Change varobj to use value_ref_ptr
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #include "python/py-ref.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* Non-zero if we want to see trace of varobj level stuff. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104
105 /* Next root variable */
106 struct varobj_root *next = NULL;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 bool children_requested = false;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter = NULL;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, bool);
153
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155
156 static bool install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static enum varobj_display_formats variable_default_display (struct varobj *);
169
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
172
173 static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
175
176 /* Language-specific routines. */
177
178 static int number_of_children (const struct varobj *);
179
180 static std::string name_of_variable (const struct varobj *);
181
182 static std::string name_of_child (struct varobj *, int);
183
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
185
186 static struct value *value_of_child (const struct varobj *parent, int index);
187
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
190
191 static bool is_root_p (const struct varobj *var);
192
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
195
196 /* Private data */
197
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
203
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
207
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
210
211 \f
212
213 /* API Implementation */
214 static bool
215 is_root_p (const struct varobj *var)
216 {
217 return (var->root->rootvar == var);
218 }
219
220 #ifdef HAVE_PYTHON
221
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225 {
226 }
227
228 #endif
229
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 {
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
244 {
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
256 return frame;
257 }
258
259 return NULL;
260 }
261
262 /* Creates a varobj (not its children). */
263
264 struct varobj *
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 {
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270
271 if (expression != NULL)
272 {
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
276 const char *p;
277 struct value *value = NULL;
278 CORE_ADDR pc;
279
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
298 else
299 fi = NULL;
300
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
317 TRY
318 {
319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
320 }
321
322 CATCH (except, RETURN_MASK_ERROR)
323 {
324 return NULL;
325 }
326 END_CATCH
327
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 {
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
335 return NULL;
336 }
337
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
341 var->name = expression;
342 /* For a root var, the name and the expr are the same. */
343 var->path_expr = expression;
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
348 Since select_frame is so benign, just call it for all cases. */
349 if (var->root->valid_block)
350 {
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
358 var->root->frame = get_frame_id (fi);
359 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
360 old_id = get_frame_id (get_selected_frame (NULL));
361 select_frame (fi);
362 }
363
364 /* We definitely need to catch errors here.
365 If evaluate_expression succeeds we got the value we wanted.
366 But if it fails, we still go on with a call to evaluate_type(). */
367 TRY
368 {
369 value = evaluate_expression (var->root->exp.get ());
370 }
371 CATCH (except, RETURN_MASK_ERROR)
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376
377 var->type = value_type (type_only_value);
378 }
379 END_CATCH
380
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
389
390 /* Set language info */
391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392
393 install_new_value (var.get (), value, 1 /* Initial assignment */);
394
395 /* Set ourselves as our root. */
396 var->root->rootvar = var.get ();
397
398 /* Reset the selected frame. */
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
401 }
402
403 /* If the variable object name is null, that means this
404 is a temporary variable, so don't install it. */
405
406 if ((var != NULL) && (objname != NULL))
407 {
408 var->obj_name = objname;
409
410 /* If a varobj name is duplicated, the install will fail so
411 we must cleanup. */
412 if (!install_variable (var.get ()))
413 return NULL;
414 }
415
416 return var.release ();
417 }
418
419 /* Generates an unique name that can be used for a varobj. */
420
421 std::string
422 varobj_gen_name (void)
423 {
424 static int id = 0;
425
426 /* Generate a name for this object. */
427 id++;
428 return string_printf ("var%d", id);
429 }
430
431 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
433
434 struct varobj *
435 varobj_get_handle (const char *objname)
436 {
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
448 while (cv != NULL && cv->var->obj_name != objname)
449 cv = cv->next;
450
451 if (cv == NULL)
452 error (_("Variable object not found"));
453
454 return cv->var;
455 }
456
457 /* Given the handle, return the name of the object. */
458
459 const char *
460 varobj_get_objname (const struct varobj *var)
461 {
462 return var->obj_name.c_str ();
463 }
464
465 /* Given the handle, return the expression represented by the
466 object. */
467
468 std::string
469 varobj_get_expression (const struct varobj *var)
470 {
471 return name_of_variable (var);
472 }
473
474 /* See varobj.h. */
475
476 int
477 varobj_delete (struct varobj *var, bool only_children)
478 {
479 return delete_variable (var, only_children);
480 }
481
482 #if HAVE_PYTHON
483
484 /* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486 static PyObject *
487 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 {
489 PyObject *val_obj = NULL;
490 PyObject *printer;
491
492 val_obj = value_to_value_object (value);
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
499 }
500
501 #endif
502
503 /* Set/Get variable object display format. */
504
505 enum varobj_display_formats
506 varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508 {
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
516 case FORMAT_ZHEXADECIMAL:
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
524 if (varobj_value_is_changeable_p (var)
525 && var->value != nullptr && !value_lazy (var->value.get ()))
526 {
527 var->print_value = varobj_value_get_print_value (var->value.get (),
528 var->format, var);
529 }
530
531 return var->format;
532 }
533
534 enum varobj_display_formats
535 varobj_get_display_format (const struct varobj *var)
536 {
537 return var->format;
538 }
539
540 gdb::unique_xmalloc_ptr<char>
541 varobj_get_display_hint (const struct varobj *var)
542 {
543 gdb::unique_xmalloc_ptr<char> result;
544
545 #if HAVE_PYTHON
546 if (!gdb_python_initialized)
547 return NULL;
548
549 gdbpy_enter_varobj enter_py (var);
550
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
553 #endif
554
555 return result;
556 }
557
558 /* Return true if the varobj has items after TO, false otherwise. */
559
560 bool
561 varobj_has_more (const struct varobj *var, int to)
562 {
563 if (var->children.size () > to)
564 return true;
565
566 return ((to == -1 || var->children.size () == to)
567 && (var->dynamic->saved_item != NULL));
568 }
569
570 /* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
573 is always positive. Otherwise, returns -1. */
574 int
575 varobj_get_thread_id (const struct varobj *var)
576 {
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581 }
582
583 void
584 varobj_set_frozen (struct varobj *var, bool frozen)
585 {
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594 }
595
596 bool
597 varobj_get_frozen (const struct varobj *var)
598 {
599 return var->frozen;
600 }
601
602 /* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
607 void
608 varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
610 {
611 int len = children.size ();
612
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
616 *to = len;
617 }
618 else
619 {
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
624 if (*from > *to)
625 *from = *to;
626 }
627 }
628
629 /* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632 static void
633 install_dynamic_child (struct varobj *var,
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
638 bool *cchanged,
639 int index,
640 struct varobj_item *item)
641 {
642 if (var->children.size () < index + 1)
643 {
644 /* There's no child yet. */
645 struct varobj *child = varobj_add_child (var, item);
646
647 if (newobj != NULL)
648 {
649 newobj->push_back (child);
650 *cchanged = true;
651 }
652 }
653 else
654 {
