Rewrite TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "common/vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static bool pretty_printing = false;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = true;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. */
69 struct varobj_root
70 {
71 /* The expression for this parent. */
72 expression_up exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block = NULL;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame = null_frame_id;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id = 0;
87
88 /* If true, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 bool floating = false;
92
93 /* Flag that indicates validity: set to false when this varobj_root refers
94 to symbols that do not exist anymore. */
95 bool is_valid = true;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops = NULL;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar = NULL;
103
104 /* Next root variable */
105 struct varobj_root *next = NULL;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 bool children_requested = false;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor = NULL;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer = NULL;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter = NULL;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item = NULL;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, bool);
152
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
154
155 static bool install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168
169 static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
172 static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
174
175 /* Language-specific routines. */
176
177 static int number_of_children (const struct varobj *);
178
179 static std::string name_of_variable (const struct varobj *);
180
181 static std::string name_of_child (struct varobj *, int);
182
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
184
185 static struct value *value_of_child (const struct varobj *parent, int index);
186
187 static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
189
190 static bool is_root_p (const struct varobj *var);
191
192 static struct varobj *varobj_add_child (struct varobj *var,
193 struct varobj_item *item);
194
195 /* Private data */
196
197 /* Mappings of varobj_display_formats enums to gdb's format codes. */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199
200 /* Header of the list of root variable objects. */
201 static struct varobj_root *rootlist;
202
203 /* Prime number indicating the number of buckets in the hash table. */
204 /* A prime large enough to avoid too many collisions. */
205 #define VAROBJ_TABLE_SIZE 227
206
207 /* Pointer to the varobj hash table (built at run time). */
208 static struct vlist **varobj_table;
209
210 \f
211
212 /* API Implementation */
213 static bool
214 is_root_p (const struct varobj *var)
215 {
216 return (var->root->rootvar == var);
217 }
218
219 #ifdef HAVE_PYTHON
220
221 /* See python-internal.h. */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224 {
225 }
226
227 #endif
228
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234 {
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
243 {
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
250
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
255 return frame;
256 }
257
258 return NULL;
259 }
260
261 /* Creates a varobj (not its children). */
262
263 struct varobj *
264 varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
266 {
267 /* Fill out a varobj structure for the (root) variable being constructed. */
268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
269
270 if (expression != NULL)
271 {
272 struct frame_info *fi;
273 struct frame_id old_id = null_frame_id;
274 const struct block *block;
275 const char *p;
276 struct value *value = NULL;
277 CORE_ADDR pc;
278
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
284 /* Allow creator to specify context of variable. */
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
297 else
298 fi = NULL;
299
300 if (type == USE_SELECTED_FRAME)
301 var->root->floating = true;
302
303 pc = 0;
304 block = NULL;
305 if (fi != NULL)
306 {
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
309 }
310
311 p = expression;
312
313 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
317 try
318 {
319 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
320 }
321
322 catch (const gdb_exception_RETURN_MASK_ERROR &except)
323 {
324 return NULL;
325 }
326
327 /* Don't allow variables to be created for types. */
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
331 {
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
334 return NULL;
335 }
336
337 var->format = variable_default_display (var.get ());
338 var->root->valid_block =
339 var->root->floating ? NULL : tracker.block ();
340 var->name = expression;
341 /* For a root var, the name and the expr are the same. */
342 var->path_expr = expression;
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
347 Since select_frame is so benign, just call it for all cases. */
348 if (var->root->valid_block)
349 {
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
357 var->root->frame = get_frame_id (fi);
358 var->root->thread_id = inferior_thread ()->global_num;
359 old_id = get_frame_id (get_selected_frame (NULL));
360 select_frame (fi);
361 }
362
363 /* We definitely need to catch errors here.
364 If evaluate_expression succeeds we got the value we wanted.
365 But if it fails, we still go on with a call to evaluate_type(). */
366 try
367 {
368 value = evaluate_expression (var->root->exp.get ());
369 }
370 catch (const gdb_exception_RETURN_MASK_ERROR &except)
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
375
376 var->type = value_type (type_only_value);
377 }
378
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
387
388 /* Set language info */
389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
390
391 install_new_value (var.get (), value, 1 /* Initial assignment */);
392
393 /* Set ourselves as our root. */
394 var->root->rootvar = var.get ();
395
396 /* Reset the selected frame. */
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
399 }
400
401 /* If the variable object name is null, that means this
402 is a temporary variable, so don't install it. */
403
404 if ((var != NULL) && (objname != NULL))
405 {
406 var->obj_name = objname;
407
408 /* If a varobj name is duplicated, the install will fail so
409 we must cleanup. */
410 if (!install_variable (var.get ()))
411 return NULL;
412 }
413
414 return var.release ();
415 }
416
417 /* Generates an unique name that can be used for a varobj. */
418
419 std::string
420 varobj_gen_name (void)
421 {
422 static int id = 0;
423
424 /* Generate a name for this object. */
425 id++;
426 return string_printf ("var%d", id);
427 }
428
429 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
431
432 struct varobj *
433 varobj_get_handle (const char *objname)
434 {
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
446 while (cv != NULL && cv->var->obj_name != objname)
447 cv = cv->next;
448
449 if (cv == NULL)
450 error (_("Variable object not found"));
451
452 return cv->var;
453 }
454
455 /* Given the handle, return the name of the object. */
456
457 const char *
458 varobj_get_objname (const struct varobj *var)
459 {
460 return var->obj_name.c_str ();
461 }
462
463 /* Given the handle, return the expression represented by the
464 object. */
465
466 std::string
467 varobj_get_expression (const struct varobj *var)
468 {
469 return name_of_variable (var);
470 }
471
472 /* See varobj.h. */
473
474 int
475 varobj_delete (struct varobj *var, bool only_children)
476 {
477 return delete_variable (var, only_children);
478 }
479
480 #if HAVE_PYTHON
481
482 /* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484 static PyObject *
485 instantiate_pretty_printer (PyObject *constructor, struct value *value)
486 {
487 PyObject *val_obj = NULL;
488 PyObject *printer;
489
490 val_obj = value_to_value_object (value);
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
497 }
498
499 #endif
500
501 /* Set/Get variable object display format. */
502
503 enum varobj_display_formats
504 varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506 {
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
514 case FORMAT_ZHEXADECIMAL:
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
522 if (varobj_value_is_changeable_p (var)
523 && var->value != nullptr && !value_lazy (var->value.get ()))
524 {
525 var->print_value = varobj_value_get_print_value (var->value.get (),
526 var->format, var);
527 }
528
529 return var->format;
530 }
531
532 enum varobj_display_formats
533 varobj_get_display_format (const struct varobj *var)
534 {
535 return var->format;
536 }
537
538 gdb::unique_xmalloc_ptr<char>
