python: Make two functions return gdbpy_ref<>
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #include "python/py-ref.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* Non-zero if we want to see trace of varobj level stuff. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104
105 /* Next root variable */
106 struct varobj_root *next = NULL;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 bool children_requested = false;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter = NULL;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, bool);
153
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155
156 static bool install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static enum varobj_display_formats variable_default_display (struct varobj *);
169
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
172
173 static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
175
176 /* Language-specific routines. */
177
178 static int number_of_children (const struct varobj *);
179
180 static std::string name_of_variable (const struct varobj *);
181
182 static std::string name_of_child (struct varobj *, int);
183
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
185
186 static struct value *value_of_child (const struct varobj *parent, int index);
187
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
190
191 static bool is_root_p (const struct varobj *var);
192
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
195
196 /* Private data */
197
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
203
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
207
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
210
211 \f
212
213 /* API Implementation */
214 static bool
215 is_root_p (const struct varobj *var)
216 {
217 return (var->root->rootvar == var);
218 }
219
220 #ifdef HAVE_PYTHON
221
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225 {
226 }
227
228 #endif
229
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 {
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
244 {
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
256 return frame;
257 }
258
259 return NULL;
260 }
261
262 /* Creates a varobj (not its children). */
263
264 struct varobj *
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 {
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270
271 if (expression != NULL)
272 {
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
276 const char *p;
277 struct value *value = NULL;
278 CORE_ADDR pc;
279
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
298 else
299 fi = NULL;
300
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
317 TRY
318 {
319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
320 }
321
322 CATCH (except, RETURN_MASK_ERROR)
323 {
324 return NULL;
325 }
326 END_CATCH
327
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 {
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
335 return NULL;
336 }
337
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
341 var->name = expression;
342 /* For a root var, the name and the expr are the same. */
343 var->path_expr = expression;
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
348 Since select_frame is so benign, just call it for all cases. */
349 if (var->root->valid_block)
350 {
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
358 var->root->frame = get_frame_id (fi);
359 var->root->thread_id = inferior_thread ()->global_num;
360 old_id = get_frame_id (get_selected_frame (NULL));
361 select_frame (fi);
362 }
363
364 /* We definitely need to catch errors here.
365 If evaluate_expression succeeds we got the value we wanted.
366 But if it fails, we still go on with a call to evaluate_type(). */
367 TRY
368 {
369 value = evaluate_expression (var->root->exp.get ());
370 }
371 CATCH (except, RETURN_MASK_ERROR)
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376
377 var->type = value_type (type_only_value);
378 }
379 END_CATCH
380
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
389
390 /* Set language info */
391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392
393 install_new_value (var.get (), value, 1 /* Initial assignment */);
394
395 /* Set ourselves as our root. */
396 var->root->rootvar = var.get ();
397
398 /* Reset the selected frame. */
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
401 }
402
403 /* If the variable object name is null, that means this
404 is a temporary variable, so don't install it. */
405
406 if ((var != NULL) && (objname != NULL))
407 {
408 var->obj_name = objname;
409
410 /* If a varobj name is duplicated, the install will fail so
411 we must cleanup. */
412 if (!install_variable (var.get ()))
413 return NULL;
414 }
415
416 return var.release ();
417 }
418
419 /* Generates an unique name that can be used for a varobj. */
420
421 std::string
422 varobj_gen_name (void)
423 {
424 static int id = 0;
425
426 /* Generate a name for this object. */
427 id++;
428 return string_printf ("var%d", id);
429 }
430
431 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
433
434 struct varobj *
435 varobj_get_handle (const char *objname)
436 {
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
448 while (cv != NULL && cv->var->obj_name != objname)
449 cv = cv->next;
450
451 if (cv == NULL)
452 error (_("Variable object not found"));
453
454 return cv->var;
455 }
456
457 /* Given the handle, return the name of the object. */
458
459 const char *
460 varobj_get_objname (const struct varobj *var)
461 {
462 return var->obj_name.c_str ();
463 }
464
465 /* Given the handle, return the expression represented by the
466 object. */
467
468 std::string
469 varobj_get_expression (const struct varobj *var)
470 {
471 return name_of_variable (var);
472 }
473
474 /* See varobj.h. */
475
476 int
477 varobj_delete (struct varobj *var, bool only_children)
478 {
479 return delete_variable (var, only_children);
480 }
481
482 #if HAVE_PYTHON
483
484 /* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486 static PyObject *
487 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 {
489 PyObject *val_obj = NULL;
490 PyObject *printer;
491
492 val_obj = value_to_value_object (value);
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
499 }
500
501 #endif
502
503 /* Set/Get variable object display format. */
504
505 enum varobj_display_formats
506 varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508 {
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
516 case FORMAT_ZHEXADECIMAL:
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
524 if (varobj_value_is_changeable_p (var)
525 && var->value != nullptr && !value_lazy (var->value.get ()))
526 {
527 var->print_value = varobj_value_get_print_value (var->value.get (),
528 var->format, var);
529 }
530
531 return var->format;
532 }
533
534 enum varobj_display_formats
535 varobj_get_display_format (const struct varobj *var)
536 {
537 return var->format;
538 }
539
540 gdb::unique_xmalloc_ptr<char>
541 varobj_get_display_hint (const struct varobj *var)
542 {
543 gdb::unique_xmalloc_ptr<char> result;
544
545 #if HAVE_PYTHON
546 if (!gdb_python_initialized)
547 return NULL;
548
549 gdbpy_enter_varobj enter_py (var);
550
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
553 #endif
554
555 return result;
556 }
557
558 /* Return true if the varobj has items after TO, false otherwise. */
559
560 bool
561 varobj_has_more (const struct varobj *var, int to)
562 {
563 if (var->children.size () > to)
564 return true;
565
566 return ((to == -1 || var->children.size () == to)
567 && (var->dynamic->saved_item != NULL));
568 }
569
570 /* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
573 is always positive. Otherwise, returns -1. */
574 int
575 varobj_get_thread_id (const struct varobj *var)
576 {
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581 }
582
583 void
584 varobj_set_frozen (struct varobj *var, bool frozen)
585 {
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594 }
595
596 bool
597 varobj_get_frozen (const struct varobj *var)
598 {
599 return var->frozen;
600 }
601
602 /* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
607 void
608 varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
610 {
611 int len = children.size ();
612
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
616 *to = len;
617 }
618 else
619 {
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
624 if (*from > *to)
625 *from = *to;
626 }
627 }
628
629 /* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632 static void
633 install_dynamic_child (struct varobj *var,
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
638 bool *cchanged,
639 int index,
640 struct varobj_item *item)
641 {
642 if (var->children.size () < index + 1)
643 {
644 /* There's no child yet. */
645 struct varobj *child = varobj_add_child (var, item);
646
647 if (newobj != NULL)
648 {
649 newobj->push_back (child);
650 *cchanged = true;
651 }
652 }
653 else
654 {
655 varobj *existing = var->children[index];
656 bool type_updated = update_type_if_necessary (existing, item->value);