655 varobj *existing = var->children[index];
656 bool type_updated = update_type_if_necessary (existing, item->value);
657
658 if (type_updated)
659 {
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
662 }
663 if (install_new_value (existing, item->value, 0))
664 {
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
667 }
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
670 }
671 }
672
673 #if HAVE_PYTHON
674
675 static bool
676 dynamic_varobj_has_child_method (const struct varobj *var)
677 {
678 PyObject *printer = var->dynamic->pretty_printer;
679
680 if (!gdb_python_initialized)
681 return false;
682
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
685 }
686 #endif
687
688 /* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691 static struct varobj_iter *
692 varobj_get_iterator (struct varobj *var)
693 {
694 #if HAVE_PYTHON
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
697 #endif
698
699 gdb_assert_not_reached (_("\
700 requested an iterator from a non-dynamic varobj"));
701 }
702
703 /* Release and clear VAR's saved item, if any. */
704
705 static void
706 varobj_clear_saved_item (struct varobj_dynamic *var)
707 {
708 if (var->saved_item != NULL)
709 {
710 value_decref (var->saved_item->value);
711 delete var->saved_item;
712 var->saved_item = NULL;
713 }
714 }
715
716 static bool
717 update_dynamic_varobj_children (struct varobj *var,
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
722 bool *cchanged,
723 bool update_children,
724 int from,
725 int to)
726 {
727 int i;
728
729 *cchanged = false;
730
731 if (update_children || var->dynamic->child_iter == NULL)
732 {
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
735
736 varobj_clear_saved_item (var->dynamic);
737
738 i = 0;
739
740 if (var->dynamic->child_iter == NULL)
741 return false;
742 }
743 else
744 i = var->children.size ();
745
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
749 {
750 varobj_item *item;
751
752 /* See if there was a leftover from last time. */
753 if (var->dynamic->saved_item != NULL)
754 {
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
757 }
758 else
759 {
760 item = varobj_iter_next (var->dynamic->child_iter);
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
764 release_value (item->value).release ();
765 }
766
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
776 {
777 bool can_mention = from < 0 || i >= from;
778
779 install_dynamic_child (var, can_mention ? changed : NULL,
780 can_mention ? type_changed : NULL,
781 can_mention ? newobj : NULL,
782 can_mention ? unchanged : NULL,
783 can_mention ? cchanged : NULL, i,
784 item);
785
786 delete item;
787 }
788 else
789 {
790 var->dynamic->saved_item = item;
791
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
796 }
797
798 if (i < var->children.size ())
799 {
800 *cchanged = true;
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
805 }
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
809 if (to >= 0 && var->children.size () < to)
810 *cchanged = true;
811
812 var->num_children = var->children.size ();
813
814 return true;
815 }
816
817 int
818 varobj_get_num_children (struct varobj *var)
819 {
820 if (var->num_children == -1)
821 {
822 if (varobj_is_dynamic_p (var))
823 {
824 bool dummy;
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
829 false, 0, 0);
830 }
831 else
832 var->num_children = number_of_children (var);
833 }
834
835 return var->num_children >= 0 ? var->num_children : 0;
836 }
837
838 /* Creates a list of the immediate children of a variable object;
839 the return code is the number of such children or -1 on error. */
840
841 const std::vector<varobj *> &
842 varobj_list_children (struct varobj *var, int *from, int *to)
843 {
844 var->dynamic->children_requested = true;
845
846 if (varobj_is_dynamic_p (var))
847 {
848 bool children_changed;
849
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
854 &children_changed, false, 0, *to);
855 varobj_restrict_range (var->children, from, to);
856 return var->children;
857 }
858
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
862 /* If that failed, give up. */
863 if (var->num_children == -1)
864 return var->children;
865
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
870
871 for (int i = 0; i < var->num_children; i++)
872 {
873 if (var->children[i] == NULL)
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
878 std::string name = name_of_child (var, i);
879 var->children[i] = create_child (var, i, name);
880 }
881 }
882
883 varobj_restrict_range (var->children, from, to);
884 return var->children;
885 }
886
887 static struct varobj *
888 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 {
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
893
894 return v;
895 }
896
897 /* Obtain the type of an object Variable as a string similar to the one gdb
898 prints on the console. The caller is responsible for freeing the string.
899 */
900
901 std::string
902 varobj_get_type (struct varobj *var)
903 {
904 /* For the "fake" variables, do not return a type. (Its type is
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
908 return std::string ();
909
910 return type_to_string (var->type);
911 }
912
913 /* Obtain the type of an object variable. */
914
915 struct type *
916 varobj_get_gdb_type (const struct varobj *var)
917 {
918 return var->type;
919 }
920
921 /* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
924 static bool
925 is_path_expr_parent (const struct varobj *var)
926 {
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929 }
930
931 /* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
934
935 bool
936 varobj_default_is_path_expr_parent (const struct varobj *var)
937 {
938 return true;
939 }
940
941 /* Return the path expression parent for VAR. */
942
943 const struct varobj *
944 varobj_get_path_expr_parent (const struct varobj *var)
945 {
946 const struct varobj *parent = var;
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
951 return parent;
952 }
953
954 /* Return a pointer to the full rooted expression of varobj VAR.
955 If it has not been computed yet, compute it. */
956
957 const char *
958 varobj_get_path_expr (const struct varobj *var)
959 {
960 if (var->path_expr.empty ())
961 {
962 /* For root varobjs, we initialize path_expr
963 when creating varobj, so here it should be
964 child varobj. */
965 struct varobj *mutable_var = (struct varobj *) var;
966 gdb_assert (!is_root_p (var));
967
968 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
969 }
970
971 return var->path_expr.c_str ();
972 }
973
974 const struct language_defn *
975 varobj_get_language (const struct varobj *var)
976 {
977 return var->root->exp->language_defn;
978 }
979
980 int
981 varobj_get_attributes (const struct varobj *var)
982 {
983 int attributes = 0;
984
985 if (varobj_editable_p (var))
986 /* FIXME: define masks for attributes. */
987 attributes |= 0x00000001; /* Editable */
988
989 return attributes;
990 }
991
992 /* Return true if VAR is a dynamic varobj. */
993
994 bool
995 varobj_is_dynamic_p (const struct varobj *var)
996 {
997 return var->dynamic->pretty_printer != NULL;
998 }
999
1000 std::string
1001 varobj_get_formatted_value (struct varobj *var,
1002 enum varobj_display_formats format)
1003 {
1004 return my_value_of_variable (var, format);
1005 }
1006
1007 std::string
1008 varobj_get_value (struct varobj *var)
1009 {
1010 return my_value_of_variable (var, var->format);
1011 }
1012
1013 /* Set the value of an object variable (if it is editable) to the
1014 value of the given expression. */
1015 /* Note: Invokes functions that can call error(). */
1016
1017 bool
1018 varobj_set_value (struct varobj *var, const char *expression)
1019 {
1020 struct value *val = NULL; /* Initialize to keep gcc happy. */
1021 /* The argument "expression" contains the variable's new value.
1022 We need to first construct a legal expression for this -- ugh! */
1023 /* Does this cover all the bases? */
1024 struct value *value = NULL; /* Initialize to keep gcc happy. */
1025 int saved_input_radix = input_radix;
1026 const char *s = expression;
1027
1028 gdb_assert (varobj_editable_p (var));
1029
1030 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1031 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1032 TRY
1033 {
1034 value = evaluate_expression (exp.get ());
1035 }
1036
1037 CATCH (except, RETURN_MASK_ERROR)
1038 {
1039 /* We cannot proceed without a valid expression. */
1040 return false;
1041 }
1042 END_CATCH
1043
1044 /* All types that are editable must also be changeable. */
1045 gdb_assert (varobj_value_is_changeable_p (var));
1046
1047 /* The value of a changeable variable object must not be lazy. */
1048 gdb_assert (!value_lazy (var->value.get ()));
1049
1050 /* Need to coerce the input. We want to check if the
1051 value of the variable object will be different
1052 after assignment, and the first thing value_assign
1053 does is coerce the input.