539 varobj_get_display_hint (const struct varobj *var)
540 {
541 gdb::unique_xmalloc_ptr<char> result;
542
543 #if HAVE_PYTHON
544 if (!gdb_python_initialized)
545 return NULL;
546
547 gdbpy_enter_varobj enter_py (var);
548
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
551 #endif
552
553 return result;
554 }
555
556 /* Return true if the varobj has items after TO, false otherwise. */
557
558 bool
559 varobj_has_more (const struct varobj *var, int to)
560 {
561 if (var->children.size () > to)
562 return true;
563
564 return ((to == -1 || var->children.size () == to)
565 && (var->dynamic->saved_item != NULL));
566 }
567
568 /* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
571 is always positive. Otherwise, returns -1. */
572 int
573 varobj_get_thread_id (const struct varobj *var)
574 {
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579 }
580
581 void
582 varobj_set_frozen (struct varobj *var, bool frozen)
583 {
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592 }
593
594 bool
595 varobj_get_frozen (const struct varobj *var)
596 {
597 return var->frozen;
598 }
599
600 /* A helper function that restricts a range to what is actually
601 available in a VEC. This follows the usual rules for the meaning
602 of FROM and TO -- if either is negative, the entire range is
603 used. */
604
605 void
606 varobj_restrict_range (const std::vector<varobj *> &children,
607 int *from, int *to)
608 {
609 int len = children.size ();
610
611 if (*from < 0 || *to < 0)
612 {
613 *from = 0;
614 *to = len;
615 }
616 else
617 {
618 if (*from > len)
619 *from = len;
620 if (*to > len)
621 *to = len;
622 if (*from > *to)
623 *from = *to;
624 }
625 }
626
627 /* A helper for update_dynamic_varobj_children that installs a new
628 child when needed. */
629
630 static void
631 install_dynamic_child (struct varobj *var,
632 std::vector<varobj *> *changed,
633 std::vector<varobj *> *type_changed,
634 std::vector<varobj *> *newobj,
635 std::vector<varobj *> *unchanged,
636 bool *cchanged,
637 int index,
638 struct varobj_item *item)
639 {
640 if (var->children.size () < index + 1)
641 {
642 /* There's no child yet. */
643 struct varobj *child = varobj_add_child (var, item);
644
645 if (newobj != NULL)
646 {
647 newobj->push_back (child);
648 *cchanged = true;
649 }
650 }
651 else
652 {
653 varobj *existing = var->children[index];
654 bool type_updated = update_type_if_necessary (existing, item->value);
655
656 if (type_updated)
657 {
658 if (type_changed != NULL)
659 type_changed->push_back (existing);
660 }
661 if (install_new_value (existing, item->value, 0))
662 {
663 if (!type_updated && changed != NULL)
664 changed->push_back (existing);
665 }
666 else if (!type_updated && unchanged != NULL)
667 unchanged->push_back (existing);
668 }
669 }
670
671 #if HAVE_PYTHON
672
673 static bool
674 dynamic_varobj_has_child_method (const struct varobj *var)
675 {
676 PyObject *printer = var->dynamic->pretty_printer;
677
678 if (!gdb_python_initialized)
679 return false;
680
681 gdbpy_enter_varobj enter_py (var);
682 return PyObject_HasAttr (printer, gdbpy_children_cst);
683 }
684 #endif
685
686 /* A factory for creating dynamic varobj's iterators. Returns an
687 iterator object suitable for iterating over VAR's children. */
688
689 static struct varobj_iter *
690 varobj_get_iterator (struct varobj *var)
691 {
692 #if HAVE_PYTHON
693 if (var->dynamic->pretty_printer)
694 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
695 #endif
696
697 gdb_assert_not_reached (_("\
698 requested an iterator from a non-dynamic varobj"));
699 }
700
701 /* Release and clear VAR's saved item, if any. */
702
703 static void
704 varobj_clear_saved_item (struct varobj_dynamic *var)
705 {
706 if (var->saved_item != NULL)
707 {
708 value_decref (var->saved_item->value);
709 delete var->saved_item;
710 var->saved_item = NULL;
711 }
712 }
713
714 static bool
715 update_dynamic_varobj_children (struct varobj *var,
716 std::vector<varobj *> *changed,
717 std::vector<varobj *> *type_changed,
718 std::vector<varobj *> *newobj,
719 std::vector<varobj *> *unchanged,
720 bool *cchanged,
721 bool update_children,
722 int from,
723 int to)
724 {
725 int i;
726
727 *cchanged = false;
728
729 if (update_children || var->dynamic->child_iter == NULL)
730 {
731 varobj_iter_delete (var->dynamic->child_iter);
732 var->dynamic->child_iter = varobj_get_iterator (var);
733
734 varobj_clear_saved_item (var->dynamic);
735
736 i = 0;
737
738 if (var->dynamic->child_iter == NULL)
739 return false;
740 }
741 else
742 i = var->children.size ();
743
744 /* We ask for one extra child, so that MI can report whether there
745 are more children. */
746 for (; to < 0 || i < to + 1; ++i)
747 {
748 varobj_item *item;
749
750 /* See if there was a leftover from last time. */
751 if (var->dynamic->saved_item != NULL)
752 {
753 item = var->dynamic->saved_item;
754 var->dynamic->saved_item = NULL;
755 }
756 else
757 {
758 item = varobj_iter_next (var->dynamic->child_iter);
759 /* Release vitem->value so its lifetime is not bound to the
760 execution of a command. */
761 if (item != NULL && item->value != NULL)
762 item->value = release_value (item->value).release ();
763 }
764
765 if (item == NULL)
766 {
767 /* Iteration is done. Remove iterator from VAR. */
768 varobj_iter_delete (var->dynamic->child_iter);
769 var->dynamic->child_iter = NULL;
770 break;
771 }
772 /* We don't want to push the extra child on any report list. */
773 if (to < 0 || i < to)
774 {
775 bool can_mention = from < 0 || i >= from;
776
777 install_dynamic_child (var, can_mention ? changed : NULL,
778 can_mention ? type_changed : NULL,
779 can_mention ? newobj : NULL,
780 can_mention ? unchanged : NULL,
781 can_mention ? cchanged : NULL, i,
782 item);
783
784 delete item;
785 }
786 else
787 {
788 var->dynamic->saved_item = item;
789
790 /* We want to truncate the child list just before this
791 element. */
792 break;
793 }
794 }
795
796 if (i < var->children.size ())
797 {
798 *cchanged = true;
799 for (int j = i; j < var->children.size (); ++j)
800 varobj_delete (var->children[j], 0);
801
802 var->children.resize (i);
803 }
804
805 /* If there are fewer children than requested, note that the list of
806 children changed. */
807 if (to >= 0 && var->children.size () < to)
808 *cchanged = true;
809
810 var->num_children = var->children.size ();
811
812 return true;
813 }
814
815 int
816 varobj_get_num_children (struct varobj *var)
817 {
818 if (var->num_children == -1)
819 {
820 if (varobj_is_dynamic_p (var))
821 {
822 bool dummy;
823
824 /* If we have a dynamic varobj, don't report -1 children.
825 So, try to fetch some children first. */
826 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
827 false, 0, 0);
828 }
829 else
830 var->num_children = number_of_children (var);
831 }
832
833 return var->num_children >= 0 ? var->num_children : 0;
834 }
835
836 /* Creates a list of the immediate children of a variable object;
837 the return code is the number of such children or -1 on error. */
838
839 const std::vector<varobj *> &
840 varobj_list_children (struct varobj *var, int *from, int *to)
841 {
842 var->dynamic->children_requested = true;
843
844 if (varobj_is_dynamic_p (var))
845 {
846 bool children_changed;
847
848 /* This, in theory, can result in the number of children changing without
849 frontend noticing. But well, calling -var-list-children on the same
850 varobj twice is not something a sane frontend would do. */
851 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
852 &children_changed, false, 0, *to);
853 varobj_restrict_range (var->children, from, to);
854 return var->children;
855 }
856
857 if (var->num_children == -1)
858 var->num_children = number_of_children (var);
859
860 /* If that failed, give up. */
861 if (var->num_children == -1)
862 return var->children;
863
864 /* If we're called when the list of children is not yet initialized,
865 allocate enough elements in it. */
866 while (var->children.size () < var->num_children)
867 var->children.push_back (NULL);
868
869 for (int i = 0; i < var->num_children; i++)
870 {
871 if (var->children[i] == NULL)
872 {
873 /* Either it's the first call to varobj_list_children for
874 this variable object, and the child was never created,
875 or it was explicitly deleted by the client. */
876 std::string name = name_of_child (var, i);
877 var->children[i] = create_child (var, i, name);
878 }
879 }
880
881 varobj_restrict_range (var->children, from, to);
882 return var->children;
883 }
884
885 static struct varobj *
886 varobj_add_child (struct varobj *var, struct varobj_item *item)
887 {
888 varobj *v = create_child_with_value (var, var->children.size (), item);
889
890 var->children.push_back (v);
891
892 return v;
893 }
894
895 /* Obtain the type of an object Variable as a string similar to the one gdb
896 prints on the console. The caller is responsible for freeing the string.