657
658 if (type_updated)
659 {
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
662 }
663 if (install_new_value (existing, item->value, 0))
664 {
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
667 }
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
670 }
671 }
672
673 #if HAVE_PYTHON
674
675 static bool
676 dynamic_varobj_has_child_method (const struct varobj *var)
677 {
678 PyObject *printer = var->dynamic->pretty_printer;
679
680 if (!gdb_python_initialized)
681 return false;
682
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
685 }
686 #endif
687
688 /* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691 static struct varobj_iter *
692 varobj_get_iterator (struct varobj *var)
693 {
694 #if HAVE_PYTHON
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
697 #endif
698
699 gdb_assert_not_reached (_("\
700 requested an iterator from a non-dynamic varobj"));
701 }
702
703 /* Release and clear VAR's saved item, if any. */
704
705 static void
706 varobj_clear_saved_item (struct varobj_dynamic *var)
707 {
708 if (var->saved_item != NULL)
709 {
710 value_decref (var->saved_item->value);
711 delete var->saved_item;
712 var->saved_item = NULL;
713 }
714 }
715
716 static bool
717 update_dynamic_varobj_children (struct varobj *var,
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
722 bool *cchanged,
723 bool update_children,
724 int from,
725 int to)
726 {
727 int i;
728
729 *cchanged = false;
730
731 if (update_children || var->dynamic->child_iter == NULL)
732 {
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
735
736 varobj_clear_saved_item (var->dynamic);
737
738 i = 0;
739
740 if (var->dynamic->child_iter == NULL)
741 return false;
742 }
743 else
744 i = var->children.size ();
745
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
749 {
750 varobj_item *item;
751
752 /* See if there was a leftover from last time. */
753 if (var->dynamic->saved_item != NULL)
754 {
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
757 }
758 else
759 {
760 item = varobj_iter_next (var->dynamic->child_iter);
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
764 release_value (item->value).release ();
765 }
766
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
776 {
777 bool can_mention = from < 0 || i >= from;
778
779 install_dynamic_child (var, can_mention ? changed : NULL,
780 can_mention ? type_changed : NULL,
781 can_mention ? newobj : NULL,
782 can_mention ? unchanged : NULL,
783 can_mention ? cchanged : NULL, i,
784 item);
785
786 delete item;
787 }
788 else
789 {
790 var->dynamic->saved_item = item;
791
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
796 }
797
798 if (i < var->children.size ())
799 {
800 *cchanged = true;
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
805 }
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
809 if (to >= 0 && var->children.size () < to)
810 *cchanged = true;
811
812 var->num_children = var->children.size ();
813
814 return true;
815 }
816
817 int
818 varobj_get_num_children (struct varobj *var)
819 {
820 if (var->num_children == -1)
821 {
822 if (varobj_is_dynamic_p (var))
823 {
824 bool dummy;
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
829 false, 0, 0);
830 }
831 else
832 var->num_children = number_of_children (var);
833 }
834
835 return var->num_children >= 0 ? var->num_children : 0;
836 }
837
838 /* Creates a list of the immediate children of a variable object;
839 the return code is the number of such children or -1 on error. */
840
841 const std::vector<varobj *> &
842 varobj_list_children (struct varobj *var, int *from, int *to)
843 {
844 var->dynamic->children_requested = true;
845
846 if (varobj_is_dynamic_p (var))
847 {
848 bool children_changed;
849
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
854 &children_changed, false, 0, *to);
855 varobj_restrict_range (var->children, from, to);
856 return var->children;
857 }
858
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
862 /* If that failed, give up. */
863 if (var->num_children == -1)
864 return var->children;
865
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
870
871 for (int i = 0; i < var->num_children; i++)
872 {
873 if (var->children[i] == NULL)
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
878 std::string name = name_of_child (var, i);
879 var->children[i] = create_child (var, i, name);
880 }
881 }
882
883 varobj_restrict_range (var->children, from, to);
884 return var->children;
885 }
886
887 static struct varobj *
888 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 {
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
893
894 return v;
895 }
896
897 /* Obtain the type of an object Variable as a string similar to the one gdb
898 prints on the console. The caller is responsible for freeing the string.
899 */
900
901 std::string
902 varobj_get_type (struct varobj *var)
903 {
904 /* For the "fake" variables, do not return a type. (Its type is
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
908 return std::string ();
909
910 return type_to_string (var->type);
911 }
912
913 /* Obtain the type of an object variable. */
914
915 struct type *
916 varobj_get_gdb_type (const struct varobj *var)
917 {
918 return var->type;
919 }
920
921 /* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
924 static bool
925 is_path_expr_parent (const struct varobj *var)
926 {
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929 }
930
931 /* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
934
935 bool
936 varobj_default_is_path_expr_parent (const struct varobj *var)
937 {
938 return true;
939 }
940
941 /* Return the path expression parent for VAR. */
942
943 const struct varobj *
944 varobj_get_path_expr_parent (const struct varobj *var)
945 {
946 const struct varobj *parent = var;
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
951 /* Computation of full rooted expression for children of dynamic
952 varobjs is not supported. */
953 if (varobj_is_dynamic_p (parent))
954 error (_("Invalid variable object (child of a dynamic varobj)"));
955
956 return parent;
957 }
958
959 /* Return a pointer to the full rooted expression of varobj VAR.
960 If it has not been computed yet, compute it. */
961
962 const char *
963 varobj_get_path_expr (const struct varobj *var)
964 {
965 if (var->path_expr.empty ())
966 {
967 /* For root varobjs, we initialize path_expr
968 when creating varobj, so here it should be
969 child varobj. */
970 struct varobj *mutable_var = (struct varobj *) var;
971 gdb_assert (!is_root_p (var));
972
973 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
974 }
975
976 return var->path_expr.c_str ();
977 }
978
979 const struct language_defn *
980 varobj_get_language (const struct varobj *var)
981 {
982 return var->root->exp->language_defn;
983 }
984
985 int
986 varobj_get_attributes (const struct varobj *var)
987 {
988 int attributes = 0;
989
990 if (varobj_editable_p (var))
991 /* FIXME: define masks for attributes. */
992 attributes |= 0x00000001; /* Editable */
993
994 return attributes;
995 }
996
997 /* Return true if VAR is a dynamic varobj. */
998
999 bool
1000 varobj_is_dynamic_p (const struct varobj *var)
1001 {
1002 return var->dynamic->pretty_printer != NULL;
1003 }
1004
1005 std::string
1006 varobj_get_formatted_value (struct varobj *var,
1007 enum varobj_display_formats format)
1008 {
1009 return my_value_of_variable (var, format);
1010 }
1011
1012 std::string
1013 varobj_get_value (struct varobj *var)
1014 {
1015 return my_value_of_variable (var, var->format);
1016 }
1017
1018 /* Set the value of an object variable (if it is editable) to the
1019 value of the given expression. */
1020 /* Note: Invokes functions that can call error(). */
1021
1022 bool
1023 varobj_set_value (struct varobj *var, const char *expression)
1024 {
1025 struct value *val = NULL; /* Initialize to keep gcc happy. */
1026 /* The argument "expression" contains the variable's new value.
1027 We need to first construct a legal expression for this -- ugh! */
1028 /* Does this cover all the bases? */
1029 struct value *value = NULL; /* Initialize to keep gcc happy. */
1030 int saved_input_radix = input_radix;
1031 const char *s = expression;
1032
1033 gdb_assert (varobj_editable_p (var));
1034
1035 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1036 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1037 TRY
1038 {
1039 value = evaluate_expression (exp.get ());
1040 }
1041
1042 CATCH (except, RETURN_MASK_ERROR)
1043 {
1044 /* We cannot proceed without a valid expression. */
1045 return false;
1046 }
1047 END_CATCH
1048
1049 /* All types that are editable must also be changeable. */
1050 gdb_assert (varobj_value_is_changeable_p (var));
1051
1052 /* The value of a changeable variable object must not be lazy. */
1053 gdb_assert (!value_lazy (var->value.get ()));
1054
1055 /* Need to coerce the input. We want to check if the
1056 value of the variable object will be different
1057 after assignment, and the first thing value_assign
1058 does is coerce the input.