1054 For example, if we are assigning an array to a pointer variable we
1055 should compare the pointer with the array's address, not with the
1056 array's content. */
1057 value = coerce_array (value);
1058
1059 /* The new value may be lazy. value_assign, or
1060 rather value_contents, will take care of this. */
1061 TRY
1062 {
1063 val = value_assign (var->value.get (), value);
1064 }
1065
1066 CATCH (except, RETURN_MASK_ERROR)
1067 {
1068 return false;
1069 }
1070 END_CATCH
1071
1072 /* If the value has changed, record it, so that next -var-update can
1073 report this change. If a variable had a value of '1', we've set it
1074 to '333' and then set again to '1', when -var-update will report this
1075 variable as changed -- because the first assignment has set the
1076 'updated' flag. There's no need to optimize that, because return value
1077 of -var-update should be considered an approximation. */
1078 var->updated = install_new_value (var, val, false /* Compare values. */);
1079 input_radix = saved_input_radix;
1080 return true;
1081 }
1082
1083 #if HAVE_PYTHON
1084
1085 /* A helper function to install a constructor function and visualizer
1086 in a varobj_dynamic. */
1087
1088 static void
1089 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1090 PyObject *visualizer)
1091 {
1092 Py_XDECREF (var->constructor);
1093 var->constructor = constructor;
1094
1095 Py_XDECREF (var->pretty_printer);
1096 var->pretty_printer = visualizer;
1097
1098 varobj_iter_delete (var->child_iter);
1099 var->child_iter = NULL;
1100 }
1101
1102 /* Install the default visualizer for VAR. */
1103
1104 static void
1105 install_default_visualizer (struct varobj *var)
1106 {
1107 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1108 if (CPLUS_FAKE_CHILD (var))
1109 return;
1110
1111 if (pretty_printing)
1112 {
1113 PyObject *pretty_printer = NULL;
1114
1115 if (var->value != nullptr)
1116 {
1117 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1118 if (! pretty_printer)
1119 {
1120 gdbpy_print_stack ();
1121 error (_("Cannot instantiate printer for default visualizer"));
1122 }
1123 }
1124
1125 if (pretty_printer == Py_None)
1126 {
1127 Py_DECREF (pretty_printer);
1128 pretty_printer = NULL;
1129 }
1130
1131 install_visualizer (var->dynamic, NULL, pretty_printer);
1132 }
1133 }
1134
1135 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1136 make a new object. */
1137
1138 static void
1139 construct_visualizer (struct varobj *var, PyObject *constructor)
1140 {
1141 PyObject *pretty_printer;
1142
1143 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1144 if (CPLUS_FAKE_CHILD (var))
1145 return;
1146
1147 Py_INCREF (constructor);
1148 if (constructor == Py_None)
1149 pretty_printer = NULL;
1150 else
1151 {
1152 pretty_printer = instantiate_pretty_printer (constructor,
1153 var->value.get ());
1154 if (! pretty_printer)
1155 {
1156 gdbpy_print_stack ();
1157 Py_DECREF (constructor);
1158 constructor = Py_None;
1159 Py_INCREF (constructor);
1160 }
1161
1162 if (pretty_printer == Py_None)
1163 {
1164 Py_DECREF (pretty_printer);
1165 pretty_printer = NULL;
1166 }
1167 }
1168
1169 install_visualizer (var->dynamic, constructor, pretty_printer);
1170 }
1171
1172 #endif /* HAVE_PYTHON */
1173
1174 /* A helper function for install_new_value. This creates and installs
1175 a visualizer for VAR, if appropriate. */
1176
1177 static void
1178 install_new_value_visualizer (struct varobj *var)
1179 {
1180 #if HAVE_PYTHON
1181 /* If the constructor is None, then we want the raw value. If VAR
1182 does not have a value, just skip this. */
1183 if (!gdb_python_initialized)
1184 return;
1185
1186 if (var->dynamic->constructor != Py_None && var->value != NULL)
1187 {
1188 gdbpy_enter_varobj enter_py (var);
1189
1190 if (var->dynamic->constructor == NULL)
1191 install_default_visualizer (var);
1192 else
1193 construct_visualizer (var, var->dynamic->constructor);
1194 }
1195 #else
1196 /* Do nothing. */
1197 #endif
1198 }
1199
1200 /* When using RTTI to determine variable type it may be changed in runtime when
1201 the variable value is changed. This function checks whether type of varobj
1202 VAR will change when a new value NEW_VALUE is assigned and if it is so
1203 updates the type of VAR. */
1204
1205 static bool
1206 update_type_if_necessary (struct varobj *var, struct value *new_value)
1207 {
1208 if (new_value)
1209 {
1210 struct value_print_options opts;
1211
1212 get_user_print_options (&opts);
1213 if (opts.objectprint)
1214 {
1215 struct type *new_type = value_actual_type (new_value, 0, 0);
1216 std::string new_type_str = type_to_string (new_type);
1217 std::string curr_type_str = varobj_get_type (var);
1218
1219 /* Did the type name change? */
1220 if (curr_type_str != new_type_str)
1221 {
1222 var->type = new_type;
1223
1224 /* This information may be not valid for a new type. */
1225 varobj_delete (var, 1);
1226 var->children.clear ();
1227 var->num_children = -1;
1228 return true;
1229 }
1230 }
1231 }
1232
1233 return false;
1234 }
1235
1236 /* Assign a new value to a variable object. If INITIAL is true,
1237 this is the first assignment after the variable object was just
1238 created, or changed type. In that case, just assign the value
1239 and return false.
1240 Otherwise, assign the new value, and return true if the value is
1241 different from the current one, false otherwise. The comparison is
1242 done on textual representation of value. Therefore, some types
1243 need not be compared. E.g. for structures the reported value is
1244 always "{...}", so no comparison is necessary here. If the old
1245 value was NULL and new one is not, or vice versa, we always return true.
1246
1247 The VALUE parameter should not be released -- the function will
1248 take care of releasing it when needed. */
1249 static bool
1250 install_new_value (struct varobj *var, struct value *value, bool initial)
1251 {
1252 bool changeable;
1253 bool need_to_fetch;
1254 bool changed = false;
1255 bool intentionally_not_fetched = false;
1256
1257 /* We need to know the varobj's type to decide if the value should
1258 be fetched or not. C++ fake children (public/protected/private)
1259 don't have a type. */
1260 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1261 changeable = varobj_value_is_changeable_p (var);
1262
1263 /* If the type has custom visualizer, we consider it to be always
1264 changeable. FIXME: need to make sure this behaviour will not
1265 mess up read-sensitive values. */
1266 if (var->dynamic->pretty_printer != NULL)
1267 changeable = true;
1268
1269 need_to_fetch = changeable;
1270
1271 /* We are not interested in the address of references, and given
1272 that in C++ a reference is not rebindable, it cannot
1273 meaningfully change. So, get hold of the real value. */
1274 if (value)
1275 value = coerce_ref (value);
1276
1277 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1278 /* For unions, we need to fetch the value implicitly because
1279 of implementation of union member fetch. When gdb
1280 creates a value for a field and the value of the enclosing
1281 structure is not lazy, it immediately copies the necessary
1282 bytes from the enclosing values. If the enclosing value is
1283 lazy, the call to value_fetch_lazy on the field will read
1284 the data from memory. For unions, that means we'll read the
1285 same memory more than once, which is not desirable. So
1286 fetch now. */
1287 need_to_fetch = true;
1288
1289 /* The new value might be lazy. If the type is changeable,
1290 that is we'll be comparing values of this type, fetch the
1291 value now. Otherwise, on the next update the old value
1292 will be lazy, which means we've lost that old value. */
1293 if (need_to_fetch && value && value_lazy (value))
1294 {
1295 const struct varobj *parent = var->parent;
1296 bool frozen = var->frozen;
1297
1298 for (; !frozen && parent; parent = parent->parent)
1299 frozen |= parent->frozen;
1300
1301 if (frozen && initial)
1302 {
1303 /* For variables that are frozen, or are children of frozen
1304 variables, we don't do fetch on initial assignment.