897 */
898
899 std::string
900 varobj_get_type (struct varobj *var)
901 {
902 /* For the "fake" variables, do not return a type. (Its type is
903 NULL, too.)
904 Do not return a type for invalid variables as well. */
905 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
906 return std::string ();
907
908 return type_to_string (var->type);
909 }
910
911 /* Obtain the type of an object variable. */
912
913 struct type *
914 varobj_get_gdb_type (const struct varobj *var)
915 {
916 return var->type;
917 }
918
919 /* Is VAR a path expression parent, i.e., can it be used to construct
920 a valid path expression? */
921
922 static bool
923 is_path_expr_parent (const struct varobj *var)
924 {
925 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
926 return var->root->lang_ops->is_path_expr_parent (var);
927 }
928
929 /* Is VAR a path expression parent, i.e., can it be used to construct
930 a valid path expression? By default we assume any VAR can be a path
931 parent. */
932
933 bool
934 varobj_default_is_path_expr_parent (const struct varobj *var)
935 {
936 return true;
937 }
938
939 /* Return the path expression parent for VAR. */
940
941 const struct varobj *
942 varobj_get_path_expr_parent (const struct varobj *var)
943 {
944 const struct varobj *parent = var;
945
946 while (!is_root_p (parent) && !is_path_expr_parent (parent))
947 parent = parent->parent;
948
949 /* Computation of full rooted expression for children of dynamic
950 varobjs is not supported. */
951 if (varobj_is_dynamic_p (parent))
952 error (_("Invalid variable object (child of a dynamic varobj)"));
953
954 return parent;
955 }
956
957 /* Return a pointer to the full rooted expression of varobj VAR.
958 If it has not been computed yet, compute it. */
959
960 const char *
961 varobj_get_path_expr (const struct varobj *var)
962 {
963 if (var->path_expr.empty ())
964 {
965 /* For root varobjs, we initialize path_expr
966 when creating varobj, so here it should be
967 child varobj. */
968 struct varobj *mutable_var = (struct varobj *) var;
969 gdb_assert (!is_root_p (var));
970
971 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
972 }
973
974 return var->path_expr.c_str ();
975 }
976
977 const struct language_defn *
978 varobj_get_language (const struct varobj *var)
979 {
980 return var->root->exp->language_defn;
981 }
982
983 int
984 varobj_get_attributes (const struct varobj *var)
985 {
986 int attributes = 0;
987
988 if (varobj_editable_p (var))
989 /* FIXME: define masks for attributes. */
990 attributes |= 0x00000001; /* Editable */
991
992 return attributes;
993 }
994
995 /* Return true if VAR is a dynamic varobj. */
996
997 bool
998 varobj_is_dynamic_p (const struct varobj *var)
999 {
1000 return var->dynamic->pretty_printer != NULL;
1001 }
1002
1003 std::string
1004 varobj_get_formatted_value (struct varobj *var,
1005 enum varobj_display_formats format)
1006 {
1007 return my_value_of_variable (var, format);
1008 }
1009
1010 std::string
1011 varobj_get_value (struct varobj *var)
1012 {
1013 return my_value_of_variable (var, var->format);
1014 }
1015
1016 /* Set the value of an object variable (if it is editable) to the
1017 value of the given expression. */
1018 /* Note: Invokes functions that can call error(). */
1019
1020 bool
1021 varobj_set_value (struct varobj *var, const char *expression)
1022 {
1023 struct value *val = NULL; /* Initialize to keep gcc happy. */
1024 /* The argument "expression" contains the variable's new value.
1025 We need to first construct a legal expression for this -- ugh! */
1026 /* Does this cover all the bases? */
1027 struct value *value = NULL; /* Initialize to keep gcc happy. */
1028 int saved_input_radix = input_radix;
1029 const char *s = expression;
1030
1031 gdb_assert (varobj_editable_p (var));
1032
1033 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1034 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1035 try
1036 {
1037 value = evaluate_expression (exp.get ());
1038 }
1039
1040 catch (const gdb_exception_RETURN_MASK_ERROR &except)
1041 {
1042 /* We cannot proceed without a valid expression. */
1043 return false;
1044 }
1045
1046 /* All types that are editable must also be changeable. */
1047 gdb_assert (varobj_value_is_changeable_p (var));
1048
1049 /* The value of a changeable variable object must not be lazy. */
1050 gdb_assert (!value_lazy (var->value.get ()));
1051
1052 /* Need to coerce the input. We want to check if the
1053 value of the variable object will be different
1054 after assignment, and the first thing value_assign
1055 does is coerce the input.
1056 For example, if we are assigning an array to a pointer variable we
1057 should compare the pointer with the array's address, not with the
1058 array's content. */
1059 value = coerce_array (value);
1060
1061 /* The new value may be lazy. value_assign, or
1062 rather value_contents, will take care of this. */
1063 try
1064 {
1065 val = value_assign (var->value.get (), value);
1066 }
1067
1068 catch (const gdb_exception_RETURN_MASK_ERROR &except)
1069 {
1070 return false;
1071 }
1072
1073 /* If the value has changed, record it, so that next -var-update can
1074 report this change. If a variable had a value of '1', we've set it
1075 to '333' and then set again to '1', when -var-update will report this
1076 variable as changed -- because the first assignment has set the
1077 'updated' flag. There's no need to optimize that, because return value
1078 of -var-update should be considered an approximation. */
1079 var->updated = install_new_value (var, val, false /* Compare values. */);
1080 input_radix = saved_input_radix;
1081 return true;
1082 }
1083
1084 #if HAVE_PYTHON
1085
1086 /* A helper function to install a constructor function and visualizer
1087 in a varobj_dynamic. */
1088
1089 static void
1090 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1091 PyObject *visualizer)
1092 {
1093 Py_XDECREF (var->constructor);
1094 var->constructor = constructor;
1095
1096 Py_XDECREF (var->pretty_printer);
1097 var->pretty_printer = visualizer;
1098
1099 varobj_iter_delete (var->child_iter);
1100 var->child_iter = NULL;
1101 }
1102
1103 /* Install the default visualizer for VAR. */
1104
1105 static void
1106 install_default_visualizer (struct varobj *var)
1107 {
1108 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1109 if (CPLUS_FAKE_CHILD (var))
1110 return;
1111
1112 if (pretty_printing)
1113 {
1114 gdbpy_ref<> pretty_printer;
1115
1116 if (var->value != nullptr)
1117 {
1118 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1119 if (pretty_printer == nullptr)
1120 {
1121 gdbpy_print_stack ();
1122 error (_("Cannot instantiate printer for default visualizer"));
1123 }
1124 }
1125
1126 if (pretty_printer == Py_None)
1127 pretty_printer.reset (nullptr);
1128
1129 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1130 }
1131 }
1132
1133 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1134 make a new object. */
1135
1136 static void
1137 construct_visualizer (struct varobj *var, PyObject *constructor)
1138 {
1139 PyObject *pretty_printer;
1140
1141 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1142 if (CPLUS_FAKE_CHILD (var))
1143 return;
1144
1145 Py_INCREF (constructor);
1146 if (constructor == Py_None)
1147 pretty_printer = NULL;
1148 else
1149 {
1150 pretty_printer = instantiate_pretty_printer (constructor,
1151 var->value.get ());
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
1167 install_visualizer (var->dynamic, constructor, pretty_printer);
1168 }
1169
1170 #endif /* HAVE_PYTHON */
1171
1172 /* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175 static void
1176 install_new_value_visualizer (struct varobj *var)
1177 {
1178 #if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
1181 if (!gdb_python_initialized)
1182 return;
1183
1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
1185 {
1186 gdbpy_enter_varobj enter_py (var);
1187
1188 if (var->dynamic->constructor == NULL)
1189 install_default_visualizer (var);
1190 else
1191 construct_visualizer (var, var->dynamic->constructor);
1192 }
1193 #else
1194 /* Do nothing. */
1195 #endif
1196 }
1197
1198 /* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
1203 static bool
1204 update_type_if_necessary (struct varobj *var, struct value *new_value)
1205 {
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
1216
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
1223 varobj_delete (var, 1);
1224 var->children.clear ();
1225 var->num_children = -1;
1226 return true;
1227 }
1228 }
1229 }
1230
1231 return false;
1232 }
1233
1234 /* Assign a new value to a variable object. If INITIAL is true,
1235 this is the first assignment after the variable object was just
1236 created, or changed type. In that case, just assign the value
1237 and return false.