1059 For example, if we are assigning an array to a pointer variable we
1060 should compare the pointer with the array's address, not with the
1061 array's content. */
1062 value = coerce_array (value);
1063
1064 /* The new value may be lazy. value_assign, or
1065 rather value_contents, will take care of this. */
1066 TRY
1067 {
1068 val = value_assign (var->value.get (), value);
1069 }
1070
1071 CATCH (except, RETURN_MASK_ERROR)
1072 {
1073 return false;
1074 }
1075 END_CATCH
1076
1077 /* If the value has changed, record it, so that next -var-update can
1078 report this change. If a variable had a value of '1', we've set it
1079 to '333' and then set again to '1', when -var-update will report this
1080 variable as changed -- because the first assignment has set the
1081 'updated' flag. There's no need to optimize that, because return value
1082 of -var-update should be considered an approximation. */
1083 var->updated = install_new_value (var, val, false /* Compare values. */);
1084 input_radix = saved_input_radix;
1085 return true;
1086 }
1087
1088 #if HAVE_PYTHON
1089
1090 /* A helper function to install a constructor function and visualizer
1091 in a varobj_dynamic. */
1092
1093 static void
1094 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1095 PyObject *visualizer)
1096 {
1097 Py_XDECREF (var->constructor);
1098 var->constructor = constructor;
1099
1100 Py_XDECREF (var->pretty_printer);
1101 var->pretty_printer = visualizer;
1102
1103 varobj_iter_delete (var->child_iter);
1104 var->child_iter = NULL;
1105 }
1106
1107 /* Install the default visualizer for VAR. */
1108
1109 static void
1110 install_default_visualizer (struct varobj *var)
1111 {
1112 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1113 if (CPLUS_FAKE_CHILD (var))
1114 return;
1115
1116 if (pretty_printing)
1117 {
1118 PyObject *pretty_printer = NULL;
1119
1120 if (var->value != nullptr)
1121 {
1122 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1123 if (! pretty_printer)
1124 {
1125 gdbpy_print_stack ();
1126 error (_("Cannot instantiate printer for default visualizer"));
1127 }
1128 }
1129
1130 if (pretty_printer == Py_None)
1131 {
1132 Py_DECREF (pretty_printer);
1133 pretty_printer = NULL;
1134 }
1135
1136 install_visualizer (var->dynamic, NULL, pretty_printer);
1137 }
1138 }
1139
1140 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1141 make a new object. */
1142
1143 static void
1144 construct_visualizer (struct varobj *var, PyObject *constructor)
1145 {
1146 PyObject *pretty_printer;
1147
1148 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1149 if (CPLUS_FAKE_CHILD (var))
1150 return;
1151
1152 Py_INCREF (constructor);
1153 if (constructor == Py_None)
1154 pretty_printer = NULL;
1155 else
1156 {
1157 pretty_printer = instantiate_pretty_printer (constructor,
1158 var->value.get ());
1159 if (! pretty_printer)
1160 {
1161 gdbpy_print_stack ();
1162 Py_DECREF (constructor);
1163 constructor = Py_None;
1164 Py_INCREF (constructor);
1165 }
1166
1167 if (pretty_printer == Py_None)
1168 {
1169 Py_DECREF (pretty_printer);
1170 pretty_printer = NULL;
1171 }
1172 }
1173
1174 install_visualizer (var->dynamic, constructor, pretty_printer);
1175 }
1176
1177 #endif /* HAVE_PYTHON */
1178
1179 /* A helper function for install_new_value. This creates and installs
1180 a visualizer for VAR, if appropriate. */
1181
1182 static void
1183 install_new_value_visualizer (struct varobj *var)
1184 {
1185 #if HAVE_PYTHON
1186 /* If the constructor is None, then we want the raw value. If VAR
1187 does not have a value, just skip this. */
1188 if (!gdb_python_initialized)
1189 return;
1190
1191 if (var->dynamic->constructor != Py_None && var->value != NULL)
1192 {
1193 gdbpy_enter_varobj enter_py (var);
1194
1195 if (var->dynamic->constructor == NULL)
1196 install_default_visualizer (var);
1197 else
1198 construct_visualizer (var, var->dynamic->constructor);
1199 }
1200 #else
1201 /* Do nothing. */
1202 #endif
1203 }
1204
1205 /* When using RTTI to determine variable type it may be changed in runtime when
1206 the variable value is changed. This function checks whether type of varobj
1207 VAR will change when a new value NEW_VALUE is assigned and if it is so
1208 updates the type of VAR. */
1209
1210 static bool
1211 update_type_if_necessary (struct varobj *var, struct value *new_value)
1212 {
1213 if (new_value)
1214 {
1215 struct value_print_options opts;
1216
1217 get_user_print_options (&opts);
1218 if (opts.objectprint)
1219 {
1220 struct type *new_type = value_actual_type (new_value, 0, 0);
1221 std::string new_type_str = type_to_string (new_type);
1222 std::string curr_type_str = varobj_get_type (var);
1223
1224 /* Did the type name change? */
1225 if (curr_type_str != new_type_str)
1226 {
1227 var->type = new_type;
1228
1229 /* This information may be not valid for a new type. */
1230 varobj_delete (var, 1);
1231 var->children.clear ();
1232 var->num_children = -1;
1233 return true;
1234 }
1235 }
1236 }
1237
1238 return false;
1239 }
1240
1241 /* Assign a new value to a variable object. If INITIAL is true,
1242 this is the first assignment after the variable object was just
1243 created, or changed type. In that case, just assign the value
1244 and return false.
1245 Otherwise, assign the new value, and return true if the value is
1246 different from the current one, false otherwise. The comparison is
1247 done on textual representation of value. Therefore, some types
1248 need not be compared. E.g. for structures the reported value is
1249 always "{...}", so no comparison is necessary here. If the old
1250 value was NULL and new one is not, or vice versa, we always return true.
1251
1252 The VALUE parameter should not be released -- the function will
1253 take care of releasing it when needed. */
1254 static bool
1255 install_new_value (struct varobj *var, struct value *value, bool initial)
1256 {
1257 bool changeable;
1258 bool need_to_fetch;
1259 bool changed = false;
1260 bool intentionally_not_fetched = false;
1261
1262 /* We need to know the varobj's type to decide if the value should
1263 be fetched or not. C++ fake children (public/protected/private)
1264 don't have a type. */
1265 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1266 changeable = varobj_value_is_changeable_p (var);
1267
1268 /* If the type has custom visualizer, we consider it to be always
1269 changeable. FIXME: need to make sure this behaviour will not
1270 mess up read-sensitive values. */
1271 if (var->dynamic->pretty_printer != NULL)
1272 changeable = true;
1273
1274 need_to_fetch = changeable;
1275
1276 /* We are not interested in the address of references, and given
1277 that in C++ a reference is not rebindable, it cannot
1278 meaningfully change. So, get hold of the real value. */
1279 if (value)
1280 value = coerce_ref (value);
1281
1282 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1283 /* For unions, we need to fetch the value implicitly because
1284 of implementation of union member fetch. When gdb
1285 creates a value for a field and the value of the enclosing
1286 structure is not lazy, it immediately copies the necessary
1287 bytes from the enclosing values. If the enclosing value is
1288 lazy, the call to value_fetch_lazy on the field will read
1289 the data from memory. For unions, that means we'll read the
1290 same memory more than once, which is not desirable. So
1291 fetch now. */
1292 need_to_fetch = true;
1293
1294 /* The new value might be lazy. If the type is changeable,
1295 that is we'll be comparing values of this type, fetch the
1296 value now. Otherwise, on the next update the old value
1297 will be lazy, which means we've lost that old value. */
1298 if (need_to_fetch && value && value_lazy (value))
1299 {
1300 const struct varobj *parent = var->parent;
1301 bool frozen = var->frozen;
1302
1303 for (; !frozen && parent; parent = parent->parent)
1304 frozen |= parent->frozen;
1305
1306 if (frozen && initial)
1307 {
1308 /* For variables that are frozen, or are children of frozen
1309 variables, we don't do fetch on initial assignment.
