293 static enum varobj_display_formats
2294 variable_default_display (struct varobj *var)
2295 {
2296 return FORMAT_NATURAL;
2297 }
2298
2299 /* FIXME: The following should be generic for any pointer. */
2300 static void
2301 cppush (struct cpstack **pstack, char *name)
2302 {
2303 struct cpstack *s;
2304
2305 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2306 s->name = name;
2307 s->next = *pstack;
2308 *pstack = s;
2309 }
2310
2311 /* FIXME: The following should be generic for any pointer. */
2312 static char *
2313 cppop (struct cpstack **pstack)
2314 {
2315 struct cpstack *s;
2316 char *v;
2317
2318 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2319 return NULL;
2320
2321 s = *pstack;
2322 v = s->name;
2323 *pstack = (*pstack)->next;
2324 xfree (s);
2325
2326 return v;
2327 }
2328 \f
2329 /*
2330 * Language-dependencies
2331 */
2332
2333 /* Common entry points */
2334
2335 /* Get the language of variable VAR. */
2336 static enum varobj_languages
2337 variable_language (struct varobj *var)
2338 {
2339 enum varobj_languages lang;
2340
2341 switch (var->root->exp->language_defn->la_language)
2342 {
2343 default:
2344 case language_c:
2345 lang = vlang_c;
2346 break;
2347 case language_cplus:
2348 lang = vlang_cplus;
2349 break;
2350 case language_java:
2351 lang = vlang_java;
2352 break;
2353 case language_ada:
2354 lang = vlang_ada;
2355 break;
2356 }
2357
2358 return lang;
2359 }
2360
2361 /* Return the number of children for a given variable.
2362 The result of this function is defined by the language
2363 implementation. The number of children returned by this function
2364 is the number of children that the user will see in the variable
2365 display. */
2366 static int
2367 number_of_children (struct varobj *var)
2368 {
2369 return (*var->root->lang->number_of_children) (var);
2370 }
2371
2372 /* What is the expression for the root varobj VAR? Returns a malloc'd
2373 string. */
2374 static char *
2375 name_of_variable (struct varobj *var)
2376 {
2377 return (*var->root->lang->name_of_variable) (var);
2378 }
2379
2380 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2381 string. */
2382 static char *
2383 name_of_child (struct varobj *var, int index)
2384 {
2385 return (*var->root->lang->name_of_child) (var, index);
2386 }
2387
2388 /* If frame associated with VAR can be found, switch
2389 to it and return 1. Otherwise, return 0. */
2390
2391 static int
2392 check_scope (struct varobj *var)
2393 {
2394 struct frame_info *fi;
2395 int scope;
2396
2397 fi = frame_find_by_id (var->root->frame);
2398 scope = fi != NULL;
2399
2400 if (fi)
2401 {
2402 CORE_ADDR pc = get_frame_pc (fi);
2403
2404 if (pc < BLOCK_START (var->root->valid_block) ||
2405 pc >= BLOCK_END (var->root->valid_block))
2406 scope = 0;
2407 else
2408 select_frame (fi);
2409 }
2410 return scope;
2411 }
2412
2413 /* Helper function to value_of_root. */
2414
2415 static struct value *
2416 value_of_root_1 (struct varobj **var_handle)
2417 {
2418 struct value *new_val = NULL;
2419 struct varobj *var = *var_handle;
2420 int within_scope = 0;
2421 struct cleanup *back_to;
2422
2423 /* Only root variables can be updated... */
2424 if (!is_root_p (var))
2425 /* Not a root var. */
2426 return NULL;
2427
2428 back_to = make_cleanup_restore_current_thread ();
2429
2430 /* Determine whether the variable is still around. */
2431 if (var->root->valid_block == NULL || var->root->floating)
2432 within_scope = 1;
2433 else if (var->root->thread_id == 0)
2434 {
2435 /* The program was single-threaded when the variable object was
2436 created. Technically, it's possible that the program became
2437 multi-threaded since then, but we don't support such
2438 scenario yet. */
2439 within_scope = check_scope (var);
2440 }
2441 else
2442 {
2443 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2444 if (in_thread_list (ptid))
2445 {
2446 switch_to_thread (ptid);
2447 within_scope = check_scope (var);
2448 }
2449 }
2450
2451 if (within_scope)
2452 {
2453 volatile struct gdb_exception except;
2454
2455 /* We need to catch errors here, because if evaluate
2456 expression fails we want to just return NULL. */
2457 TRY_CATCH (except, RETURN_MASK_ERROR)
2458 {
2459 new_val = evaluate_expression (var->root->exp);
2460 }
2461 }
2462
2463 do_cleanups (back_to);
2464
2465 return new_val;
2466 }
2467
2468 /* What is the ``struct value *'' of the root variable VAR?