1305 For non-initial assignemnt we do the fetch, since it means we're
1306 explicitly asked to compare the new value with the old one. */
1307 intentionally_not_fetched = true;
1308 }
1309 else
1310 {
1311
1312 TRY
1313 {
1314 value_fetch_lazy (value);
1315 }
1316
1317 CATCH (except, RETURN_MASK_ERROR)
1318 {
1319 /* Set the value to NULL, so that for the next -var-update,
1320 we don't try to compare the new value with this value,
1321 that we couldn't even read. */
1322 value = NULL;
1323 }
1324 END_CATCH
1325 }
1326 }
1327
1328 /* Get a reference now, before possibly passing it to any Python
1329 code that might release it. */
1330 value_ref_ptr value_holder;
1331 if (value != NULL)
1332 value_holder.reset (value_incref (value));
1333
1334 /* Below, we'll be comparing string rendering of old and new
1335 values. Don't get string rendering if the value is
1336 lazy -- if it is, the code above has decided that the value
1337 should not be fetched. */
1338 std::string print_value;
1339 if (value != NULL && !value_lazy (value)
1340 && var->dynamic->pretty_printer == NULL)
1341 print_value = varobj_value_get_print_value (value, var->format, var);
1342
1343 /* If the type is changeable, compare the old and the new values.
1344 If this is the initial assignment, we don't have any old value
1345 to compare with. */
1346 if (!initial && changeable)
1347 {
1348 /* If the value of the varobj was changed by -var-set-value,
1349 then the value in the varobj and in the target is the same.
1350 However, that value is different from the value that the
1351 varobj had after the previous -var-update. So need to the
1352 varobj as changed. */
1353 if (var->updated)
1354 changed = true;
1355 else if (var->dynamic->pretty_printer == NULL)
1356 {
1357 /* Try to compare the values. That requires that both
1358 values are non-lazy. */
1359 if (var->not_fetched && value_lazy (var->value.get ()))
1360 {
1361 /* This is a frozen varobj and the value was never read.
1362 Presumably, UI shows some "never read" indicator.
1363 Now that we've fetched the real value, we need to report
1364 this varobj as changed so that UI can show the real
1365 value. */
1366 changed = true;
1367 }
1368 else if (var->value == NULL && value == NULL)
1369 /* Equal. */
1370 ;
1371 else if (var->value == NULL || value == NULL)
1372 {
1373 changed = true;
1374 }
1375 else
1376 {
1377 gdb_assert (!value_lazy (var->value.get ()));
1378 gdb_assert (!value_lazy (value));
1379
1380 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1381 if (var->print_value != print_value)
1382 changed = true;
1383 }
1384 }
1385 }
1386
1387 if (!initial && !changeable)
1388 {
1389 /* For values that are not changeable, we don't compare the values.
1390 However, we want to notice if a value was not NULL and now is NULL,
1391 or vise versa, so that we report when top-level varobjs come in scope
1392 and leave the scope. */
1393 changed = (var->value != NULL) != (value != NULL);
1394 }
1395
1396 /* We must always keep the new value, since children depend on it. */
1397 var->value = value_holder;
1398 if (value && value_lazy (value) && intentionally_not_fetched)
1399 var->not_fetched = true;
1400 else
1401 var->not_fetched = false;
1402 var->updated = false;
1403
1404 install_new_value_visualizer (var);
1405
1406 /* If we installed a pretty-printer, re-compare the printed version
1407 to see if the variable changed. */
1408 if (var->dynamic->pretty_printer != NULL)
1409 {
1410 print_value = varobj_value_get_print_value (var->value.get (),
1411 var->format, var);
1412 if ((var->print_value.empty () && !print_value.empty ())
1413 || (!var->print_value.empty () && print_value.empty ())
1414 || (!var->print_value.empty () && !print_value.empty ()
1415 && var->print_value != print_value))
1416 changed = true;
1417 }
1418 var->print_value = print_value;
1419
1420 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1421
1422 return changed;
1423 }
1424
1425 /* Return the requested range for a varobj. VAR is the varobj. FROM
1426 and TO are out parameters; *FROM and *TO will be set to the
1427 selected sub-range of VAR. If no range was selected using
1428 -var-set-update-range, then both will be -1. */
1429 void
1430 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1431 {
1432 *from = var->from;
1433 *to = var->to;
1434 }
1435
1436 /* Set the selected sub-range of children of VAR to start at index
1437 FROM and end at index TO. If either FROM or TO is less than zero,
1438 this is interpreted as a request for all children. */
1439 void
1440 varobj_set_child_range (struct varobj *var, int from, int to)
1441 {
1442 var->from = from;
1443 var->to = to;
1444 }
1445
1446 void
1447 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1448 {
1449 #if HAVE_PYTHON
1450 PyObject *mainmod;
1451
1452 if (!gdb_python_initialized)
1453 return;
1454
1455 gdbpy_enter_varobj enter_py (var);
1456
1457 mainmod = PyImport_AddModule ("__main__");
1458 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1459 Py_INCREF (globals.get ());
1460
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
1463
1464 if (constructor == NULL)
1465 {
1466 gdbpy_print_stack ();
1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1468 }
1469
1470 construct_visualizer (var, constructor.get ());
1471
1472 /* If there are any children now, wipe them. */
1473 varobj_delete (var, 1 /* children only */);
1474 var->num_children = -1;
1475 #else
1476 error (_("Python support required"));
1477 #endif
1478 }
1479
1480 /* If NEW_VALUE is the new value of the given varobj (var), return
1481 true if var has mutated. In other words, if the type of
1482 the new value is different from the type of the varobj's old
1483 value.
1484
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1486
1487 static bool
1488 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1489 struct type *new_type)
1490 {
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
1496 return false;
1497
1498 if (var->root->lang_ops->value_has_mutated != NULL)
1499 {
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1508 }
1509 else
1510 return false;
1511 }
1512
1513 /* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1517 changed.
1518
1519 The IS_EXPLICIT parameter specifies if this call is result
1520 of MI request to update this specific variable, or
1521 result of implicit -var-update *. For implicit request, we don't
1522 update frozen variables.