1310 For non-initial assignemnt we do the fetch, since it means we're
1311 explicitly asked to compare the new value with the old one. */
1312 intentionally_not_fetched = true;
1313 }
1314 else
1315 {
1316
1317 TRY
1318 {
1319 value_fetch_lazy (value);
1320 }
1321
1322 CATCH (except, RETURN_MASK_ERROR)
1323 {
1324 /* Set the value to NULL, so that for the next -var-update,
1325 we don't try to compare the new value with this value,
1326 that we couldn't even read. */
1327 value = NULL;
1328 }
1329 END_CATCH
1330 }
1331 }
1332
1333 /* Get a reference now, before possibly passing it to any Python
1334 code that might release it. */
1335 value_ref_ptr value_holder;
1336 if (value != NULL)
1337 value_holder = value_ref_ptr::new_reference (value);
1338
1339 /* Below, we'll be comparing string rendering of old and new
1340 values. Don't get string rendering if the value is
1341 lazy -- if it is, the code above has decided that the value
1342 should not be fetched. */
1343 std::string print_value;
1344 if (value != NULL && !value_lazy (value)
1345 && var->dynamic->pretty_printer == NULL)
1346 print_value = varobj_value_get_print_value (value, var->format, var);
1347
1348 /* If the type is changeable, compare the old and the new values.
1349 If this is the initial assignment, we don't have any old value
1350 to compare with. */
1351 if (!initial && changeable)
1352 {
1353 /* If the value of the varobj was changed by -var-set-value,
1354 then the value in the varobj and in the target is the same.
1355 However, that value is different from the value that the
1356 varobj had after the previous -var-update. So need to the
1357 varobj as changed. */
1358 if (var->updated)
1359 changed = true;
1360 else if (var->dynamic->pretty_printer == NULL)
1361 {
1362 /* Try to compare the values. That requires that both
1363 values are non-lazy. */
1364 if (var->not_fetched && value_lazy (var->value.get ()))
1365 {
1366 /* This is a frozen varobj and the value was never read.
1367 Presumably, UI shows some "never read" indicator.
1368 Now that we've fetched the real value, we need to report
1369 this varobj as changed so that UI can show the real
1370 value. */
1371 changed = true;
1372 }
1373 else if (var->value == NULL && value == NULL)
1374 /* Equal. */
1375 ;
1376 else if (var->value == NULL || value == NULL)
1377 {
1378 changed = true;
1379 }
1380 else
1381 {
1382 gdb_assert (!value_lazy (var->value.get ()));
1383 gdb_assert (!value_lazy (value));
1384
1385 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1386 if (var->print_value != print_value)
1387 changed = true;
1388 }
1389 }
1390 }
1391
1392 if (!initial && !changeable)
1393 {
1394 /* For values that are not changeable, we don't compare the values.
1395 However, we want to notice if a value was not NULL and now is NULL,
1396 or vise versa, so that we report when top-level varobjs come in scope
1397 and leave the scope. */
1398 changed = (var->value != NULL) != (value != NULL);
1399 }
1400
1401 /* We must always keep the new value, since children depend on it. */
1402 var->value = value_holder;
1403 if (value && value_lazy (value) && intentionally_not_fetched)
1404 var->not_fetched = true;
1405 else
1406 var->not_fetched = false;
1407 var->updated = false;
1408
1409 install_new_value_visualizer (var);
1410
1411 /* If we installed a pretty-printer, re-compare the printed version
1412 to see if the variable changed. */
1413 if (var->dynamic->pretty_printer != NULL)
1414 {
1415 print_value = varobj_value_get_print_value (var->value.get (),
1416 var->format, var);
1417 if ((var->print_value.empty () && !print_value.empty ())
1418 || (!var->print_value.empty () && print_value.empty ())
1419 || (!var->print_value.empty () && !print_value.empty ()
1420 && var->print_value != print_value))
1421 changed = true;
1422 }
1423 var->print_value = print_value;
1424
1425 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1426
1427 return changed;
1428 }
1429
1430 /* Return the requested range for a varobj. VAR is the varobj. FROM
1431 and TO are out parameters; *FROM and *TO will be set to the
1432 selected sub-range of VAR. If no range was selected using
1433 -var-set-update-range, then both will be -1. */
1434 void
1435 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1436 {
1437 *from = var->from;
1438 *to = var->to;
1439 }
1440
1441 /* Set the selected sub-range of children of VAR to start at index
1442 FROM and end at index TO. If either FROM or TO is less than zero,
1443 this is interpreted as a request for all children. */
1444 void
1445 varobj_set_child_range (struct varobj *var, int from, int to)
1446 {
1447 var->from = from;
1448 var->to = to;
1449 }
1450
1451 void
1452 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1453 {
1454 #if HAVE_PYTHON
1455 PyObject *mainmod;
1456
1457 if (!gdb_python_initialized)
1458 return;
1459
1460 gdbpy_enter_varobj enter_py (var);
1461
1462 mainmod = PyImport_AddModule ("__main__");
1463 gdbpy_ref<> globals
1464 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1465 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1466 globals.get (), globals.get ()));
1467
1468 if (constructor == NULL)
1469 {
1470 gdbpy_print_stack ();
1471 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1472 }
1473
1474 construct_visualizer (var, constructor.get ());
1475
1476 /* If there are any children now, wipe them. */
1477 varobj_delete (var, 1 /* children only */);
1478 var->num_children = -1;
1479 #else
1480 error (_("Python support required"));
1481 #endif
1482 }
1483
1484 /* If NEW_VALUE is the new value of the given varobj (var), return
1485 true if var has mutated. In other words, if the type of
1486 the new value is different from the type of the varobj's old
1487 value.
1488
1489 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1490
1491 static bool
1492 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1493 struct type *new_type)
1494 {
1495 /* If we haven't previously computed the number of children in var,
1496 it does not matter from the front-end's perspective whether
1497 the type has mutated or not. For all intents and purposes,
1498 it has not mutated. */
1499 if (var->num_children < 0)
1500 return false;
1501
1502 if (var->root->lang_ops->value_has_mutated != NULL)
1503 {
1504 /* The varobj module, when installing new values, explicitly strips
1505 references, saying that we're not interested in those addresses.
1506 But detection of mutation happens before installing the new
1507 value, so our value may be a reference that we need to strip
1508 in order to remain consistent. */
1509 if (new_value != NULL)
1510 new_value = coerce_ref (new_value);
1511 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1512 }
1513 else
1514 return false;
1515 }
1516
1517 /* Update the values for a variable and its children. This is a
1518 two-pronged attack. First, re-parse the value for the root's
1519 expression to see if it's changed. Then go all the way
1520 through its children, reconstructing them and noting if they've
1521 changed.