2469 For floating variable object, evaluation can get us a value
2470 of different type from what is stored in varobj already. In
2471 that case:
2472 - *type_changed will be set to 1
2473 - old varobj will be freed, and new one will be
2474 created, with the same name.
2475 - *var_handle will be set to the new varobj
2476 Otherwise, *type_changed will be set to 0. */
2477 static struct value *
2478 value_of_root (struct varobj **var_handle, int *type_changed)
2479 {
2480 struct varobj *var;
2481
2482 if (var_handle == NULL)
2483 return NULL;
2484
2485 var = *var_handle;
2486
2487 /* This should really be an exception, since this should
2488 only get called with a root variable. */
2489
2490 if (!is_root_p (var))
2491 return NULL;
2492
2493 if (var->root->floating)
2494 {
2495 struct varobj *tmp_var;
2496 char *old_type, *new_type;
2497
2498 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2499 USE_SELECTED_FRAME);
2500 if (tmp_var == NULL)
2501 {
2502 return NULL;
2503 }
2504 old_type = varobj_get_type (var);
2505 new_type = varobj_get_type (tmp_var);
2506 if (strcmp (old_type, new_type) == 0)
2507 {
2508 /* The expression presently stored inside var->root->exp
2509 remembers the locations of local variables relatively to
2510 the frame where the expression was created (in DWARF location
2511 button, for example). Naturally, those locations are not
2512 correct in other frames, so update the expression. */
2513
2514 struct expression *tmp_exp = var->root->exp;
2515
2516 var->root->exp = tmp_var->root->exp;
2517 tmp_var->root->exp = tmp_exp;
2518
2519 varobj_delete (tmp_var, NULL, 0);
2520 *type_changed = 0;
2521 }
2522 else
2523 {
2524 tmp_var->obj_name = xstrdup (var->obj_name);
2525 tmp_var->from = var->from;
2526 tmp_var->to = var->to;
2527 varobj_delete (var, NULL, 0);
2528
2529 install_variable (tmp_var);
2530 *var_handle = tmp_var;
2531 var = *var_handle;
2532 *type_changed = 1;
2533 }
2534 xfree (old_type);
2535 xfree (new_type);
2536 }
2537 else
2538 {
2539 *type_changed = 0;
2540 }
2541
2542 {
2543 struct value *value;
2544
2545 value = value_of_root_1 (var_handle);
2546 if (var->value == NULL || value == NULL)
2547 {
2548 /* For root varobj-s, a NULL value indicates a scoping issue.
2549 So, nothing to do in terms of checking for mutations. */
2550 }
2551 else if (varobj_value_has_mutated (var, value, value_type (value)))
2552 {
2553 /* The type has mutated, so the children are no longer valid.