1523
1524 NOTE: This function may delete the caller's varobj. If it
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
1527
1528 std::vector<varobj_update_result>
1529 varobj_update (struct varobj **varp, bool is_explicit)
1530 {
1531 bool type_changed = false;
1532 struct value *newobj;
1533 std::vector<varobj_update_result> stack;
1534 std::vector<varobj_update_result> result;
1535
1536 /* Frozen means frozen -- we don't check for any change in
1537 this varobj, including its going out of scope, or
1538 changing type. One use case for frozen varobjs is
1539 retaining previously evaluated expressions, and we don't
1540 want them to be reevaluated at all. */
1541 if (!is_explicit && (*varp)->frozen)
1542 return result;
1543
1544 if (!(*varp)->root->is_valid)
1545 {
1546 result.emplace_back (*varp, VAROBJ_INVALID);
1547 return result;
1548 }
1549
1550 if ((*varp)->root->rootvar == *varp)
1551 {
1552 varobj_update_result r (*varp);
1553
1554 /* Update the root variable. value_of_root can return NULL
1555 if the variable is no longer around, i.e. we stepped out of
1556 the frame in which a local existed. We are letting the
1557 value_of_root variable dispose of the varobj if the type
1558 has changed. */
1559 newobj = value_of_root (varp, &type_changed);
1560 if (update_type_if_necessary (*varp, newobj))
1561 type_changed = true;
1562 r.varobj = *varp;
1563 r.type_changed = type_changed;
1564 if (install_new_value ((*varp), newobj, type_changed))
1565 r.changed = true;
1566
1567 if (newobj == NULL)
1568 r.status = VAROBJ_NOT_IN_SCOPE;
1569 r.value_installed = true;
1570
1571 if (r.status == VAROBJ_NOT_IN_SCOPE)
1572 {
1573 if (r.type_changed || r.changed)
1574 result.push_back (std::move (r));
1575
1576 return result;
1577 }
1578
1579 stack.push_back (std::move (r));
1580 }
1581 else
1582 stack.emplace_back (*varp);
1583
1584 /* Walk through the children, reconstructing them all. */
1585 while (!stack.empty ())
1586 {
1587 varobj_update_result r = std::move (stack.back ());
1588 stack.pop_back ();
1589 struct varobj *v = r.varobj;
1590
1591 /* Update this variable, unless it's a root, which is already
1592 updated. */
1593 if (!r.value_installed)
1594 {
1595 struct type *new_type;
1596
1597 newobj = value_of_child (v->parent, v->index);
1598 if (update_type_if_necessary (v, newobj))
1599 r.type_changed = true;
1600 if (newobj)
1601 new_type = value_type (newobj);
1602 else
1603 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1604
1605 if (varobj_value_has_mutated (v, newobj, new_type))
1606 {
1607 /* The children are no longer valid; delete them now.
1608 Report the fact that its type changed as well. */
1609 varobj_delete (v, 1 /* only_children */);
1610 v->num_children = -1;
1611 v->to = -1;
1612 v->from = -1;
1613 v->type = new_type;
1614 r.type_changed = true;
1615 }
1616
1617 if (install_new_value (v, newobj, r.type_changed))
1618 {
1619 r.changed = true;
1620 v->updated = false;
1621 }
1622 }
1623
1624 /* We probably should not get children of a dynamic varobj, but
1625 for which -var-list-children was never invoked. */
1626 if (varobj_is_dynamic_p (v))
1627 {
1628 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1629 bool children_changed = false;
1630
1631 if (v->frozen)
1632 continue;
1633
1634 if (!v->dynamic->children_requested)
1635 {
1636 bool dummy;
1637
1638 /* If we initially did not have potential children, but
1639 now we do, consider the varobj as changed.
1640 Otherwise, if children were never requested, consider
1641 it as unchanged -- presumably, such varobj is not yet
1642 expanded in the UI, so we need not bother getting
1643 it. */
1644 if (!varobj_has_more (v, 0))
1645 {
1646 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1647 &dummy, false, 0, 0);
1648 if (varobj_has_more (v, 0))
1649 r.changed = true;
1650 }
1651
1652 if (r.changed)
1653 result.push_back (std::move (r));
1654
1655 continue;
1656 }
1657
1658 /* If update_dynamic_varobj_children returns false, then we have
1659 a non-conforming pretty-printer, so we skip it. */
1660 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1661 &unchanged, &children_changed, true,
1662 v->from, v->to))
1663 {
1664 if (children_changed || !newobj.empty ())
1665 {
1666 r.children_changed = true;
1667 r.newobj = std::move (newobj);
1668 }
1669 /* Push in reverse order so that the first child is
1670 popped from the work stack first, and so will be
1671 added to result first. This does not affect
1672 correctness, just "nicer". */
1673 for (int i = type_changed.size () - 1; i >= 0; --i)
1674 {
1675 varobj_update_result r (type_changed[i]);
1676
1677 /* Type may change only if value was changed. */
1678 r.changed = true;
1679 r.type_changed = true;
1680 r.value_installed = true;
1681
1682 stack.push_back (std::move (r));
1683 }
1684 for (int i = changed.size () - 1; i >= 0; --i)
1685 {
1686 varobj_update_result r (changed[i]);
1687
1688 r.changed = true;
1689 r.value_installed = true;
1690
1691 stack.push_back (std::move (r));
1692 }
1693 for (int i = unchanged.size () - 1; i >= 0; --i)
1694 {
1695 if (!unchanged[i]->frozen)
1696 {
1697 varobj_update_result r (unchanged[i]);
1698
1699 r.value_installed = true;
1700
1701 stack.push_back (std::move (r));
1702 }
1703 }
1704 if (r.changed || r.children_changed)
1705 result.push_back (std::move (r));
1706
1707 continue;
1708 }
1709 }
1710
1711 /* Push any children. Use reverse order so that the first
1712 child is popped from the work stack first, and so
1713 will be added to result first. This does not
1714 affect correctness, just "nicer". */
1715 for (int i = v->children.size () - 1; i >= 0; --i)
1716 {
1717 varobj *c = v->children[i];
1718
1719 /* Child may be NULL if explicitly deleted by -var-delete. */
1720 if (c != NULL && !c->frozen)
1721 stack.emplace_back (c);
1722 }
1723
1724 if (r.changed || r.type_changed)
1725 result.push_back (std::move (r));
1726 }
1727
1728 return result;
1729 }
1730
1731 /* Helper functions */
1732
1733 /*
1734 * Variable object construction/destruction
1735 */
1736
1737 static int
1738 delete_variable (struct varobj *var, bool only_children_p)
1739 {
1740 int delcount = 0;
1741
1742 delete_variable_1 (&delcount, var, only_children_p,
1743 true /* remove_from_parent_p */ );
1744
1745 return delcount;
1746 }
1747
1748 /* Delete the variable object VAR and its children. */
1749 /* IMPORTANT NOTE: If we delete a variable which is a child
1750 and the parent is not removed we dump core. It must be always
1751 initially called with remove_from_parent_p set. */
1752 static void
1753 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1754 bool remove_from_parent_p)
1755 {
1756 /* Delete any children of this variable, too. */
1757 for (varobj *child : var->children)
1758 {
1759 if (!child)
1760 continue;
1761
1762 if (!remove_from_parent_p)
1763 child->parent = NULL;
1764
1765 delete_variable_1 (delcountp, child, false, only_children_p);
1766 }
1767 var->children.clear ();
1768
1769 /* if we were called to delete only the children we are done here. */
1770 if (only_children_p)
1771 return;
1772
1773 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1774 /* If the name is empty, this is a temporary variable, that has not