1522
1523 The IS_EXPLICIT parameter specifies if this call is result
1524 of MI request to update this specific variable, or
1525 result of implicit -var-update *. For implicit request, we don't
1526 update frozen variables.
1527
1528 NOTE: This function may delete the caller's varobj. If it
1529 returns TYPE_CHANGED, then it has done this and VARP will be modified
1530 to point to the new varobj. */
1531
1532 std::vector<varobj_update_result>
1533 varobj_update (struct varobj **varp, bool is_explicit)
1534 {
1535 bool type_changed = false;
1536 struct value *newobj;
1537 std::vector<varobj_update_result> stack;
1538 std::vector<varobj_update_result> result;
1539
1540 /* Frozen means frozen -- we don't check for any change in
1541 this varobj, including its going out of scope, or
1542 changing type. One use case for frozen varobjs is
1543 retaining previously evaluated expressions, and we don't
1544 want them to be reevaluated at all. */
1545 if (!is_explicit && (*varp)->frozen)
1546 return result;
1547
1548 if (!(*varp)->root->is_valid)
1549 {
1550 result.emplace_back (*varp, VAROBJ_INVALID);
1551 return result;
1552 }
1553
1554 if ((*varp)->root->rootvar == *varp)
1555 {
1556 varobj_update_result r (*varp);
1557
1558 /* Update the root variable. value_of_root can return NULL
1559 if the variable is no longer around, i.e. we stepped out of
1560 the frame in which a local existed. We are letting the
1561 value_of_root variable dispose of the varobj if the type
1562 has changed. */
1563 newobj = value_of_root (varp, &type_changed);
1564 if (update_type_if_necessary (*varp, newobj))
1565 type_changed = true;
1566 r.varobj = *varp;
1567 r.type_changed = type_changed;
1568 if (install_new_value ((*varp), newobj, type_changed))
1569 r.changed = true;
1570
1571 if (newobj == NULL)
1572 r.status = VAROBJ_NOT_IN_SCOPE;
1573 r.value_installed = true;
1574
1575 if (r.status == VAROBJ_NOT_IN_SCOPE)
1576 {
1577 if (r.type_changed || r.changed)
1578 result.push_back (std::move (r));
1579
1580 return result;
1581 }
1582
1583 stack.push_back (std::move (r));
1584 }
1585 else
1586 stack.emplace_back (*varp);
1587
1588 /* Walk through the children, reconstructing them all. */
1589 while (!stack.empty ())
1590 {
1591 varobj_update_result r = std::move (stack.back ());
1592 stack.pop_back ();
1593 struct varobj *v = r.varobj;
1594
1595 /* Update this variable, unless it's a root, which is already
1596 updated. */
1597 if (!r.value_installed)
1598 {
1599 struct type *new_type;
1600
1601 newobj = value_of_child (v->parent, v->index);
1602 if (update_type_if_necessary (v, newobj))
1603 r.type_changed = true;
1604 if (newobj)
1605 new_type = value_type (newobj);
1606 else
1607 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1608
1609 if (varobj_value_has_mutated (v, newobj, new_type))
1610 {
1611 /* The children are no longer valid; delete them now.
1612 Report the fact that its type changed as well. */
1613 varobj_delete (v, 1 /* only_children */);
1614 v->num_children = -1;
1615 v->to = -1;
1616 v->from = -1;
1617 v->type = new_type;
1618 r.type_changed = true;
1619 }
1620
1621 if (install_new_value (v, newobj, r.type_changed))
1622 {
1623 r.changed = true;
1624 v->updated = false;
1625 }
1626 }
1627
1628 /* We probably should not get children of a dynamic varobj, but
1629 for which -var-list-children was never invoked. */
1630 if (varobj_is_dynamic_p (v))
1631 {
1632 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1633 bool children_changed = false;
1634
1635 if (v->frozen)
1636 continue;
1637
1638 if (!v->dynamic->children_requested)
1639 {
1640 bool dummy;
1641
1642 /* If we initially did not have potential children, but
1643 now we do, consider the varobj as changed.
1644 Otherwise, if children were never requested, consider
1645 it as unchanged -- presumably, such varobj is not yet
1646 expanded in the UI, so we need not bother getting
1647 it. */
1648 if (!varobj_has_more (v, 0))
1649 {
1650 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1651 &dummy, false, 0, 0);
1652 if (varobj_has_more (v, 0))
1653 r.changed = true;
1654 }
1655
1656 if (r.changed)
1657 result.push_back (std::move (r));
1658
1659 continue;
1660 }
1661
1662 /* If update_dynamic_varobj_children returns false, then we have
1663 a non-conforming pretty-printer, so we skip it. */
1664 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1665 &unchanged, &children_changed, true,
1666 v->from, v->to))
1667 {
1668 if (children_changed || !newobj.empty ())
1669 {
1670 r.children_changed = true;
1671 r.newobj = std::move (newobj);
1672 }
1673 /* Push in reverse order so that the first child is
1674 popped from the work stack first, and so will be
1675 added to result first. This does not affect
1676 correctness, just "nicer". */
1677 for (int i = type_changed.size () - 1; i >= 0; --i)
1678 {
1679 varobj_update_result r (type_changed[i]);
1680
1681 /* Type may change only if value was changed. */
1682 r.changed = true;
1683 r.type_changed = true;
1684 r.value_installed = true;
1685
1686 stack.push_back (std::move (r));
1687 }
1688 for (int i = changed.size () - 1; i >= 0; --i)
1689 {
1690 varobj_update_result r (changed[i]);
1691
1692 r.changed = true;
1693 r.value_installed = true;
1694
1695 stack.push_back (std::move (r));
1696 }
1697 for (int i = unchanged.size () - 1; i >= 0; --i)
1698 {
1699 if (!unchanged[i]->frozen)
1700 {
1701 varobj_update_result r (unchanged[i]);
1702
1703 r.value_installed = true;
1704
1705 stack.push_back (std::move (r));
1706 }
1707 }
1708 if (r.changed || r.children_changed)
1709 result.push_back (std::move (r));
1710
1711 continue;
1712 }
1713 }
1714
1715 /* Push any children. Use reverse order so that the first
1716 child is popped from the work stack first, and so
1717 will be added to result first. This does not
1718 affect correctness, just "nicer". */
1719 for (int i = v->children.size () - 1; i >= 0; --i)
1720 {
1721 varobj *c = v->children[i];
1722
1723 /* Child may be NULL if explicitly deleted by -var-delete. */
1724 if (c != NULL && !c->frozen)
1725 stack.emplace_back (c);
1726 }
1727
1728 if (r.changed || r.type_changed)
1729 result.push_back (std::move (r));
1730 }
1731
1732 return result;
1733 }
1734
1735 /* Helper functions */
1736
1737 /*
1738 * Variable object construction/destruction
1739 */
1740
1741 static int
1742 delete_variable (struct varobj *var, bool only_children_p)
1743 {
1744 int delcount = 0;
1745
1746 delete_variable_1 (&delcount, var, only_children_p,
1747 true /* remove_from_parent_p */ );
1748
1749 return delcount;
1750 }
1751
1752 /* Delete the variable object VAR and its children. */
1753 /* IMPORTANT NOTE: If we delete a variable which is a child
1754 and the parent is not removed we dump core. It must be always
1755 initially called with remove_from_parent_p set. */
1756 static void