2554 Just delete them, and tell our caller that the type has
2555 changed. */
2556 varobj_delete (var, NULL, 1 /* only_children */);
2557 var->num_children = -1;
2558 var->to = -1;
2559 var->from = -1;
2560 *type_changed = 1;
2561 }
2562 return value;
2563 }
2564 }
2565
2566 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2567 static struct value *
2568 value_of_child (struct varobj *parent, int index)
2569 {
2570 struct value *value;
2571
2572 value = (*parent->root->lang->value_of_child) (parent, index);
2573
2574 return value;
2575 }
2576
2577 /* GDB already has a command called "value_of_variable". Sigh. */
2578 static char *
2579 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2580 {
2581 if (var->root->is_valid)
2582 {
2583 if (var->dynamic->pretty_printer != NULL)
2584 return varobj_value_get_print_value (var->value, var->format, var);
2585 return (*var->root->lang->value_of_variable) (var, format);
2586 }
2587 else
2588 return NULL;
2589 }
2590
2591 void
2592 varobj_formatted_print_options (struct value_print_options *opts,
2593 enum varobj_display_formats format)
2594 {
2595 get_formatted_print_options (opts, format_code[(int) format]);
2596 opts->deref_ref = 0;
2597 opts->raw = 1;
2598 }
2599
2600 char *
2601 varobj_value_get_print_value (struct value *value,
2602 enum varobj_display_formats format,
2603 struct varobj *var)
2604 {
2605 struct ui_file *stb;
2606 struct cleanup *old_chain;
2607 char *thevalue = NULL;
2608 struct value_print_options opts;
2609 struct type *type = NULL;
2610 long len = 0;
2611 char *encoding = NULL;
2612 struct gdbarch *gdbarch = NULL;
2613 /* Initialize it just to avoid a GCC false warning. */
2614 CORE_ADDR str_addr = 0;
2615 int string_print = 0;
2616
2617 if (value == NULL)
2618 return NULL;
2619
2620 stb = mem_fileopen ();
2621 old_chain = make_cleanup_ui_file_delete (stb);
2622
2623 gdbarch = get_type_arch (value_type (value));
2624 #if HAVE_PYTHON
2625 if (gdb_python_initialized)
2626 {
2627 PyObject *value_formatter = var->dynamic->pretty_printer;
2628
2629 varobj_ensure_python_env (var);
2630
2631 if (value_formatter)
2632 {
2633 /* First check to see if we have any children at all. If so,
2634 we simply return {...}. */
2635 if (dynamic_varobj_has_child_method (var))
2636 {
2637 do_cleanups (old_chain);
2638 return xstrdup ("{...}");
2639 }
2640
2641 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2642 {
2643 struct value *replacement;
2644 PyObject *output = NULL;
2645
2646 output = apply_varobj_pretty_printer (value_formatter,
2647 &replacement,
2648 stb);
2649
2650 /* If we have string like output ... */
2651 if (output)
2652 {
2653 make_cleanup_py_decref (output);
2654
2655 /* If this is a lazy string, extract it. For lazy
2656 strings we always print as a string, so set
2657 string_print. */
2658 if (gdbpy_is_lazy_string (output))
2659 {
2660 gdbpy_extract_lazy_string (output, &str_addr, &type,
2661 &len, &encoding);
2662 make_cleanup (free_current_contents, &encoding);
2663 string_print = 1;
2664 }
2665 else
2666 {
2667 /* If it is a regular (non-lazy) string, extract
2668 it and copy the contents into THEVALUE. If the
2669 hint says to print it as a string, set
2670 string_print. Otherwise just return the extracted
2671 string as a value. */
2672
2673 char *s = python_string_to_target_string (output);
2674
2675 if (s)
2676 {
2677 char *hint;
2678
2679 hint = gdbpy_get_display_hint (value_formatter);
2680 if (hint)
2681 {
2682 if (!strcmp (hint, "string"))
2683 string_print = 1;
2684 xfree (hint);
2685 }
2686
2687 len = strlen (s);
2688 thevalue = xmemdup (s, len + 1, len + 1);
2689 type = builtin_type (gdbarch)->builtin_char;
2690 xfree (s);
2691
2692 if (!string_print)
2693 {
2694 do_cleanups (old_chain);
2695 return thevalue;
2696 }
2697
2698 make_cleanup (xfree, thevalue);
2699 }
2700 else
2701 gdbpy_print_stack ();
2702 }
2703 }
2704 /* If the printer returned a replacement value, set VALUE
2705 to REPLACEMENT. If there is not a replacement value,
2706 just use the value passed to this function. */
2707 if (replacement)
2708 value = replacement;
2709 }
2710 }
2711 }
2712 #endif
2713
2714 varobj_formatted_print_options (&opts, format);
2715
2716 /* If the THEVALUE has contents, it is a regular string. */
2717 if (thevalue)
2718 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2719 else if (string_print)