1238 Otherwise, assign the new value, and return true if the value is
1239 different from the current one, false otherwise. The comparison is
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
1243 value was NULL and new one is not, or vice versa, we always return true.
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
1247 static bool
1248 install_new_value (struct varobj *var, struct value *value, bool initial)
1249 {
1250 bool changeable;
1251 bool need_to_fetch;
1252 bool changed = false;
1253 bool intentionally_not_fetched = false;
1254
1255 /* We need to know the varobj's type to decide if the value should
1256 be fetched or not. C++ fake children (public/protected/private)
1257 don't have a type. */
1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1259 changeable = varobj_value_is_changeable_p (var);
1260
1261 /* If the type has custom visualizer, we consider it to be always
1262 changeable. FIXME: need to make sure this behaviour will not
1263 mess up read-sensitive values. */
1264 if (var->dynamic->pretty_printer != NULL)
1265 changeable = true;
1266
1267 need_to_fetch = changeable;
1268
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
1273 value = coerce_ref (value);
1274
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
1285 need_to_fetch = true;
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
1293 const struct varobj *parent = var->parent;
1294 bool frozen = var->frozen;
1295
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
1305 intentionally_not_fetched = true;
1306 }
1307 else
1308 {
1309
1310 try
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
1315 catch (const gdb_exception_RETURN_MASK_ERROR &except)
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
1322 }
1323 }
1324
1325 /* Get a reference now, before possibly passing it to any Python
1326 code that might release it. */
1327 value_ref_ptr value_holder;
1328 if (value != NULL)
1329 value_holder = value_ref_ptr::new_reference (value);
1330
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
1335 std::string print_value;
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
1338 print_value = varobj_value_get_print_value (value, var->format, var);
1339
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
1343 if (!initial && changeable)
1344 {
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
1348 varobj had after the previous -var-update. So need to the
1349 varobj as changed. */
1350 if (var->updated)
1351 changed = true;
1352 else if (var->dynamic->pretty_printer == NULL)
1353 {
1354 /* Try to compare the values. That requires that both
1355 values are non-lazy. */
1356 if (var->not_fetched && value_lazy (var->value.get ()))
1357 {
1358 /* This is a frozen varobj and the value was never read.
1359 Presumably, UI shows some "never read" indicator.
1360 Now that we've fetched the real value, we need to report
1361 this varobj as changed so that UI can show the real
1362 value. */
1363 changed = true;
1364 }
1365 else if (var->value == NULL && value == NULL)
1366 /* Equal. */
1367 ;
1368 else if (var->value == NULL || value == NULL)
1369 {
1370 changed = true;
1371 }
1372 else
1373 {
1374 gdb_assert (!value_lazy (var->value.get ()));
1375 gdb_assert (!value_lazy (value));
1376
1377 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1378 if (var->print_value != print_value)
1379 changed = true;
1380 }
1381 }
1382 }
1383
1384 if (!initial && !changeable)
1385 {
1386 /* For values that are not changeable, we don't compare the values.
1387 However, we want to notice if a value was not NULL and now is NULL,
1388 or vise versa, so that we report when top-level varobjs come in scope
1389 and leave the scope. */
1390 changed = (var->value != NULL) != (value != NULL);
1391 }
1392
1393 /* We must always keep the new value, since children depend on it. */
1394 var->value = value_holder;
1395 if (value && value_lazy (value) && intentionally_not_fetched)
1396 var->not_fetched = true;
1397 else
1398 var->not_fetched = false;
1399 var->updated = false;
1400
1401 install_new_value_visualizer (var);
1402
1403 /* If we installed a pretty-printer, re-compare the printed version
1404 to see if the variable changed. */
1405 if (var->dynamic->pretty_printer != NULL)
1406 {
1407 print_value = varobj_value_get_print_value (var->value.get (),
1408 var->format, var);
1409 if ((var->print_value.empty () && !print_value.empty ())
1410 || (!var->print_value.empty () && print_value.empty ())
1411 || (!var->print_value.empty () && !print_value.empty ()
1412 && var->print_value != print_value))
1413 changed = true;
1414 }
1415 var->print_value = print_value;
1416
1417 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1418
1419 return changed;
1420 }
1421
1422 /* Return the requested range for a varobj. VAR is the varobj. FROM
1423 and TO are out parameters; *FROM and *TO will be set to the
1424 selected sub-range of VAR. If no range was selected using
1425 -var-set-update-range, then both will be -1. */
1426 void
1427 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1428 {
1429 *from = var->from;
1430 *to = var->to;
1431 }
1432
1433 /* Set the selected sub-range of children of VAR to start at index
1434 FROM and end at index TO. If either FROM or TO is less than zero,
1435 this is interpreted as a request for all children. */
1436 void
1437 varobj_set_child_range (struct varobj *var, int from, int to)
1438 {
1439 var->from = from;
1440 var->to = to;
1441 }
1442
1443 void
1444 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1445 {
1446 #if HAVE_PYTHON
1447 PyObject *mainmod;
1448
1449 if (!gdb_python_initialized)
1450 return;
1451
1452 gdbpy_enter_varobj enter_py (var);
1453
1454 mainmod = PyImport_AddModule ("__main__");
1455 gdbpy_ref<> globals
1456 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1457 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1458 globals.get (), globals.get ()));
1459
1460 if (constructor == NULL)
1461 {
1462 gdbpy_print_stack ();
1463 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1464 }
1465
1466 construct_visualizer (var, constructor.get ());
1467
1468 /* If there are any children now, wipe them. */
1469 varobj_delete (var, 1 /* children only */);
1470 var->num_children = -1;
1471 #else
1472 error (_("Python support required"));
1473 #endif
1474 }
1475
1476 /* If NEW_VALUE is the new value of the given varobj (var), return
1477 true if var has mutated. In other words, if the type of
1478 the new value is different from the type of the varobj's old
1479 value.
1480
1481 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1482
1483 static bool
1484 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1485 struct type *new_type)
1486 {
1487 /* If we haven't previously computed the number of children in var,
1488 it does not matter from the front-end's perspective whether
1489 the type has mutated or not. For all intents and purposes,
1490 it has not mutated. */
1491 if (var->num_children < 0)
1492 return false;
1493
1494 if (var->root->lang_ops->value_has_mutated != NULL)
1495 {
1496 /* The varobj module, when installing new values, explicitly strips
1497 references, saying that we're not interested in those addresses.