1757 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1758 bool remove_from_parent_p)
1759 {
1760 /* Delete any children of this variable, too. */
1761 for (varobj *child : var->children)
1762 {
1763 if (!child)
1764 continue;
1765
1766 if (!remove_from_parent_p)
1767 child->parent = NULL;
1768
1769 delete_variable_1 (delcountp, child, false, only_children_p);
1770 }
1771 var->children.clear ();
1772
1773 /* if we were called to delete only the children we are done here. */
1774 if (only_children_p)
1775 return;
1776
1777 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1778 /* If the name is empty, this is a temporary variable, that has not
1779 yet been installed, don't report it, it belongs to the caller... */
1780 if (!var->obj_name.empty ())
1781 {
1782 *delcountp = *delcountp + 1;
1783 }
1784
1785 /* If this variable has a parent, remove it from its parent's list. */
1786 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1787 (as indicated by remove_from_parent_p) we don't bother doing an
1788 expensive list search to find the element to remove when we are
1789 discarding the list afterwards. */
1790 if ((remove_from_parent_p) && (var->parent != NULL))
1791 var->parent->children[var->index] = NULL;
1792
1793 if (!var->obj_name.empty ())
1794 uninstall_variable (var);
1795
1796 /* Free memory associated with this variable. */
1797 delete var;
1798 }
1799
1800 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1801 static bool
1802 install_variable (struct varobj *var)
1803 {
1804 struct vlist *cv;
1805 struct vlist *newvl;
1806 const char *chp;
1807 unsigned int index = 0;
1808 unsigned int i = 1;
1809
1810 for (chp = var->obj_name.c_str (); *chp; chp++)
1811 {
1812 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1813 }
1814
1815 cv = *(varobj_table + index);
1816 while (cv != NULL && cv->var->obj_name != var->obj_name)
1817 cv = cv->next;
1818
1819 if (cv != NULL)
1820 error (_("Duplicate variable object name"));
1821
1822 /* Add varobj to hash table. */
1823 newvl = XNEW (struct vlist);
1824 newvl->next = *(varobj_table + index);
1825 newvl->var = var;
1826 *(varobj_table + index) = newvl;
1827
1828 /* If root, add varobj to root list. */
1829 if (is_root_p (var))
1830 {
1831 /* Add to list of root variables. */
1832 if (rootlist == NULL)
1833 var->root->next = NULL;
1834 else
1835 var->root->next = rootlist;
1836 rootlist = var->root;
1837 }
1838
1839 return true; /* OK */
1840 }
1841
1842 /* Unistall the object VAR. */
1843 static void
1844 uninstall_variable (struct varobj *var)
1845 {
1846 struct vlist *cv;
1847 struct vlist *prev;
1848 struct varobj_root *cr;
1849 struct varobj_root *prer;
1850 const char *chp;
1851 unsigned int index = 0;
1852 unsigned int i = 1;
1853
1854 /* Remove varobj from hash table. */
1855 for (chp = var->obj_name.c_str (); *chp; chp++)
1856 {
1857 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1858 }
1859
1860 cv = *(varobj_table + index);
1861 prev = NULL;
1862 while (cv != NULL && cv->var->obj_name != var->obj_name)
1863 {
1864 prev = cv;
1865 cv = cv->next;
1866 }
1867
1868 if (varobjdebug)
1869 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1870
1871 if (cv == NULL)
1872 {
1873 warning
1874 ("Assertion failed: Could not find variable object \"%s\" to delete",
1875 var->obj_name.c_str ());
1876 return;
1877 }
1878
1879 if (prev == NULL)
1880 *(varobj_table + index) = cv->next;
1881 else
1882 prev->next = cv->next;
1883
1884 xfree (cv);
1885
1886 /* If root, remove varobj from root list. */
1887 if (is_root_p (var))
1888 {
1889 /* Remove from list of root variables. */
1890 if (rootlist == var->root)
1891 rootlist = var->root->next;
1892 else
1893 {
1894 prer = NULL;
1895 cr = rootlist;
1896 while ((cr != NULL) && (cr->rootvar != var))
1897 {
1898 prer = cr;
1899 cr = cr->next;
1900 }
1901 if (cr == NULL)
1902 {
1903 warning (_("Assertion failed: Could not find "
1904 "varobj \"%s\" in root list"),
1905 var->obj_name.c_str ());
1906 return;
1907 }
1908 if (prer == NULL)
1909 rootlist = NULL;
1910 else
1911 prer->next = cr->next;
1912 }
1913 }
1914
1915 }
1916
1917 /* Create and install a child of the parent of the given name.
1918
1919 The created VAROBJ takes ownership of the allocated NAME. */
1920
1921 static struct varobj *
1922 create_child (struct varobj *parent, int index, std::string &name)
1923 {
1924 struct varobj_item item;
1925
1926 std::swap (item.name, name);
1927 item.value = value_of_child (parent, index);
1928
1929 return create_child_with_value (parent, index, &item);
1930 }
1931
1932 static struct varobj *
1933 create_child_with_value (struct varobj *parent, int index,
1934 struct varobj_item *item)
1935 {
1936 varobj *child = new varobj (parent->root);
1937
1938 /* NAME is allocated by caller. */
1939 std::swap (child->name, item->name);
1940 child->index = index;
1941 child->parent = parent;
1942
1943 if (varobj_is_anonymous_child (child))
1944 child->obj_name = string_printf ("%s.%d_anonymous",
1945 parent->obj_name.c_str (), index);
1946 else
1947 child->obj_name = string_printf ("%s.%s",
1948 parent->obj_name.c_str (),
1949 child->name.c_str ());
1950
1951 install_variable (child);
1952
1953 /* Compute the type of the child. Must do this before
1954 calling install_new_value. */
1955 if (item->value != NULL)
1956 /* If the child had no evaluation errors, var->value
1957 will be non-NULL and contain a valid type. */
1958 child->type = value_actual_type (item->value, 0, NULL);
1959 else
1960 /* Otherwise, we must compute the type. */
1961 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1962 child->index);
1963 install_new_value (child, item->value, 1);
1964
1965 return child;
1966 }
1967 \f
1968
1969 /*
1970 * Miscellaneous utility functions.
1971 */
1972
1973 /* Allocate memory and initialize a new variable. */
1974 varobj::varobj (varobj_root *root_)
1975 : root (root_), dynamic (new varobj_dynamic)
1976 {
1977 }
1978
1979 /* Free any allocated memory associated with VAR. */
1980
1981 varobj::~varobj ()
1982 {
1983 varobj *var = this;
1984
1985 #if HAVE_PYTHON
1986 if (var->dynamic->pretty_printer != NULL)
1987 {
1988 gdbpy_enter_varobj enter_py (var);
1989
1990 Py_XDECREF (var->dynamic->constructor);
1991 Py_XDECREF (var->dynamic->pretty_printer);
1992 }
1993 #endif
1994
1995 varobj_iter_delete (var->dynamic->child_iter);
1996 varobj_clear_saved_item (var->dynamic);
1997
1998 if (is_root_p (var))
1999 delete var->root;
2000
2001 delete var->dynamic;
2002 }
2003
2004 /* Return the type of the value that's stored in VAR,
2005 or that would have being stored there if the
2006 value were accessible.
2007
2008 This differs from VAR->type in that VAR->type is always
2009 the true type of the expession in the source language.
2010 The return value of this function is the type we're
2011 actually storing in varobj, and using for displaying
2012 the values and for comparing previous and new values.