1775 yet been installed, don't report it, it belongs to the caller... */
1776 if (!var->obj_name.empty ())
1777 {
1778 *delcountp = *delcountp + 1;
1779 }
1780
1781 /* If this variable has a parent, remove it from its parent's list. */
1782 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1783 (as indicated by remove_from_parent_p) we don't bother doing an
1784 expensive list search to find the element to remove when we are
1785 discarding the list afterwards. */
1786 if ((remove_from_parent_p) && (var->parent != NULL))
1787 var->parent->children[var->index] = NULL;
1788
1789 if (!var->obj_name.empty ())
1790 uninstall_variable (var);
1791
1792 /* Free memory associated with this variable. */
1793 delete var;
1794 }
1795
1796 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1797 static bool
1798 install_variable (struct varobj *var)
1799 {
1800 struct vlist *cv;
1801 struct vlist *newvl;
1802 const char *chp;
1803 unsigned int index = 0;
1804 unsigned int i = 1;
1805
1806 for (chp = var->obj_name.c_str (); *chp; chp++)
1807 {
1808 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1809 }
1810
1811 cv = *(varobj_table + index);
1812 while (cv != NULL && cv->var->obj_name != var->obj_name)
1813 cv = cv->next;
1814
1815 if (cv != NULL)
1816 error (_("Duplicate variable object name"));
1817
1818 /* Add varobj to hash table. */
1819 newvl = XNEW (struct vlist);
1820 newvl->next = *(varobj_table + index);
1821 newvl->var = var;
1822 *(varobj_table + index) = newvl;
1823
1824 /* If root, add varobj to root list. */
1825 if (is_root_p (var))
1826 {
1827 /* Add to list of root variables. */
1828 if (rootlist == NULL)
1829 var->root->next = NULL;
1830 else
1831 var->root->next = rootlist;
1832 rootlist = var->root;
1833 }
1834
1835 return true; /* OK */
1836 }
1837
1838 /* Unistall the object VAR. */
1839 static void
1840 uninstall_variable (struct varobj *var)
1841 {
1842 struct vlist *cv;
1843 struct vlist *prev;
1844 struct varobj_root *cr;
1845 struct varobj_root *prer;
1846 const char *chp;
1847 unsigned int index = 0;
1848 unsigned int i = 1;
1849
1850 /* Remove varobj from hash table. */
1851 for (chp = var->obj_name.c_str (); *chp; chp++)
1852 {
1853 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1854 }
1855
1856 cv = *(varobj_table + index);
1857 prev = NULL;
1858 while (cv != NULL && cv->var->obj_name != var->obj_name)
1859 {
1860 prev = cv;
1861 cv = cv->next;
1862 }
1863
1864 if (varobjdebug)
1865 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1866
1867 if (cv == NULL)
1868 {
1869 warning
1870 ("Assertion failed: Could not find variable object \"%s\" to delete",
1871 var->obj_name.c_str ());
1872 return;
1873 }
1874
1875 if (prev == NULL)
1876 *(varobj_table + index) = cv->next;
1877 else
1878 prev->next = cv->next;
1879
1880 xfree (cv);
1881
1882 /* If root, remove varobj from root list. */
1883 if (is_root_p (var))
1884 {
1885 /* Remove from list of root variables. */
1886 if (rootlist == var->root)
1887 rootlist = var->root->next;
1888 else
1889 {
1890 prer = NULL;
1891 cr = rootlist;
1892 while ((cr != NULL) && (cr->rootvar != var))
1893 {
1894 prer = cr;
1895 cr = cr->next;
1896 }
1897 if (cr == NULL)
1898 {
1899 warning (_("Assertion failed: Could not find "
1900 "varobj \"%s\" in root list"),
1901 var->obj_name.c_str ());
1902 return;
1903 }
1904 if (prer == NULL)
1905 rootlist = NULL;
1906 else
1907 prer->next = cr->next;
1908 }
1909 }
1910
1911 }
1912
1913 /* Create and install a child of the parent of the given name.
1914
1915 The created VAROBJ takes ownership of the allocated NAME. */
1916
1917 static struct varobj *
1918 create_child (struct varobj *parent, int index, std::string &name)
1919 {
1920 struct varobj_item item;
1921
1922 std::swap (item.name, name);
1923 item.value = value_of_child (parent, index);
1924
1925 return create_child_with_value (parent, index, &item);
1926 }
1927
1928 static struct varobj *
1929 create_child_with_value (struct varobj *parent, int index,
1930 struct varobj_item *item)
1931 {
1932 varobj *child = new varobj (parent->root);
1933
1934 /* NAME is allocated by caller. */
1935 std::swap (child->name, item->name);
1936 child->index = index;
1937 child->parent = parent;
1938
1939 if (varobj_is_anonymous_child (child))
1940 child->obj_name = string_printf ("%s.%d_anonymous",
1941 parent->obj_name.c_str (), index);
1942 else
1943 child->obj_name = string_printf ("%s.%s",
1944 parent->obj_name.c_str (),
1945 child->name.c_str ());
1946
1947 install_variable (child);
1948
1949 /* Compute the type of the child. Must do this before
1950 calling install_new_value. */
1951 if (item->value != NULL)
1952 /* If the child had no evaluation errors, var->value
1953 will be non-NULL and contain a valid type. */
1954 child->type = value_actual_type (item->value, 0, NULL);
1955 else
1956 /* Otherwise, we must compute the type. */
1957 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1958 child->index);
1959 install_new_value (child, item->value, 1);
1960
1961 return child;
1962 }
1963 \f
1964
1965 /*
1966 * Miscellaneous utility functions.
1967 */
1968
1969 /* Allocate memory and initialize a new variable. */
1970 varobj::varobj (varobj_root *root_)
1971 : root (root_), dynamic (new varobj_dynamic)
1972 {
1973 }
1974
1975 /* Free any allocated memory associated with VAR. */
1976
1977 varobj::~varobj ()
1978 {
1979 varobj *var = this;
1980
1981 #if HAVE_PYTHON
1982 if (var->dynamic->pretty_printer != NULL)
1983 {
1984 gdbpy_enter_varobj enter_py (var);
1985
1986 Py_XDECREF (var->dynamic->constructor);
1987 Py_XDECREF (var->dynamic->pretty_printer);
1988 }
1989 #endif
1990
1991 varobj_iter_delete (var->dynamic->child_iter);
1992 varobj_clear_saved_item (var->dynamic);
1993
1994 if (is_root_p (var))
1995 delete var->root;
1996
1997 delete var->dynamic;
1998 }
1999
2000 /* Return the type of the value that's stored in VAR,
2001 or that would have being stored there if the
2002 value were accessible.
2003
2004 This differs from VAR->type in that VAR->type is always
2005 the true type of the expession in the source language.
2006 The return value of this function is the type we're
2007 actually storing in varobj, and using for displaying
2008 the values and for comparing previous and new values.
2009
2010 For example, top-level references are always stripped. */
2011 struct type *
2012 varobj_get_value_type (const struct varobj *var)
2013 {
2014 struct type *type;
2015
2016 if (var->value != nullptr)
2017 type = value_type (var->value.get ());
2018 else
2019 type = var->type;
2020
2021 type = check_typedef (type);
2022
2023 if (TYPE_IS_REFERENCE (type))
2024 type = get_target_type (type);
2025
2026 type = check_typedef (type);
2027
2028 return type;
2029 }
2030
2031 /* What is the default display for this variable? We assume that
2032 everything is "natural". Any exceptions? */
2033 static enum varobj_display_formats
2034 variable_default_display (struct varobj *var)
2035 {
2036 return FORMAT_NATURAL;
2037 }
2038
2039 /*
2040 * Language-dependencies
2041 */
2042
2043 /* Common entry points */
2044
2045 /* Return the number of children for a given variable.