2720 /* Otherwise, if string_print is set, and it is not a regular
2721 string, it is a lazy string. */
2722 val_print_string (type, encoding, str_addr, len, stb, &opts);
2723 else
2724 /* All other cases. */
2725 common_val_print (value, stb, 0, &opts, current_language);
2726
2727 thevalue = ui_file_xstrdup (stb, NULL);
2728
2729 do_cleanups (old_chain);
2730 return thevalue;
2731 }
2732
2733 int
2734 varobj_editable_p (struct varobj *var)
2735 {
2736 struct type *type;
2737
2738 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2739 return 0;
2740
2741 type = varobj_get_value_type (var);
2742
2743 switch (TYPE_CODE (type))
2744 {
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 case TYPE_CODE_ARRAY:
2748 case TYPE_CODE_FUNC:
2749 case TYPE_CODE_METHOD:
2750 return 0;
2751 break;
2752
2753 default:
2754 return 1;
2755 break;
2756 }
2757 }
2758
2759 /* Call VAR's value_is_changeable_p language-specific callback. */
2760
2761 int
2762 varobj_value_is_changeable_p (struct varobj *var)
2763 {
2764 return var->root->lang->value_is_changeable_p (var);
2765 }
2766
2767 /* Return 1 if that varobj is floating, that is is always evaluated in the
2768 selected frame, and not bound to thread/frame. Such variable objects
2769 are created using '@' as frame specifier to -var-create. */
2770 int
2771 varobj_floating_p (struct varobj *var)
2772 {
2773 return var->root->floating;
2774 }
2775
2776 /* Implement the "value_is_changeable_p" varobj callback for most
2777 languages. */
2778
2779 int
2780 varobj_default_value_is_changeable_p (struct varobj *var)
2781 {
2782 int r;
2783 struct type *type;
2784
2785 if (CPLUS_FAKE_CHILD (var))
2786 return 0;
2787
2788 type = varobj_get_value_type (var);
2789
2790 switch (TYPE_CODE (type))
2791 {
2792 case TYPE_CODE_STRUCT:
2793 case TYPE_CODE_UNION:
2794 case TYPE_CODE_ARRAY:
2795 r = 0;
2796 break;
2797
2798 default:
2799 r = 1;
2800 }
2801
2802 return r;
2803 }
2804
2805 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2806 with an arbitrary caller supplied DATA pointer. */
2807
2808 void
2809 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2810 {
2811 struct varobj_root *var_root, *var_root_next;
2812
2813 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2814
2815 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2816 {
2817 var_root_next = var_root->next;
2818
2819 (*func) (var_root->rootvar, data);
2820 }
2821 }
2822 \f
2823 extern void _initialize_varobj (void);
2824 void
2825 _initialize_varobj (void)
2826 {
2827 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2828
2829 varobj_table = xmalloc (sizeof_table);
2830 memset (varobj_table, 0, sizeof_table);
2831
2832 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2833 &varobjdebug,
2834 _("Set varobj debugging."),
2835 _("Show varobj debugging."),
2836 _("When non-zero, varobj debugging is enabled."),
2837 NULL, show_varobjdebug,
2838 &setlist, &showlist);
2839 }
2840
2841 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2842 defined on globals. It is a helper for varobj_invalidate.
2843
2844 This function is called after changing the symbol file, in this case the
2845 pointers to "struct type" stored by the varobj are no longer valid. All
2846 varobj must be either re-evaluated, or marked as invalid here. */
2847
2848 static void
2849 varobj_invalidate_iter (struct varobj *var, void *unused)
2850 {
2851 /* global and floating var must be re-evaluated. */
2852 if (var->root->floating || var->root->valid_block == NULL)
2853 {
2854 struct varobj *tmp_var;
2855
2856 /* Try to create a varobj with same expression. If we succeed
2857 replace the old varobj, otherwise invalidate it. */
2858 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2859 USE_CURRENT_FRAME);
2860 if (tmp_var != NULL)
2861 {
2862 tmp_var->obj_name = xstrdup (var->obj_name);
2863 varobj_delete (var, NULL, 0);
2864 install_variable (tmp_var);
2865 }
2866 else
2867 var->root->is_valid = 0;
2868 }
2869 else /* locals must be invalidated. */
2870 var->root->is_valid = 0;
2871 }
2872
2873 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2874 are defined on globals.
2875 Invalidated varobjs will be always printed in_scope="invalid". */
2876
2877 void
2878 varobj_invalidate (void)
2879 {
2880 all_root_varobjs (varobj_invalidate_iter, NULL);
2881 }
This page took 0.101665 seconds and 5 git commands to generate.