2013
2014 For example, top-level references are always stripped. */
2015 struct type *
2016 varobj_get_value_type (const struct varobj *var)
2017 {
2018 struct type *type;
2019
2020 if (var->value != nullptr)
2021 type = value_type (var->value.get ());
2022 else
2023 type = var->type;
2024
2025 type = check_typedef (type);
2026
2027 if (TYPE_IS_REFERENCE (type))
2028 type = get_target_type (type);
2029
2030 type = check_typedef (type);
2031
2032 return type;
2033 }
2034
2035 /* What is the default display for this variable? We assume that
2036 everything is "natural". Any exceptions? */
2037 static enum varobj_display_formats
2038 variable_default_display (struct varobj *var)
2039 {
2040 return FORMAT_NATURAL;
2041 }
2042
2043 /*
2044 * Language-dependencies
2045 */
2046
2047 /* Common entry points */
2048
2049 /* Return the number of children for a given variable.
2050 The result of this function is defined by the language
2051 implementation. The number of children returned by this function
2052 is the number of children that the user will see in the variable
2053 display. */
2054 static int
2055 number_of_children (const struct varobj *var)
2056 {
2057 return (*var->root->lang_ops->number_of_children) (var);
2058 }
2059
2060 /* What is the expression for the root varobj VAR? */
2061
2062 static std::string
2063 name_of_variable (const struct varobj *var)
2064 {
2065 return (*var->root->lang_ops->name_of_variable) (var);
2066 }
2067
2068 /* What is the name of the INDEX'th child of VAR? */
2069
2070 static std::string
2071 name_of_child (struct varobj *var, int index)
2072 {
2073 return (*var->root->lang_ops->name_of_child) (var, index);
2074 }
2075
2076 /* If frame associated with VAR can be found, switch
2077 to it and return true. Otherwise, return false. */
2078
2079 static bool
2080 check_scope (const struct varobj *var)
2081 {
2082 struct frame_info *fi;
2083 bool scope;
2084
2085 fi = frame_find_by_id (var->root->frame);
2086 scope = fi != NULL;
2087
2088 if (fi)
2089 {
2090 CORE_ADDR pc = get_frame_pc (fi);
2091
2092 if (pc < BLOCK_START (var->root->valid_block) ||
2093 pc >= BLOCK_END (var->root->valid_block))
2094 scope = false;
2095 else
2096 select_frame (fi);
2097 }
2098 return scope;
2099 }
2100
2101 /* Helper function to value_of_root. */
2102
2103 static struct value *
2104 value_of_root_1 (struct varobj **var_handle)
2105 {
2106 struct value *new_val = NULL;
2107 struct varobj *var = *var_handle;
2108 bool within_scope = false;
2109
2110 /* Only root variables can be updated... */
2111 if (!is_root_p (var))
2112 /* Not a root var. */
2113 return NULL;
2114
2115 scoped_restore_current_thread restore_thread;
2116
2117 /* Determine whether the variable is still around. */
2118 if (var->root->valid_block == NULL || var->root->floating)
2119 within_scope = true;
2120 else if (var->root->thread_id == 0)
2121 {
2122 /* The program was single-threaded when the variable object was
2123 created. Technically, it's possible that the program became
2124 multi-threaded since then, but we don't support such
2125 scenario yet. */
2126 within_scope = check_scope (var);
2127 }
2128 else
2129 {
2130 thread_info *thread = find_thread_global_id (var->root->thread_id);
2131
2132 if (thread != NULL)
2133 {
2134 switch_to_thread (thread);
2135 within_scope = check_scope (var);
2136 }
2137 }
2138
2139 if (within_scope)
2140 {
2141
2142 /* We need to catch errors here, because if evaluate
2143 expression fails we want to just return NULL. */
2144 TRY
2145 {
2146 new_val = evaluate_expression (var->root->exp.get ());
2147 }
2148 CATCH (except, RETURN_MASK_ERROR)
2149 {
2150 }
2151 END_CATCH
2152 }
2153
2154 return new_val;
2155 }
2156
2157 /* What is the ``struct value *'' of the root variable VAR?
2158 For floating variable object, evaluation can get us a value
2159 of different type from what is stored in varobj already. In
2160 that case:
2161 - *type_changed will be set to 1
2162 - old varobj will be freed, and new one will be
2163 created, with the same name.
2164 - *var_handle will be set to the new varobj
2165 Otherwise, *type_changed will be set to 0. */
2166 static struct value *
2167 value_of_root (struct varobj **var_handle, bool *type_changed)
2168 {
2169 struct varobj *var;
2170
2171 if (var_handle == NULL)
2172 return NULL;
2173
2174 var = *var_handle;
2175
2176 /* This should really be an exception, since this should
2177 only get called with a root variable. */
2178
2179 if (!is_root_p (var))
2180 return NULL;
2181
2182 if (var->root->floating)
2183 {
2184 struct varobj *tmp_var;
2185
2186 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2187 USE_SELECTED_FRAME);
2188 if (tmp_var == NULL)
2189 {
2190 return NULL;
2191 }
2192 std::string old_type = varobj_get_type (var);
2193 std::string new_type = varobj_get_type (tmp_var);
2194 if (old_type == new_type)
2195 {
2196 /* The expression presently stored inside var->root->exp
2197 remembers the locations of local variables relatively to
2198 the frame where the expression was created (in DWARF location
2199 button, for example). Naturally, those locations are not
2200 correct in other frames, so update the expression. */
2201
2202 std::swap (var->root->exp, tmp_var->root->exp);
2203
2204 varobj_delete (tmp_var, 0);
2205 *type_changed = 0;
2206 }
2207 else
2208 {
2209 tmp_var->obj_name = var->obj_name;
2210 tmp_var->from = var->from;
2211 tmp_var->to = var->to;
2212 varobj_delete (var, 0);
2213
2214 install_variable (tmp_var);
2215 *var_handle = tmp_var;
2216 var = *var_handle;
2217 *type_changed = true;
2218 }
2219 }
2220 else
2221 {
2222 *type_changed = 0;
2223 }
2224
2225 {
2226 struct value *value;
2227
2228 value = value_of_root_1 (var_handle);
2229 if (var->value == NULL || value == NULL)
2230 {
2231 /* For root varobj-s, a NULL value indicates a scoping issue.
2232 So, nothing to do in terms of checking for mutations. */
2233 }
2234 else if (varobj_value_has_mutated (var, value, value_type (value)))
2235 {
2236 /* The type has mutated, so the children are no longer valid.