2046 The result of this function is defined by the language
2047 implementation. The number of children returned by this function
2048 is the number of children that the user will see in the variable
2049 display. */
2050 static int
2051 number_of_children (const struct varobj *var)
2052 {
2053 return (*var->root->lang_ops->number_of_children) (var);
2054 }
2055
2056 /* What is the expression for the root varobj VAR? */
2057
2058 static std::string
2059 name_of_variable (const struct varobj *var)
2060 {
2061 return (*var->root->lang_ops->name_of_variable) (var);
2062 }
2063
2064 /* What is the name of the INDEX'th child of VAR? */
2065
2066 static std::string
2067 name_of_child (struct varobj *var, int index)
2068 {
2069 return (*var->root->lang_ops->name_of_child) (var, index);
2070 }
2071
2072 /* If frame associated with VAR can be found, switch
2073 to it and return true. Otherwise, return false. */
2074
2075 static bool
2076 check_scope (const struct varobj *var)
2077 {
2078 struct frame_info *fi;
2079 bool scope;
2080
2081 fi = frame_find_by_id (var->root->frame);
2082 scope = fi != NULL;
2083
2084 if (fi)
2085 {
2086 CORE_ADDR pc = get_frame_pc (fi);
2087
2088 if (pc < BLOCK_START (var->root->valid_block) ||
2089 pc >= BLOCK_END (var->root->valid_block))
2090 scope = false;
2091 else
2092 select_frame (fi);
2093 }
2094 return scope;
2095 }
2096
2097 /* Helper function to value_of_root. */
2098
2099 static struct value *
2100 value_of_root_1 (struct varobj **var_handle)
2101 {
2102 struct value *new_val = NULL;
2103 struct varobj *var = *var_handle;
2104 bool within_scope = false;
2105
2106 /* Only root variables can be updated... */
2107 if (!is_root_p (var))
2108 /* Not a root var. */
2109 return NULL;
2110
2111 scoped_restore_current_thread restore_thread;
2112
2113 /* Determine whether the variable is still around. */
2114 if (var->root->valid_block == NULL || var->root->floating)
2115 within_scope = true;
2116 else if (var->root->thread_id == 0)
2117 {
2118 /* The program was single-threaded when the variable object was
2119 created. Technically, it's possible that the program became
2120 multi-threaded since then, but we don't support such
2121 scenario yet. */
2122 within_scope = check_scope (var);
2123 }
2124 else
2125 {
2126 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2127
2128 if (!ptid_equal (minus_one_ptid, ptid))
2129 {
2130 switch_to_thread (ptid);
2131 within_scope = check_scope (var);
2132 }
2133 }
2134
2135 if (within_scope)
2136 {
2137
2138 /* We need to catch errors here, because if evaluate
2139 expression fails we want to just return NULL. */
2140 TRY
2141 {
2142 new_val = evaluate_expression (var->root->exp.get ());
2143 }
2144 CATCH (except, RETURN_MASK_ERROR)
2145 {
2146 }
2147 END_CATCH
2148 }
2149
2150 return new_val;
2151 }
2152
2153 /* What is the ``struct value *'' of the root variable VAR?
2154 For floating variable object, evaluation can get us a value
2155 of different type from what is stored in varobj already. In
2156 that case:
2157 - *type_changed will be set to 1
2158 - old varobj will be freed, and new one will be
2159 created, with the same name.
2160 - *var_handle will be set to the new varobj
2161 Otherwise, *type_changed will be set to 0. */
2162 static struct value *
2163 value_of_root (struct varobj **var_handle, bool *type_changed)
2164 {
2165 struct varobj *var;
2166
2167 if (var_handle == NULL)
2168 return NULL;
2169
2170 var = *var_handle;
2171
2172 /* This should really be an exception, since this should
2173 only get called with a root variable. */
2174
2175 if (!is_root_p (var))
2176 return NULL;
2177
2178 if (var->root->floating)
2179 {
2180 struct varobj *tmp_var;
2181
2182 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2183 USE_SELECTED_FRAME);
2184 if (tmp_var == NULL)
2185 {
2186 return NULL;
2187 }
2188 std::string old_type = varobj_get_type (var);
2189 std::string new_type = varobj_get_type (tmp_var);
2190 if (old_type == new_type)
2191 {
2192 /* The expression presently stored inside var->root->exp
2193 remembers the locations of local variables relatively to
2194 the frame where the expression was created (in DWARF location
2195 button, for example). Naturally, those locations are not
2196 correct in other frames, so update the expression. */
2197
2198 std::swap (var->root->exp, tmp_var->root->exp);
2199
2200 varobj_delete (tmp_var, 0);
2201 *type_changed = 0;
2202 }
2203 else
2204 {
2205 tmp_var->obj_name = var->obj_name;
2206 tmp_var->from = var->from;
2207 tmp_var->to = var->to;
2208 varobj_delete (var, 0);
2209
2210 install_variable (tmp_var);
2211 *var_handle = tmp_var;
2212 var = *var_handle;
2213 *type_changed = true;
2214 }
2215 }
2216 else
2217 {
2218 *type_changed = 0;
2219 }
2220
2221 {
2222 struct value *value;
2223
2224 value = value_of_root_1 (var_handle);
2225 if (var->value == NULL || value == NULL)
2226 {
2227 /* For root varobj-s, a NULL value indicates a scoping issue.
2228 So, nothing to do in terms of checking for mutations. */
2229 }
2230 else if (varobj_value_has_mutated (var, value, value_type (value)))
2231 {
2232 /* The type has mutated, so the children are no longer valid.