1498 But detection of mutation happens before installing the new
1499 value, so our value may be a reference that we need to strip
1500 in order to remain consistent. */
1501 if (new_value != NULL)
1502 new_value = coerce_ref (new_value);
1503 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1504 }
1505 else
1506 return false;
1507 }
1508
1509 /* Update the values for a variable and its children. This is a
1510 two-pronged attack. First, re-parse the value for the root's
1511 expression to see if it's changed. Then go all the way
1512 through its children, reconstructing them and noting if they've
1513 changed.
1514
1515 The IS_EXPLICIT parameter specifies if this call is result
1516 of MI request to update this specific variable, or
1517 result of implicit -var-update *. For implicit request, we don't
1518 update frozen variables.
1519
1520 NOTE: This function may delete the caller's varobj. If it
1521 returns TYPE_CHANGED, then it has done this and VARP will be modified
1522 to point to the new varobj. */
1523
1524 std::vector<varobj_update_result>
1525 varobj_update (struct varobj **varp, bool is_explicit)
1526 {
1527 bool type_changed = false;
1528 struct value *newobj;
1529 std::vector<varobj_update_result> stack;
1530 std::vector<varobj_update_result> result;
1531
1532 /* Frozen means frozen -- we don't check for any change in
1533 this varobj, including its going out of scope, or
1534 changing type. One use case for frozen varobjs is
1535 retaining previously evaluated expressions, and we don't
1536 want them to be reevaluated at all. */
1537 if (!is_explicit && (*varp)->frozen)
1538 return result;
1539
1540 if (!(*varp)->root->is_valid)
1541 {
1542 result.emplace_back (*varp, VAROBJ_INVALID);
1543 return result;
1544 }
1545
1546 if ((*varp)->root->rootvar == *varp)
1547 {
1548 varobj_update_result r (*varp);
1549
1550 /* Update the root variable. value_of_root can return NULL
1551 if the variable is no longer around, i.e. we stepped out of
1552 the frame in which a local existed. We are letting the
1553 value_of_root variable dispose of the varobj if the type
1554 has changed. */
1555 newobj = value_of_root (varp, &type_changed);
1556 if (update_type_if_necessary (*varp, newobj))
1557 type_changed = true;
1558 r.varobj = *varp;
1559 r.type_changed = type_changed;
1560 if (install_new_value ((*varp), newobj, type_changed))
1561 r.changed = true;
1562
1563 if (newobj == NULL)
1564 r.status = VAROBJ_NOT_IN_SCOPE;
1565 r.value_installed = true;
1566
1567 if (r.status == VAROBJ_NOT_IN_SCOPE)
1568 {
1569 if (r.type_changed || r.changed)
1570 result.push_back (std::move (r));
1571
1572 return result;
1573 }
1574
1575 stack.push_back (std::move (r));
1576 }
1577 else
1578 stack.emplace_back (*varp);
1579
1580 /* Walk through the children, reconstructing them all. */
1581 while (!stack.empty ())
1582 {
1583 varobj_update_result r = std::move (stack.back ());
1584 stack.pop_back ();
1585 struct varobj *v = r.varobj;
1586
1587 /* Update this variable, unless it's a root, which is already
1588 updated. */
1589 if (!r.value_installed)
1590 {
1591 struct type *new_type;
1592
1593 newobj = value_of_child (v->parent, v->index);
1594 if (update_type_if_necessary (v, newobj))
1595 r.type_changed = true;
1596 if (newobj)
1597 new_type = value_type (newobj);
1598 else
1599 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1600
1601 if (varobj_value_has_mutated (v, newobj, new_type))
1602 {
1603 /* The children are no longer valid; delete them now.
1604 Report the fact that its type changed as well. */
1605 varobj_delete (v, 1 /* only_children */);
1606 v->num_children = -1;
1607 v->to = -1;
1608 v->from = -1;
1609 v->type = new_type;
1610 r.type_changed = true;
1611 }
1612
1613 if (install_new_value (v, newobj, r.type_changed))
1614 {
1615 r.changed = true;
1616 v->updated = false;
1617 }
1618 }
1619
1620 /* We probably should not get children of a dynamic varobj, but
1621 for which -var-list-children was never invoked. */
1622 if (varobj_is_dynamic_p (v))
1623 {
1624 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1625 bool children_changed = false;
1626
1627 if (v->frozen)
1628 continue;
1629
1630 if (!v->dynamic->children_requested)
1631 {
1632 bool dummy;
1633
1634 /* If we initially did not have potential children, but
1635 now we do, consider the varobj as changed.
1636 Otherwise, if children were never requested, consider
1637 it as unchanged -- presumably, such varobj is not yet
1638 expanded in the UI, so we need not bother getting
1639 it. */
1640 if (!varobj_has_more (v, 0))
1641 {
1642 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1643 &dummy, false, 0, 0);
1644 if (varobj_has_more (v, 0))
1645 r.changed = true;
1646 }
1647
1648 if (r.changed)
1649 result.push_back (std::move (r));
1650
1651 continue;
1652 }
1653
1654 /* If update_dynamic_varobj_children returns false, then we have
1655 a non-conforming pretty-printer, so we skip it. */
1656 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1657 &newobj_vec,
1658 &unchanged, &children_changed,
1659 true, v->from, v->to))
1660 {
1661 if (children_changed || !newobj_vec.empty ())
1662 {
1663 r.children_changed = true;
1664 r.newobj = std::move (newobj_vec);
1665 }
1666 /* Push in reverse order so that the first child is
1667 popped from the work stack first, and so will be
1668 added to result first. This does not affect
1669 correctness, just "nicer". */
1670 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1671 {
1672 varobj_update_result item (type_changed_vec[i]);
1673
1674 /* Type may change only if value was changed. */
1675 item.changed = true;
1676 item.type_changed = true;
1677 item.value_installed = true;
1678
1679 stack.push_back (std::move (item));
1680 }
1681 for (int i = changed.size () - 1; i >= 0; --i)
1682 {
1683 varobj_update_result item (changed[i]);
1684
1685 item.changed = true;
1686 item.value_installed = true;
1687
1688 stack.push_back (std::move (item));
1689 }
1690 for (int i = unchanged.size () - 1; i >= 0; --i)
1691 {
1692 if (!unchanged[i]->frozen)
1693 {
1694 varobj_update_result item (unchanged[i]);
1695
1696 item.value_installed = true;
1697
1698 stack.push_back (std::move (item));
1699 }
1700 }
1701 if (r.changed || r.children_changed)
1702 result.push_back (std::move (r));
1703
1704 continue;
1705 }
1706 }
1707
1708 /* Push any children. Use reverse order so that the first
1709 child is popped from the work stack first, and so
1710 will be added to result first. This does not
1711 affect correctness, just "nicer". */
1712 for (int i = v->children.size () - 1; i >= 0; --i)
1713 {
1714 varobj *c = v->children[i];
1715
1716 /* Child may be NULL if explicitly deleted by -var-delete. */
1717 if (c != NULL && !c->frozen)
1718 stack.emplace_back (c);
1719 }
1720
1721 if (r.changed || r.type_changed)
1722 result.push_back (std::move (r));
1723 }
1724
1725 return result;
1726 }
1727
1728 /* Helper functions */
1729
1730 /*
1731 * Variable object construction/destruction
1732 */
1733
1734 static int
1735 delete_variable (struct varobj *var, bool only_children_p)
1736 {
1737 int delcount = 0;
1738
1739 delete_variable_1 (&delcount, var, only_children_p,
1740 true /* remove_from_parent_p */ );