2237 Just delete them, and tell our caller that the type has
2238 changed. */
2239 varobj_delete (var, 1 /* only_children */);
2240 var->num_children = -1;
2241 var->to = -1;
2242 var->from = -1;
2243 *type_changed = true;
2244 }
2245 return value;
2246 }
2247 }
2248
2249 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2250 static struct value *
2251 value_of_child (const struct varobj *parent, int index)
2252 {
2253 struct value *value;
2254
2255 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2256
2257 return value;
2258 }
2259
2260 /* GDB already has a command called "value_of_variable". Sigh. */
2261 static std::string
2262 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2263 {
2264 if (var->root->is_valid)
2265 {
2266 if (var->dynamic->pretty_printer != NULL)
2267 return varobj_value_get_print_value (var->value.get (), var->format,
2268 var);
2269 return (*var->root->lang_ops->value_of_variable) (var, format);
2270 }
2271 else
2272 return std::string ();
2273 }
2274
2275 void
2276 varobj_formatted_print_options (struct value_print_options *opts,
2277 enum varobj_display_formats format)
2278 {
2279 get_formatted_print_options (opts, format_code[(int) format]);
2280 opts->deref_ref = 0;
2281 opts->raw = !pretty_printing;
2282 }
2283
2284 std::string
2285 varobj_value_get_print_value (struct value *value,
2286 enum varobj_display_formats format,
2287 const struct varobj *var)
2288 {
2289 struct value_print_options opts;
2290 struct type *type = NULL;
2291 long len = 0;
2292 gdb::unique_xmalloc_ptr<char> encoding;
2293 /* Initialize it just to avoid a GCC false warning. */
2294 CORE_ADDR str_addr = 0;
2295 bool string_print = false;
2296
2297 if (value == NULL)
2298 return std::string ();
2299
2300 string_file stb;
2301 std::string thevalue;
2302
2303 #if HAVE_PYTHON
2304 if (gdb_python_initialized)
2305 {
2306 PyObject *value_formatter = var->dynamic->pretty_printer;
2307
2308 gdbpy_enter_varobj enter_py (var);
2309
2310 if (value_formatter)
2311 {
2312 /* First check to see if we have any children at all. If so,
2313 we simply return {...}. */
2314 if (dynamic_varobj_has_child_method (var))
2315 return "{...}";
2316
2317 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2318 {
2319 struct value *replacement;
2320
2321 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2322 &replacement,
2323 &stb);
2324
2325 /* If we have string like output ... */
2326 if (output != NULL)
2327 {
2328 /* If this is a lazy string, extract it. For lazy
2329 strings we always print as a string, so set
2330 string_print. */
2331 if (gdbpy_is_lazy_string (output.get ()))
2332 {
2333 gdbpy_extract_lazy_string (output.get (), &str_addr,
2334 &type, &len, &encoding);
2335 string_print = true;
2336 }
2337 else
2338 {
2339 /* If it is a regular (non-lazy) string, extract
2340 it and copy the contents into THEVALUE. If the
2341 hint says to print it as a string, set
2342 string_print. Otherwise just return the extracted
2343 string as a value. */
2344
2345 gdb::unique_xmalloc_ptr<char> s
2346 = python_string_to_target_string (output.get ());
2347
2348 if (s)
2349 {
2350 struct gdbarch *gdbarch;
2351
2352 gdb::unique_xmalloc_ptr<char> hint
2353 = gdbpy_get_display_hint (value_formatter);
2354 if (hint)
2355 {
2356 if (!strcmp (hint.get (), "string"))
2357 string_print = true;
2358 }
2359
2360 thevalue = std::string (s.get ());
2361 len = thevalue.size ();
2362 gdbarch = get_type_arch (value_type (value));
2363 type = builtin_type (gdbarch)->builtin_char;
2364
2365 if (!string_print)
2366 return thevalue;
2367 }
2368 else
2369 gdbpy_print_stack ();
2370 }
2371 }
2372 /* If the printer returned a replacement value, set VALUE
2373 to REPLACEMENT. If there is not a replacement value,
2374 just use the value passed to this function. */
2375 if (replacement)
2376 value = replacement;
2377 }
2378 }
2379 }
2380 #endif
2381
2382 varobj_formatted_print_options (&opts, format);
2383
2384 /* If the THEVALUE has contents, it is a regular string. */
2385 if (!thevalue.empty ())
2386 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2387 len, encoding.get (), 0, &opts);
2388 else if (string_print)
2389 /* Otherwise, if string_print is set, and it is not a regular
2390 string, it is a lazy string. */
2391 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2392 else
2393 /* All other cases. */
2394 common_val_print (value, &stb, 0, &opts, current_language);
2395
2396 return std::move (stb.string ());
2397 }
2398
2399 bool
2400 varobj_editable_p (const struct varobj *var)
2401 {
2402 struct type *type;
2403
2404 if (!(var->root->is_valid && var->value != nullptr
2405 && VALUE_LVAL (var->value.get ())))
2406 return false;
2407
2408 type = varobj_get_value_type (var);
2409
2410 switch (TYPE_CODE (type))
2411 {
2412 case TYPE_CODE_STRUCT:
2413 case TYPE_CODE_UNION:
2414 case TYPE_CODE_ARRAY:
2415 case TYPE_CODE_FUNC:
2416 case TYPE_CODE_METHOD:
2417 return false;
2418 break;
2419
2420 default:
2421 return true;
2422 break;
2423 }
2424 }
2425
2426 /* Call VAR's value_is_changeable_p language-specific callback. */
2427
2428 bool
2429 varobj_value_is_changeable_p (const struct varobj *var)
2430 {
2431 return var->root->lang_ops->value_is_changeable_p (var);
2432 }
2433
2434 /* Return true if that varobj is floating, that is is always evaluated in the
2435 selected frame, and not bound to thread/frame. Such variable objects
2436 are created using '@' as frame specifier to -var-create. */
2437 bool
2438 varobj_floating_p (const struct varobj *var)
2439 {
2440 return var->root->floating;
2441 }
2442
2443 /* Implement the "value_is_changeable_p" varobj callback for most
2444 languages. */
2445
2446 bool
2447 varobj_default_value_is_changeable_p (const struct varobj *var)
2448 {
2449 bool r;
2450 struct type *type;
2451
2452 if (CPLUS_FAKE_CHILD (var))
2453 return false;
2454
2455 type = varobj_get_value_type (var);
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_STRUCT:
2460 case TYPE_CODE_UNION:
2461 case TYPE_CODE_ARRAY:
2462 r = false;
2463 break;
2464
2465 default:
2466 r = true;
2467 }
2468
2469 return r;
2470 }
2471
2472 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2473 with an arbitrary caller supplied DATA pointer. */
2474
2475 void
2476 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2477 {
2478 struct varobj_root *var_root, *var_root_next;
2479
2480 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2481
2482 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2483 {
2484 var_root_next = var_root->next;
2485
2486 (*func) (var_root->rootvar, data);
2487 }
2488 }
2489
2490 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2491 defined on globals. It is a helper for varobj_invalidate.
2492
2493 This function is called after changing the symbol file, in this case the
2494 pointers to "struct type" stored by the varobj are no longer valid. All
2495 varobj must be either re-evaluated, or marked as invalid here. */
2496
2497 static void
2498 varobj_invalidate_iter (struct varobj *var, void *unused)
2499 {
2500 /* global and floating var must be re-evaluated. */
2501 if (var->root->floating || var->root->valid_block == NULL)
2502 {
2503 struct varobj *tmp_var;
2504
2505 /* Try to create a varobj with same expression. If we succeed
2506 replace the old varobj, otherwise invalidate it. */
2507 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2508 USE_CURRENT_FRAME);
2509 if (tmp_var != NULL)
2510 {
2511 tmp_var->obj_name = var->obj_name;
2512 varobj_delete (var, 0);
2513 install_variable (tmp_var);
2514 }
2515 else
2516 var->root->is_valid = false;
2517 }
2518 else /* locals must be invalidated. */
2519 var->root->is_valid = false;
2520 }
2521
2522 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2523 are defined on globals.
2524 Invalidated varobjs will be always printed in_scope="invalid". */
2525
2526 void
2527 varobj_invalidate (void)
2528 {
2529 all_root_varobjs (varobj_invalidate_iter, NULL);
2530 }
2531
2532 void
2533 _initialize_varobj (void)
2534 {
2535 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2536
2537 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2538 &varobjdebug,
2539 _("Set varobj debugging."),
2540 _("Show varobj debugging."),
2541 _("When non-zero, varobj debugging is enabled."),
2542 NULL, show_varobjdebug,
2543 &setdebuglist, &showdebuglist);
2544 }
This page took 0.093035 seconds and 5 git commands to generate.