2233 Just delete them, and tell our caller that the type has
2234 changed. */
2235 varobj_delete (var, 1 /* only_children */);
2236 var->num_children = -1;
2237 var->to = -1;
2238 var->from = -1;
2239 *type_changed = true;
2240 }
2241 return value;
2242 }
2243 }
2244
2245 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2246 static struct value *
2247 value_of_child (const struct varobj *parent, int index)
2248 {
2249 struct value *value;
2250
2251 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2252
2253 return value;
2254 }
2255
2256 /* GDB already has a command called "value_of_variable". Sigh. */
2257 static std::string
2258 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2259 {
2260 if (var->root->is_valid)
2261 {
2262 if (var->dynamic->pretty_printer != NULL)
2263 return varobj_value_get_print_value (var->value.get (), var->format,
2264 var);
2265 return (*var->root->lang_ops->value_of_variable) (var, format);
2266 }
2267 else
2268 return std::string ();
2269 }
2270
2271 void
2272 varobj_formatted_print_options (struct value_print_options *opts,
2273 enum varobj_display_formats format)
2274 {
2275 get_formatted_print_options (opts, format_code[(int) format]);
2276 opts->deref_ref = 0;
2277 opts->raw = !pretty_printing;
2278 }
2279
2280 std::string
2281 varobj_value_get_print_value (struct value *value,
2282 enum varobj_display_formats format,
2283 const struct varobj *var)
2284 {
2285 struct value_print_options opts;
2286 struct type *type = NULL;
2287 long len = 0;
2288 gdb::unique_xmalloc_ptr<char> encoding;
2289 /* Initialize it just to avoid a GCC false warning. */
2290 CORE_ADDR str_addr = 0;
2291 bool string_print = false;
2292
2293 if (value == NULL)
2294 return std::string ();
2295
2296 string_file stb;
2297 std::string thevalue;
2298
2299 #if HAVE_PYTHON
2300 if (gdb_python_initialized)
2301 {
2302 PyObject *value_formatter = var->dynamic->pretty_printer;
2303
2304 gdbpy_enter_varobj enter_py (var);
2305
2306 if (value_formatter)
2307 {
2308 /* First check to see if we have any children at all. If so,
2309 we simply return {...}. */
2310 if (dynamic_varobj_has_child_method (var))
2311 return "{...}";
2312
2313 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2314 {
2315 struct value *replacement;
2316
2317 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2318 &replacement,
2319 &stb));
2320
2321 /* If we have string like output ... */
2322 if (output != NULL)
2323 {
2324 /* If this is a lazy string, extract it. For lazy
2325 strings we always print as a string, so set
2326 string_print. */
2327 if (gdbpy_is_lazy_string (output.get ()))
2328 {
2329 gdbpy_extract_lazy_string (output.get (), &str_addr,
2330 &type, &len, &encoding);
2331 string_print = true;
2332 }
2333 else
2334 {
2335 /* If it is a regular (non-lazy) string, extract
2336 it and copy the contents into THEVALUE. If the
2337 hint says to print it as a string, set
2338 string_print. Otherwise just return the extracted
2339 string as a value. */
2340
2341 gdb::unique_xmalloc_ptr<char> s
2342 = python_string_to_target_string (output.get ());
2343
2344 if (s)
2345 {
2346 struct gdbarch *gdbarch;
2347
2348 gdb::unique_xmalloc_ptr<char> hint
2349 = gdbpy_get_display_hint (value_formatter);
2350 if (hint)
2351 {
2352 if (!strcmp (hint.get (), "string"))
2353 string_print = true;
2354 }
2355
2356 thevalue = std::string (s.get ());
2357 len = thevalue.size ();
2358 gdbarch = get_type_arch (value_type (value));
2359 type = builtin_type (gdbarch)->builtin_char;
2360
2361 if (!string_print)
2362 return thevalue;
2363 }
2364 else
2365 gdbpy_print_stack ();
2366 }
2367 }
2368 /* If the printer returned a replacement value, set VALUE
2369 to REPLACEMENT. If there is not a replacement value,
2370 just use the value passed to this function. */
2371 if (replacement)
2372 value = replacement;
2373 }
2374 }
2375 }
2376 #endif
2377
2378 varobj_formatted_print_options (&opts, format);
2379
2380 /* If the THEVALUE has contents, it is a regular string. */
2381 if (!thevalue.empty ())
2382 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2383 len, encoding.get (), 0, &opts);
2384 else if (string_print)
2385 /* Otherwise, if string_print is set, and it is not a regular
2386 string, it is a lazy string. */
2387 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2388 else
2389 /* All other cases. */
2390 common_val_print (value, &stb, 0, &opts, current_language);
2391
2392 return std::move (stb.string ());
2393 }
2394
2395 bool
2396 varobj_editable_p (const struct varobj *var)
2397 {
2398 struct type *type;
2399
2400 if (!(var->root->is_valid && var->value != nullptr
2401 && VALUE_LVAL (var->value.get ())))
2402 return false;
2403
2404 type = varobj_get_value_type (var);
2405
2406 switch (TYPE_CODE (type))
2407 {
2408 case TYPE_CODE_STRUCT:
2409 case TYPE_CODE_UNION:
2410 case TYPE_CODE_ARRAY:
2411 case TYPE_CODE_FUNC:
2412 case TYPE_CODE_METHOD:
2413 return false;
2414 break;
2415
2416 default:
2417 return true;
2418 break;
2419 }
2420 }
2421
2422 /* Call VAR's value_is_changeable_p language-specific callback. */
2423
2424 bool
2425 varobj_value_is_changeable_p (const struct varobj *var)
2426 {
2427 return var->root->lang_ops->value_is_changeable_p (var);
2428 }
2429
2430 /* Return true if that varobj is floating, that is is always evaluated in the
2431 selected frame, and not bound to thread/frame. Such variable objects
2432 are created using '@' as frame specifier to -var-create. */
2433 bool
2434 varobj_floating_p (const struct varobj *var)
2435 {
2436 return var->root->floating;
2437 }
2438
2439 /* Implement the "value_is_changeable_p" varobj callback for most
2440 languages. */
2441
2442 bool
2443 varobj_default_value_is_changeable_p (const struct varobj *var)
2444 {
2445 bool r;
2446 struct type *type;
2447
2448 if (CPLUS_FAKE_CHILD (var))
2449 return false;
2450
2451 type = varobj_get_value_type (var);
2452
2453 switch (TYPE_CODE (type))
2454 {
2455 case TYPE_CODE_STRUCT:
2456 case TYPE_CODE_UNION:
2457 case TYPE_CODE_ARRAY:
2458 r = false;
2459 break;
2460
2461 default:
2462 r = true;
2463 }
2464
2465 return r;
2466 }
2467
2468 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2469 with an arbitrary caller supplied DATA pointer. */
2470
2471 void
2472 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2473 {
2474 struct varobj_root *var_root, *var_root_next;
2475
2476 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2477
2478 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2479 {
2480 var_root_next = var_root->next;
2481
2482 (*func) (var_root->rootvar, data);
2483 }
2484 }
2485
2486 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2487 defined on globals. It is a helper for varobj_invalidate.
2488
2489 This function is called after changing the symbol file, in this case the
2490 pointers to "struct type" stored by the varobj are no longer valid. All
2491 varobj must be either re-evaluated, or marked as invalid here. */
2492
2493 static void
2494 varobj_invalidate_iter (struct varobj *var, void *unused)
2495 {
2496 /* global and floating var must be re-evaluated. */
2497 if (var->root->floating || var->root->valid_block == NULL)
2498 {
2499 struct varobj *tmp_var;
2500
2501 /* Try to create a varobj with same expression. If we succeed
2502 replace the old varobj, otherwise invalidate it. */
2503 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2504 USE_CURRENT_FRAME);
2505 if (tmp_var != NULL)
2506 {
2507 tmp_var->obj_name = var->obj_name;
2508 varobj_delete (var, 0);
2509 install_variable (tmp_var);
2510 }
2511 else
2512 var->root->is_valid = false;
2513 }
2514 else /* locals must be invalidated. */
2515 var->root->is_valid = false;
2516 }
2517
2518 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2519 are defined on globals.
2520 Invalidated varobjs will be always printed in_scope="invalid". */
2521
2522 void
2523 varobj_invalidate (void)
2524 {
2525 all_root_varobjs (varobj_invalidate_iter, NULL);
2526 }
2527
2528 void
2529 _initialize_varobj (void)
2530 {
2531 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2532
2533 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2534 &varobjdebug,
2535 _("Set varobj debugging."),
2536 _("Show varobj debugging."),
2537 _("When non-zero, varobj debugging is enabled."),
2538 NULL, show_varobjdebug,
2539 &setdebuglist, &showdebuglist);
2540 }
This page took 0.081205 seconds and 5 git commands to generate.