1741
1742 return delcount;
1743 }
1744
1745 /* Delete the variable object VAR and its children. */
1746 /* IMPORTANT NOTE: If we delete a variable which is a child
1747 and the parent is not removed we dump core. It must be always
1748 initially called with remove_from_parent_p set. */
1749 static void
1750 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1751 bool remove_from_parent_p)
1752 {
1753 /* Delete any children of this variable, too. */
1754 for (varobj *child : var->children)
1755 {
1756 if (!child)
1757 continue;
1758
1759 if (!remove_from_parent_p)
1760 child->parent = NULL;
1761
1762 delete_variable_1 (delcountp, child, false, only_children_p);
1763 }
1764 var->children.clear ();
1765
1766 /* if we were called to delete only the children we are done here. */
1767 if (only_children_p)
1768 return;
1769
1770 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1771 /* If the name is empty, this is a temporary variable, that has not
1772 yet been installed, don't report it, it belongs to the caller... */
1773 if (!var->obj_name.empty ())
1774 {
1775 *delcountp = *delcountp + 1;
1776 }
1777
1778 /* If this variable has a parent, remove it from its parent's list. */
1779 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1780 (as indicated by remove_from_parent_p) we don't bother doing an
1781 expensive list search to find the element to remove when we are
1782 discarding the list afterwards. */
1783 if ((remove_from_parent_p) && (var->parent != NULL))
1784 var->parent->children[var->index] = NULL;
1785
1786 if (!var->obj_name.empty ())
1787 uninstall_variable (var);
1788
1789 /* Free memory associated with this variable. */
1790 delete var;
1791 }
1792
1793 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1794 static bool
1795 install_variable (struct varobj *var)
1796 {
1797 struct vlist *cv;
1798 struct vlist *newvl;
1799 const char *chp;
1800 unsigned int index = 0;
1801 unsigned int i = 1;
1802
1803 for (chp = var->obj_name.c_str (); *chp; chp++)
1804 {
1805 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1806 }
1807
1808 cv = *(varobj_table + index);
1809 while (cv != NULL && cv->var->obj_name != var->obj_name)
1810 cv = cv->next;
1811
1812 if (cv != NULL)
1813 error (_("Duplicate variable object name"));
1814
1815 /* Add varobj to hash table. */
1816 newvl = XNEW (struct vlist);
1817 newvl->next = *(varobj_table + index);
1818 newvl->var = var;
1819 *(varobj_table + index) = newvl;
1820
1821 /* If root, add varobj to root list. */
1822 if (is_root_p (var))
1823 {
1824 /* Add to list of root variables. */
1825 if (rootlist == NULL)
1826 var->root->next = NULL;
1827 else
1828 var->root->next = rootlist;
1829 rootlist = var->root;
1830 }
1831
1832 return true; /* OK */
1833 }
1834
1835 /* Unistall the object VAR. */
1836 static void
1837 uninstall_variable (struct varobj *var)
1838 {
1839 struct vlist *cv;
1840 struct vlist *prev;
1841 struct varobj_root *cr;
1842 struct varobj_root *prer;
1843 const char *chp;
1844 unsigned int index = 0;
1845 unsigned int i = 1;
1846
1847 /* Remove varobj from hash table. */
1848 for (chp = var->obj_name.c_str (); *chp; chp++)
1849 {
1850 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1851 }
1852
1853 cv = *(varobj_table + index);
1854 prev = NULL;
1855 while (cv != NULL && cv->var->obj_name != var->obj_name)
1856 {
1857 prev = cv;
1858 cv = cv->next;
1859 }
1860
1861 if (varobjdebug)
1862 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1863
1864 if (cv == NULL)
1865 {
1866 warning
1867 ("Assertion failed: Could not find variable object \"%s\" to delete",
1868 var->obj_name.c_str ());
1869 return;
1870 }
1871
1872 if (prev == NULL)
1873 *(varobj_table + index) = cv->next;
1874 else
1875 prev->next = cv->next;
1876
1877 xfree (cv);
1878
1879 /* If root, remove varobj from root list. */
1880 if (is_root_p (var))
1881 {
1882 /* Remove from list of root variables. */
1883 if (rootlist == var->root)
1884 rootlist = var->root->next;
1885 else
1886 {
1887 prer = NULL;
1888 cr = rootlist;
1889 while ((cr != NULL) && (cr->rootvar != var))
1890 {
1891 prer = cr;
1892 cr = cr->next;
1893 }
1894 if (cr == NULL)
1895 {
1896 warning (_("Assertion failed: Could not find "
1897 "varobj \"%s\" in root list"),
1898 var->obj_name.c_str ());
1899 return;
1900 }
1901 if (prer == NULL)
1902 rootlist = NULL;
1903 else
1904 prer->next = cr->next;
1905 }
1906 }
1907
1908 }
1909
1910 /* Create and install a child of the parent of the given name.
1911
1912 The created VAROBJ takes ownership of the allocated NAME. */
1913
1914 static struct varobj *
1915 create_child (struct varobj *parent, int index, std::string &name)
1916 {
1917 struct varobj_item item;
1918
1919 std::swap (item.name, name);
1920 item.value = value_of_child (parent, index);
1921
1922 return create_child_with_value (parent, index, &item);
1923 }
1924
1925 static struct varobj *
1926 create_child_with_value (struct varobj *parent, int index,
1927 struct varobj_item *item)
1928 {
1929 varobj *child = new varobj (parent->root);
1930
1931 /* NAME is allocated by caller. */
1932 std::swap (child->name, item->name);
1933 child->index = index;
1934 child->parent = parent;
1935
1936 if (varobj_is_anonymous_child (child))
1937 child->obj_name = string_printf ("%s.%d_anonymous",
1938 parent->obj_name.c_str (), index);
1939 else
1940 child->obj_name = string_printf ("%s.%s",
1941 parent->obj_name.c_str (),
1942 child->name.c_str ());
1943
1944 install_variable (child);
1945
1946 /* Compute the type of the child. Must do this before
1947 calling install_new_value. */
1948 if (item->value != NULL)
1949 /* If the child had no evaluation errors, var->value
1950 will be non-NULL and contain a valid type. */
1951 child->type = value_actual_type (item->value, 0, NULL);
1952 else
1953 /* Otherwise, we must compute the type. */
1954 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1955 child->index);
1956 install_new_value (child, item->value, 1);
1957
1958 return child;
1959 }
1960 \f
1961
1962 /*
1963 * Miscellaneous utility functions.
1964 */
1965
1966 /* Allocate memory and initialize a new variable. */
1967 varobj::varobj (varobj_root *root_)
1968 : root (root_), dynamic (new varobj_dynamic)
1969 {
1970 }
1971
1972 /* Free any allocated memory associated with VAR. */
1973
1974 varobj::~varobj ()
1975 {
1976 varobj *var = this;
1977
1978 #if HAVE_PYTHON
1979 if (var->dynamic->pretty_printer != NULL)
1980 {
1981 gdbpy_enter_varobj enter_py (var);
1982
1983 Py_XDECREF (var->dynamic->constructor);
1984 Py_XDECREF (var->dynamic->pretty_printer);
1985 }
1986 #endif
1987
1988 varobj_iter_delete (var->dynamic->child_iter);
1989 varobj_clear_saved_item (var->dynamic);
1990
1991 if (is_root_p (var))
1992 delete var->root;
1993
1994 delete var->dynamic;
1995 }
1996
1997 /* Return the type of the value that's stored in VAR,
1998 or that would have being stored there if the
1999 value were accessible.
2000
2001 This differs from VAR->type in that VAR->type is always
2002 the true type of the expession in the source language.
2003 The return value of this function is the type we're
2004 actually storing in varobj, and using for displaying
2005 the values and for comparing previous and new values.
2006
2007 For example, top-level references are always stripped. */
2008 struct type *
2009 varobj_get_value_type (const struct varobj *var)
2010 {
2011 struct type *type;
2012
2013 if (var->value != nullptr)
2014 type = value_type (var->value.get ());
2015 else
2016 type = var->type;
2017
2018 type = check_typedef (type);
2019
2020 if (TYPE_IS_REFERENCE (type))
2021 type = get_target_type (type);
2022
2023 type = check_typedef (type);
2024
2025 return type;
2026 }
2027
2028 /* What is the default display for this variable? We assume that
2029 everything is "natural". Any exceptions? */
2030 static enum varobj_display_formats
2031 variable_default_display (struct varobj *var)
2032 {
2033 return FORMAT_NATURAL;
2034 }
2035
2036 /*
2037 * Language-dependencies
2038 */
2039
2040 /* Common entry points */
2041
2042 /* Return the number of children for a given variable.
2043 The result of this function is defined by the language
2044 implementation. The number of children returned by this function
2045 is the number of children that the user will see in the variable
2046 display. */
2047 static int
2048 number_of_children (const struct varobj *var)
2049 {
2050 return (*var->root->lang_ops->number_of_children) (var);
2051 }
2052
2053 /* What is the expression for the root varobj VAR? */
2054
2055 static std::string
2056 name_of_variable (const struct varobj *var)
2057 {
2058 return (*var->root->lang_ops->name_of_variable) (var);
2059 }
2060
2061 /* What is the name of the INDEX'th child of VAR? */
2062
2063 static std::string
2064 name_of_child (struct varobj *var, int index)
2065 {
2066 return (*var->root->lang_ops->name_of_child) (var, index);
2067 }
2068
2069 /* If frame associated with VAR can be found, switch
2070 to it and return true. Otherwise, return false. */
2071
2072 static bool
2073 check_scope (const struct varobj *var)
2074 {
2075 struct frame_info *fi;
2076 bool scope;
2077
2078 fi = frame_find_by_id (var->root->frame);
2079 scope = fi != NULL;
2080
2081 if (fi)
2082 {
2083 CORE_ADDR pc = get_frame_pc (fi);
2084
2085 if (pc < BLOCK_START (var->root->valid_block) ||
2086 pc >= BLOCK_END (var->root->valid_block))
2087 scope = false;
2088 else
2089 select_frame (fi);
2090 }
2091 return scope;
2092 }
2093
2094 /* Helper function to value_of_root. */
2095
2096 static struct value *
2097 value_of_root_1 (struct varobj **var_handle)
2098 {
2099 struct value *new_val = NULL;
2100 struct varobj *var = *var_handle;
2101 bool within_scope = false;
2102
2103 /* Only root variables can be updated... */
2104 if (!is_root_p (var))
2105 /* Not a root var. */
2106 return NULL;
2107
2108 scoped_restore_current_thread restore_thread;
2109
2110 /* Determine whether the variable is still around. */
2111 if (var->root->valid_block == NULL || var->root->floating)
2112 within_scope = true;
2113 else if (var->root->thread_id == 0)
2114 {
2115 /* The program was single-threaded when the variable object was
2116 created. Technically, it's possible that the program became
2117 multi-threaded since then, but we don't support such
2118 scenario yet. */
2119 within_scope = check_scope (var);
2120 }
2121 else
2122 {
2123 thread_info *thread = find_thread_global_id (var->root->thread_id);
2124
2125 if (thread != NULL)
2126 {
2127 switch_to_thread (thread);
2128 within_scope = check_scope (var);
2129 }
2130 }
2131
2132 if (within_scope)
2133 {
2134
2135 /* We need to catch errors here, because if evaluate
2136 expression fails we want to just return NULL. */
2137 try
2138 {
2139 new_val = evaluate_expression (var->root->exp.get ());
2140 }
2141 catch (const gdb_exception_RETURN_MASK_ERROR &except)
2142 {
2143 }
2144 }
2145
2146 return new_val;
2147 }
2148
2149 /* What is the ``struct value *'' of the root variable VAR?
2150 For floating variable object, evaluation can get us a value
2151 of different type from what is stored in varobj already. In
2152 that case:
2153 - *type_changed will be set to 1
2154 - old varobj will be freed, and new one will be
2155 created, with the same name.
2156 - *var_handle will be set to the new varobj
2157 Otherwise, *type_changed will be set to 0. */
2158 static struct value *
2159 value_of_root (struct varobj **var_handle, bool *type_changed)
2160 {
2161 struct varobj *var;
2162
2163 if (var_handle == NULL)
2164 return NULL;
2165
2166 var = *var_handle;
2167
2168 /* This should really be an exception, since this should
2169 only get called with a root variable. */
2170
2171 if (!is_root_p (var))
2172 return NULL;
2173
2174 if (var->root->floating)
2175 {
2176 struct varobj *tmp_var;
2177
2178 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2179 USE_SELECTED_FRAME);
2180 if (tmp_var == NULL)
2181 {
2182 return NULL;
2183 }
2184 std::string old_type = varobj_get_type (var);
2185 std::string new_type = varobj_get_type (tmp_var);
2186 if (old_type == new_type)
2187 {
2188 /* The expression presently stored inside var->root->exp
2189 remembers the locations of local variables relatively to
2190 the frame where the expression was created (in DWARF location
2191 button, for example). Naturally, those locations are not
2192 correct in other frames, so update the expression. */
2193
2194 std::swap (var->root->exp, tmp_var->root->exp);
2195
2196 varobj_delete (tmp_var, 0);
2197 *type_changed = 0;
2198 }
2199 else
2200 {
2201 tmp_var->obj_name = var->obj_name;
2202 tmp_var->from = var->from;
2203 tmp_var->to = var->to;
2204 varobj_delete (var, 0);
2205
2206 install_variable (tmp_var);
2207 *var_handle = tmp_var;
2208 var = *var_handle;
2209 *type_changed = true;
2210 }
2211 }
2212 else
2213 {
2214 *type_changed = 0;
2215 }
2216
2217 {
2218 struct value *value;
2219
2220 value = value_of_root_1 (var_handle);
2221 if (var->value == NULL || value == NULL)
2222 {
2223 /* For root varobj-s, a NULL value indicates a scoping issue.
2224 So, nothing to do in terms of checking for mutations. */
2225 }
2226 else if (varobj_value_has_mutated (var, value, value_type (value)))
2227 {
2228 /* The type has mutated, so the children are no longer valid.
2229 Just delete them, and tell our caller that the type has
2230 changed. */
2231 varobj_delete (var, 1 /* only_children */);
2232 var->num_children = -1;
2233 var->to = -1;
2234 var->from = -1;
2235 *type_changed = true;
2236 }
2237 return value;
2238 }
2239 }
2240
2241 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2242 static struct value *
2243 value_of_child (const struct varobj *parent, int index)
2244 {
2245 struct value *value;
2246
2247 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2248
2249 return value;
2250 }
2251
2252 /* GDB already has a command called "value_of_variable". Sigh. */
2253 static std::string
2254 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2255 {
2256 if (var->root->is_valid)
2257 {
2258 if (var->dynamic->pretty_printer != NULL)
2259 return varobj_value_get_print_value (var->value.get (), var->format,
2260 var);
2261 return (*var->root->lang_ops->value_of_variable) (var, format);
2262 }
2263 else
2264 return std::string ();
2265 }
2266
2267 void
2268 varobj_formatted_print_options (struct value_print_options *opts,
2269 enum varobj_display_formats format)
2270 {
2271 get_formatted_print_options (opts, format_code[(int) format]);
2272 opts->deref_ref = 0;
2273 opts->raw = !pretty_printing;
2274 }
2275
2276 std::string
2277 varobj_value_get_print_value (struct value *value,
2278 enum varobj_display_formats format,
2279 const struct varobj *var)
2280 {
2281 struct value_print_options opts;
2282 struct type *type = NULL;
2283 long len = 0;
2284 gdb::unique_xmalloc_ptr<char> encoding;
2285 /* Initialize it just to avoid a GCC false warning. */
2286 CORE_ADDR str_addr = 0;
2287 bool string_print = false;
2288
2289 if (value == NULL)
2290 return std::string ();
2291
2292 string_file stb;
2293 std::string thevalue;
2294
2295 #if HAVE_PYTHON
2296 if (gdb_python_initialized)
2297 {
2298 PyObject *value_formatter = var->dynamic->pretty_printer;
2299
2300 gdbpy_enter_varobj enter_py (var);
2301
2302 if (value_formatter)
2303 {
2304 /* First check to see if we have any children at all. If so,
2305 we simply return {...}. */
2306 if (dynamic_varobj_has_child_method (var))
2307 return "{...}";
2308
2309 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2310 {
2311 struct value *replacement;
2312
2313 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2314 &replacement,
2315 &stb);
2316
2317 /* If we have string like output ... */
2318 if (output != NULL)
2319 {
2320 /* If this is a lazy string, extract it. For lazy
2321 strings we always print as a string, so set
2322 string_print. */
2323 if (gdbpy_is_lazy_string (output.get ()))
2324 {
2325 gdbpy_extract_lazy_string (output.get (), &str_addr,
2326 &type, &len, &encoding);
2327 string_print = true;
2328 }
2329 else
2330 {
2331 /* If it is a regular (non-lazy) string, extract
2332 it and copy the contents into THEVALUE. If the
2333 hint says to print it as a string, set
2334 string_print. Otherwise just return the extracted
2335 string as a value. */
2336
2337 gdb::unique_xmalloc_ptr<char> s
2338 = python_string_to_target_string (output.get ());
2339
2340 if (s)
2341 {
2342 struct gdbarch *gdbarch;
2343
2344 gdb::unique_xmalloc_ptr<char> hint
2345 = gdbpy_get_display_hint (value_formatter);
2346 if (hint)
2347 {
2348 if (!strcmp (hint.get (), "string"))
2349 string_print = true;
2350 }
2351
2352 thevalue = std::string (s.get ());
2353 len = thevalue.size ();
2354 gdbarch = get_type_arch (value_type (value));
2355 type = builtin_type (gdbarch)->builtin_char;
2356
2357 if (!string_print)
2358 return thevalue;
2359 }
2360 else
2361 gdbpy_print_stack ();
2362 }
2363 }
2364 /* If the printer returned a replacement value, set VALUE
2365 to REPLACEMENT. If there is not a replacement value,
2366 just use the value passed to this function. */
2367 if (replacement)
2368 value = replacement;
2369 }
2370 }
2371 }
2372 #endif
2373
2374 varobj_formatted_print_options (&opts, format);
2375
2376 /* If the THEVALUE has contents, it is a regular string. */
2377 if (!thevalue.empty ())
2378 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2379 len, encoding.get (), 0, &opts);
2380 else if (string_print)
2381 /* Otherwise, if string_print is set, and it is not a regular
2382 string, it is a lazy string. */
2383 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2384 else
2385 /* All other cases. */
2386 common_val_print (value, &stb, 0, &opts, current_language);
2387
2388 return std::move (stb.string ());
2389 }
2390
2391 bool
2392 varobj_editable_p (const struct varobj *var)
2393 {
2394 struct type *type;
2395
2396 if (!(var->root->is_valid && var->value != nullptr
2397 && VALUE_LVAL (var->value.get ())))
2398 return false;
2399
2400 type = varobj_get_value_type (var);
2401
2402 switch (TYPE_CODE (type))
2403 {
2404 case TYPE_CODE_STRUCT:
2405 case TYPE_CODE_UNION:
2406 case TYPE_CODE_ARRAY:
2407 case TYPE_CODE_FUNC:
2408 case TYPE_CODE_METHOD:
2409 return false;
2410 break;
2411
2412 default:
2413 return true;
2414 break;
2415 }
2416 }
2417
2418 /* Call VAR's value_is_changeable_p language-specific callback. */
2419
2420 bool
2421 varobj_value_is_changeable_p (const struct varobj *var)
2422 {
2423 return var->root->lang_ops->value_is_changeable_p (var);
2424 }
2425
2426 /* Return true if that varobj is floating, that is is always evaluated in the
2427 selected frame, and not bound to thread/frame. Such variable objects
2428 are created using '@' as frame specifier to -var-create. */
2429 bool
2430 varobj_floating_p (const struct varobj *var)
2431 {
2432 return var->root->floating;
2433 }
2434
2435 /* Implement the "value_is_changeable_p" varobj callback for most
2436 languages. */
2437
2438 bool
2439 varobj_default_value_is_changeable_p (const struct varobj *var)
2440 {
2441 bool r;
2442 struct type *type;
2443
2444 if (CPLUS_FAKE_CHILD (var))
2445 return false;
2446
2447 type = varobj_get_value_type (var);
2448
2449 switch (TYPE_CODE (type))
2450 {
2451 case TYPE_CODE_STRUCT:
2452 case TYPE_CODE_UNION:
2453 case TYPE_CODE_ARRAY:
2454 r = false;
2455 break;
2456
2457 default:
2458 r = true;
2459 }
2460
2461 return r;
2462 }
2463
2464 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2465 with an arbitrary caller supplied DATA pointer. */
2466
2467 void
2468 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2469 {
2470 struct varobj_root *var_root, *var_root_next;
2471
2472 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2473
2474 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2475 {
2476 var_root_next = var_root->next;
2477
2478 (*func) (var_root->rootvar, data);
2479 }
2480 }
2481
2482 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2483 defined on globals. It is a helper for varobj_invalidate.
2484
2485 This function is called after changing the symbol file, in this case the
2486 pointers to "struct type" stored by the varobj are no longer valid. All
2487 varobj must be either re-evaluated, or marked as invalid here. */
2488
2489 static void
2490 varobj_invalidate_iter (struct varobj *var, void *unused)
2491 {
2492 /* global and floating var must be re-evaluated. */
2493 if (var->root->floating || var->root->valid_block == NULL)
2494 {
2495 struct varobj *tmp_var;
2496
2497 /* Try to create a varobj with same expression. If we succeed
2498 replace the old varobj, otherwise invalidate it. */
2499 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2500 USE_CURRENT_FRAME);
2501 if (tmp_var != NULL)
2502 {
2503 tmp_var->obj_name = var->obj_name;
2504 varobj_delete (var, 0);
2505 install_variable (tmp_var);
2506 }
2507 else
2508 var->root->is_valid = false;
2509 }
2510 else /* locals must be invalidated. */
2511 var->root->is_valid = false;
2512 }
2513
2514 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2515 are defined on globals.
2516 Invalidated varobjs will be always printed in_scope="invalid". */
2517
2518 void
2519 varobj_invalidate (void)
2520 {
2521 all_root_varobjs (varobj_invalidate_iter, NULL);
2522 }
2523
2524 void
2525 _initialize_varobj (void)
2526 {
2527 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2528
2529 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2530 &varobjdebug,
2531 _("Set varobj debugging."),
2532 _("Show varobj debugging."),
2533 _("When non-zero, varobj debugging is enabled."),
2534 NULL, show_varobjdebug,
2535 &setdebuglist, &showdebuglist);
2536 }
This page took 0.114078 seconds and 5 git commands to generate.